Package ‘stpm’

June 1, 2022

Type Package
Title Stochastic Process Model for Analysis of Longitudinal and
 Time-to-Event Outcomes
Version 1.7.11
Date 2022-05-25
Author I. Zhbannikov, Liang He, K. Arbeev, I. Akushevich, A. Yashin.
Maintainer Ilya Y. Zhbannikov <ilya.zhbannikov@duke.edu>
Description Utilities to estimate parameters of the models with survival functions
 induced by stochastic covariates. Miscellaneous functions for data preparation
 and simulation are also provided. For more information, see:
 (i) "Stochastic model for analysis of longitudinal data on aging and mortality"
 by Yashin A. et al. (2007),
 Mathematical Biosciences, 208(2), 538-551, <DOI:10.1016/j.mbs.2006.11.006>;
 (ii) "Health decline, aging and mortality: how are they related?"
 by Yashin A. et al. (2007),
License GPL
Imports sas7bdat, stats, nloptr, survival, tools, MASS
LinkingTo Rcpp, RcppArmadillo
Depends R (>= 2.10), Rcpp (>= 0.11.1)
VignetteBuilder knitr
Suggests knitr (>= 1.11), rmarkdown (>= 1.9)
RoxygenNote 7.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-05-31 23:50:05 UTC

R topics documented:

 ex_data ... 3
R topics documented:

- func1 ... 3
- get.column.index .. 4
- getNextY.cont ... 4
- getNextY.cont2 ... 5
- getNextY.discr ... 5
- getNextY.discr.m ... 6
- getPrevY.discr ... 6
- getPrevY.discr.m ... 7
- longdat ... 7
- LRTTest ... 8
- m ... 8
- make.short.format .. 9
- mu ... 9
- prepare_data ... 10
- prepare_data_cont ... 11
- prepare_data_discr .. 12
- sigma_sq .. 13
- simdata_cont ... 13
- simdata_discr ... 15
- simdata_gamma_frailty ... 16
- simdata_time_dep ... 17
- sim_pobs .. 19
- spm .. 21
- spm.impute .. 23
- spm_continuous .. 24
- spm_cont_lin .. 26
- spm_cont_quad_lin .. 28
- spm_con_1d .. 30
- spm_con_1d_g .. 32
- spm_discrete ... 34
- spm_pobs .. 35
- spm_projection .. 37
- spm_time_dep .. 39
- stpm ... 40
- trim ... 41
- trim.leading ... 42
- trim.trailing ... 42
- vitstat ... 42

Index ... 43
This is the longitudinal genetic dataset.

Author(s)
Liang He

An internal function to compute m and gamma based on continuous-time model (Yashin et. al., 2007)

Usage
func1(tt, y, a, f1, Q, f, b, theta)

Arguments
- tt: tt - time
- y
- a: a (see Yashin et. al, 2007)
- f1: f1 (see Yashin et. al, 2007)
- Q: Q (see Yashin et. al, 2007)
- f: f (see Yashin et. al, 2007)
- b: b (see Yashin et. al, 2007)
- theta

Value
list(m, gamma) Next values of m and gamma (see Yashin et. al, 2007)
get.column.index
An internal function to obtain column index by its name

Description
An internal function to obtain column index by its name

Usage
get.column.index(x, col.name)

Arguments
x
Dataset
col.name
Column name

Value
column index(es) in the provided dataset

getNextY.cont
An internal function to compute next Y based on continous-time model (Yashin et. al., 2007)

Description
An internal function to compute next Y based on continous-time model (Yashin et. al., 2007)

Usage
getNextY.cont(y1, t1, t2, a, f1, Q, f, b, theta)

Arguments
y1
y1
t1
t1
t2
t2
a
a (see Yashin et. al, 2007)
f1
f1 (see Yashin et. al, 2007)
Q
Q (see Yashin et. al, 2007)
f
f (see Yashin et. al, 2007)
b
b (see Yashin et. al, 2007)
theta
theta (see Yashin et. al, 2007)
getNextY.cont2

Value

y.next Next value of Y

Description

An internal function to compute next value of physiological variable Y

Usage

getNextY.cont2(y1, t1, t2, b, a, f1)

Arguments

y1

 t1

 t2

 b b (see Yashin et. al, 2007)

 a a (see Yashin et. al, 2007)

 f1 f1 (see Yashin et. al, 2007)

Value

y.next Next value of y

getNextY.discr

An internal function to compute the next value of physiological variable Y based on discrete-time model (Akushevich et. al., 2005)

Description

An internal function to compute the next value of physiological variable Y based on discrete-time model (Akushevich et. al., 2005)

Usage

getNextY.discr(y1, u, R, Sigma)
Arguments

<table>
<thead>
<tr>
<th>y1</th>
<th>y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>u (see Akushevich et. al, 2005)</td>
</tr>
<tr>
<td>R</td>
<td>R (see Akushevich et. al, 2005)</td>
</tr>
<tr>
<td>Sigma</td>
<td>Sigma (see Akushevich et. al, 2005)</td>
</tr>
</tbody>
</table>

Value

y.next Next value of y

getNextY.discr.m An internal function to compute next m based on discrete-time model

Description

An internal function to compute next m based on discrete-time model

Usage

g getNextY.discr.m(y1, u, R)

Arguments

<table>
<thead>
<tr>
<th>y1</th>
<th>y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>u</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Value

m Next value of m (see Yashin et. al, 2007)

getPrevY.discr An internal function to compute previous value of physiological variable Y based on discrete-time model

Description

An internal function to compute previous value of physiological variable Y based on discrete-time model

Usage

g getPrevY.discr(y2, u, R, Sigma)
Arguments

y2 y2
u u
R R
Sigma Sigma

Value

y1 Previous value of y

getPrevY.discr.m An internal function to compute previous m based on discrete-time model

Description

An internal function to compute previous m based on discrete-time model

Usage

getPrevY.discr.m(y2, u, R)

Arguments

y2 y2
u u
R R

Value

m Next value of m (see Yashin et. al, 2007)

longdat This is the longitudinal dataset.

Description

This is the longitudinal dataset.

