Package ‘stokes’
August 19, 2023

Type Package
Title The Exterior Calculus
Version 1.2-0
Depends R (>= 3.5.0)
Suggests knitr, Deriv, testthat, markdown, rmarkdown, emulator, magrittr
VignetteBuilder knitr
Imports permutations (>= 1.1-2), partitions, methods, mathjaxr, disordR (>= 0.9-7), spray (>= 1.0-24)
Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>
License GPL-2
LazyData yes
URL https://github.com/RobinHankin/stokes
BugReports https://github.com/RobinHankin/stokes/issues
RdMacros mathjaxr

R topics documented:

 stokes-package ... 2
 Alt ... 5
 as.1form .. 6
 coeffs ... 7
 consolidate .. 8
The Exterior Calculus

Description

Details

The DESCRIPTION file:

Package: stokes
Type: Package
Title: The Exterior Calculus
Version: 1.2-0
Depends: R (>= 3.5.0)
Suggests: knitr, Deriv, testthat, markdown, rmarkdown, emulator, magrittr
VignetteBuilder: knitr
Imports: permutations (>= 1.1-2), partitions, methods, mathjaxr, disordR (>= 0.9-7), spray (>= 1.0-24)
Authors@R: person(given = c("Robin", "K. S."), family = "Hankin", role = c("aut", "cre"), email = "hankin.robin@gmail.com")
Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>
Description: Provides functionality for working with tensors, alternating forms, wedge products, Stokes’s theorem, and "Calculus on Manifolds". To cite the package in publications please use Hankin (2022) <doi:10.48550/ARXIV.2210.17008>.

License: GPL-2

LazyData: yes

URL: https://github.com/RobinHankin/stokes

BugReports: https://github.com/RobinHankin/stokes/issues

RdMacros: mathjaxr

Author: Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Index of help topics:

- Alt: Alternating multilinear forms
- Ops.kform: Arithmetic Ops Group Methods for 'kform' and 'ktensor' objects
- as.1form: Coerce vectors to 1-forms
- coeffs: Extract and manipulate coefficients
- consolidate: Various low-level helper functions
- contract: Contractions of k-forms
- dovs: Dimension of the underlying vector space
- dx: Elementary forms in three-dimensional space
- ex: Basis vectors in three-dimensional space
- hodge: Hodge star operator
- inner: Inner product operator
- issmall: Is a form zero to within numerical precision?
- keep: Keep or drop variables
- kform: k-forms
- kinner: Inner product of two kforms
- ktensor: k-tensors
- print.stokes: Print methods for k-tensors and k-forms
- rform: Random kforms and ktensors
- scalar: Scalars and losing attributes
- stokes-package: The Exterior Calculus
- summary.stokes: Summaries of tensors and alternating forms
- symbolic: Symbolic form
- tensorprod: Tensor products of k-tensors
- transform: Linear transforms of k-forms
- vector_cross_product: The Vector cross product
- volume: The volume element
- wedge: Wedge products
- zap: Zap small values in k-forms and k-tensors
- zero: Zero tensors and zero forms

Generally in the package, arguments that are \(k \)-forms are denoted \(K \), \(k \)-tensors by \(U \), and spray objects by \(S \). Multilinear maps (which may be either \(k \)-forms or \(k \)-tensors) are denoted by \(M \).

Author(s)

NA

Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>
References

See Also

`spray`

Examples

```r
## Some k-tensors:
U1 <- as.ktensor(matrix(1:15,5,3))
U2 <- as.ktensor(cbind(1:3,2:4),1:3)

## Coerce a tensor to functional form, here mapping V^3 -> R (here V=R^15):
as.function(U1)(matrix(rnorm(45),15,3))

## Tensor product is tensorprod() or %X%:
U1 %X% U2

## A k-form is an alternating k-tensor:
K1 <- as.kform(cbind(1:5,2:6),rnorm(5))
K2 <- kform_general(3:6,2,1:6)
K3 <- rform(9,3,9,runif(9))

## The distributive law is true
(K1 + K2) ^ K3 == K1 ^ K3 + K2 ^ K3 # TRUE to numerical precision

## Wedge product is associative (non-trivial):
(K1 ^ K2) ^ K3
K1 ^ (K2 ^ K3)

## k-forms can be coerced to a function and wedge product:
f <- as.function(K1 ^ K2 ^ K3)

## E is a a random point in V^k:
E <- matrix(rnorm(63),9,7)

## f() is alternating:
f(E)
f(E[,7:1])

## The package blurs the distinction between symbolic and numeric computing:
dx <- as.kform(1)
dy <- as.kform(2)
dz <- as.kform(3)

dx ^ dy ^ dz
K3 ^ dx ^ dy ^ dz
```
Alternating multilinear forms

Description

Converts a k-tensor to alternating form

Usage

\texttt{Alt}(S,\text{give_kform})

Arguments

\begin{itemize}
 \item \texttt{S} A multilinear form, an object of class \texttt{ktensor}
 \item \texttt{give_kform} Boolean, with default \texttt{FALSE} meaning to return an alternating k-tensor [that is, an object of class \texttt{ktensor} that happens to be alternating] and \texttt{TRUE} meaning to return a k-form [that is, an object of class \texttt{kform}]
\end{itemize}

Details

Given a k-tensor T, we have

\[\text{Alt}(T) (v_1, \ldots, v_k) = \frac{1}{k!} \sum_{\sigma \in S_k} \text{sgn}(\sigma) \cdot T(v_{\sigma(1)}, \ldots, v_{\sigma(k)}) \]

Thus for example if $k = 3$:

\[\text{Alt}(T) (v_1, v_2, v_3) = \frac{1}{6} \begin{pmatrix}
+T(v_1, v_2, v_3) & -T(v_1, v_3, v_2) \\
-T(v_2, v_1, v_3) & +T(v_2, v_3, v_1) \\
+T(v_3, v_1, v_2) & -T(v_3, v_2, v_1)
\end{pmatrix} \]

and it is reasonably easy to see that \text{Alt}(T) is alternating, in the sense that

\[\text{Alt}(T) (v_1, \ldots, v_i, \ldots, v_j, \ldots, v_k) = -\text{Alt}(T) (v_1, \ldots, v_j, \ldots, v_i, \ldots, v_k) \]

Function \text{Alt()} is intended to take and return an object of class \texttt{ktensor}; but if given a \texttt{kform} object, it just returns its argument unchanged.

A short vignette is provided with the package: type \texttt{vignette("Alt"}) at the commandline.

