Package ‘stratamatch’

April 9, 2020

Type Package
Date 2020-04-08
Title Stratification and Matching for Large Observational Data Sets
Version 0.1.5
Maintainer Rachael C. Aikens <rockyaikens@gmail.com>

BugReports https://github.com/raikens1/stratamatch/issues
Description A pilot matching design to automatically stratify and match large datasets. The manual_stratify() function allows users to manually stratify a dataset based on categorical variables of interest, while the auto_stratify() function does automatically by allocating a held-aside (pilot) data set, fitting a prognostic score (see Hansen (2008) <doi:10.1093/biomet/asn004>) on the pilot set, and stratifying the data set based on prognostic score quantiles. The strata_match() function then does optimal matching of the data set in parallel within strata.

License GPL-3
Encoding UTF-8
LazyData true
Imports dplyr (>= 0.8.3), Hmisc (>= 4.2-0), magrittr (>= 1.5), rlang (>= 0.4.0), survival(>= 2.44.1.1)
Depends R (>= 3.4.0),
Suggests knitr, optmatch (>= 0.9-11), rmarkdown, testthat (>= 2.1.0)
URL https://github.com/raikens1/stratamatch
RoxygenNote 6.1.1
VignetteBuilder knitr
NeedsCompilation no

Author Rachael C. Aikens [aut, cre],
Joseph Rigdon [aut],
Justin Lee [aut],
Michael Baiocchi [aut],
Jonathan Chen [aut]
Description

Automatically creates strata for matching based on a prognostic score formula or a vector of prognostic scores already estimated by the user. Creates a auto_strata object, which can be passed to strata_match for stratified matching or unpacked by the user to be matched by some other means.

Usage

```r
auto_stratify(data, treat, prognosis, outcome = NULL, size = 2500,
              pilot_fraction = 0.1, pilot_sample = NULL,
              group_by_covariates = NULL)
```

Arguments

data data.frame with observations as rows, features as columns
treat string giving the name of column designating treatment assignment
prognosis information on how to build prognostic scores. Three different input types are allowed:
 1. vector of prognostic scores for all individuals in the data set. Should be in the same order as the rows of data.
 2. a formula for fitting a prognostic model
3. an already-fit prognostic score model

- **outcome**: string giving the name of column with outcome information. Required if prognostic_scores is specified. Otherwise it will be inferred from prog_formula
- **size**: numeric, desired size of strata (default = 2500)
- **pilot_fraction**: numeric between 0 and 1 giving the proportion of controls to be allotted for building the prognostic score (default = 0.1)
- **pilot_sample**: a data.frame of held aside samples for building prognostic score model.
- **group_by_covariates**: character vector giving the names of covariates to be grouped by (optional). If specified, the pilot set will be sampled in a stratified manner, so that the composition of the pilot set reflects the composition of the whole data set in terms of these covariates. The specified covariates must be categorical.

Details

Stratifying by prognostic score quantiles can be more effective than manually stratifying a data set because the prognostic score is continuous, thus the strata produced tend to be of equal size with similar prognosis.

Automatic stratification requires information on how the prognostic scores should be derived. This is primarily determined by the specification of the **prognosis** argument. Three main forms of input for **prognosis** are allowed:

1. A vector of prognostic scores. This vector should be the same length and order of the rows in the data set. If this method is used, the **outcome** argument must also be specified; this is simply a string giving the name of the column which contains outcome information.

2. A formula for **prognosis** (e.g. `outcome ~ X1 + X2`). If this method is used, **auto_stratify** will automatically split the data set into a **pilot_set** and an **analysis_set**. The pilot set will be used to fit a logistic regression model for outcome in the absence of treatment, and this model will be used to estimate prognostic scores on the analysis set. The analysis set will then be stratified based on the estimated prognostic scores. In this case the **outcome** argument need not be specified since it can be inferred from the input formula.

3. A model for **prognosis** (e.g. a **glm** object). If this method is used, the **outcome** argument must also be specified

Value

Returns an **auto_strata** object. This contains:

- **outcome** - a string giving the name of the column where outcome information is stored
- **treat** - a string giving the name of the column encoding treatment assignment
- **analysis_set** - the data set with strata assignments
- **call** - the call to **auto_stratify** used to generate this object
- **issue_table** - a table of each stratum and potential issues of size and treat:control balance
- **strata_table** - a table of each stratum and the prognostic score quantile bin to which it corresponds
- **prognostic_scores** - a vector of prognostic scores.
• **prognostic_model** - a model for prognosis fit on a pilot data set. Will be NULL if a vector of prognostic scores was provided as the `prognosis` argument to `auto_stratify` rather than a model or formula.