Author(s)

Ilya Y Zhbannikov <ilya.zhbannikov@duke.edu>
LRTest
Likelihood-ratio test

Description
Likelihood-ratio test

Usage

LRTest(LA, L0, df = 1)

Arguments
- **LA**
 Log-likelihood for alternative hypothesis
- **L0**
 Log-likelihood for null hypothesis
- **df**
 Degrees of freedom for Chi-square test

Value

p-value of LR test.

m
An internal function to compute m from

Description
An internal function to compute m from

Usage

m(y, t1, t2, a, f1)

Arguments
- **y**
 Current value of Y
- **t1**
 t1
- **t2**
 t2
- **a**
 a (see Yashin et. al, 2007)
- **f1**
 f1 (see Yashin et. al, 2007)

Value

m m (see Yashin et. al, 2007)
make.short.format

An internal function which construct short data format from a given long

Usage

```r
make.short.format(
  x,
  col.id = 1,
  col.status = 2,
  col.t1 = 3,
  col.t2 = 4,
  col.cov = 5
)
```

Arguments

- `x`: Dataset
- `col.id`: Column ID index
- `col.status`: Column status index
- `col.t1`: Column t1 index
- `col.t2`: Column t2 index
- `col.cov`: Column covariates indices

Value

column index(es) in the provided dataset

mu

An internal function to compute mu

Description

An internal function to compute mu

Usage

```r
mu(y, mu0, b, Q, theta, tt)
```
Arguments

y Current value of y
mu0 mu0 (see Yashin et. al, 2007)
b b (see Yashin et. al, 2007)
Q Q (see Yashin et. al, 2007)
theta theta (see Yashin et. al, 2007)
tt t (time)

Value

mu Next value of mu

prepare_data Data pre-processing for analysis with stochastic process model methodology.

Description

Data pre-processing for analysis with stochastic process model methodology.

Usage

prepare_data(
 x,
 col.id = NA,
 col.status = NA,
 col.age = NA,
 col.age.event = NA,
 covariates = NA,
 interval = 1,
 verbose = FALSE
)

Arguments

x A path to the file with table of follow-up oservations (longitudinal table). File formats: csv, sas7bdat

col.id A name of column containing subject ID. This ID should be the same in both x (longitudinal) and y (vital statistics) tables. None: if col.id not provided, the first column of the x and first column of the y will be used by default.

col.status A name of the column containing status variable (0/1, which is an indicator of death/censoring). Note: if not provided - then the column #2 from the y (vital statistics) dataset will be used.
prepare_data_cont

Description

Prepares continuous-time dataset.

Usage

prepare_data_cont(
 merged.data,
 col.status.ind,
 col.id.ind,
 col.age.ind,
 col.age.event.ind,
 col.covar.ind,
 verbose,
 dt
)

Value

A list of two elements: first element contains a preprocessed data for continuous model, with arbitrary intervals between observations and second element contains a preprocessed data table for a discrete model (with constant intervals between observations).

Examples

Not run:
library(stpm)

data <- prepare_data(x=system.file("extdata","longdat.csv",package="stpm"))
head(data[[1]])
head(data[[2]])

End(Not run)
prepare_data_discr

Arguments
merged.data a longitudinal study dataset.
col.status.ind index of "status" column.
col.id.ind subject id column index.
col.age.ind index of the age column.
col.age.event.ind an index of the column which represents the time in which event occured.
col.covar.ind a set of column indexes which represent covariates.
verbose turns on/off verbosing output.
dt interval between observations.

prepare_data_discr Prepares discrete-time dataset.

Description
Prepares discrete-time dataset.

Usage
prepare_data_discr(
 merged.data,
 interval,
 col.status.ind,
 col.id.ind,
 col.age.ind,
 col.age.event.ind,
 col.covar.ind,
 verbose
)

Arguments
merged.data a longitudinal study dataset.
interval interval between observations.
col.status.ind index of "status" column.
col.id.ind subject id column index.
col.age.ind index of the age column.
col.age.event.ind an index of the column which represents the time in which event occured.
col.covar.ind a set of column indexes which represent covariates.
verbose turns on/off verbosing output.
sigma_sq

An internal function to compute sigma square analytically

Description

An internal function to compute sigma square analytically

Usage

`sigma_sq(t1, t2, b)`

Arguments

- `t1`
- `t2`
- `b` (see Yashin et. al, 2007)

Value

`sigma_square` (see Akushevich et. al, 2005)

simdata_cont

Multi-dimensional simulation function for continuous-time SPM.

Description

Multi-dimensional simulation function for continuous-time SPM.

Usage

```r
simdata_cont(
  N = 10,
  a = -0.05,
  f1 = 80,
  Q = 2e-08,
  f = 80,
  b = 5,
  mu0 = 1e-05,
  theta = 0.08,
  ystart = 80,
  tstart = 30,
  tend = 105,
  dt = 1,
  sd0 = 1,
  nobs = NULL,
)```

```
gomp = TRUE,
 format = "long"
)

Arguments

N Number of individuals.
a A k by k matrix, represents the adaptive capacity of the organism
f1 A trajectory that corresponds to the long-term average value of the stochastic
 process Y(t), which describes a trajectory of individual covariate (physiological
 variable) influenced by different factors represented by a random Wiener process
 W(t). This is a vector with length of k.
Q A matrix k by k, which is a non-negative-definite symmetric matrix, represents
 a sensitivity of risk function to deviation from the norm.
f A vector with length of k, represents the normal (or optimal) state of physiolog-
 ical variable.
b A diffusion coefficient, k by k matrix, characterizes a strength of the random
 disturbances from Wiener process W(t).
mu0 A baseline mortality.
theta A displacement coefficient.
ystart A vector with length equal of k, defines starting values of covariates.
tstart A number that defines starting time (30 by default).
tend A number, defines final time (105 by default).
dt A discrete step size between two observations. A random uniform value is then
 added to this step size.
sdθ a standard deviation for modelling the next covariate value.
nobs A number of observations (lines) for individual observations.
gomp A flag (FALSE by default). When it is set, then time-dependent exponential
 form of mu0 and Q are used: mu0 = mu0*exp(theta*t).
format Data format: "long" (default), "short".

Value

A table with simulated data.

References

Examples

library(stpm)
dat <- simdata_cont(N=50)
head(dat)
simdata_discr

Multi-dimension simulation function

Description

Multi-dimension simulation function

Usage

```r
simdata_discr(
  N = 100,
  a = -0.05,
  f1 = 80,
  Q = 2e-08,
  f = 80,
  b = 5,
  mu0 = 1e-05,
  theta = 0.08,
  ystart = 80,
  tstart = 30,
  tend = 105,
  dt = 1,
  nobs = NULL,
  format = "long"
)
```

Arguments

- **N**: Number of individuals
- **a**: A k by k matrix, which characterize the rate of the adaptive response.
- **f1**: A particular state, which is a deviation from the normal (or optimal). This is a vector with length of k.
- **Q**: A matrix k by k, which is a non-negative-definite symmetric matrix.
- **f**: A vector-function (with length k) of the normal (or optimal) state.
- **b**: A diffusion coefficient, k by k matrix.
- **mu0**: Mortality at start period of time.
- **theta**: A displacement coefficient of the Gompertz function.
- **ystart**: A vector with length equal to number of dimensions used, defines starting values of covariates. Default ystart = 80.
- **tstart**: Starting time (age). Can be a number (30 by default) or a vector of two numbers: c(a,b) - in this case, starting value of time is simulated via uniform(a,b) distribution.
- **tend**: A number, defines final time (105 by default).
- **dt**: A time step (1 by default).
simdata_gamma_frailty

 nobs A number, defines a number of observations (lines) for an individual, NULL by default.
 format Data format: "long" (default), "short".