Value

Returns an alternating k-tensor. To work with k-forms, which are a much more efficient representation of alternating tensors, use \texttt{as.kform()}

Author(s)

Robin K. S. Hankin

See Also

\texttt{kform}
Examples

\[(X \leftarrow \text{ktensor(spray(rbind(1:3),6)))}
\]
\[\text{Alt(X)}
\]
\[\text{Alt(X, give_kform=TRUE)}
\]

\[S \leftarrow \text{as.ktensor(expand.grid(1:3,1:3), rnorm(9))}
\]
\[S\]
\[\text{Alt(S)}
\]
\[\text{issmall(Alt(S) - Alt(Alt(S)))} \quad \# \text{should be TRUE; Alt() is idempotent}
\]

\[a \leftarrow \text{rtensor()}
\]
\[V \leftarrow \text{matrix(rnorm(21), ncol=3)}
\]
\[\text{LHS} \leftarrow \text{as.function(Alt(a))(V)}
\]
\[\text{RHS} \leftarrow \text{as.function(Alt(a, give_kform=TRUE))(V)}
\]
\[\text{c(LHS=LHS, RHS=RHS, diff=LHS-RHS)}
\]

as.1form

Coerce vectors to 1-forms

Description

Given a vector, return the corresponding 1-form; the exterior derivative of a 0-form (that is, a scalar function). Function \text{grad()} is a synonym.

Usage

\[\text{as.1form(v)}\]
\[\text{grad(v)}\]

Arguments

\[v \quad \text{A vector with element} \, i \, \text{being} \, \partial f / \partial x_i\]

Details

The exterior derivative of a \(k\)-form \(\phi\) is a \((k+1)\)-form \(d\phi\) given by

\[d\phi(P_x(v_1, \ldots, v_{k+1})) = \lim_{h \to 0} \frac{1}{h^{k+1}} \int_{\partial P_x(hv_1, \ldots, hv_{k+1})} \phi\]

We can use the facts that

\[d(f \, dx_{i_1} \wedge \cdots \wedge dx_{i_k}) = df \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_k}\]

and

\[df = \sum_{j=1}^{n} (D_j f) \, dx_j\]

to calculate differentials of general \(k\)-forms. Specifically, if
\[
\phi = \sum_{1 \leq i_1 < \cdots < i_k \leq n} a_{i_1 \cdots i_k} dx_{i_1} \wedge \cdots \wedge dx_{i_k}
\]

then

\[
d\phi = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \left[\sum_{j=1}^{n} D_j a_{i_1 \cdots i_k} dx_j \right] \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_k}.
\]

The entry in square brackets is given by \texttt{grad()}.

Value

A one-form

Author(s)

Robin K. S. Hankin

See Also

\texttt{kform}

Examples

\[
as.1form(1:9) \quad \# \text{ note ordering of terms}
\]

\[
as.1form(rnorm(20))
\]

\[
\text{grad(c(4,7))} \wedge \text{grad(1:4)}
\]

coefs *Extract and manipulate coefficients*

Description

Extract and manipulate coefficients of \texttt{ktensor} and \texttt{kform} objects; this using the methods of the \texttt{spray} package.

Functions \texttt{as.spray()} and \texttt{nterms()} are imported from \texttt{spray}.

Details

To see the coefficients of a \texttt{kform} or \texttt{ktensor} object, use \texttt{coefs()}, which returns a disord object (this is actually \texttt{spray::coeffs()}). Replacement methods also use the methods of the \texttt{spray} package.

Author(s)

Robin K. S. Hankin
Examples

(a <- kform_general(5,2,1:10))
coeffs(a) # a disord object
coeffs(a)[coeffs(a)%%2==1] <- 100 # replace every odd coeff with 100
a

coeffs(a*0)

Description

Various low-level helper functions used in Alt() and kform()

Usage

consolidate(S)
kill_trivial_rows(S)
include_perms(S)
kform_to_ktensor(S)

Arguments

S Object of class spray

Details

Low-level helper functions.

- Function consolidate() takes a spray object, and combines any rows that are identical up to a permutation, respecting the sign of the permutation
- Function kill_trivial_rows() takes a spray object and deletes any rows with a repeated entry (which have k-forms identically zero)
- Function include_perms() replaces each row of a spray object with all its permutations, respecting the sign of the permutation
- Function ktensor_to_kform() coerces a k-form to a k-tensor

Value

The functions documented here all return a spray object.

Author(s)

Robin K. S. Hankin

See Also

ktensor,kform,Alt
Examples

```r
(S <- spray(matrix(c(1,1,2,2,1,3,3,1,3,5),ncol=2,byrow=TRUE),1:5))

kill_trivial_rows(S) # (rows 1 and 3 killed, repeated entries)
consolidate(S) # (merges rows 2 and 4)
include_perms(S) # returns a spray object, not alternating tensor.
```

Contract

Constructions of k-forms

Description

A contraction is a natural linear map from \(k \)-forms to \(k - 1 \)-forms.

Usage

```r
contract(K,v,lose=TRUE)
contract_elementary(o,v)
```

Arguments

- **K**: A \(k \)-form
- **o**: Integer-valued vector corresponding to one row of an index matrix
- **lose**: Boolean, with default `TRUE` meaning to coerce a 0-form to a scalar and `FALSE` meaning to return the formal 0-form
- **v**: A vector; in function `contract()`, if a matrix, interpret each column as a vector to contract with

Details

Given a \(k \)-form \(\phi \) and a vector \(v \), the **contraction** \(\phi_v \) of \(\phi \) and \(v \) is a \(k - 1 \)-form with

\[
\phi_v (v^1, \ldots, v^{k-1}) = \phi (v,v^1,\ldots,v^{k-1})
\]

provided \(k > 1 \); if \(k = 1 \) we specify \(\phi_v = \phi(v) \).

Function `contract_elementary()` is a low-level helper function that translates elementary \(k \)-forms with coefficient 1 (in the form of an integer vector corresponding to one row of an index matrix) into its contraction with \(v \).

There is an extensive vignette in the package, `vignette("contract")`.

Value

Returns an object of class `kform`.

Author(s)

Robin K. S. Hankin
References

See Also

wedge.lose

Examples

contract(as.kform(1:5),1:8)
contract(as.kform(1),3) # 0-form

contract_elementary(c(1,2,5),c(1,2,10,11,71))

Now some verification [takes ~10s to run]:
#o <- kform(spray(t(replicate(2, sample(9,4))), runif(2)))
#V <- matrix(rnorm(36),ncol=4)
#jj <- c(
as.function(o)(V),
as.function(contract(o,V[,1,drop=TRUE]))(V[,1]), # scalar
as.function(contract(o,V[,1:2]))(V[,-(1:2),drop=FALSE]),
as.function(contract(o,V[,1:3]))(V[,-(1:3),drop=FALSE]),
as.function(contract(o,V[,1:4],lose=FALSE))(V[,-(1:4),drop=FALSE])
#)

#max(jj) - min(jj) # zero to numerical precision

dovs

<table>
<thead>
<tr>
<th>dovs</th>
<th>Dimension of the underlying vector space</th>
</tr>
</thead>
</table>

Description

A k-form $\omega \in \Lambda^k(V)$ maps V^k to the reals, where $V = \mathbb{R}^n$. Function dovs() returns n, the dimensionality of the underlying vector space. The function itself is almost trivial, returning the maximum of the index matrix.