• **pilot_set** - the set of controls used to fit the prognostic model. These are excluded from subsequent analysis so that the prognostic score is not overfit to the data used to estimate the treatment effect. Will be NULL if a pre-fit model or a vector of prognostic scores was provided as the `prognosis` argument to `auto_stratify` rather than formula.

Troubleshooting

This section suggests fixes for common errors that appear while fitting the prognostic score or using it to estimate prognostic scores on the analysis set.

• Encountered an error while fitting the prognostic model... numeric probabilities 0 or 1 produced. This error means that the prognostic model can perfectly separate positive from negative outcomes. Estimating a treatment effect in this case is unwise since an individual’s baseline characteristics perfectly determine their outcome, regardless of whether they receive the treatment. This error may also appear on rare occasions when your pilot set is very small (number of observations approximately <= number of covariates in the prognostic model), so that perfect separation happens by chance.

• Encountered an error while estimating prognostic scores ... factor X has new levels ... This may indicate that some value(s) of one or more categorical variables appear in the analysis set which were not seen in the pilot set. This means that when we try to obtain prognostic scores for our analysis set, we run into some new value that our prognostic model was not prepared to handle. There are a few options we have to troubleshoot this problem:
 - **Rejection sampling.** Run `auto_stratify` again with the same arguments until this error does not occur (i.e. until some observations with the missing value are randomly selected into the pilot set)
 - **Eliminate this covariate from the prognostic formula.**
 - **Remove observations with the rare covariate value from the entire data set.** Consider carefully how this exclusion might affect your results.

Other errors or warnings can occur if the pilot set is too small and the prognostic formula is too complicated. Always make sure that the number of observations in the pilot set is large enough that you can confidently fit a prognostic model with the number of covariates you want.

See Also

`manual_stratify, new_auto_strata`

Examples

```r
# make sample data set
set.seed(111)
dat <- make_sample_data(n = 75)

# construct a pilot set, build a prognostic score for `outcome` based on X2
# and stratify the data set based on the scores into sets of about 25
# observations
```
a.strat_formula <- auto_stratify(dat, "treat", outcome ~ X2, size = 25)

stratify the data set based on a model for prognosis
pilot_data <- make_sample_data(n = 30)
prognostic_model <- glm(outcome ~ X2, pilot_data, family = "binomial")
a.strat_model <- auto_stratify(dat, "treat", prognostic_model,
 outcome = "outcome", size = 25)

stratify the data set based on a vector of prognostic scores
prognostic_scores <- predict(prognostic_model, newdata = dat,
 type = "response")
a.strat_scores <- auto_stratify(dat, "treat", prognostic_scores,
 outcome = "outcome", size = 25)

diagnostic plots
plot(a.strat_formula)
plot(a.strat_formula, type = "FM", propensity = treat ~ X1, stratum = 1)
plot(a.strat_formula, type = "hist", propensity = treat ~ X1, stratum = 1)
plot(a.strat_formula, type = "residual")

ICU_data

Demographics and comorbidities of 10,157 ICU patients

Description

An deidentified data set containing the demographics, comorbidities, DNR code status, and surgical team assignment of 10,157 patients in the Stanford University Hospital Intensive Care Unit (ICU). This data was extracted from the electronic record system, deidentified, and made publically available by Chavez et al (2018) <doi:10.1371/journal.pone.0190569>. It was reprocessed for use in the stratamatch package as a sample data set. For more details on the data extraction and inclusion criteria, see Chavez et al.

Usage

ICU_data

Format

A data frame with 10157 rows and 29 variables:

- **patid** patient id, numeric
- **Birth.preTimeDays** age of patient at time of admission to the ICU in days, numeric
- **Female.pre** whether the patient was documented to be female prior to ICU visit, binary
- **RaceAsian.pre** whether the patient’s race/ethnicity was documented as Asian prior to ICU visit, binary
- **RaceUnknown.pre** whether the patient’s race/ethnicity was unknown prior to ICU visit, binary
- **RaceOther.pre** whether the patient’s race/ethnicity was documented as Other” prior to ICU visit, binary
RaceBlack.pre whether the patient’s race/ethnicity was documented as Black/African American prior to ICU visit, binary

RacePacificIslander.pre whether the patient’s race/ethnicity was documented as PacificIslander prior to ICU visit, binary

RaceNativeAmerican.pre whether the patient’s race/ethnicity was documented as Native American prior to ICU visit, binary

self_pay whether the patient was "self pay" (i.e. uninsured), binary

all_latinos whether the patient was documented to be latino prior to ICU visit, binary

DNR whether the patient had code status set to any DNR "Do not resuscitate" order at any point during their ICU stay, binary

surgicalTeam whether the patient was assigned to a surgical team at any point during their ICU stay, binary

Details

License information for this data is as follows:

Copyright (c) 2016, Stanford University

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Source

is.auto_strata Checks auto_strata class

Description

Checks if the target object is an auto_strata object.
is.auto_strata

Usage

is.auto_strata(object)

Arguments

object any R object

Value

Returns TRUE if its argument has auto_strata among its classes and FALSE otherwise.