Value

 A table with simulated data.

References

Examples

 library(stpm)
 data <- simdata_discr(N=100)
 head(data)

simdata_gamma_frailty This script simulates data using familial frailty model.
 We use the following variation: gamma(mu, ssq),
 where mu is the mean and ssq is sigma square. See:

Description

 This script simulates data using familial frailty model. We use the following variation: gamma(mu, ssq), where mu is the mean and ssq is sigma square. See: https://www.rocscience.com/help/swedge/webhelp/swedge/Gamma_Distribution.htm

Usage

 simdata_gamma_frailty(
 N = 10,
 f = list(at = "-0.05", f1t = "80", Qt = "2e-8", ft = "80", bt = "5", mu0t = "1e-3"),
 step = 1,
 tstart = 30,
 tend = 105,
 ystart = 80,
 sd0 = 1,
 nobs = NULL,
 gamma_mu = 1,
 gamma_ssq = 0.5
)
Arguments

- **N** Number of individuals.
- **f** A list of formulas that define age (time) - dependency. Default: list(at="a", Qf1t="Q*exp(theta*t)", ft="f"t", bt="b", mu0t="mu0*exp(theta*t)")
- **step** An interval between two observations, a random uniformly-distributed value is then added to this step.
- **tstart** Starting time (age). Can be a number (30 by default) or a vector of two numbers: c(a, b) - in this case, starting value of time is simulated via uniform(a,b) distribution.
- **tend** A number, defines final time (105 by default).
- **ystart** A starting value of covariates.
- **sd0** A standard deviation for modelling the next covariate value, sd0 = 1 by default.
- **nobs** A number of observations (lines) for individual observations.
- **gamma_mu** A parameter which is a mean value, default = 1
- **gamma_ssq** A sigma squared, default = 0.5.

Value

A table with simulated data.

References

Examples

```r
library(stpm)
dat <- simdata_gamma_frailty(N=10)
head(dat)
```

simdata_time_dep *Simulation function for continuous trait with time-dependant coefficients.*

Description

Simulation function for continuous trait with time-dependant coefficients.
simdata_time_dep

Usage

simdata_time_dep(
 N = 10,
 f = list(at = "-0.05", f1t = "80", Qt = "2e-8", ft = "80", bt = "5", mu0t = "1e-3"),
 step = 1,
 tstart = 30,
 tend = 105,
 ystart = 80,
 sd0 = 1,
 nobs = NULL,
 format = "short"
)

Arguments

N
 Number of individuals.

f
 a list of formulas that define age (time) - dependency. Default: list(at="a", f1t="f1", Qt="Q*exp(theta*t)", ft="f", bt="b", mu0t="mu0*exp(theta*t)"

step
 An interval between two observations, a random uniformly-distributed value
 is then added to this step.

tstart
 Starting time (age). Can be a number (30 by default) or a vector of two num-
 bers: c(a, b) - in this case, starting value of time is simulated via uniform(a,b)
 distribution.

tend
 A number, defines final time (105 by default).

ystart
 A starting value of covariates.

sd0
 A standard deviation for modelling the next covariate value, sd0 = 1 by default.

nobs
 A number of observations (lines) for individual observations.

format
 Data format: "short" (default), "long".

Value

A table with simulated data.

References

Yashin, A. et al (2007), Health decline, aging and mortality: how are they related? Biogerontology,

Examples

library(stpm)
dat <- simdata_time_dep(N=100)
head(dat)
Description

Multi-dimension simulation function for data with partially observed covariates (multidimensional GenSPM) with arbitrary intervals

Usage

```r
sim_pobs(
  N = 10,
  aH = -0.05,
  aL = -0.01,
  f1H = 60,
  f1L = 80,
  QH = 2e-08,
  QL = 2.5e-08,
  fH = 60,
  fL = 80,
  bH = 4,
  bL = 5,
  mu0H = 8e-06,
  mu0L = 1e-05,
  thetaH = 0.08,
  thetaL = 0.1,
  p = 0.25,
  ystart = 80,
  tstart = 30,
  tend = 105,
  dt = 1,
  sd0 = 1,
  mode = "observed",
  gomp = FALSE,
  nobs = NULL
)
```

Arguments

- **N**: Number of individuals.
- **aH**: A k by k matrix, which characterize the rate of the adaptive response when Z = 1.
- **aL**: A k by k matrix, which characterize the rate of the adaptive response when Z = 0.
f1H A particular state, which if a deviation from the normal (or optimal) when Z = 1. This is a vector with length of k.
f1L A particular state, which if a deviation from the normal (or optimal) when Z = 0. This is a vector with length of k.
QH A matrix k by k, which is a non-negative-definite symmetric matrix when Z = 1.
QL A matrix k by k, which is a non-negative-definite symmetric matrix when Z = 0.
fH A vector-function (with length k) of the normal (or optimal) state when Z = 1.
fL A vector-function (with length k) of the normal (or optimal) state when Z = 0.
bH A diffusion coefficient, k by k matrix when Z = 1.
bL A diffusion coefficient, k by k matrix when Z = 0.
mu0H mortality at start period of time when Z = 1.
mu0L mortality at start period of time when Z = 0.
thetaH A displacement coefficient of the Gompertz function when Z = 1.
thetaL A displacement coefficient of the Gompertz function when Z = 0.
p A proportion of carriers in a simulated population (default p = 0.25).
ystart A vector with length equal to number of dimensions used, defines starting values of covariates.
tstart A number that defines starting time (30 by default).
tend A number, defines final time (105 by default).
dt A discrete step size between two observations. A random uniform value is then added to this step size.
sd0 A standard deviation for modelling the next physiological variable (covariate) value.
mode Can have the following values: "observed" (default), "unobserved". This represents a type of group to simulate: a group with observed variable Z, or group with unobserved variable Z.
gomp A flag (FALSE by default). When it is set, then time-dependent exponential form of mu0 and Q are used: mu0 = mu0*exp(theta*t).
nobs A number of observations (lines) for individual observations.

Value
A table with simulated data.

References

Examples
library(stpm)
dat <- sim_pobs(N=50)
head(dat)
A central function that estimates Stochastic Process Model parameters a from given dataset.

