Package ‘stpm’
August 16, 2018

Type Package

Title Stochastic Process Model for Analysis of Longitudinal and Time-to-Event Outcomes

Version 1.7.7

Date 2018-07-23

Author I. Y. Zhbannikov, Liang He, K. G. Arbeev, A. I. Yashin.

Maintainer Ilya Y. Zhbannikov <ilya.zhbannikov@duke.edu>

Description Utilities to estimate parameters of the models with survival functions induced by stochastic covariates. Miscellaneous functions for data preparation and simulation are also provided. For more information, see:
(i) "Stochastic model for analysis of longitudinal data on aging and mortality" by Yashin A. et al. (2007), Mathematical Biosciences, 208(2), 538-551, <DOI:10.1016/j.mbs.2006.11.006>;

License GPL

Imports sas7bdat,stats,nloptr,survival,tools,knitr,citations,MASS

LinkingTo Rcpp,RcppArmadillo

Depends R (>= 2.10), Rcpp (>= 0.11.1)

VignetteBuilder knitr

Suggests knitr (>= 1.11)

RoxygenNote 6.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-08-16 17:20:03 UTC

R topics documented:

 ex_data 3
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>func1</td>
<td>3</td>
</tr>
<tr>
<td>get.column.index</td>
<td>4</td>
</tr>
<tr>
<td>getNextY.cont</td>
<td>4</td>
</tr>
<tr>
<td>getNextY.cont2</td>
<td>5</td>
</tr>
<tr>
<td>getNextY.distr</td>
<td>5</td>
</tr>
<tr>
<td>getNextY.distr.m</td>
<td>6</td>
</tr>
<tr>
<td>getPrevY.distr</td>
<td>6</td>
</tr>
<tr>
<td>getPrevY.distr.m</td>
<td>7</td>
</tr>
<tr>
<td>longdat</td>
<td>7</td>
</tr>
<tr>
<td>LRTTest</td>
<td>8</td>
</tr>
<tr>
<td>m</td>
<td>8</td>
</tr>
<tr>
<td>make.short.format</td>
<td>9</td>
</tr>
<tr>
<td>mu</td>
<td>9</td>
</tr>
<tr>
<td>prepare_data</td>
<td>10</td>
</tr>
<tr>
<td>prepare_data_cont</td>
<td>11</td>
</tr>
<tr>
<td>prepare_data_discr</td>
<td>11</td>
</tr>
<tr>
<td>sigma_sq</td>
<td>12</td>
</tr>
<tr>
<td>simdata_cont</td>
<td>13</td>
</tr>
<tr>
<td>simdata_discr</td>
<td>14</td>
</tr>
<tr>
<td>simdata_gamma_frailty</td>
<td>15</td>
</tr>
<tr>
<td>simdata_time_dep</td>
<td>16</td>
</tr>
<tr>
<td>sim_pobs</td>
<td>17</td>
</tr>
<tr>
<td>spm</td>
<td>19</td>
</tr>
<tr>
<td>spm.impute</td>
<td>20</td>
</tr>
<tr>
<td>spm_continuous</td>
<td>22</td>
</tr>
<tr>
<td>spm_cont_lin</td>
<td>23</td>
</tr>
<tr>
<td>spm_cont_quad_lin</td>
<td>25</td>
</tr>
<tr>
<td>spm_con_1d</td>
<td>27</td>
</tr>
<tr>
<td>spm_con_1d_g</td>
<td>28</td>
</tr>
<tr>
<td>spm_discrete</td>
<td>30</td>
</tr>
<tr>
<td>spm_pobs</td>
<td>31</td>
</tr>
<tr>
<td>spm_projection</td>
<td>33</td>
</tr>
<tr>
<td>spm_time_dep</td>
<td>34</td>
</tr>
<tr>
<td>stpm</td>
<td>36</td>
</tr>
<tr>
<td>trim</td>
<td>37</td>
</tr>
<tr>
<td>trim.leading</td>
<td>37</td>
</tr>
<tr>
<td>trim.trailing</td>
<td>37</td>
</tr>
<tr>
<td>vitstat</td>
<td>38</td>
</tr>
</tbody>
</table>

Index 39
Description

This is the longitudinal genetic dataset.

Author(s)

Liang He

funcQ

An internal function to compute m and gamma based on continuous-time model (Yashin et. al., 2007)

Description

An internal function to compute m and gamma based on continuous-time model (Yashin et. al., 2007)

Usage

```
funcQ(tt, y, a, f1, Q, f, b, theta)
```

Arguments

- `tt` - time
- `y` - y
- `a` - a (see Yashin et. al, 2007)
- `f1` - f1 (see Yashin et. al, 2007)
- `Q` - Q (see Yashin et. al, 2007)
- `f` - f (see Yashin et. al, 2007)
- `b` - b (see Yashin et. al, 2007)
- `theta` - theta

Value

```
list(m, gamma) Next values of m and gamma (see Yashin et. al, 2007)
```
get.column.index
An internal function to obtain column index by its name

Description
An internal function to obtain column index by its name

Usage
```r
get.column.index(x, col.name)
```

Arguments
- `x` : Dataset
- `col.name` : Column name

Value
column index(es) in the provided dataset

getNextY.cont
An internal function to compute next Y based on continuous-time model (Yashin et. al., 2007)

Description
An internal function to compute next Y based on continuous-time model (Yashin et. al., 2007)

Usage
```r
getNextY.cont(y1, t1, t2, a, f1, Q, f, b, theta)
```

Arguments
- `y1` : y1
- `t1` : t1
- `t2` : t2
- `a` : a (see Yashin et. al, 2007)
- `f1` : f1 (see Yashin et. al, 2007)
- `Q` : Q (see Yashin et. al, 2007)
- `f` : f (see Yashin et. al, 2007)
- `b` : b (see Yashin et. al, 2007)
- `theta` : theta (see Yashin et. al, 2007)
getNextY.cont2

Value

\[y_{next} \] Next value of \(Y \)

getNextY.cont2 *An internal function to compute next value of physiological variable \(Y \)*

Description

An internal function to compute next value of physiological variable \(Y \)

Usage

\[
\text{getNextY.cont2}(y_1, t_1, t_2, b, a, f_1)
\]

Arguments

- \(y_1 \)
- \(t_1 \)
- \(t_2 \)
- \(b \) (see Yashin et. al, 2007)
- \(a \) (see Yashin et. al, 2007)
- \(f_1 \) (see Yashin et. al, 2007)

Value

\[y_{next} \] Next value of \(y \)

getNextY.dscr *An internal function to compute the next value of physiological variable \(Y \) based on discrete-time model (Akushevich et. al., 2005)*

Description

An internal function to compute the next value of physiological variable \(Y \) based on discrete-time model (Akushevich et. al., 2005)

Usage

\[
\text{getNextY.dscr}(y_1, u, R, \text{Sigma})
\]
getPrevY.discr

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y1</td>
<td>y1</td>
</tr>
<tr>
<td>u</td>
<td>u (see Akushevich et al., 2005)</td>
</tr>
<tr>
<td>R</td>
<td>R (see Akushevich et al., 2005)</td>
</tr>
<tr>
<td>Sigma</td>
<td>Sigma (see Akushevich et al., 2005)</td>
</tr>
</tbody>
</table>