Examples

dat <- make_sample_data()
a.strat <- auto_stratify(dat, "treat", outcome ~ X1 + X2)

is.auto_strata(a.strat) # returns TRUE

is.manual_strata Checks manual_strata class

Description

Checks if the target object is a manual_strata object.

Usage

is.manual_strata(object)

Arguments

object any R object

Value

Returns TRUE if its argument has manual_strata among its classes and FALSE otherwise.

Examples

dat <- make_sample_data()
m.strat <- manual_stratify(dat, treat ~ C1)

is.manual_strata(m.strat) # returns TRUE
is.strata

Checks strata class

Description

Checks if the target object is a strata object.

Usage

`is.strata(object)`

Arguments

- `object`: any R object

Value

Returns TRUE if its argument has strata among its classes and FALSE otherwise.

Examples

```r
dat <- make_sample_data()
strat <- manual_stratify(dat, treat ~ C1)
is.strata(strat) # returns TRUE
```

make_sample_data

Make sample data

Description

Makes a simple data frame with `treat` (binary), `outcome` (binary), and five covariates: `X1` (continuous), `X2` (continuous), `B1` (binary), `B2` (binary), and `C1` (categorical). Probability outcome = 1 is sigmoid(`treat + X1`). Probability treatment = 1 is sigmoid(-0.2 * `X1 + X2 - B1 + 2 * B2`)

Usage

`make_sample_data(n = 100)`

Arguments

- `n`: the size of the desired data set

Examples

```r
# make sample data set of 30 observations
dat <- make_sample_data(n = 30)
```
manual_stratify

manual_stratify
Manual Stratify

Description

Stratifies a data set based on a set of blocking covariates specified by the user. Creates a `manual_strata` object, which can be passed to `strata_match` for stratified matching or unpacked by the user to be matched by some other means.

Usage

```r
manual_stratify(data, strata_formula, force = FALSE)
```

Arguments

- **data**: data.frame with observations as rows, features as columns
- **strata_formula**: the formula to be used for stratification. (e.g. `treat ~ X1`) the variable on the left is taken to be the name of the treatment assignment column, and the variables on the left are taken to be the variables by which the data should be stratified
- **force**: a boolean. If true, run even if a variable appears continuous. (default = FALSE)

Value

Returns a `manual_strata` object. This contains:

- `treat` - a string giving the name of the column encoding treatment assignment
- `covariates` - a character vector with the names of the categorical columns on which the data were stratified
- `analysis_set` - the data set with strata assignments
- `call` - the call to `manual_stratify` used to generate this object
- `issue_table` - a table of each stratum and potential issues of size and treat:control balance
- `strata_table` - a table of each stratum and the covariate bin to which it corresponds

See Also

- `auto_stratify`
- `new_manual_strata`

Examples

```r
# make sample data set
dat <- make_sample_data(n = 75)

# stratify based on B1 and B2
m.strat <- manual_stratify(dat, treat ~ B1 + B2)

# diagnostic plot
plot(m.strat)
```
plot.strata

Plot method for strata object

Description

Generates diagnostic plots for the product of a stratification by `auto_stratify` or `manual_stratify`. There are three plot types:

1. "SR" (default) - produces a scatter plot of strata by size and treat:control ratio
2. "hist" - produces a histogram of propensity scores within a stratum
3. "FM" - produces a Fisher-Mill plot of individuals within a stratum (not supported for manual strata objects)
4. "residual" - produces a residual plot for the prognostic model (not supported for manual strata objects)

Usage

```r
## S3 method for class 'strata'
plot(x, type = "SR", label = FALSE, jitter_prognosis,
     jitter_propensity, propensity, stratum, ...)
```

Arguments

- `x`: a `strata` object returned by `auto_stratify` or `manual_stratify`
- `type`: string giving the plot type (default = "SR"). Other options are "hist", "FM" and "residual"
- `label`: ignored unless `type = "SR"`. If TRUE, a clickable plot is produced. The user may click on any number of strata and press finish to have those strata labeled. Note: uses `identify`, which may not be supported on some devices
- `jitter_prognosis`: ignored unless `type = "FM"`. Amount of uniform random noise to add to prognostic scores in plot.
- `jitter_propensity`: ignored unless `type = "FM"`. Amount of uniform random noise to add to propensity scores in plot.
- `propensity`: ignored unless `type = "hist"` or `type = "FM"`. Specifies propensity score information for plots where this is required. Accepts either a vector of propensity scores, a `glm` model for propensity scores, or a formula for fitting a propensity score model.
- `stratum`: ignored unless `type = "hist"` or `type = "FM"`. A number specifying which stratum to plot.
- `...`: other arguments
See Also

Examples

dat <- make_sample_data()
a.strat <- auto_stratify(dat, "treat", outcome ~ X1 + X2)
plot(a.strat) # makes size-ratio scatter plot
plot(a.strat, type = "hist", propensity = treat ~ X1, stratum = 1)
plot(a.strat, type = "FM", propensity = treat ~ X1, stratum = 1)
plot(a.strat, type = "residual")

Description

Print method for auto_strata object

Usage

S3 method for class 'auto_strata'
print(x, ...)