Usage

```r
spm(
  x,
  model = "discrete",
  formulas = list(at = "a", f1t = "f1", Qt = "Q", ft = "f", bt = "b", mu0t = "mu0"),
  start = NULL,
  tol = NULL,
  stopifbound = FALSE,
  lb = NULL,
  ub = NULL,
  pinv.tol = 0.01,
  theta.range = seq(0.01, 0.2, by = 0.001),
  verbose = FALSE,
  gomp = FALSE,
  opts = list(algorithm = "NLOPT_LN_NELDERMEAD", maxeval = 100, ftol_rel = 1e-08)
)
```

Arguments

- `x`: A dataset: is the output from `prepare_data(...)` function and consists of two separate data tables: (1) a data table for continuous-time model and (2) a data table for discrete-time model.
- `model`: A model type. Choices are: "discrete", "continuous" or "time-dependent".
- `formulas`: A list of parameter formulas used in the "time-dependent" model. Default: `formulas=list(at="a", f1t="f1", Qt="Q", ft="f", bt="b", mu0t="mu0")`.
- `start`: A starting values of coefficients in the "time-dependent" model.
- `tol`: A tolerance threshold for matrix inversion (NULL by default).
- `stopifbound`: A flag (default=FALSE) if it is set then the optimization stops when any of the parameters achieves lower or upper boundary.
- `lb`: Lower boundary, default NULL.
- `ub`: Upper boundary, default NULL.
- `pinv.tol`: A tolerance threshold for matrix pseudo-inverse. Default: 0.01.
- `theta.range`: A user-defined range of the parameter theta used in discrete-time optimization and estimating of starting point for continuous-time optimization.
- `verbose`: A verbosing output indicator (FALSE by default).
gomp

A flag (FALSE by default). When it is set, then time-dependent exponential
form of mu0 and Q are used: mu0 = mu0*exp(theta*t), Q = Q*exp(theta*t).

opts

A list of options for nloptr. Default value: opt=list(algorithm="NLOPT_LN_NELDERMEAD", maxeval=
ftol_rel=1e-8). Please see nloptr documentation for more information.

Value

For "discrete" (dmodel) and "continuous" (cmodel) model types: (1) a list of model parameter esti-
mates for the discrete model type described in "Life tables with covariates: Dynamic Model for
Nonlinear Analysis of Longitudinal Data", Akushevich et al, 2005.<DOI:10.1080/08898480590932296>,
and (2) a list of model parameter estimates for the continuous model type described in "Stochas-
tic model for analysis of longitudinal data on aging and mortality", Yashin et al, 2007, Math
Biosci.<DOI:10.1016/j.mbs.2006.11.006>.

For the "time-dependent" model (model parameters depend on time): a set of model parameter
estimates.

References

Mathematical Biosciences, 208(2), 538-551.

for Nonlinear Analysis of Longitudinal Data. Mathematical Popu-
lation Studies, 12(2), pp.: 51-80. <DOI: 10.1080/08898480590932296>.

Yashin, A. et al (2007), Health decline, aging and mortality: how are they related? Biogerontology,

Examples

```r
## Not run:
library(stpm)
data.continuous <- simdata_cont(N=1000)
data.discrete <- simdata_discr(N=1000)
data <- list(data.continuous, data.discrete)
p.discr.model <- spm(data)
p.discr.model
p.cont.model <- spm(data, model="continuous")
p.cont.model
p.td.model <- spm(data, model="time-dependent", f=list(at="aa*t+bb", f1t="f1", Qt="Q", ft="f", bt="b", mu0t="mu0"),
start=list(a=-0.001, bb=0.05, f1=80, Q=2e-8, f=80, b=5, mu0=1e-3))
p.td.model

## End(Not run)
```
Description

Multiple Data Imputation with SPM

Usage

```r
spm.impute(
  x,
  id = 1,
  case = 2,
  t1 = 3,
  t2 = 3,
  covariates = 4,
  minp = 5,
  theta_range = seq(0.01, 0.2, by = 0.001)
)
```

Arguments

- **x**: A longitudinal dataset with missing observations
- **id**: A name (text) or index (numeric) of ID column. Default: 1
- **case**: A case status column name (text) or index (numeric). Default: 2
- **t1**: A t1 (or t if short format is used) column name (text) or index (numeric). Default: 3
- **t2**: A t2 column name (if long format is used) (text) or index (numeric). Default: 4
- **covariates**: A list of covariate column names or indices. Default: 5
- **minp**: Number of imputations. Default: 5
- **theta_range**: A range of parameter theta used for optimization, default: `seq(0.01, 0.15, by=0.001)`.

Value

- **imputed**: An imputed dataset.
- **imputations**: Temporary imputed datasets used in multiple imputations.

Examples

```r
## Not run:
library(stpm)
## Data preparation ##
data <- simdata_discr(N=1000, dt = 2)
miss.id <- sample(x=dim(data)[1], size=round(dim(data)[1]/4)) # ~25% missing data
```
incomplete.data <- data
incomplete.data[miss.id,5] <- NA
incomplete.data[miss.id-1,6] <- NA
End of data preparation

Estimate parameters from the complete dataset
p <- spm_discrete(data, theta_range = seq(0.075, 0.09, by=0.001))
p

Multiple imputation with SPM
imp.data <- spm.impute(x=incomplete.data,
 minp=5,
 theta_range=seq(0.075, 0.09, by=0.001))$imputed
head(imp.data)
Estimate SPM parameters from imputed data and compare them to the p
pp.test <- spm_discrete(imp.data, theta_range = seq(0.075, 0.09, by=0.001))
pp.test
End(Not run)