Value

y.next Next value of y

getNextY.discr.m

An internal function to compute next m based on discrete-time model

Description

An internal function to compute next m based on discrete-time model

Usage

getNextY.discr.m(y1, u, R)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y1</td>
<td>y1</td>
</tr>
<tr>
<td>u</td>
<td>u</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Value

m Next value of m (see Yashin et al., 2007)

getPrevY.discr

An internal function to compute previous value of physiological variable Y based on discrete-time model

Description

An internal function to compute previous value of physiological variable Y based on discrete-time model

Usage

getPrevY.discr(y2, u, R, Sigma)
getPrevY.discre.m

Arguments
- \(y_2 \)
- \(u \)
- \(R \)
- \(\Sigma \)

Value
- \(y_1 \) Previous value of \(y \)

An internal function to compute previous \(m \) based on discrete-time model

Description
An internal function to compute previous \(m \) based on discrete-time model

Usage

\[
\text{getPrevY.discre.m}(y_2, u, R)
\]

Arguments
- \(y_2 \)
- \(u \)
- \(R \)

Value
- \(m \) Next value of \(m \) (see Yashin et. al, 2007)

This is the longitudinal dataset.

Description
This is the longitudinal dataset.

Author(s)
Ilya Y Zhbannikov <ilya.zhbannikov@duke.edu>

LRTest
Likelihood-ratio test

Description

Likelihood-ratio test

Usage

\[\text{LRTest}(L_A, L_0, df = 1) \]

Arguments

- **LA**: Log-likelihood for alternative hypothesis
- **L0**: Log-likelihood for null hypothesis
- **df**: Degrees of freedom for Chi-square test

Value

p-value of LR test.

m
An internal function to compute m from

Description

An internal function to compute m from

Usage

\[m(y, t1, t2, a, f1) \]

Arguments

- **y**: Current value of Y
- **t1**: \(t_1 \)
- **t2**: \(t_2 \)
- **a**: \(a \) (see Yashin et. al, 2007)
- **f1**: \(f_1 \) (see Yashin et. al, 2007)

Value

\(m \) \(m \) (see Yashin et. al, 2007)
make.short.format

An internal function which construct short data format from a given long

Description
An internal function which construct short data format from a given long

Usage
make.short.format(x, col.id = 1, col.status = 2, col.t1 = 3, col.t2 = 4, col.cov = 5)

Arguments
x Dataset
col.id Column ID index
col.status Column status index
col.t1 Column t1 index
col.t2 Column t2 index
col.cov Column covariates indices

Value
column index(es) in the provided dataset

mu

An internal function to compute mu

Description
An internal function to compute mu

Usage
mu(y, mu0, b, Q, theta, tt)

Arguments
y Current value of y
mu0 mu0 (see Yashin et. al, 2007)
b b (see Yashin et. al, 2007)
Q Q (see Yashin et. al, 2007)
theta theta (see Yashin et. al, 2007)
tt t (time)
prepare_data

Data pre-processing for analysis with stochastic process model methodology.

Description

Data pre-processing for analysis with stochastic process model methodology.

Usage

```r
prepare_data(x, col.id = NA, col.status = NA, col.age = NA,
             col.age.event = NA, covariates = NA, interval = 1, verbose = FALSE)
```

Arguments

- **x**: A path to the file with table of follow-up observations (longitudinal table). File formats: csv, sas7bdat
- **col.id**: A name of column containing subject ID. This ID should be the same in both `x` (longitudinal) and `y` (vital statistics) tables. None: if col.id not provided, the first column of the `x` and first column of the `y` will be used by default.
- **col.status**: A name of the column containing status variable (0/1, which is an indicator of death/censoring). Note: if not provided - then the column #2 from the `y` (vital statistics) dataset will be used.
- **col.age**: A name of age column (also called ‘t1’). This column represents a time (age) of measurement. If not provided then the 3rd column from the longitudinal dataset (x) will be used.
- **col.age.event**: A name of ‘event’ column. The event column indicates a time when the event occurred (e.g. system failure). Note: if not provided then the 3rd column from the `y` (vital statistics) dataset will be used.
- **covariates**: A list of covariates (physiological variables). If covariates not provided, then all columns from longitudinal table having index > 3 will be used as covariates.
- **interval**: A number of breaks between observations for data for discrete model. This interval must be integer and should be equal or greater than 1. Default = 1 unit of time.
- **verbose**: A verbosing output indicator. Default=FALSE.

Value

A list of two elements: first element contains a preprocessed data for continuous model, with arbitrary intervals between observations and second element contains a preprocessed data table for a discrete model (with constant intervals between observations).
Examples

```r
## Not run:
library(stpm)
data <- prepare_data(x=system.file("extdata","longdat.csv",package="stpm"))
head(data[[1]])
head(data[[2]])
```

End(Not run)

Description

Prepares continuous-time dataset.

Usage

```r
prepare_data_cont(merged.data, col.status.ind, col.id.ind, col.age.ind, 
                   col.age.event.ind, col.covar.ind, verbose, dt)
```

Arguments

- `merged.data`: a longitudinal study dataset.
- `col.status.ind`: index of "status" column.
- `col.id.ind`: subject id column index.
- `col.age.ind`: index of the age column.
- `col.age.event.ind`: an index of the column which represents the time in which event occurred.
- `col.covar.ind`: a set of column indexes which represent covariates.
- `verbose`: turns on/off verbosing output.
- `dt`: interval between observations.

prepare_data_discr

Prepares discrete-time dataset.

Description

Prepares discrete-time dataset.

Usage

```r
prepare_data_discr(merged.data, interval, col.status.ind, col.id.ind, 
                   col.age.ind, col.age.event.ind, col.covar.ind, verbose)
```
Arguments

merged.data a longitudinal study dataset.
interval interval between observations.
col.status.ind index of "status" column.
col.id.ind subject id column index.
col.age.ind index of the age column.
col.age.event.ind an index of the column which represents the time in which event occurred.
col.covar.ind a set of column indexes which represent covariates.
verbose turns on/off verbosing output. Filling the last cell

Description

An internal function to compute sigma square analytically

Usage

sigma_sq(t1, t2, b)

Arguments

 t1 t1
 t2 t2
 b b (see Yashin et. al, 2007)

Value

 sigma_square (see Akushevich et. al, 2005)
Description

Multi-dimensional simulation function for continuous-time SPM.