Special dispensation is given for zero-forms and zero tensors, which return zero.

Vignette dovs provides more discussion.

Usage

dovs(K)

Arguments

K A k-form or k-tensor
dx

Value

Returns a non-negative integer

Author(s)

Robin K. S. Hankin

Examples

dovs(rform())

table(replicate(20,dovs(rform(3))))

dx

Elementary forms in three-dimensional space

Description

Objects dx, dy and dz are the three elementary one-forms on three-dimensional space. These objects can be generated by running script ‘vignettes/dx.Rmd’, which includes some further discussion and technical documentation and creates file ‘dx.rda’ which resides in the data/ directory. The default print method is a little opaque for these objects. To print them more intuitively, use

options(kform_symbolic_print = "dx")

which is documented at print.Rd.

Usage

data(dx)

Details

See vignettes dx and exeyez for an extended discussion; a use-case is given in vector_cross_product.

Author(s)

Robin K. S. Hankin

References

• M. Spivak 1971. *Calculus on manifolds*, Addison-Wesley

See Also

d, print.kform
Examples

\begin{verbatim}
 dx
 hodge(dx)
 hodge(dx,3)

 dx # default print method, not particularly intelligible
 options(kform_symbolic_print = 'dx') # shows dx dy dz
 dx^dz
 hodge(dx,3)

 as.function(dx)(ex)

 options(kform_symbolic_print = NULL) # revert to default
\end{verbatim}

ex
Basis vectors in three-dimensional space

Description

Objects `ex`, `ey` and `ez` are the three elementary one-forms on three-dimensional space, sometimes denoted \((e_x, e_y, e_z) \). These objects can be generated by running script `vignettes/ex.Rmd`, which includes some further discussion and technical documentation and creates file `exeyez.rda` which resides in the `data/` directory.

Details

See vignettes `dx` and `exeyez` for an extended discussion; a use-case is given in `vector_cross_product`.

Author(s)

Robin K. S. Hankin

References

- M. Spivak 1971. *Calculus on manifolds*, Addison-Wesley

See Also

`d`, `print.kform`

Examples

\begin{verbatim}
 as.function(dx)(ex)

 (X <- as.kform(matrix(1:12,nrow=4),c(1,2,7,11)))
 as.function(X)(cbind(e(2,12),e(6,12),e(10,12)))
\end{verbatim}
hodge

Hodge star operator

Description
Given a k-form, return its Hodge dual

Usage
```
hodge(K, n=dovs(K), g, lose=TRUE)
```

Arguments
- **K**: Object of class `kform`
- **n**: Dimensionality of space, defaulting the the largest element of the index
- **g**: Diagonal of the metric tensor, with missing default being the standard metric of the identity matrix. Currently, only entries of ±1 are accepted
- **lose**: Boolean, with default `TRUE` meaning to coerce to a scalar if appropriate

Value
Given a k-form, in an n-dimensional space, return a $(n - k)$-form.

Note
Most authors write the Hodge dual of ψ as $\star \psi$ or ψ^\star, but Weintraub uses ψ^\star.

Author(s)
Robin K. S. Hankin

See Also
- `wedge`

Examples
```
(o <- kform_general(5,2,1:10))
hodge(o)
o == hodge(hodge(o))

Faraday <- kform_general(4,2,runif(6)) # Faraday electromagnetic tensor
mink <- c(-1,1,1,1) # Minkowski metric
hodge(Faraday,g=mink)

Faraday == Faraday |> hodge(g=mink) |> hodge(g=mink) |> hodge(g=mink) |> hodge(g=mink)
```
hodge(dx,3) == dy^dz

Some edge-cases:
- hodge(scalar(1),2)
- hodge(zeroform(5),9)
- hodge(volume(5))
- hodge(volume(5),lose=TRUE)
- hodge(scalar(7),n=9)

inner

Inner product operator

Description
The inner product

Usage

```r
inner(M)
```

Arguments

- **M** square matrix

Details
The inner product of two vectors \(\mathbf{x} \) and \(\mathbf{y} \) is usually written \(\langle \mathbf{x}, \mathbf{y} \rangle \) or \(\mathbf{x} \cdot \mathbf{y} \), but the most general form would be \(\mathbf{x}^T M \mathbf{y} \) where \(M \) is a matrix. Noting that inner products are multilinear, that is \(\langle \mathbf{x}, a \mathbf{y} + b \mathbf{z} \rangle = a \langle \mathbf{x}, \mathbf{y} \rangle + b \langle \mathbf{x}, \mathbf{z} \rangle \) and \(\langle a \mathbf{x} + b \mathbf{y}, \mathbf{z} \rangle = a \langle \mathbf{x}, \mathbf{z} \rangle + b \langle \mathbf{y}, \mathbf{z} \rangle \), we see that the inner product is indeed a multilinear map, that is, a tensor.

Given a square matrix \(M \), function `inner(M)` returns the 2-form that maps \(\mathbf{x}, \mathbf{y} \) to \(\mathbf{x}^T M \mathbf{y} \). Non-square matrices are effectively padded with zeros.

A short vignette is provided with the package: type `vignette("inner")` at the commandline.

Value
Returns a \(k \)-tensor, an inner product

Author(s)
Robin K. S. Hankin

See Also
- `kform`
Examples

inner(diag(7))
inner(matrix(1:9,3,3))

Compare the following two:
Alt(inner(matrix(1:9,3,3))) # An alternating k tensor
as.kform(inner(matrix(1:9,3,3))) # Same thing coerced to a kform

f <- as.function(inner(diag(7)))
X <- matrix(rnorm(14),ncol=2) # random element of (R^7)^2
f(X) - sum(X[,1]*X[,2]) # zero to numerical precision

verify positive-definiteness:
g <- as.function(inner(crossprod(matrix(rnorm(56),8,7))))
stopifnot(g(kronecker(rnorm(7),t(c(1,1))))>0)

issmall

Is a form zero to within numerical precision?

Description

Given a k-form, return TRUE if it is “small”

Usage

issmall(M, tol=1e-8)

Arguments

M Object of class kform or ktensor

tol Small tolerance, defaulting to 1e-8

Value

Returns a logical

Author(s)

Robin K. S. Hankin

Examples

o <- kform_general(3,2,runif(3))
M <- matrix(rnorm(9),3,3)
discrepancy <- o - pullback(pullback(o,M),solve(M))
discrepancy # print method might imply coefficients are zeros

issmall(discrepancy) # should be TRUE
is.zero(discrepancy) # might be FALSE
keep

Keep or drop variables

Usage

keep(K, yes)
discard(K, no)

Arguments

K Object of class kform
yes, no Specification of dimensions to either keep (yes) or discard (no), coerced to a free object

Details

Function keep(omega, yes) keeps the terms specified and discard(omega, no) discards the terms specified. It is not clear to me what these functions mean from a mathematical perspective.