spm_continuous
Continuous multi-dimensional optimization

Description

Continuous multi-dimensional optimization

Usage

```r
spm_continuous(
  dat,
  a = -0.05,
  f1 = 80,
  Q = 2e-08,
  f = 80,
  b = 5,
  mu0 = 2e-05,
  theta = 0.08,
  stopifbound = FALSE,
  lb = NULL,
  ub = NULL,
  verbose = FALSE,
  pinv.tol = 0.01,
  gomp = FALSE,
  opts = list(algorithm = "NLOPT_LN_NELDERMEAD", maxeval = 100, ftol_rel = 1e-08),
  logmu0 = FALSE
)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dat</td>
<td>A data table.</td>
</tr>
<tr>
<td>a</td>
<td>A starting value of the rate of adaptive response to any deviation of Y from f1(t).</td>
</tr>
<tr>
<td>f1</td>
<td>A starting value of the average age trajectories of the variables which process is forced to follow.</td>
</tr>
<tr>
<td>Q</td>
<td>Starting values of the quadratic hazard term.</td>
</tr>
<tr>
<td>f</td>
<td>A starting value of the "optimal" value of variable which corresponds to the minimum of hazard rate at a respective time.</td>
</tr>
<tr>
<td>b</td>
<td>A starting value of a diffusion coefficient representing a strength of the random disturbance from Wiener Process.</td>
</tr>
<tr>
<td>mu0</td>
<td>A starting value of the baseline hazard.</td>
</tr>
<tr>
<td>theta</td>
<td>A starting value of the parameter theta (axe displacement of Gompertz function).</td>
</tr>
<tr>
<td>stopifbound</td>
<td>Estimation stops if at least one parameter achieves lower or upper boundaries.</td>
</tr>
<tr>
<td>lb</td>
<td>Lower bound of parameters under estimation.</td>
</tr>
<tr>
<td>ub</td>
<td>Upper bound of parameters under estimation. The program stops when the number of function evaluations exceeds maxeval. Default: 500.</td>
</tr>
<tr>
<td>verbose</td>
<td>An indicator of verbosing output.</td>
</tr>
<tr>
<td>gomp</td>
<td>A flag (FALSE by default). When it is set, then time-dependent exponential form of mu0 is used: mu0 = mu0exp(thetat).</td>
</tr>
<tr>
<td>opts</td>
<td>A list of options for nloptr. Default value: opt=list(algorithm="NLOPT_LN_NELDERMEAD",maxeval=100,ftol_rel=1e-8). Please see nloptr documentation for more information.</td>
</tr>
<tr>
<td>logmu0</td>
<td>Natural logarith of baseline mortality. Default: FALSE.</td>
</tr>
</tbody>
</table>

Details

`spm_continuous` runs much slower that discrete but more precise and can handle time intervals with different lengths.

Value

- A set of estimated parameters a, f1, Q, f, b, mu0, theta and additional variable `limit` which indicates if any parameter achieved lower or upper boundary conditions (FALSE by default).
- status Optimization status (see documentation for nloptr package).
- LogLik A logarithm likelihood.
- objective A value of objective function (given by nloptr).
- message A message given by nloptr optimization function (see documentation for nloptr package).
References

Examples

library(stpm)
set.seed(123)
#Reading the data:
data <- simdata_cont(N=2)
head(data)
#Parameters estimation:
pars <- spm_continuous(dat=data,a=-0.05, f1=80, Q=2e-8, f=80, b=5, mu0=2e-5)
pars

spm_cont_lin

Continuous multi-dimensional optimization with linear terms in mu only

Description

Continuous multi-dimensional optimization with linear terms in mu only

Usage

```r
spm_cont_lin(
dat,
a = -0.05,
f1 = 80,
Q = 2e-08,
f = 80,
b = 5,
mu0 = 2e-05,
theta = 0.08,
stopifbound = FALSE,
lb = NULL,
ub = NULL,
verbose = FALSE,
pinv.tol = 0.01,
gomp = FALSE,
opts = list(algorithm = "NLOPT_LN_NELDERMead", maxeval = 100, ftol_rel = 1e-08)
)
```
Arguments

dat A data table.
a A starting value of the rate of adaptive response to any deviation of Y from f1(t).
f1 A starting value of the average age trajectories of the variables which process is forced to follow.
Q Starting values of the linear hazard term.
f A starting value of the "optimal" value of variable which corresponds to the minimum of hazard rate at a respective time.
b A starting value of a diffusion coefficient representing a strength of the random disturbance from Wiener Process.
mu0 A starting value of the baseline hazard.
theta A starting value of the parameter theta (axe displacement of Gompertz function).
stopifbound Estimation stops if at least one parameter achieves lower or upper boundaries.
 #' Check the NLopt website for a description of the algorithms. Default: NLOPT_LN_NELDERMEAD
lb Lower bound of parameters under estimation.
ub Upper bound of parameters under estimation. The program stops when the number of function evaluations exceeds maxeval. Default: 500.
verbose An indicator of verbosing output.
gomp A flag (FALSE by default). When it is set, then time-dependent exponential form of mu0 is used: mu0 = mu0*exp(theta*t).
opts A list of options for nloptr. Default value: opt=list(algorithm="NLOPT_LN_NELDERMEAD",maxeval=500,ftol_rel=1e-8). Please see nloptr documentation for more information.

Details

spm_continuous runs much slower than discrete but more precise and can handle time intervals with different lengths.

Value

A set of estimated parameters a, f1, Q, f, b, mu0, theta and additional variable limit which indicates if any parameter achieved lower or upper boundary conditions (FALSE by default).
status Optimization status (see documentation for nloptr package).
LogLik A logarithm likelihood.
objective A value of objective function (given by nloptr).
message A message given by nloptr optimization function (see documentation for nloptr package).

References

Examples

```r
library(stpm)
set.seed(123)
#Reading the data:
data <- simdata_cont(N=2)
head(data)
#Parameters estimation:
pars <- spm_cont_lin(dat=data,a=-0.05, f1=80,
                     Q=2e-8, f=80, b=5, mu0=2e-5)
pars
```

spm_cont_quad_lin

Continuous multi-dimensional optimization with quadratic and linear terms

Description

Continuous multi-dimensional optimization with quadratic and linear terms

Usage

```r
spm_cont_quad_lin(
  dat,
  a = -0.05,
  f1 = 80,
  Q = 2e-08,
  f = 80,
  b = 5,
  mu0 = 2e-05,
  theta = 0.08,
  Q1 = 1e-08,
  stopifbound = FALSE,
  lb = NULL,
  ub = NULL,
  verbose = FALSE,
  pinv.tol = 0.01,
  gomp = FALSE,
  opts = list(algorithm = "NLOPT_LN_NELDERMEAD", maxeval = 100, ftol_rel = 1e-08)
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dat</td>
<td>A data table.</td>
</tr>
<tr>
<td>a</td>
<td>A starting value of the rate of adaptive response to any deviation of Y from f1(t).</td>
</tr>
<tr>
<td>f1</td>
<td>A starting value of the average age trajectories of the variables which process is forced to follow.</td>
</tr>
</tbody>
</table>
Starting values of the quadratic hazard term.

A starting value of the "optimal" value of variable which corresponds to the minimum of hazard rate at a respective time.

A starting value of a diffusion coefficient representing a strength of the random disturbance from Wiener Process.

A starting value of the baseline hazard.

A starting value of the parameter theta (axe displacement of Gompertz function).

Q for linear term

Estimation stops if at least one parameter achieves lower or upper boundaries.

Check the NLopt website for a description of the algorithms. Default: NLOPT_LN_NELDERMEAD

Lower bound of parameters under estimation.

Upper bound of parameters under estimation. The program stops when the number of function evaluations exceeds maxeval. Default: 500.