Usage

simdata_cont(N = 10, a = -0.05, f1 = 80, Q = 2e-08, f = 80, b = 5,
mu0 = 1e-05, theta = 0.08, xstart = 80, tstart = 30, tend = 105,
dt = 1, sd0 = 1, nobs = NULL, gomp = TRUE, format = "long")

Arguments

N Number of individuals.
a A k by k matrix, represents the adaptive capacity of the organism
f1 A trajectory that corresponds to the long-term average value of the stochastic
 process Y(t), which describes a trajectory of individual covariate (physiological
 variable) influenced by different factors represented by a random Wiener process
 W(t). This is a vector with length of k.
Q A matrix k by k, which is a non-negative-definite symmetric matrix, represents
 a sensitivity of risk function to deviation from the norm.
f A vector with length of k, represents the normal (or optimal) state of physiolog-
 ical variable.
b A diffusion coefficient, k by k matrix, characterizes a strength of the random
 disturbances from Wiener process W(t).
mu0 A baseline mortality.
theta A displacement coefficient.
ystart A vector with length equal of k, defines starting values of covariates.
tstart A number that defines starting time (30 by default).
tend A number, defines final time (105 by default).
dt A discrete step size between two observations. A random uniform value is then
 added to this step size.
sd0 a standard deviation for modelling the next covariate value.
nobs A number of observations (lines) for individual observations.
gomp A flag (FALSE by default). When it is set, then time-dependent exponential
 form of mu0 and Q are used: mu0 = mu0*exp(theta*t).
format Data format: "long" (default), "short".

Value

A table with simulated data.
References

Examples

```r
library(stpm)
dat <- simdata_cont(N=50)
head(dat)
```

simdata_discr
Multi-dimension simulation function

Description

Multi-dimension simulation function

Usage

```r
simdata_discr(N = 100, a = -0.05, f1 = 80, Q = 2e-08, f = 80, b = 5, 
mu0 = 1e-05, theta = 0.08, ystart = 80, tstart = 30, tend = 105, 
dt = 1, nobs = NULL, format = "long")
```

Arguments

- **N**
 Number of individuals
- **a**
 A k by k matrix, which characterize the rate of the adaptive response.
- **f1**
 A particular state, which is a deviation from the normal (or optimal). This is a vector with length of k.
- **Q**
 A matrix k by k, which is a non-negative-definite symmetric matrix.
- **f**
 A vector-function (with length k) of the normal (or optimal) state.
- **b**
 A diffusion coefficient, k by k matrix.
- **mu0**
 Mortality at start period of time.
- **theta**
 A displacement coefficient of the Gompertz function.
- **ystart**
 A vector with length equal to number of dimensions used, defines starting values of covariates. Default ystart = 80.
- **tstart**
 Starting time (age). Can be a number (30 by default) or a vector of two numbers: c(a, b) - in this case, starting value of time is simulated via uniform(a,b) distribution.
- **tend**
 A number, defines final time (105 by default).
- **dt**
 A time step (1 by default).
- **nobs**
 A number, defines a number of observations (lines) for an individual, NULL by default.
- **format**
 Data format: "long" (default), "short".
Value

A table with simulated data.

References

Examples

```r
library(stpm)
data <- simdata_discr(N=100)
head(data)
```

Description

This script simulates data using familial frailty model. We use the following variation: gamma(mu, ssq), where mu is the mean and ssq is sigma square. See: https://www.rocscience.com/help/swedge/webhelp/swedge/Gamma_Distribution.htm

Usage

```r
simdata_gamma_frailty(N = 10, f = list(at = "-0.05", f1t = "80", Qt = "2e-8", ft = "80", bt = "5", mu0t = "1e-3"), step = 1, tstart = 30, tend = 105, ystart = 80, sd0 = 1, nobs = NULL, gamma_mu = 1, gamma_ssq = 0.5)
```

Arguments

- **N**
 Number of individuals.
- **f**
 a list of formulas that define age (time) - dependency. Default: list(at="a", f1="f1", Qt="Q*exp(theta*t)", ft="f", bt="b", mu0t="mu0*exp(theta*t)")
- **step**
 An interval between two observations, a random uniformly-distributed value is then added to this step.
- **tstart**
 Starting time (age). Can be a number (30 by default) or a vector of two numbers: c(a, b) - in this case, starting value of time is simulated via uniform(a,b) distribution.
- **tend**
 A number, defines final time (105 by default).
- **ystart**
 A starting value of covariates.
simdata_time_dep

A standard deviation for modelling the next covariate value, sd0 = 1 by default.

nobs

A number of observations (lines) for individual observations.

gamma_mu

A parameter which is a mean value, default = 1

gamma_ssq

A sigma squared, default = 0.5.

Value

A table with simulated data.

References

Examples

```r
library(stpm)
dat <- simdata_gamma_frailty(N=10)
head(dat)
```

simdata_time_dep

Simulation function for continuous trait with time-dependant coefficients.

Description

Simulation function for continuous trait with time-dependant coefficients.

Usage

`simdata_time_dep(N = 10, f = list(at = "-0.05", f1t = "80", Qt = "2e-8", ft = "80", bt = "5", mu0t = "1e-3"), step = 1, tstart = 30, tend = 105, ystart = 80, sd0 = 1, nobs = NULL, format = "short")`

Arguments

- **N**
 - Number of individuals.

- **f**
 - a list of formulas that define age (time) - dependency. Default: `list(at="a", f1t="f1", Qt="Q*exp(theta*t)", ft="f", bt="b", mu0t=m0*exp(theta*t))`

- **step**
 - An interval between two observations, a random uniformly-distributed value is then added to this step.

- **tstart**
 - Starting time (age). Can be a number (30 by default) or a vector of two numbers: c(a, b) - in this case, starting value of time is simulated via uniform(a,b) distribution.

- **tend**
 - A number, defines final time (105 by default).
sim_pobs

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ystart</td>
<td>A starting value of covariates.</td>
</tr>
<tr>
<td>sd0</td>
<td>A standard deviation for modelling the next covariate value, sd0 = 1 by default.</td>
</tr>
<tr>
<td>nobs</td>
<td>A number of observations (lines) for individual observations.</td>
</tr>
<tr>
<td>format</td>
<td>Data format: "short" (default), "long".</td>
</tr>
</tbody>
</table>

Value

A table with simulated data.

References

Examples

```r
library(stpm)
dat <- simdata_time_dep(N=100)
head(dat)
```

sim_pobs

Multi-dimension simulation function for data with partially observed covariates (multidimensional GenSPM) with arbitrary intervals

Description

Multi-dimension simulation function for data with partially observed covariates (multidimensional GenSPM) with arbitrary intervals