Value

The functions documented here all return a kform object.

Author(s)
Robin K. S. Hankin

See Also

lose

Examples

(o <- kform_general(7,3,seq_len(choose(7,3))))
keep(o,1:4) # keeps only terms with dimensions 1-4
discard(o,1:2) # loses any term with a "1" in the index
kform

k-forms

Description

Functionality for dealing with k-forms

Usage

\begin{align*}
\text{kform}(S) \\
\text{as.kform}(M, \text{coeffs}, \text{lose}=\text{TRUE}) \\
\text{kform_basis}(n, k) \\
\text{kform_general}(W, k, \text{coeffs}, \text{lose}=\text{TRUE}) \\
\text{is.kform}(x) \\
\text{d}(i) \\
\text{e}(i, n) \\
\text{## S3 method for class 'kform'} \\
\text{as.function}(x, \ldots)
\end{align*}

Arguments

- n: Dimension of the vector space $V = \mathbb{R}^n$
- i: Integer
- k: A k-form maps V^k to \mathbb{R}
- W: Integer vector of dimensions
- M, coeffs: Index matrix and coefficients for a k-form
- S: Object of class spray
- lose: Boolean, with default TRUE meaning to coerce a 0-form to a scalar and FALSE meaning to return the formal 0-form
- x: Object of class kform
- \ldots: Further arguments, currently ignored

Details

A k-form is an alternating k-tensor. In the package, k-forms are represented as sparse arrays (spray objects), but with a class of c("kform", "spray"). The constructor function kform() takes a spray object and returns a kform object: it ensures that rows of the index matrix are strictly non-negative integers, have no repeated entries, and are strictly increasing. Function as.kform() is more user-friendly.

- kform() is the constructor function. It takes a spray object and returns a kform.
- as.kform() also returns a kform but is a bit more user-friendly than kform().
- kform_basis() is a low-level helper function that returns a matrix whose rows constitute a basis for the vector space $\Lambda^k(\mathbb{R}^n)$ of k-forms.
- kform_general() returns a kform object with terms that span the space of alternating tensors.
- is.kform() returns TRUE if its argument is a kform object.
- d() is an easily-typed synonym for as.kform(). The idea is that $d(1) = dx$, $d(2) = dy$, $d(5) = dx^5$, etc. Also note that, for example, $d(1:3) = dx^*dy^*dz$, the volume form.
Recall that a \(k \)-tensor is a multilinear map from \(V^k \) to the reals, where \(V = \mathbb{R}^n \) is a vector space. A multilinear \(k \)-tensor \(T \) is \textit{alternating} if it satisfies

\[
T(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_k) = -T(v_1, \ldots, v_j, \ldots, v_i, \ldots, v_k)
\]

In the package, an object of class \texttt{kform} is an efficient representation of an alternating tensor. Function \texttt{kform_basis()} is a low-level helper function that returns a matrix whose rows constitute a basis for the vector space \(\Lambda^k(\mathbb{R}^n) \) of \(k \)-forms:

\[
\phi = \sum_{1 \leq i_1 < \cdots < i_k \leq n} a_{i_1 \ldots i_k} dx_{i_1} \wedge \cdots \wedge dx_{i_k}
\]

and indeed we have:

\[
a_{i_1 \ldots i_k} = \phi(e_{i_1}, \ldots, e_{i_k})
\]

where \(e_j, 1 \leq j \leq k \) is a basis for \(V \).

\section*{Value}

All functions documented here return a \texttt{kform} object except \texttt{as.function.kform()}, which returns a function, and \texttt{is.kform()}, which returns a Boolean, and \texttt{e()}, which returns a conjugate basis to that of \texttt{d()}.

\section*{Note}

Hubbard and Hubbard use the term “\(k \)-form”, but Spivak does not.

\section*{Author(s)}

Robin K. S. Hankin

\section*{References}

Hubbard and Hubbard; Spivak

\section*{See Also}

\texttt{ktensor,lose}

\section*{Examples}

\begin{verbatim}
as.kform(cbind(1:5,2:6),rnorm(5))
kform_general(1:4,2,coeffs=1:6) # used in electromagnetism

K1 <- as.kform(cbind(1:5,2:6),rnorm(5))
K2 <- kform_general(5:8,2,1:6)
K1^K2 # or wedge(K1,K2)

d(1:3)
dx^dy^dz # same thing

d(sample(9)) # coeff is +/-1 depending on even/odd permutation of 1:9
\end{verbatim}
Given two k-forms α and β, return the inner product $\langle \alpha, \beta \rangle$. Here our underlying vector space V is \mathbb{R}^n.

The inner product is a symmetric bilinear form defined in two stages. First, we specify its behaviour on decomposable k-forms $\alpha = \alpha_1 \wedge \cdots \wedge \alpha_k$ and $\beta = \beta_1 \wedge \cdots \wedge \beta_k$ as

$$\langle \alpha, \beta \rangle = \det \left(\langle \alpha_i, \beta_j \rangle \right)_{1 \leq i, j \leq n}$$

and secondly, we extend to the whole of $\Lambda^k(V)$ through linearity.

Usage

kinner(o1,o2,M)

Arguments

- o1, o2: Objects of class kform
- M: Matrix

Value

Returns a real number

Note

There is a vignette available: type vignette("kinner") at the command line.

Author(s)

Robin K. S. Hankin

See Also

hodge
ktensor

Examples

```r
a <- (2*dx)^(3*dy)
b <- (5*dx)^(7*dy)
kinner(a,b)
det(matrix(c(2*5,0,0,3*7),2,2))  # mathematically identical, slight numerical mismatch
```

Description

Functionality for \(k\)-tensors

Usage

```r
ktensor(S)
as.ktensor(M,coeffs)
is.ktensor(x)
## S3 method for class 'ktensor'
as.function(x,...)
```

Arguments

- `M,coeffs` Matrix of indices and coefficients, as in `spray(M,coeffs)`
- `S` Object of class `spray`
- `x` Object of class `ktensor`
- `...` Further arguments, currently ignored

Details

A \(k\)-tensor object \(S\) is a map from \(V^k\) to the reals \(R\), where \(V\) is a vector space (here \(R^n\)) that satisfies multilinearity:

\[
S(v_1,\ldots, av_i,\ldots, v_k) = a \cdot S(v_1,\ldots, v_i,\ldots, v_k)
\]

and

\[
S(v_1,\ldots, v_i + v_i',\ldots, v_k) = S(v_1,\ldots, v_i,\ldots, x_v) + S(v_1,\ldots, v_i',\ldots, v_k).
\]

Note that this is not equivalent to linearity over \(V^{nk}\) (see examples).

In the `stokes` package, \(k\)-tensors are represented as sparse arrays (`spray` objects), but with a class of `c("ktensor", "spray")`. This is a natural and efficient representation for tensors that takes advantage of sparsity using `spray` package features.