An indicator of verbosing output.

A flag (FALSE by default). When it is set, then time-dependent exponential form of mu0 is used: mu0 = mu0*exp(theta*t).

A list of options for nloptr. Default value: opt=list(algorithm="NLOPT_LN_NELDERMEAD",maxeval=100,ftol_rel=1e-8). Please see nloptr documentation for more information.

Details

spm_continuous runs much slower that discrete but more precise and can handle time intervals with different lengths.

Value

A set of estimated parameters a, f1, Q, f, b, mu0, theta and additional variable limit which indicates if any parameter achieved lower or upper boundary conditions (FALSE by default).

Optimization status (see documentation for nloptr package).

A logarithm likelihood.

A value of objective function (given by nloptr).

A message given by nloptr optimization function (see documentation for nloptr package).

References

Examples

```r
library(stpm)
set.seed(123)
# Reading the data:
data <- simdata_cont(N=2)
head(data)
# Parameters estimation:
pars <- spm_con_quad_lin(dat=data, a=-0.05, f1=80,
                         Q=2e-8, f=80, b=5, mu0=2e-5, Q1=1e-08)
pars
```

spm_con_1d
Fitting a 1-D SPM model with constant parameters

Description

This function implements an analytical solution to estimate the parameters in the continuous SPM model by assuming all the parameters are constants.

Usage

```r
spm_con_1d(
  spm_data,
  a = NA,
  b = NA,
  q = NA,
  f = NA,
  f1 = NA,
  mu0 = NA,
  theta = NA,
  lower = c(),
  upper = c(),
  control = list(xtol_rel = 1e-06),
  global = FALSE,
  verbose = TRUE,
  hessian = FALSE
)
```

Arguments

- `spm_data` A dataset for the SPM model. See the STPM package for more details about the format.
- `a` The initial value for the parameter a. The initial value will be predicted if not specified.
- `b` The initial value for the parameter b. The initial value will be predicted if not specified.
The initial value for the parameter \(q \). The initial value will be predicted if not specified.

The initial value for the parameter \(f \). The initial value will be predicted if not specified.

The initial value for the parameter \(f_1 \). The initial value will be predicted if not specified.

The initial value for the parameter \(\mu_0 \) in the baseline hazard. The initial value will be predicted if not specified.

The initial value for the parameter \(\theta \) in the baseline hazard. The initial value will be predicted if not specified.

A vector of the lower bound of the parameters.

A vector of the upper bound of the parameters.

A list of the control parameters for the optimization parameters.

A logical variable indicating whether the MLSL (TRUE) or the L-BFGS (FALSE) algorithm is used for the optimization.

A logical variable indicating whether initial information is printed.

A logical variable indicating whether the approximate (FALSE) or analytical (TRUE) Hessian is returned.

The estimates of the parameters.

The Hessian matrix of the estimates.

The minus log-likelihood.

A number indicating the convergence. See the `nloptr` package for more details.

Extra message about the convergence. See the `nloptr` package for more details.

Examples

```r
library(stpm)
dat <- simdata_cont(N=500)
colnames(dat) <- c("id", "x1", "t1", "t2", "y", "y.next")
res <- spm_con_1d(as.data.frame(dat), a=-0.05, b=2, q=1e-8, f=80, f1=90, mu0=1e-3, theta=0.08)
```
Fitting a 1-D genetic SPM model with constant parameters

Description

This function implements a continuous genetic SPM model by assuming all the parameters are constants.

Usage

```r
call_pm_con_1d_g(  
  spm_data,  
  gene_data,  
  a = NA,  
  b = NA,  
  q = NA,  
  f = NA,  
  f1 = NA,  
  mu0 = NA,  
  theta = NA,  
  effect = c("a"),  
  lower = c(),  
  upper = c(),  
  control = list(xtol_rel = 1e-06),  
  global = FALSE,  
  verbose = TRUE,  
  ahessian = FALSE,  
  method = "lbfgs",  
  method.hessian = "L-BFGS-B")
```

Arguments

- `spm_data`: A dataset for the SPM model. See the STPM pacakge for more details about the format.
- `gene_data`: A two column dataset containing the genotypes for the individuals in `spm_data`. The first column `id` is the ID of the individuals in `spm_data`, and the second column `geno` is the genotype.
- `a`: The initial value for the parameter `a`. The initial value will be predicted if not specified.
- `b`: The initial value for the parameter `b`. The initial value will be predicted if not specified.
- `q`: The initial value for the parameter `q`. The initial value will be predicted if not specified.
- `f`: The initial value for the parameter `f`. The initial value will be predicted if not specified.
The initial value for the parameter f_1. The initial value will be predicted if not specified.

mu0
The initial value for the parameter μ_0 in the baseline hazard. The initial value will be predicted if not specified.

theta
The initial value for the parameter θ in the baseline hazard. The initial value will be predicted if not specified.

effect
A character vector of the parameters that are linked to genotypes. The vector can contain any combination of a, b, q, f, μ_0.

lower
A vector of the lower bound of the parameters.

upper
A vector of the upper bound of the parameters.

control
A list of the control parameters for the optimization parameters.

global
A logical variable indicating whether the MLSL (TRUE) or the L-BFGS (FALSE) algorithm is used for the optimization.

verbose
A logical variable indicating whether initial information is printed.

ahessian
A logical variable indicating whether the approximate (FALSE) or analytical (TRUE) Hessian is returned.

method
Optimization method. Can be one of the following: lbfgs, mlsl, mma, slsqp, tnewton, varmetric. Default: lbfgs.

method.hessian
Optimization method for hessian calculation (if ahessian=F). Default: L-BFGS-B.

Value

est The estimates of the parameters.

hessian The Hessian matrix of the estimates.

lik The minus log-likelihood.

con A number indicating the convergence. See the 'nloptr' package for more details.

message Extra message about the convergence. See the 'nloptr' package for more details.

beta The coefficients of the genetic effect on the parameters to be linked to genotypes.

References

Examples

Not run:
library(stpm)
data(ex_SPMCon1dg)
res <- spm_con_1d_g(ex_dataspm_data, ex_datagene_data,
a = -0.02, b=0.2, q=0.01, f=3, f1=3, mu0=0.01, theta=1e-05,
upper=c(-0.01,3,0.1,10,0.1,1e-05), lower=c(-1,0.01,0.00001,1,1,0.001,1e-05),
effect=c('q'))

End(Not run)
Discrete multi-dimensional optimization

Description

Discrete multi-dimensional optimization

Usage

```r
spm_discrete(
  dat,
  theta_range = seq(0.02, 0.2, by = 0.001),
  tol = NULL,
  verbose = FALSE
)
```

Arguments

- `dat`: A data table.
- `theta_range`: A range of theta parameter (axe displacement of Gompertz function), default: from 0.001 to 0.09 with step of 0.001.
- `tol`: A tolerance threshold for matrix inversion (NULL by default).
- `verbose`: An indicator of verbosing output.