Usage

```r
sim_pobs(N = 10, aH = -0.05, aL = -0.01, f1H = 60, f1L = 80, 
          QH = 2e-08, QL = 2.5e-08, fH = 60, fL = 80, bH = 4, bL = 5, 
          mu0H = 8e-06, mu0L = 1e-05, thetaH = 0.08, thetaL = 0.1, p = 0.25, 
          ystart = 80, tstart = 30, tend = 105, dt = 1, sd0 = 1, 
          mode = "observed", gomp = FALSE, nobs = NULL)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of individuals.</td>
</tr>
<tr>
<td>aH</td>
<td>A k by k matrix, which characterize the rate of the adaptive response when Z = 1.</td>
</tr>
<tr>
<td>aL</td>
<td>A k by k matrix, which characterize the rate of the adaptive response when Z = 0.</td>
</tr>
<tr>
<td>f1H</td>
<td>A particular state, which if a deviation from the normal (or optimal) when Z = 1. This is a vector with length of k.</td>
</tr>
</tbody>
</table>
fH \quad A \, particular \, state, \, which \, if \, a \, deviation \, from \, the \, normal \, (or \, optimal) \, when \, Z = 0. \, This \, is \, a \, vector \, with \, length \, of \, k.

QH \quad A \, matrix \, k \, by \, k, \, which \, is \, a \, non-negative-definite \, symmetric \, matrix \, when \, Z = 1.

QL \quad A \, matrix \, k \, by \, k, \, which \, is \, a \, non-negative-definite \, symmetric \, matrix \, when \, Z = 0.

fL \quad A \, vector-function \, (with \, length \, k) \, of \, the \, normal \, (or \, optimal) \, state \, when \, Z = 1.

fL \quad A \, vector-function \, (with \, length \, k) \, of \, the \, normal \, (or \, optimal) \, state \, when \, Z = 0.

bh \quad A \, diffusion \, coefficient, \, k \, by \, k \, matrix \, when \, Z = 1.

bl \quad A \, diffusion \, coefficient, \, k \, by \, k \, matrix \, when \, Z = 0.

mu0H \quad mortality \, at \, start \, period \, of \, time \, when \, Z = 1.

mu0L \quad mortality \, at \, start \, period \, of \, time \, when \, Z = 0.

thetaH \quad A \, displacement \, coefficient \, of \, the \, Gompertz \, function \, when \, Z = 1.

thetaL \quad A \, displacement \, coefficient \, of \, the \, Gompertz \, function \, when \, Z = 0.

p \quad A \, proportion \, of \, carriers \, in \, a \, simulated \, population \, (default \, p = 0.25).

ystart \quad A \, vector \, with \, length \, equal \, to \, number \, of \, dimensions \, used, \, defines \, starting \, values \, of \, covariates.

tstart \quad A \, number \, that \, defines \, starting \, time \, (30 \, by \, default).

tend \quad A \, number, \, defines \, final \, time \, (105 \, by \, default).

dt \quad A \, discrete \, step \, size \, between \, two \, observations. \, A \, random \, uniform \, value \, is \, then \, added \, to \, this \, step \, size.

sd0 \quad A \, standard \, deviation \, for \, modelling \, the \, next \, physiological \, variable \, (covariate) \, value.

mode \quad Can \, have \, the \, following \, values: \, "observed" \, (default), \, "unobserved". \, This \, represents \, a \, type \, of \, group \, to \, simulate: \, a \, group \, with \, observed \, variable \, Z, \, or \, group \, with \, unobserved \, variable \, Z.

gomp \quad A \, flag \, (FALSE \, by \, default). \, When \, it \, is \, set, \, then \, time-dependent \, exponential \, form \, of \, mu0 \, and \, Q \, are \, used: \, mu0 = mu0*exp(theta*t).

nobs \quad A \, number \, of \, observations \, (lines) \, for \, individual \, observations.

Value

A \, table \, with \, simulated \, data.

References

Examples

library(stpm)
dat <- sim_pobs(N=50)
head(dat)
A central function that estimates Stochastic Process Model parameters \(a \) from given dataset.

Description

A central function that estimates Stochastic Process Model parameters \(a \) from given dataset.

Usage

```r
spm(x, model = "discrete", formulas = list(at = "a", f1t = "f1", Qt = "Q", ft = "f", bt = "b", mu0t = "mu0"), start = NULL, tol = NULL, stopifbound = FALSE, lb = NULL, ub = NULL, pinv.tol = 0.01, theta.range = seq(0.01, 0.2, by = 0.001), verbose = FALSE, gomp = FALSE, opts = list(algorithm = "NLOPT_ln_NELDERMEAD", maxeval = 100, ftol_rel = 1e-08))
```

Arguments

- **x**
 A dataset: is the output from `prepare_data(...)` function and consists of two separate data tables: (1) a data table for continuous-time model and (2) a data table for discrete-time model.

- **model**
 A model type. Choices are: "discrete", "continuous" or "time-dependent".

- **formulas**
 A list of parameter formulas used in the "time-dependent" model. Default: `formulas=list(at = "a", f1t = "f1", Qt = "Q", ft = "f", bt = "b", mu0t = "mu0")`.

- **start**
 A starting values of coefficients in the "time-dependent" model.

- **tol**
 A tolerance threshold for matrix inversion (NULL by default).

- **stopifbound**
 A flag (default=FALSE) if it is set then the optimization stops when any of the parameters achieves lower or upper boundary.

- **lb**
 Lower boundary, default NULL.

- **ub**
 Upper boundary, default NULL.

- **pinv.tol**
 A tolerance threshold for matrix pseudo-inverse. Default: 0.01.

- **theta.range**
 A user-defined range of the parameter \(\theta \) used in discrete-time optimization and estimating of starting point for continuous-time optimization.

- **verbose**
 A verbosing output indicator (FALSE by default).

- **gomp**
 A flag (FALSE by default). When it is set, then time-dependent exponential form of \(\mu_0 \) and \(Q \) are used: \(\mu_0 = \mu_0 \exp(\theta t) \), \(Q = Q \exp(\theta t) \).

- **opts**
 A list of options for `nloptr`. Default value: `opt=list(algorithm="NLOPT_ln_NELDERMEAD", maxeval=...)`

Please see `nloptr` documentation for more information.
Value

For "discrete" (dmodel) and "continuous" (cmodel) model types: (1) a list of model parameter estimates for the discrete model type described in "Life tables with covariates: Dynamic Model for Nonlinear Analysis of Longitudinal Data", Akushevich et al, 2005. DOI:10.1080/08898480590932296, and (2) a list of model parameter estimates for the continuous model type described in "Stochastic model for analysis of longitudinal data on aging and mortality", Yashin et al, 2007, Math Biosc.<DOI:10.1016/j.mbs.2006.11.006>.

For the "time-dependent" model (model parameters depend on time): a set of model parameter estimates.

References

Examples

```r
## Not run:
library(spm)
data.continuous <- simdata_cont(N=1000)
data.discrete <- simdata_discr(N=1000)
data <- list(data.continuous, data.discrete)
p.dscr.model <- spm(data)
p.dscr.model
p.cont.model <- spm(data, model="continuous")p.cont.model
p.td.model <- spm(data, model="time-dependent", f=list(at="aa*t+bb", flt="f1", Qt="Q", ft="f", bt="b", mu0t="mu0"), start=list(aa=-0.001, bb=0.05, f1=80, Q=2e-8, f=80, b=5, mu0=1e-3))p.td.model

## End(Not run)
```
Usage

```
spm.impute(x, id = 1, case = 2, t1 = 3, t2 = 3, covariates = 4,
        minp = 5, theta_range = seq(0.01, 0.2, by = 0.001))
```

Arguments

- **x**: A longitudinal dataset with missing observations
- **id**: A name (text) or index (numeric) of ID column. Default: 1
- **case**: A case status column name (text) or index (numeric). Default: 2
- **t1**: A t1 (or t if short format is used) column name (text) or index (numeric). Default: 3
- **t2**: A t2 column name (if long format is used) (text) or index (numeric). Default: 4
- **covariates**: A list of covariate column names or indices. Default: 5
- **minp**: Number of imputations. Default: 5
- **theta_range**: A range of parameter theta used for optimization, default: seq(0.01, 0.15, by=0.001).

Value

A list(imputed, imputations)

- **imputed**: An imputed dataset.
- **imputations**: Temporary imputed datasets used in multiple imputations.

Examples