Function `as.ktensor()` will coerce a \(k\)-form to a \(k\)-tensor via `kform_to_ktensor()`.
All functions documented here return a ktensor object except as.function.ktensor(), which returns a function.

Robin K. S. Hankin

Spivak 1961

tensorprod,kform,wedge

Test multilinearity:
```r
k <- 4
n <- 5
u <- 3

S <- ktensor(spray(matrix(1+sample(u*k%%n,u,k),seq_len(u))))

E1 <- E2 <- E3 <- E
x1 <- rnorm(n)
x2 <- rnorm(n)
r1 <- rnorm(1)
r2 <- rnorm(1)

# change one column:
E1[,2] <- x1
E2[,2] <- x2
E3[,2] <- r1*x1 + r2*x2

f <- as.function(S)

r1*f(E1) + r2*f(E2) - f(E3) # should be small

# Note that multilinearity is different from linearity:
r1*f(E1) + r2*f(E2) - f(r1*E1 + r2*E2) # not small!
```
Arithmetic Ops Group Methods for kform and ktensor objects

Description

Allows arithmetic operators to be used for k-forms and k-tensors such as addition, multiplication, etc, where defined.

Usage

```r
## S3 method for class 'kform'
Ops(e1, e2 = NULL)
## S3 method for class 'ktensor'
Ops(e1, e2 = NULL)
```

Arguments

- `e1`, `e2` Objects of class kform or ktensor

Details

The functions `Ops.kform()` and `Ops.ktensor()` pass unary and binary arithmetic operators ("+", "-", "*", "/" and "^") to the appropriate specialist function by coercing to spray objects.

For wedge products of k-forms, use `wedge()` or `^%` or `^`; and for tensor products of k-tensors, use `tensorprod()` or `%X`.

Value

All functions documented here return an object of class kform or ktensor.

Note

A plain asterisk, "*" behaves differently for ktensors and kforms. Given two ktensors T_1, T_2, then "T_1*T_2" will return the their tensor product. This on the grounds that the idiom has only one natural interpretation. But its use is discouraged (use %X or tensorprod() instead). An asterisk can also be used to multiply a tensor by a scalar, as in T_1*5.

An asterisk cannot be used to multiply two kforms K_1, K_2, as in K_1*K_2, which will always return an error. This on the grounds that it has no sensible interpretation in general and you probably meant to use a wedge product, $K_1^K_2$. Note that multiplication by scalars is acceptable, as in K_1*6. Further note that K_1*K_2 returns an error even if one or both is a 0-form (or scalar), as in $K_1*scalar(3)$. This behaviour may change in the future.

In the package the caret ("^") evaluates the wedge product; note that %^% is also acceptable. Powers simply do not make sense for alternating forms: $S %^% S = S^S$ is zero identically. Here the caret is interpreted consistently as a wedge product, and if one of the factors is numeric it is interpreted as a zero-form (that is, a scalar). Thus $S^2 = wedge(S, S) = 2*S = S*S = S^S$, and indeed $S^n = S^n$. Caveat emptor! If S is a kform object, it is very tempting [but incorrect] to interpret "S^3" as something like "S to the power 3". See also the note at Ops.clifford in the clifford package.

Powers are not implemented for ktensors on the grounds that a ktensor to the power zero is not defined.
Note that one has to take care with order of operations if we mix \(^\wedge\) with \(*\). For example, \(dx \wedge (6*dy)\) is perfectly acceptable; but \((dx \wedge 6)*dy\) will return an error, as will the unbracketed form \(dx \wedge 6 * dy\). In the second case we attempt to use an asterisk to multiply two k-forms, which triggers the error.

Author(s)

Robin K. S. Hankin

Examples

```r
class('kform')
## S3 method for class 'kform'
print(x, ...)
## S3 method for class 'ktensor'
print(x, ...)
```

Arguments

- `x`
 - `k-form` or `k-tensor`
- `...`
 - Further arguments (currently ignored)

Details

The print method is designed to tell the user that an object is a tensor or a k-form. It prints a message to this effect (with special dispensation for zero tensors), then calls the `spray` print method.

Value

Returns its argument invisibly.
Note

The print method asserts that its argument is a map from V^k to R with $V = R^n$. Here, n is the largest element in the index matrix. However, such a map naturally furnishes a map from $(R^n)^k$ to R provided that $m \geq n$ via the natural projection from R^n to R^m. Formally this would be $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_n, 0, \ldots, 0) \in R^m$. In the case of the zero k-form or k-tensor, “n” is to be interpreted as “any $n \geq 0$”. See also dov().

By default, the print method uses the spray print methods, and as such respects the polyform option. However, setting polyform to TRUE can give misleading output, because spray objects are interpreted as multivariate polynomials not differential forms (and in particular uses the caret to signify powers).

It is much better to use options ktensor_symbolic_print or kform_symbolic_print instead. If these options are non-null, the print method uses as.symbolic() to give an alternate way of displaying k-tensors and k-forms. The generic non-null value would be “x” which gives output like “$dx^1 \ dx^2$”. However, it has two special values: set kform_symbolic_print to “dx” for output like “$dx \ dz$” and “txyz” for output like “$dt \ dx$”, useful in relativistic physics with a Minkowski metric. See the examples.

More detail is given at symbolic.Rd and the dx vignette.

Author(s)
Robin K. S. Hankin

See Also
as.symbolic, dov

Examples

```r
a <- rform()
a

options(kform_symbolic_print = "x")
a

options(kform_symbolic_print = "dx")
kform(spray(kform_basis(3,2),1:3))

kform(spray(kform_basis(4,2),1:6))  # runs out of symbols

options(kform_symbolic_print = "txyz")
kform(spray(kform_basis(4,2),1:6))  # standard notation

options(kform_symbolic_print = NULL)  # revert to default
a
```
rform

Random kforms and ktensors

Description

Random k-form objects and k-tensors, intended as quick “get you going” examples

Usage

```r
rform(terms=9,k=3,n=7,coeffs,ensure=TRUE)
rtensor(terms=9,k=3,n=7,coeffs)
```

Arguments

- `terms` Number of distinct terms
- `k,n` A k-form maps V^k to R, where $V = R^n$
- `coeffs` The coefficients of the form; if missing use `seq_len(terms)`
- `ensure` Boolean with default `TRUE` meaning to ensure that the `dovs()` of the returned value is in fact equal to `n`. If `FALSE`, sometimes the `dovs()` is strictly less than `n` because of random sampling

Details

What you see is what you get, basically.

Note that argument `terms` is an upper bound, as the index matrix might contain repeats which are combined.

Value

All functions documented here return an object of class `kform` or `ktensor`.