Details

This function is way more faster than continuous `spm_continuous_MD(...)` (but less precise) and used mainly in estimation a starting point for the `spm_continuous_MD(...)`

Value

A list of two elements ("dmodel", "cmodel"): (1) estimated parameters u, R, b, Sigma, Q, mu0, theta for discrete-time model and (2) estimated parameters a, f1, Q, f, b, mu0, theta for continuous-time model. Note: b and mu0 from first list are different from b and mu0 from the second list.

References

Examples

```r
library(stpm)
data <- simdata_discr(N=10)
#Parameters estimation
pars <- spm_discrete(data)
pars
```

spm_pobs

Continuous-time multi-dimensional optimization for SPM with partially observed covariates (multidimensional GenSPM)

Description

Continuous-time multi-dimensional optimization for SPM with partially observed covariates (multidimensional GenSPM)

Usage

```r
spm_pobs(
  x = NULL,
  y = NULL,
  aH = -0.05,
  aL = -0.01,
  f1H = 60,
  f1L = 80,
  QH = 2e-08,
  QL = 2.5e-08,
  fH = 60,
  fL = 80,
  bH = 4,
  bL = 5,
  mu0H = 8e-06,
  mu0L = 1e-05,
  thetaH = 0.08,
  thetaL = 0.1,
  p = 0.25,
  stopifbound = FALSE,
  algorithm = "NLOPT_LN_NELDERMEAD",
  lb = NULL,
  ub = NULL,
  maxeval = 500,
  verbose = FALSE,
  pinv.tol = 0.01,
  mode = "observed",
  gomp = TRUE,
  ftol_rel = 1e-06
)
```
Arguments

- **x**: A data table with genetic component.
- **y**: A data table without genetic component.
- **aH**: A k by k matrix. Characterizes the rate of the adaptive response for \(Z = 1 \).
- **aL**: A k by k matrix. Characterizes the rate of the adaptive response for \(Z = 0 \).
- **f1H**: A deviation from the norm (or optimal) state for \(Z = 1 \). This is a vector of length \(k \).
- **f1L**: A deviation from the norm (or optimal) state for \(Z = 0 \). This is a vector of length \(k \).
- **QH**: A matrix k by k, which is a non-negative-definite symmetric matrix for \(Z = 1 \).
- **QL**: A matrix k by k, which is a non-negative-definite symmetric matrix for \(Z = 0 \).
- **fH**: A vector with length of \(k \). Represents the normal (or optimal) state for \(Z = 1 \).
- **fL**: A vector with length of \(k \). Represents the normal (or optimal) state for \(Z = 0 \).
- **bH**: A diffusion coefficient, k by k matrix for \(Z = 1 \).
- **bL**: A diffusion coefficient, k by k matrix for \(Z = 0 \).
- **mu0H**: A baseline mortality for \(Z = 1 \).
- **mu0L**: A baseline mortality for \(Z = 0 \).
- **thetaH**: A displacement coefficient for \(Z = 1 \).
- **thetaL**: A displacement coefficient for \(Z = 0 \).
- **p**: A hypothetical percentage of presence of partially observed covariate in a population (default \(p = 0.25 \)).
- **stopifbound**: If TRUE then estimation stops if at least one parameter achieves lower or upper boundaries.
- **algorithm**: An optimization algorithm used, can be one of those provided by nloptr. #Check the NLopt website for a description of the algorithms. Default: NLOPT_LN_NELDERMEAD
- **lb**: Lower bound of parameter values.
- **ub**: Upper bound of parameter values.
- **maxeval**: Maximum number of iterations of the algorithm for nloptr optimization. The program stops when the number of function evaluations exceeds maxeval. Default: 500.
- **verbose**: An indicator of verbosing output (FALSE by default).
- **mode**: Can be one of the following: "observed" (default), "unobserved" or "combined". mode = "observed" represents analysing only dataset with observed variable \(Z \). mode = "unobserved" represents analysing only dataset of unobserved variable \(Z \). mode = "combined" denoted joint analysis of both observed and unobserved datasets.
- **gomp**: A flag (FALSE by default). When it is set, then time-dependent exponential form of \(mu0 \) is used: \(mu0 = mu0*exp(theta*t) \).
- **ftol_rel**: Relative tolerance threshold for likelihood function (defalult: 1e-6), see http://ab-initio.mit.edu/wiki/index.php/NLopt_Reference
Value

A set of estimated parameters a_H, a_L, f_{1H}, f_{1L}, Q_H, Q_L, f_H, f_L, b_H, b_L, μ_0H, μ_0L, θ_H, θ_L, p and additional variable limit which indicates if any parameter achieved lower or upper boundary conditions (FALSE by default).

References

Examples

```r
## Not run:
library(stpm)
#Reading the data:
data <- sim_pobs(N=1000)
head(data)
#Parameters estimation:
pars <- spm_pobs(x=data)
pars

## End(Not run)
```

spm_projection

A data projection with previously estimated or user-defined parameters. Projections are constructed for a cohort with fixed or normally distributed initial covariates.

Description

A data projection with previously estimated or user-defined parameters. Projections are constructed for a cohort with fixed or normally distributed initial covariates.

Usage

```r
spm_projection(
  x,
  N = 100,
  ystart = 80,
  model = "discrete",
  tstart = 30,
  tend = 105,
  dt = 1,
  sd0 = 1,
  nobs = NULL,
  gomp = TRUE,
  format = "short"
)
```
Arguments

- **x**
 A list of parameters from output of the `spm(...)` function.

- **N**
 A number of individuals to simulate, N=100 by default.

- **ystart**
 A vector of starting values of covariates (variables), ystart=80 by default.

- **model**
 A model type. Choices are: "discrete", "continuous" or "time-dependent".

- **tstart**
 Start time (age), default=30. Can be an interval: c(a, b) - in this case, the starting time is simulated via `runif(1, a, b)`.

- **tend**
 End time (age), default=105.

- **dt**
 A time interval between observations, dt=1 by default.

- **sd0**
 A standard deviation value for simulation of the next value of variable. sd0=1 by default.

- **nobs**
 A number of observations (lines) for i-th individual.

- **gomp**
 A flag (FALSE by default). When it is set, then time-dependent exponential form of mu0 and Q are used: mu0 = mu0*exp(theta*t), Q = Q*exp(theta*t). Only for continuous-time SPM.

- **format**
 Data format: "short" (default), "long".