```r
## Not run:
library(stpm)
##Data preparation ##
data <- simdata_discr(N=1000, dt = 2)
miss.id <- sample(x=dim(data)[1], size=round(dim(data)[1]/4)) # ~25% missing data
incomplete.data <- data
incomplete.data[miss.id,5] <- NA
incomplete.data[miss.id+1,6] <- NA
## End of data preparation ##

# Estimate parameters from the complete dataset #
p <- spm_discrete(data, theta_range = seq(0.075, 0.09, by=0.001))
p

##### Multiple imputation with SPM #####
imp.data <- spm.impute(x=incomplete.data,
                       minp=5,
                       theta_range=seq(0.075, 0.09, by=0.001))$imputed
head(imp.data)
## Estimate SPM parameters from imputed data and compare them to the p ##
pp.test <- spm_discrete(imp.data, theta_range = seq(0.075, 0.09, by=0.001))
pp.test

## End(Not run)
```
Continuous multi-dimensional optimization

Usage

```r
dat, a = 0.05, f1 = 80, Q = 2e-08, f = 80, b = 5,
mu0 = 2e-05, theta = 0.08, stopifbound = FALSE, lb = NULL,
ub = NULL, verbose = FALSE, pinv.tol = 0.01, gomp = FALSE,
opts = list(algorithm = "NLOPT_LN_NELDERMEAD", maxeval = 100, ftol_rel = 1e-08))
```

Arguments

dat A data table.
a A starting value of the rate of adaptive response to any deviation of Y from f1(t).
f1 A starting value of the average age trajectories of the variables which process is forced to follow.
Q Starting values of the quadratic hazard term.
f A starting value of the "optimal" value of variable which corresponds to the minimum of hazard rate at a respective time.
b A starting value of a diffusion coefficient representing a strength of the random disturbance from Wiener Process.
mu0 A starting value of the baseline hazard.
theta A starting value of the parameter theta (axe displacement of Gompertz function).
stopifbound Estimation stops if at least one parameter achieves lower or upper boundaries.
 # Check the NLopt website for a description of the algorithms. Default: NLOPT_LN_NELDERMEAD
lb Lower bound of parameters under estimation.
ub Upper bound of parameters under estimation. The program stops when the number of function evaluations exceeds maxeval. Default: 500.
verbose An indicator of verbosing output.
gomp A flag (FALSE by default). When it is set, then time-dependent exponential form of mu0 is used: mu0 = mu0*exp(theta*t).
opts A list of options for nloptr. Default value: opt=list(algorithm="NLOPT_LN_NELDERMEAD",maxeval=)
 Please see nloptr documentation for more information.
Details

`spm_continuous` runs much slower than discrete but more precise and can handle time intervals with different lengths.

Value

A set of estimated parameters `a, f1, Q, f, b, mu0, theta` and additional variable `limit` which indicates if any parameter achieved lower or upper boundary conditions (FALSE by default).

- `status`: Optimization status (see documentation for nloptr package).
- `LogLik`: A logarithm likelihood.
- `objective`: A value of objective function (given by nloptr).
- `message`: A message given by nloptr optimization function (see documentation for nloptr package).

References

Examples

```r
library(stpm)
# Reading the data:
data <- simdata_cont(N=2)
head(data)

# Parameters estimation:
pars <- spm_continuous(data, a = -0.05, f1 = 80,
Q=2e-8, f80 = 80, b = 5, mu0 = 2e-5)
pars
```

`spm_cont_lin`
Continuous multi-dimensional optimization with linear terms in mu only

Description

Continuous multi-dimensional optimization with linear terms in mu only

Usage

```r
spm_cont_lin(dat, a = -0.05, f1 = 80, Q = 2e-08, f = 80, b = 5, mu0 = 2e-05, theta = 0.08, stopifbound = FALSE, lb = NULL, ub = NULL, verbose = FALSE, pinv.tol = 0.01, gomp = FALSE, opts = list(algorithm = "NLOPT_LN_NELDERMEAD", maxeval = 100, ftol_rel = 1e-08))
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dat</code></td>
<td>A data table.</td>
</tr>
<tr>
<td><code>a</code></td>
<td>A starting value of the rate of adaptive response to any deviation of Y from f1(t).</td>
</tr>
<tr>
<td><code>f1</code></td>
<td>A starting value of the average age trajectories of the variables which process is forced to follow.</td>
</tr>
<tr>
<td><code>Q</code></td>
<td>Starting values of the linear hazard term.</td>
</tr>
<tr>
<td><code>f</code></td>
<td>A starting value of the "optimal" value of variable which corresponds to the minimum of hazard rate at a respective time.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>A starting value of a diffusion coefficient representing a strength of the random disturbance from Wiener Process.</td>
</tr>
<tr>
<td><code>mu0</code></td>
<td>A starting value of the baseline hazard.</td>
</tr>
<tr>
<td><code>theta</code></td>
<td>A starting value of the parameter theta (axe displacement of Gompertz function).</td>
</tr>
<tr>
<td><code>stopifbound</code></td>
<td>Estimation stops if at least one parameter achieves lower or upper boundaries.</td>
</tr>
<tr>
<td><code>lb</code></td>
<td>Lower bound of parameters under estimation.</td>
</tr>
<tr>
<td><code>ub</code></td>
<td>Upper bound of parameters under estimation. The program stops when the number of function evaluations exceeds maxeval. Default: 500.</td>
</tr>
<tr>
<td><code>verbose</code></td>
<td>An indicator of verbosing output.</td>
</tr>
<tr>
<td><code>gomp</code></td>
<td>A flag (FALSE by default). When it is set, then time-dependent exponential form of mu0 is used: mu0 = mu0exp(thetat).</td>
</tr>
<tr>
<td><code>opts</code></td>
<td>A list of options for <code>nloptr</code>. Default value: <code>opt=list(algorithm="NLOPT_LN_NELDERMEAD",maxeval=500)</code>. Please see <code>nloptr</code> documentation for more information.</td>
</tr>
</tbody>
</table>

Details

`spm_continuous` runs much slower than discrete but more precise and can handle time intervals with different lengths.

Value

A set of estimated parameters `a, f1, Q, f, b, mu0`, `theta` and additional variable `limit` which indicates if any parameter achieved lower or upper boundary conditions (FALSE by default).