Arguments

x, an auto_strata object

... other arguments

Examples

dat <- make_sample_data()
a.strat <- auto_stratify(dat, "treat", outcome ~ X1 + X2)
print(a.strat) # prints information about a.strat
print_manual_strata Print Manual Strata

Description
Print method for manual_strata object

Usage
S3 method for class 'manual_strata'
print(x, ...)

Arguments
x, a manual_strata object
... other arguments

Examples
dat <- make_sample_data()
m.strat <- manual_stratify(dat, treat ~ C1)
print(m.strat) # prints information about m.strat

split_pilot_set Split data into pilot and analysis sets

Description
Exported for the convenience of the user, although in practice this process is almost always done using auto_stratify. Given a data set and some parameters about how to split the data, this function partitions the data accordingly and returns the partitioned data as a list containing the analysis_set and pilot_set.

Usage
split_pilot_set(data, treat, pilot_fraction = 0.1, pilot_sample = NULL,
group_by_covariates = NULL)

Arguments
data data.frame with observations as rows, features as columns
treat string giving the name of column designating treatment assignment
pilot_fraction numeric between 0 and 1 giving the proportion of controls to be allotted for building the prognostic score (default = 0.1)
pilot_sample a data.frame of held aside samples for building prognostic score model.
group_by_covariates
character vector giving the names of covariates to be grouped by (optional). If specified, the pilot set will be sampled in a stratified manner, so that the composition of the pilot set reflects the composition of the whole data set in terms of these covariates. The specified covariates must be categorical.

Value
a list with analysis_set and pilot_set

Examples
dat <- make_sample_data()
splt <- split_pilot_set(dat, "treat", 0.2)
a.strat <- auto_stratify(splt$analysis_set, "treat", outcome ~ X1,
pilot_sample = splt$pilot_set)

stratamatch
stratamatch: stratify and match large data sets

Description
This package employs a pilot matching design to automatically stratify and match large datasets. The manual_stratify function allows users to manually stratify a dataset based on categorical variables of interest, while the auto_stratify function does automatically by allocating a held-aside (pilot) data set, fitting a prognostic score (see Hansen (2008) <doi:10.1093/biomet/asn004>) on the pilot set, and stratifying the data set based on prognostic score quantiles. The strata_match function then does optimal matching of the data set within strata.

See Also
1. https://github.com/raikens1/stratamatch

strata_match
Strata Match

Description
Match within strata in series using optmatch. Requires optmatch package to be installed.

Usage
strata_match(object, propensity = NULL, k = 1)
Arguments

object a strata object

propensity (optional) formula for propensity score. If left blank, all columns of the dataset will be used as covariates (except outcome, treatment and stratum)

k numeric, the number of control individuals to be matched to each treated individual

Value

a named factor with matching assignments

Examples

make a sample data set
set.seed(1)
dat <- make_sample_data(n = 75)

stratify with auto_stratify
a.strat <- auto_stratify(dat, "treat", outcome ~ X2, size = 25)

1:1 match based on propensity formula: treat ~ X1 + X2
strata_match(a.strat, propensity = treat ~ X1 + X2, k = 1)

description

Summarize number and sizes of strata in a strata object. Also prints number of strata with potential issues.

Usage

S3 method for class 'strata'
summary(object, ...)

Arguments

object a strata object

... other arguments

Details

For more information, access the issue table for your strata object with mystrata$issue_table.
Examples

```r
dat <- make_sample_data()
m.strat <- manual_stratify(dat, treat ~ C1)
summary(m.strat) # Summarizes strata in m.strat
```
Index

*Topic datasets
 ICU_data, 5

auto_stratify, 2, 9, 10, 12, 13

ICU_data, 5
identify, 10
is.auto_strata, 6
is.manual_strata, 7
is.strata, 8

make_sample_data, 8
manual_stratify, 4, 9, 10, 13

new_auto_strata, 4
new_manual_strata, 9

plot.strata, 10
print.auto_strata, 11
print.manual_strata, 12

split_pilot_set, 12
strata.match, 2, 9, 13, 13
stratamatch, 13
stratamatch-package (stratamatch), 13
summary.strata, 14