Author(s)

Robin K. S. Hankin

Examples

```r
rform()
rform() %^% rform()
rtensor() %X% rtensor()
rform() ^ dx
rform() ^ dx ^ dy
```
Description

Scalars: 0-forms and 0-tensors

Usage

```
scalar(s, kform=TRUE, lose=FALSE)
is.scalar(M)
`0form` (s=1, lose=FALSE)
`0tensor` (s=1, lose=FALSE)
## S3 method for class 'kform'
lose(M)
## S3 method for class 'ktensor'
lose(M)
```

Arguments

- `s`: A scalar value; a number
- `kform`: Boolean with default TRUE meaning to return a kform and FALSE meaning to return a ktensor
- `M`: Object of class ktensor or kform
- `lose`: In function scalar(), Boolean with TRUE meaning to return a normal scalar, and default FALSE meaning to return a formal 0-form or 0-tensor

Details

A k-tensor (including k-forms) maps k vectors to a scalar. If k = 0, then a 0-tensor maps no vectors to a scalar, that is, mapping nothing at all to a scalar, or what normal people would call a plain old scalar. Such forms are created by a couple of constructions in the package, specifically scalar(), kform_general(1,0) and contract(). These functions take a lose argument that behaves much like the drop argument in base extraction. Functions ‘0form()’ and ‘0tensor()’ are wrappers for ‘scalar()’.

Function lose() takes an object of class ktensor or kform and, if of arity zero, returns the coefficient.

Note that function kForm() always returns a kform object, it never loses attributes.

There is a slight terminological problem. A k-form maps k vectors to the reals: so a 0-form maps 0 vectors to the reals. This is what anyone on the planet would call a scalar. Similarly, a 0-tensor maps 0 vectors to the reals, and so is a scalar. Mathematically, there is no difference between 0-forms and 0-tensors, but the package makes a distinction:

```
> scalar(5, kform=TRUE)
An alternating linear map from V^0 to R with V=R^0:
  val
   = 5
> scalar(5, kform=FALSE)
A linear map from V^0 to R with V=R^0:
```
Compare zero tensors and zero forms. A zero tensor maps V^k to the real number zero, and a zero form is an alternating tensor mapping V^k to zero (so a zero tensor is necessarily alternating). See zero.Rd.

Value

The functions documented here return an object of class kform or ktensor, except for is.scalar(), which returns a Boolean.

Author(s)

Robin K. S. Hankin

See Also

zeroform

Examples

```r
o <- scalar(5)
o
lose(o)

kform_general(1,0)
kform_general(1,0,lose=FALSE)
```

Description

A summary method for tensors and alternating forms, and a print method for summaries.

Usage

```r
## S3 method for class 'kform'
summary(object, ...)
## S3 method for class 'ktensor'
summary(object, ...)
## S3 method for class 'summary.kform'
print(x, ...)
## S3 method for class 'summary.ktensor'
print(x, ...)
```

Arguments

```r
object, x  Object of class ktensor or kform
...
Further arguments, passed to head()
```
Details

Summary method for tensors and alternating forms. Uses spray::summary().

Author(s)

Robin K. S. Hankin

Examples

```r
a <- rform(100)
summary(a)
options(kform_symbolic_print = TRUE)
summary(a)
options(kform_symbolic_print = NULL) # restore default
```

symbolic | Symbolic form

Description

Returns a character string representing k-tensor and k-form objects in symbolic form. Used by the print method if either option kform_symbolic_print or ktensor_symbolic_print is non-null.

Usage

```r
as.symbolic(M, symbols=letters, d="")
```

Arguments

- **M**: Object of class kform or ktensor; a map from V^k to R, where $V = R^n$.
- **symbols**: A character vector giving the names of the symbols.
- **d**: String specifying the appearance of the differential operator.

Details

Spivak (p89), in archetypically terse writing, states:

A function f is considered to be a 0-form and $f \cdot \omega$ is also written $f \wedge \omega$. If $f: R^n \rightarrow R$ is differentiable, then $Df(p) \in \Lambda^1(R^n)$. By a minor modification we therefore obtain a 1-form df, defined by

$$
\left. df(p)(v_p) \right| = Df(p)(v)
$$

Let us consider in particular the 1-forms $d\pi_i$. It is customary to let x^i denote the function π_i (On R^3 we often denote x^1, x^2, and x^3 by x, y, and z). This standard notation has obvious disadvantages but it allows many classical results to be expressed by formulas of equally classical appearance. Since $dx^i(p)(v_p) = d\pi_i(p)(v_p) = D\pi_i(p)(v) = v^i$, we see that $dx^1(p), \ldots, dx^n(p)$ is just the dual basis to $(e_1)_p, \ldots, (e_n)_p$. Thus every k-form ω can be written...
\[\omega = \sum_{i_1 < \cdots < i_k} \omega_{i_1, \ldots, i_k} \, dx^{i_1} \wedge \cdots \wedge dx^{i_k}. \]

Function `as.symbolic()` uses this format. For completeness, we add (p77) that k-tensors may be expressed in the form

\[\sum_{i_1, \ldots, i_k=1}^{n} a_{i_1, \ldots, i_k} \cdot \phi_{i_1} \otimes \cdots \otimes \phi_{i_k}. \]

and this form is used for k-tensors.

Value

Returns a “noquote” character string.

Author(s)

Robin K. S. Hankin

See Also

`print.stokes`, `dx`

Examples

```r
(o <- kform_general(3,2,1:3))
as.symbolic(o,d="d",symbols=letters[23:26])

(a <- rform(n=50))
as.symbolic(a,symbols=state.abb)
```

tensorprod

Tensor products of k-tensors

Description

Tensor products of k-tensors

Usage

`tensorprod(U, ...)`

`tensorprod2(U1, U2)`

Arguments

- `U, U1, U2`: Object of class `ktensor`
- `...`: Further arguments, currently ignored
Details

Given a k-tensor S and an l-tensor T, we can form the tensor product $S \otimes T$, defined as

$$S \otimes T(v_1, \ldots, v_k, v_{k+1}, \ldots, v_{k+l}) = S(v_1, \ldots, v_k) \cdot T(v_{k+1}, \ldots, v_{k+l}).$$

Package idiom for this includes `tensorprod(S, T)` and `S %X% T`; note that the tensor product is not commutative. Function `tensorprod()` can take any number of arguments (the result is well-defined because the tensor product is associative); it uses `tensorprod2()` as a low-level helper function.

Value

The functions documented here all return a spray object.

Note

The binary form `%X%` uses uppercase X to avoid clashing with `%x%` which is the Kronecker product in base R.

Author(s)

Robin K. S. Hankin

References

Spivak 1961

See Also

`ktensor`

Examples

```r
(A <- ktensor(spray(matrix(c(1,1,2,2,3,3),2,3,byrow=TRUE),1:2)))
(B <- ktensor(spray(10+matrix(4:9,3,2),5:7)))
tensorprod(A,B)
A %X% B - B %X% A

Va <- matrix(rnorm(9),3,3)
Vb <- matrix(rnorm(38),19,2)
LHS <- as.function(A %X% B)(cbind(rbind(Va,matrix(0,19-3,3)),Vb))
RHS <- as.function(A)(Va) * as.function(B)(Vb)
c(LHS=LHS,RHS=RHS,diff=LHS-RHS)
```
Linear transforms of k-forms

Description

Given a k-form, express it in terms of linear combinations of the dx_i

Usage

- `pullback(K,M)`
- `stretch(K,d)`

Arguments

- K Object of class `kform`
- M Matrix of transformation
- d Numeric vector representing the diagonal elements of a diagonal matrix

Details

Function `pullback()` calculates the pullback of a function. A vignette is provided at ‘pullback.Rmd’.