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td>Optimization status (see documentation for <code>nloptr</code> package).</td>
</tr>
<tr>
<td>LogLik</td>
<td>A logarithm likelihood.</td>
</tr>
<tr>
<td>objective</td>
<td>A value of objective function (given by <code>nloptr</code>).</td>
</tr>
<tr>
<td>message</td>
<td>A message given by <code>nloptr</code> optimization function (see documentation for <code>nloptr</code> package).</td>
</tr>
</tbody>
</table>

References

Examples

```r
library(stpm)
# Reading the data:
data <- simdata_cont(N=2)
head(data)
# Parameters estimation:
pars <- spm_cont_quad_lin(dat=data,a=-0.05, f1=80,
                          Q=2e-8, f=80, b=5, mu0=2e-5)
pars
```

spm_cont_quad_lin

Continuous multi-dimensional optimization with quadratic and linear terms

Description

Continuous multi-dimensional optimization with quadratic and linear terms

Usage

```r
spm_cont_quad_lin(dat, a = -0.05, f1 = 80, Q = 2e-08, f = 80, b = 5,
                   mu0 = 2e-05, theta = 0.08, Q1 = 1e-08, stopifbound = FALSE,
                   lb = NULL, ub = NULL, verbose = FALSE, pinv.tol = 0.01,
                   gomp = FALSE, opts = list(algorithm = "NLOPT_LN_NELDERMEAD",
                                               maxeval = 100, ftol_rel = 1e-08))
```

Arguments

- **dat**
 A data table.
- **a**
 A starting value of the rate of adaptive response to any deviation of Y from f1(t).
- **f1**
 A starting value of the average age trajectories of the variables which process is forced to follow.
- **Q**
 Starting values of the quadratic hazard term.
- **f**
 A starting value of the "optimal" value of variable which corresponds to the minimum of hazard rate at a respective time.
- **b**
 A starting value of a diffusion coefficient representing a strength of the random disturbance from Wiener Process.
- **mu0**
 A starting value of the baseline hazard.
- **theta**
 A starting value of the parameter theta (axe displacement of Gompertz function).
- **Q1**
 Q for linear term
- **stopifbound**
 Estimation stops if at least one parameter achieves lower or upper boundaries.
- **lb**
 Lower bound of parameters under estimation.
Upper bound of parameters under estimation. The program stops when the number of function evaluations exceeds maxeval. Default: 500.

An indicator of verbosing output.

A flag (FALSE by default). When it is set, then time-dependent exponential form of mu0 is used: mu0 = mu0*exp(theta*t).

A list of options for nloptr. Default value: opt=list(algorithm="NLOPT_LN_NELDERMEAD", maxeval=)

Please see nloptr documentation for more information.

Details

spm_continuous runs much slower than discrete but more precise and can handle time intervals with different lengths.

Value

A set of estimated parameters a, f1, Q, f, b, mu0, theta and additional variable limit which indicates if any parameter achieved lower or upper boundary conditions (FALSE by default).

status Optimization status (see documentation for nloptr package).

LogLik A logarithm likelihood.

objective A value of objective function (given by nloptr).

message A message given by nloptr optimization function (see documentation for nloptr package).

References

Examples

```r
library(stpm)
#Reading the data:
data <- simdata_cont(N=2)
head(data)
#Parameters estimation:
pars <- spm_cont_quad_lin(dat=data, a=-0.05, f1=80,
                           Q=2e-8, f=80, b=5, mu0=2e-5, Q1=1e-08)
pars
```
Fitting a 1-D SPM model with constant parameters

Description

This function implements a analytical solution to estimate the parameters in the continuous SPM model by assuming all the parameters are constants.

Usage

```
spm_con_1d(spm.data, a = NA, b = NA, q = NA, f = NA, f1 = NA,
mu0 = NA, theta = NA, lower = c(), upper = c(),
control = list(xtol_rel = 1e-06), global = FALSE, verbose = TRUE,
ahessian = FALSE)
```

Arguments

- **spm.data**: A dataset for the SPM model. See the STPM package for more details about the format.
- **a**: The initial value for the parameter \(a\). The initial value will be predicted if not specified.
- **b**: The initial value for the parameter \(b\). The initial value will be predicted if not specified.
- **q**: The initial value for the parameter \(q\). The initial value will be predicted if not specified.
- **f**: The initial value for the parameter \(f\). The initial value will be predicted if not specified.
- **f1**: The initial value for the parameter \(f_1\). The initial value will be predicted if not specified.
- **mu0**: The initial value for the parameter \(\mu_0\) in the baseline hazard. The initial value will be predicted if not specified.
- **theta**: The initial value for the parameter \(\theta\) in the baseline hazard. The initial value will be predicted if not specified.
- **lower**: A vector of the lower bound of the parameters.
- **upper**: A vector of the upper bound of the parameters.
- **control**: A list of the control parameters for the optimization parameters.
- **global**: A logical variable indicating whether the MLSL (TRUE) or the L-BFGS (FALSE) algorithm is used for the optimization.
- **verbose**: A logical variable indicating whether initial information is printed.
- **ahessian**: A logical variable indicating whether the approximate (FALSE) or analytical (TRUE) Hessian is returned.
Value

- est The estimates of the parameters.
- hessian The Hessian matrix of the estimates.
- lik The minus log-likelihood.
- con A number indicating the convergence. See the 'nloptr' package for more details.
- message Extra message about the convergence. See the 'nloptr' package for more details.

References

Examples

```r
{ library(stpm) dat <- simdata_cont(N=500) colnames(dat) <- c("id", "xi", "t1", "t2", "y", "y.next") res <- spm_con_1d(as.data.frame(dat), a=-0.05, b=2, q=1e-8, f=80, f1=90, mu0=1e-3, theta=0.08) }
```

spm_con_1d_g

Fitting a 1-D genetic SPM model with constant parameters

Description

This function implements a continuous genetic SPM model by assuming all the parameters are constants.

Usage

```r
spm_con_1d_g(spm_data, gene_data, a = NA, b = NA, q = NA, f = NA, f1 = NA, mu0 = NA, theta = NA, effect = c("a"), lower = c(), upper = c(), control = list(xtol_rel = 1e-06), global = FALSE, verbose = TRUE, aheessian = FALSE, method = "lbfgs", method.hessian = "L-BFGS-B")
```

Arguments

- **spm_data** A dataset for the SPM model. See the STPM package for more details about the format.
- **gene_data** A two column dataset containing the genotypes for the individuals in spm_data. The first column id is the ID of the individuals in spm_data, and the second column geno is the genotype.
- **a** The initial value for the parameter \(a\). The initial value will be predicted if not specified.
The initial value for the parameter b. The initial value will be predicted if not specified.

The initial value for the parameter q. The initial value will be predicted if not specified.

The initial value for the parameter f. The initial value will be predicted if not specified.

The initial value for the parameter f_1. The initial value will be predicted if not specified.

The initial value for the parameter μ_0 in the baseline hazard. The initial value will be predicted if not specified.

The initial value for the parameter θ in the baseline hazard. The initial value will be predicted if not specified.

A character vector of the parameters that are linked to genotypes. The vector can contain any combination of a, b, q, f, μ_0.

A vector of the lower bound of the parameters.

A vector of the upper bound of the parameters.

A list of the control parameters for the optimization parameters.

A logical variable indicating whether the MLSL (TRUE) or the L-BFGS (FALSE) algorithm is used for the optimization.

A logical variable indicating whether initial information is printed.

A logical variable indicating whether the approximate (FALSE) or analytical (TRUE) Hessian is returned.