Value

An object of `spm.projection` class with two elements. (1) A simulated data set. (2) A summary statistics which includes (i) age-specific means of state variables and (ii) Survival probabilities.

References

Examples

```r
## Not run:
library(stpm)
set.seed(123)
# Setting up the model
model.par <- list()
model.par$a <- matrix(c(-0.05, 1e-3, 2e-3, -0.05), nrow=2, ncol=2, byrow=TRUE)
model.par$f1 <- matrix(c(90, 35), nrow=1, ncol=2)
model.par$Q <- matrix(c(1e-8, 1e-9, 1e-9, 1e-8), nrow=2, ncol=2, byrow=TRUE)
model.par$f <- matrix(c(80, 27), nrow=1, ncol=2)
model.par$b <- matrix(c(0, 2), nrow=2, ncol=2)
model.par$mu0 <- 1e-6
model.par$theta <- 0.09
```
Projection
Discrete-time model
data.proj.discrete <- spm_projection(model.par, N=5000, ystart=c(80, 27))
plot(data.proj.discrete$stat$srv.prob)

Continuous-time model
data.proj.continuous <- spm_projection(model.par, N=5000, ystart=c(80, 27), model="continuous")
plot(data.proj.continuous$stat$srv.prob)

Time-dependent model
model.par <- list(at = "-0.05", f1t = "80", Qt = "2e-8",
ft= "80", bt = "5", mu0t = "1e-5*exp(0.11*t)")
data.proj.time_dependent <- spm_projection(model.par, N=500, ystart=80, model="time-dependent")
plot(data.proj.time_dependent$stat$srv.prob, xlim = c(30,105))

End(Not run)

spm_time_dep

A function for the model with time-dependent model parameters.

Description

A function for the model with time-dependent model parameters.

Usage

```r
spm_time_dep(
  x,
  start = list(a = -0.05, f1 = 80, Q = 2e-08, f = 80, b = 5, mu0 = 0.001),
  frm = list(at = "a", f1t = "f1", Qt = "Q", ft = "f", bt = "b", mu0t = "mu0"),
  stopifbound = FALSE,
  lb = NULL,
  ub = NULL,
  verbose = FALSE,
  opts = list(algorithm = "NLOPT_LN_NELDERMEAD", maxeval = 100, ftol_rel = 1e-08),
  lrtest = FALSE
)
```

Arguments

- **x**: Input data table.
- **start**: A list of starting parameters, default: `start=list(a=-0.5, f1=80, Q=2e-8, f=80, b=5, mu0=1e-5)`.
- **frm**: A list of formulas that define age (time) dependency. Default: `frm=list(at="a", f1t="f1", Qt="Q", ft="f", bt="b", mu0t="mu0")`.
- **stopifbound**: Estimation stops if at least one parameter achieves lower or upper boundaries. Default: `FALSE`.
1b Lower bound of parameters under estimation.
ub Upper bound of parameters under estimation.
verbose Turns on verbosing output.
opts A list of options for nloptr. Default value: opt=list(algorithm="NLOPT_LN_NELDERMEAD", maxeval=100, ftol_rel=1e-8).
lrtest Indicates should Likelihood-Ratio test be performed. Possible values: TRUE, H01, H02, H03, H04, H05 (see package Vignette for details) Default value: FALSE. Please see nloptr documentation for more information.

Value

A set of estimates of a, f1, Q, f, b, mu0.
status Optimization status (see documentation for nloptr package).
LogLik A logarithm likelihood.
objective A value of objective function (given by nloptr).
message A message given by nloptr optimization function (see documentation for nloptr package).

References

Examples

library(stpm)
set.seed(123)
#Data preparation:
n <- 5
data <- simdata_time_dep(N=n)
Estimation:
opt.par <- spm_time_dep(data)
opt.par

stpm
Stochastic Process Model for Analysis of Longitudinal and Time-to-Event Outcomes

Description

Utilities to estimate parameters of the models with survival functions induced by stochastic covariates. Miscellaneous functions for data preparation and simulation are also provided. For more information, see: "Stochastic model for analysis of longitudinal data on aging and mortality" by Yashin A. et al, 2007, Mathematical Biosciences, 208(2), 538-551 <DOI:10.1016/j.mbs.2006.11.006>.

Author(s)

References

Examples

```r
## Not run:
library(stpm)
#Prepare data for optimization
data <- prepare_data(x=system.file("extdata","longdat.csv",package="stpm"), covariates="BMI")
#Parameters estimation (default model: discrete-time):
p.discr.model <- spm(data)
p.discr.model
# Continuous-time model:
p.cont.model <- spm(data, model="continuous")
p.cont.model
#Model with time-dependent coefficients:
data <- prepare_data(x=system.file("extdata","longdat.csv",package="stpm"), covariates="BMI")
p.td.model <- spm(data, model="time-dependent")
p.td.model
## End(Not run)
```

`trim`
Returns string w/o leading or trailing whitespace

Description

Returns string w/o leading or trailing whitespace

Usage

`trim(x)`

Arguments

`x` a string to trim
trim.leading

Description

Returns string w/o leading whitespace

Usage

trim.leading(x)

Arguments

x
a string to trim

trim.trailing

Description

Returns string w/o trailing whitespace

Usage

trim.trailing(x)

Arguments

x
a string to trim

vitstat

Vital (mortality) statistics.

Description

Vital (mortality) statistics.

Author(s)

Ilya Y Zhbannikov <ilya.zhbannikov@duke.edu>
Index

* censoring
 stpm, 40
* data
 ex_data, 3
 longdat, 7
 vitstat, 42
* longitudinal
 stpm, 40
* modeling
 stpm, 40
* stochastic
 stpm, 40
* time-to-event
 stpm, 40

ex_data, 3
func1, 3
get.column.index, 4
getNextY.cont, 4
getNextY.cont2, 5
getNextY.disc, 5
getNextY.disc.m, 6
getPrevY.disc, 6
getPrevY.disc.m, 7
longdat, 7
LRTest, 8
m, 8
make.short.format, 9
mu, 9

prepare_data, 10
prepare_data_cont, 11
prepare_data_discr, 12

sigma_sq, 13
sim_pobs, 19
simdata_cont, 13

simdata_discr, 15
simdata_gamma_frailty, 16
simdata_time_dep, 17
spm, 21
spm.impute, 23
spm_con_1d, 30
spm_con_1d_g, 32
spm_cont_lin, 26
spm_cont_quad_lin, 28
spm_continuous, 24
spm_discrete, 34
spm_pobs, 35
spm_projection, 37
spm_time_dep, 39
stpm, 40
stpm-package (stpm), 40

trim, 41
trim.leading, 42
trim.trailing, 42
vitstat, 42