Suppose we are given a two-form

$$ \omega = \sum_{i<j} a_{ij} dx_i \wedge dx_j $$

and relationships

$$ dx_i = \sum_r M_{ir} dy_r $$

then we would have

$$ \omega = \sum_{i<j} a_{ij} \left(\sum_r M_{ir} dy_r \right) \wedge \left(\sum_r M_{jr} dy_r \right). $$

The general situation would be a k-form where we would have

$$ \omega = \sum_{i_1<i_2<\cdots<i_k} a_{i_1\ldots i_k} dx_{i_1} \wedge \cdots \wedge dx_{i_k} $$

giving

$$ \omega = \sum_{i_1<i_2<\cdots<i_k} \left[a_{i_1\ldots i_k} \left(\sum_r M_{i_1 r} dy_r \right) \wedge \cdots \wedge \left(\sum_r M_{i_k r} dy_r \right) \right]. $$

The `transform()` function does all this but it is slow. I am not 100% sure that there isn’t a much more efficient way to do such a transformation. There are a few tests in tests/testthat and a discussion in the stokes vignette.

Function `stretch()` carries out the same operation but for M a diagonal matrix. It is much faster than `transform()`.
Value

The functions documented here return an object of class kform.

Author(s)

Robin K. S. Hankin

References

See Also

wedge

Examples

Example in the text:
K <- as.kform(matrix(c(1,1,2,3),2,2),c(1,5))
M <- matrix(1:9,3,3)
pullback(K,M)

Demonstrate that the result can be complicated:
M <- matrix(rnorm(25),5,5)
pullback(as.kform(1:2),M)

Numerical verification:
o <- volume(3)
o2 <- pullback(pullback(o,M),solve(M))
max(abs(coeffs(o-o2))) # zero to numerical precision

Following should be zero:
pullback(as.kform(1),M)-as.kform(matrix(1:5),c(crossprod(M,c(1,rep(0,4))))))

Following should be TRUE:
issmall(pullback(o,crossprod(matrix(rnorm(10),2,5))))

Some stretch() use-cases:
p <- rform()
p
stretch(p,seq_len(7))
stretch(p,c(1,0,0,1,1,1)) # kills dimensions 2 and 3
Description

The vector cross product \(\mathbf{u} \times \mathbf{v} \) for \(\mathbf{u}, \mathbf{v} \in \mathbb{R}^3 \) is defined in elementary school as

\[
\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).
\]

Function \texttt{vcp3()} is a convenience wrapper for this. However, the vector cross product may easily be generalized to a product of \(n-1 \)-tuples of vectors in \(\mathbb{R}^3 \), given by package function \texttt{vector_cross_product()}.

Vignette \texttt{vector_cross_product}, supplied with the package, gives an extensive discussion of vector cross products, including formal definitions and verification of identities.

Usage

\[
\texttt{vector_cross_product(M)}
\]

\[
\texttt{vcp3(u,v)}
\]

Arguments

\(M \)
Matrix with one more row than column; columns are interpreted as vectors

\(u, v \)
Vectors of length 3, representing vectors in \(\mathbb{R}^3 \)

Details

See vignette \texttt{vector_cross_product}

Value

Returns a vector

Author(s)

Robin K. S. Hankin

See Also

cross

Examples

\[
\texttt{vector_cross_product(matrix(1:6,3,2))}
\]

\[
M \leftarrow \texttt{matrix(rnorm(30),6,5)}
\]

\[
\texttt{LHS \leftarrow \texttt{hodge(as.1form(M[,1])^as.1form(M[,2])^as.1form(M[,3])^as.1form(M[,4])^as.1form(M[,5])}}
\]

\[
\texttt{RHS \leftarrow as.1form(vector_cross_product(M))}
\]

\[
\texttt{LHS-RHS } \# \text{ zero to numerical precision}
\]

\# Alternatively:
\[
\texttt{hodge(Reduce(`^`,sapply(seq_len(5),function(i){as.1form(M[,i])),simplify=FALSE)))}
\]
volume

The volume element

Description

The volume element in \(n \) dimensions

Usage

```r
code here
```

Arguments

- \(n \) Dimension of the space
- \(K \) Object of class \textit{kform}

Details

Spivak phrases it well (theorem 4.6, page 82):

If \(V \) has dimension \(n \), it follows that \(\Lambda^n(V) \) has dimension 1. Thus all alternating \(n \)-tensors on \(V \) are multiples of any non-zero one. Since the determinant is an example of such a member of \(\Lambda^n(V) \) it is not surprising to find it in the following theorem:

Let \(v_1, \ldots, v_n \) be a basis for \(V \) and let \(\omega \in \Lambda^n(V) \). If \(w_i = \sum_{j=1}^{n} a_{ij} v_j \) then

\[
\omega(w_1, \ldots, w_n) = \det(a_{ij}) \cdot \omega(v_1, \ldots v_n)
\]

(see the examples for numerical verification of this).
Neither the zero \textit{k}-form, nor scalars, are considered to be a volume element.

Value

Function `volume()` returns an object of class \textit{kform}; function `is.volume()` returns a Boolean.

Author(s)

Robin K. S. Hankin

References

- M. Spivak 1971. *Calculus on manifolds*, Addison-Wesley

See Also

`zeroform`, `as.1form`, `dovs`
Examples

\[dx^*dy^*dz == \text{volume}(3) \]

\[p <- 1 \]
\[\text{for}(i \text{ in } 1:7)(p <- p ^ \text{as.kform}(i)) \]
\[p == \text{volume}(7) \quad \text{# should be TRUE} \]

\[o <- \text{volume}(5) \]
\[M <- \text{matrix}((\text{runif}(25)),5,5) \]
\[\text{det}(M) - \text{as.function}(o)(M) \quad \text{# should be zero} \]

\[\text{is.volume}(d(1) ^ d(2) ^ d(3) ^ d(4)) \]
\[\text{is.volume}(d(1:9)) \]

wedge

Wedge products

Description

Wedge products of \(k\)-forms

Usage

\[\text{wedge2}(K1,K2) \]
\[\text{wedge}(x, \ldots) \]

Arguments

\(K1,K2,x,\ldots\) \(k\)-forms

Details

Wedge product of \(k\)-forms.

Value

The functions documented here return an object of class \text{\textit{kform}}.