Optimization method. Can be one of the following: lbfgs, mlsl, mma, slsqp, tnewton, varmetric. Default: lbfgs.

Optimization method for hessian calculation (if ahessian=F). Default: L-BFGS-B.

The estimates of the parameters.

The Hessian matrix of the estimates.

The minus log-likelihood.

A number indicating the convergence. See the ‘nloptr’ package for more details.

Extra message about the convergence. See the ‘nloptr’ package for more details.

The coefficients of the genetic effect on the parameters to be linked to genotypes.

Examples

```r
## Not run:
library(stpm)
data(ex_spmconldg)
res <- spm_con_1d_g(ex_data$spm_data, ex_data$gene_data,
a = -0.02, b=0.2, q=0.01, f=3, f1=3, mu0=0.01, theta=1e-05,
upper=c(-0.01,3,0.1,10,10,0.1,1e-05), lower=c(-1,0.01,0.00001,1,1,0.001,1e-05), 
effect=c('q'))
## End(Not run)
```

spm_discrete

Discrete multi-dimensional optimization

Usage

```r
spm_discrete(dat, theta_range = seq(0.02, 0.2, by = 0.001), tol = NULL,
verbose = FALSE)
```

Arguments

- `dat`: A data table.
- `theta_range`: A range of theta parameter (axe displacement of Gompertz function), default: from 0.001 to 0.09 with step of 0.001.
- `tol`: A tolerance threshold for matrix inversion (NULL by default).
- `verbose`: An indicator of verbosing output.

Details

This function is way more faster than continuous `spm_continuous_MD(...)` (but less precise) and used mainly in estimation a starting point for the `spm_continuous_MD(...)`.

Value

A list of two elements ("dmodel", "cmodel"): (1) estimated parameters `u, R, b, Sigma, Q, mu0, theta` for discrete-time model and (2) estimated parameters `a, f1, Q, f, b, mu0, theta` for continuous-time model. Note: `b` and `mu0` from first list are different from `b` and `mu0` from the second list.

References

Examples

library(stpm)
data <- simdata_discr(N=10)
Parameters estimation
pars <- spm_discrete(data)
pars

spm_pobs

Continuous-time multi-dimensional optimization for SPM with partially observed covariates (multidimensional GenSPM)

Description

Continuous-time multi-dimensional optimization for SPM with partially observed covariates (multidimensional GenSPM)

Usage

```r
spm_pobs(x = NULL, y = NULL, aH = -0.05, aL = -0.01, f1H = 60,
f1L = 80, QH = 2e-08,QL = 2.5e-08, fH = 60, fL = 80, bH = 4,
bL = 5, mu0H = 8e-06, mu0L = 1e-05, thetaH = 0.08, thetaL = 0.1,
p = 0.25, stopifbound = FALSE, algorithm = "NLOPT_LN_NELDERMEAD",
lb = NULL, ub = NULL, maxeval = 500, verbose = FALSE,
pinv.tol = 0.01, mode = "observed", gomp = TRUE, ftol_rel = 1e-06)
```

Arguments

- **x**: A data table with genetic component.
- **y**: A data table without genetic component.
- **aH**: A k by k matrix. Characterizes the rate of the adaptive response for Z = 1.
- **aL**: A k by k matrix. Characterizes the rate of the adaptive response for Z = 0.
- **f1H**: A deviation from the norm (or optimal) state for Z = 1. This is a vector of length k.
- **f1L**: A deviation from the norm (or optimal) state for Z = 0. This is a vector of length k.
- **QH**: A matrix k by k, which is a non-negative-definite symmetric matrix for Z = 1.
- **QL**: A matrix k by k, which is a non-negative-definite symmetric matrix for Z = 0.
- **fH**: A vector with length of k. Represents the normal (or optimal) state for Z = 1.
- **fL**: A vector with length of k. Represents the normal (or optimal) state for Z = 0.
- **bH**: A diffusion coefficient, k by k matrix for Z = 1.
- **bL**: A diffusion coefficient, k by k matrix for Z = 0.
- **mu0H**: A baseline mortality for Z = 1.
- **mu0L**: A baseline mortality for Z = 0.
thetaH A displacement coefficient for Z = 1.
thetaL A displacement coefficient for Z = 0.
p A hypothetical percentage of presence of partially observed covariate in a population (default p=0.25).
stopifbound If TRUE then estimation stops if at least one parameter achieves lower or upper boundaries.
algorithm An optimization algorithm used, can be one of those provided by nloptr. #'Check the NLopt website for a description of the algorithms. Default: NLOPT_LN_NELDERMEAD
lb Lower bound of parameter values.
ub Upper bound of parameter values.
maxeval Maximum number of iterations of the algorithm for nloptr optimization. The program stops when the number of function evaluations exceeds maxeval. Default: 500.
verbose An indicator of verbosing output (FALSE by default).
mode Can be one of the following: "observed" (default), "unobserved" or "combined". mode = "observed" represents analysing only dataset with observed variable Z. mode = "unobserved" represents analysing only dataset of unobserved variable Z. mode = "combined" denoted joint analysis of both observed and unobserved datasets.
gomp A flag (FALSE by default). When it is set, then time-dependent exponential form of mu0 is used: mu0 = mu0*exp(theta*t).
ftol_rel Relative tolerance threshold for likelihood function (default: 1e-6), see http://ab-initio.mit.edu/wiki/index.php/NLopt_Reference

Value
A set of estimated parameters aH, aL, f1H, f1H, QH, QL, fH, fL, bH, bL, mu0H, mu0L, thetaH, thetaL, p and additional variable limit which indicates if any parameter achieved lower or upper boundary conditions (FALSE by default).

References

Examples
Not run:
library(stpm)
#Reading the data:
data <- sim_pobs(N=1000)
A data projection with previously estimated or user-defined parameters. Projections are constructed for a cohort with fixed or normally distributed initial covariates.

Usage

```
spm_projection(x, N = 100, ystart = 80, model = "discrete", tstart = 30,
tend = 105, dt = 1, sd0 = 1, nobs = NULL, gomp = TRUE,
format = "short")
```

Arguments

- **x**: A list of parameters from output of the `spm(...)` function.
- **N**: A number of individuals to simulate, N=100 by default.
- **ystart**: A vector of starting values of covariates (variables), ystart=80 by default.
- **model**: A model type. Choices are: "discrete", "continuous" or "time-dependent".
- **tstart**: Start time (age), default=30. Can be an interval: c(a, b) - in this case, the starting time is simulated via `runif(a, b)`.
- **tend**: End time (age), default=105.
- **dt**: A time interval between observations, dt=1 by default.
- **sd0**: A standard deviation value for simulation of the next value of variable. sd0=1 by default.
- **nobs**: A number of observations (lines) for i-th individual.
- **gomp**: A flag (FALSE by default). When it is set, then time-dependent exponential form of mu0 and Q are used: mu0 = mu0*exp(theta*t), Q = Q*exp(theta*t). Only for continuous-time SPM.
- **format**: Data format: "short" (default), "long".

Value

An object of 'spm.projection' class with two elements. (1) A simulated data set. (2) A summary statistics which includes (i) age-specific means of state variables and (ii) Survival probabilities.
References

Examples

```r
# Not run:
library(stpm)
model.par <- list()
model.par$s0 <- matrix(c(-0.05, 1e-3, 2e-3, -0.05), nrow=2, ncol=2, byrow=TRUE)
model.par$s1 <- matrix(c(90, 35), nrow=1, ncol=2)
model.par$sQ <- matrix(c(1e-8, 1e-9, 1e-9, 1e-8), nrow=2, ncol=2, byrow=TRUE)
model.par$sF <- matrix(c(80, 27), nrow=1, ncol=2)
model.par$sB <- matrix(c(6, 2), nrow=2, ncol=2)
model.par$smu <- 1e-6
model.par$stheta <- 0.09
# Projection
# Discrete-time model
data.proj.discrete <- spm_projection(model.par, N=5000, ystart=c(80, 27))
plot(data.proj.discrete$stat$srv.prob)
# Continuous-time model
data.proj.continuous <- spm_projection(model.par, N=5000, ystart=c(80, 27), model="continuous")
plot(data.proj.continuous$stat$srv.prob)
# Time-dependent model
model.par <- list(at = "-0.05", f1t = "80", Qt = "2e-8",
                 ft= "80", bt = "5", mi0t = "1e-5*exp(0.11*t)"
                 )
data.proj.time_dependent <- spm_projection(model.par, N=500,
ystart=80, model="time-dependent")
plot(data.proj.time_dependent$stat$srv.prob, xlim = c(30,105))
```

End(Not run)

spm_time_dep

A function for the model with time-dependent model parameters.

Description

A function for the model with time-dependent model parameters.
Usage

```r
spm_time_dep(x, start = list(a = -0.05, f1 = 80, Q = 2e-08, f = 80, b = 5, mu0 = 0.001), frm = list(at = "a", f1t = "f1", Qt = "Q", ft = "f", bt = "b", mu0t = "mu0"), stopifbound = FALSE, lb = NULL, ub = NULL, verbose = FALSE, opts = list(algorithm = "NLOPT_LN_NELDERMEAD", maxeval = 100, ftol_rel = 1e-08), lrtest = FALSE)
```

Arguments

- **x**
 - Input data table.
- **start**
 - A list of starting parameters, default: `start=list(a=-0.5, f1=80, Q=2e-8, f=80, b=5, mu0=1e-5)`.
- **frm**
 - A list of formulas that define age (time) dependency. Default: `frm=list(at="a", f1t="f1", Qt="Q", ft="f", bt="b", mu0t="mu0")`.
- **stopifbound**
 - Estimation stops if at least one parameter achieves lower or upper boundaries. Default: `FALSE`.
- **lb**
 - Lower bound of parameters under estimation.
- **ub**
 - Upper bound of parameters under estimation.
- **verbose**
 - Turns on verbosing output.
- **opts**
 - A list of options for `nloptr`. Default value: `opt=list(algorithm="NLOPT_LN_NELDERMEAD", maxeval=100, ftol_rel=1e-08)`.
- **lrtest**
 - Indicates should Likelihood-Ratio test be performed. Possible values: `TRUE`, `H01`, `H02`, `H03`, `H04`, `H05` (see package Vignette for details) Default value: `FALSE`. Please see `nloptr` documentation for more information.

Value

- A set of estimates of `a`, `f1`, `Q`, `f`, `b`, `mu0`.
- status: Optimization status (see documentation for `nloptr` package).
- LogLik: A logarithm likelihood.
- objective: A value of objective function (given by `nloptr`).
- message: A message given by `nloptr` optimization function (see documentation for `nloptr` package).

References

Examples

```r
library(stpm)
#Data preparation:
n <- 5
data <- simdata_time_dep(N=n)
# Estimation:
opt.par <- spm_time_dep(data)
opt.par
```
Stochastic Process Model for Analysis of Longitudinal and Time-to-Event Outcomes

Description

Utilities to estimate parameters of the models with survival functions induced by stochastic covariates. Miscellaneous functions for data preparation and simulation are also provided. For more information, see: "Stochastic model for analysis of longitudinal data on aging and mortality" by Yashin A. et al, 2007, Mathematical Biosciences, 208(2), 538-551 <DOI:10.1016/j.mbs.2006.11.006>.

Author(s)

References

Examples

```r
## Not run:
library(stpm)
#Prepare data for optimization
data <- prepare_data(x=system.file("extdata","longdat.csv",package="stpm"), covariates="BMI")
#Parameters estimation (default model: discrete-time):
p.discr.model <- spm(data)
p.discr.model
# Continuous-time model:
p.cont.model <- spm(data, model="continuous")
p.cont.model
#Model with time-dependent coefficients:
data <- prepare_data(x=system.file("extdata","longdat.csv",package="stpm"), covariates="BMI")
p.td.model <- spm(data, model="time-dependent")
p.td.model
## End(Not run)
```
trim

Returns string w/o leading or trailing whitespace

Description

Returns string w/o leading or trailing whitespace

Usage

```c
trim(x)
```

Arguments

* x a string to trim

trim.leading

Returns string w/o leading whitespace

Description

Returns string w/o leading whitespace

Usage

```c
trim.leading(x)
```

Arguments

* x a string to trim

trim.trailing

Returns string w/o trailing whitespace

Description

Returns string w/o trailing whitespace

Usage

```c
trim.trailing(x)
```

Arguments

* x a string to trim
Description

Vital (mortality) statistics.

Author(s)

Ilya Y Zhabannikov <ilya.zhabannikov@duke.edu>
Index

*Topic Stochastic
 stpm, 36
*Topic allostastic
 stpm, 36
*Topic data
 ex_data, 3
 longdat, 7
 vitstat, 38
*Topic hazard
 stpm, 36
*Topic load,
 stpm, 36
*Topic longitudinal
 stpm, 36
*Topic model,
 stpm, 36
*Topic process
 stpm, 36
*Topic quadratic
 stpm, 36
*Topic studies,
 stpm, 36
*Topic time-to-event
 stpm, 36

ex_data, 3

func1, 3

get.column.index, 4
getNextY.cont, 4
getNextY.cont2, 5
getNextY.discr, 5
getNextY.discr.m, 6
getPrevY.discr, 6
getPrevY.discr.m, 7

longdat, 7
LRTTest, 8

m, 8

make.short.format, 9
mu, 9

prepare.data, 10
prepare.data_cont, 11
prepare.data_discr, 11

sigma_sq, 12
sim_pobs, 17
simdata_cont, 13
simdata_discr, 14
simdata_gamma_frailty, 15
simdata_time_dep, 16

spm, 19
spm.impute, 20
spm_con_1d, 27
spm_con_1d_g, 28
spm_cont_lin, 23
spm_cont_quad_lin, 25
spm_continuous, 22
spm_discrete, 30
spm_pobs, 31
spm_projection, 33
spm_time_dep, 34

stpm, 36
stpm-package (stpm), 36

trim, 37
trim.leading, 37
trim.trailing, 37

vitstat, 38