Note

In general use, use \text{\textit{wedge}}() or \(^\text{\textit{\%\%\%}}\), as documented under \text{\textit{Ops}}. Function \text{\textit{wedge}}() uses low-level helper function \text{\textit{wedge2}}(), which takes only two arguments.

A short vignette is provided with the package: type \text{\texttt{vignette("wedge")}} at the commandline.

Author(s)

Robin K. S. Hankin
See Also

Ops

Examples

```r
k1 <- as.kform(cbind(1:5,2:6),1:5)
k2 <- as.kform(cbind(5:7,6:8,7:9),1:3)
k3 <- kform_general(1:6,2)

a1 <- wedge2(k1,wedge2(k2,k3))
a2 <- wedge2(wedge2(k1,k2),k3)

is.zero(a1-a2) # NB terms of a1, a2 in a different order!

# This is why wedge(k1,k2,k3) is well-defined. Can also use ^:
k1 ^ k2 ^ k3
```

zap

Zap small values in k-forms and k-tensors

Description

Equivalent to zapsmall()

Usage

```r
zap(X)
## S3 method for class 'kform'
zap(X)
## S3 method for class 'ktensor'
zap(X)
```

Arguments

- `X` Tensor or k-form to be zapped

Details

Given an object of class `ktensor` or `kform`, coefficients close to zero are ‘zapped’, i.e., replaced by ‘0’, using `base::zapsmall()`.

Note, `zap()` actually changes the numeric value, it is not just a print method.

Value

Returns an object of the same class

Author(s)

Robin K. S. Hankin

Examples

```r
S <- rform(7)
S == zap(S)
```
Description

Correct idiom for generating zero k-tensors and k-forms

Usage

```r
zeroform(n)
zerotensor(n)
is.zero(x)
is.empty(x)
```

Arguments

- **n**: Arity of the k-form or k-tensor
- **x**: Object to be tested for zero

Value

Returns an object of class `kform` or `ktensor`.

Note

Idiom such as `as.ktensor(rep(1,n),0)` and `as.kform(rep(1,5),0)` and indeed `as.kform(1:5,0)` is incorrect as the arity of the tensor is lost.

A 0-form is not the same thing as a zero tensor. A 0-form maps V^0 to the reals; a scalar. A zero tensor maps V^k to zero. Some discussion is given at `scalar.Rd`.

Author(s)

Robin K. S. Hankin

See Also

`scalar`

Examples

```r
zerotensor(5)
zeroform(3)

x <- rform(k=3)
x*0 == zeroform(3)  # should be true
x   == x + zeroform(3)  # should be true

y <- rtensor(k=3)
y*0 == zerotensor(3)  # should be true
y   == y+zerotensor(3)  # should be true
```
Following idiom is plausible but fails because \texttt{as.ktensor(coeffs=0)}
and \texttt{as.kform(coeffs=0)} do not retain arity:

\texttt{as.ktensor(1+\text{diag}(5)) + as.ktensor(rep(1,5),0)} # fails
\texttt{as.kform(matrix(1:6,2,3)) + as.kform(1:3,0)} # also fails
Index

* datasets
 dx, 11
 ex, 12
* package
 stokes-package, 2
 symbolmath
 coeffs, 7
 Ops.kform, 22
 print.stokes, 23
 %X% (tensorprod), 29
 %% (wedge), 35
 0form (scalar), 26
 0tensor (scalar), 26
 Alt, 5, 8
 as.1form, 6, 34
 as.function.kform (kform), 17
 as.function.ktensor (ktensor), 20
 as.kform (kform), 17
 as.ktensor (ktensor), 20
 as.spray (coeffs), 7
 as.symbolic, 24
 as.symbolic (symbolic), 28
 coeff (coeffs), 7
 coeffs, 7
 coeffs.kform-method (coeffs), 7
 coeffs.ktensor-method (coeffs), 7
 coeffs.kform (coeffs), 7
 coeffs.ktensor (coeffs), 7
 coeffs<- (coeffs), 7
 coeffs<- (kform-method (coeffs), 7
 coeffs<- (ktensor-method (coeffs), 7
 coeffs<- (kform (coeffs), 7
 coeffs<- (ktensor (coeffs), 7
 coeffs<- (s spray (coeffs), 7
 consolidate, 8
 contract, 9
 contract_elementary (contract), 9
 cross, 33
 d, 11, 12
 d (kform), 17
 discard (keep), 16
 dovs, 10, 24, 34
 drop (scalar), 26
 drop, free (keep), 16
 dx, 11, 29
 dy (dx), 11
 dz (dx), 11
 e (kform), 17
 ex, 12
 ey (ex), 12
 ez (ex), 12
 general_kform (kform), 17
 grad (as.1form), 6
 Hodge (hodge), 13
 hodge, 13, 19
 include_perms (consolidate), 8
 inner, 14
 inner_product (inner), 14
 is.empty (zero), 37
 is.form (kform), 17
 is.kform (kform), 17
 is.ktensor (ktensor), 20
 is.scalar (scalar), 26
 is.tensor (ktensor), 20
 is.volume (volume), 34
 is.zero (zero), 37
 issmall, 15
 keep, 16
 kform, 5, 7, 8, 14, 17, 21
 kform_basis (kform), 17
 kform_general (kform), 17
 kform_symbolic_print (print.stokes), 23
 kform_to_ktensor (consolidate), 8
 kill_trivial_rows (consolidate), 8
 kinner, 19
 ktensor, 8, 18, 20, 30
 ktensor_symbolic_print (print.stokes), 23
 lose, 10, 16, 18
 lose (scalar), 26
lose_repeats (consolidate), 8
nterms (coeffs), 7
Ops, 36
Ops (Ops.kform), 22
Ops.kform, 22
polyform (print.stokes), 23
print.kform, 11, 12
print.kform (print.stokes), 23
print.ktensor (print.stokes), 23
print.stokes, 23, 29
print.summary.kform (summary.stokes), 27
print.summary.ktensor (summary.stokes), 27
print.summary.spray (summary.stokes), 27
pull-back (transform), 31
push-forward (transform), 31
retain (keep), 16
rform, 25
rkform (rform), 25
rktensor (rform), 25
rtensor (rform), 25
scalar, 26, 37
spray, 4
spray (coeffs), 7
star (hodge), 13
stokes (stokes-package), 2
stokes-package, 2
stokes_symbolic_print (print.stokes), 23
stretch (transform), 31
summary (summary.stokes), 27
summary.stokes, 27
symbolic, 28
tensorprod, 21, 29
tensorprod2 (tensorprod), 29
transform, 31
value<- (coeffs), 7
vcp3 (vector_cross_product), 32
vector_cross_product, 32
volume, 34
wedge, 10, 13, 21, 32, 35
wedge2 (wedge), 35
zap, 36
zapsmall1 (zap), 36
zaptiny (zap), 36
zero, 37
zeroform, 27, 34
zeroform (zero), 37
zerotensor (zero), 37