Package ‘subgroup.discovery’

August 2, 2017

Type Package

Title Subgroup Discovery and Bump Hunting

Version 0.2.0

Description Developed to assist in discovering interesting subgroups in high-dimensional data. The PRIM implementation is based on the 1998 paper “Bump hunting in high-dimensional data” by Jerome H. Friedman and Nicholas I. Fisher. <doi:10.1023/A:1008894516817> PRIM involves finding a set of “rules” which combined imply unusually large (or small) values of some other target variable. Specifically one tries to find a set of sub regions in which the target variable is substantially larger than overall mean. The objective of bump hunting in general is to find regions in the input (attribute/feature) space with relatively high (low) values for the target variable. The regions are described by simple rules of the type if: condition-1 and ... and condition-n then: estimated target value. Given the data (or a subset of the data), the goal is to produce a box B within which the target mean is as large as possible. There are many problems where finding such regions is of considerable practical interest. Often these are problems where a decision maker can in a sense choose or select the values of the input variables so as to optimize the value of the target variable. In bump hunting it is customary to follow a so-called covering strategy. This means that the same box construction (rule induction) algorithm is applied sequentially to subsets of the data.

Depends R (>= 2.10)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

URL https://github.com/Jurian/subgroup.discovery

BugReports https://github.com/Jurian/subgroup.discovery/issues

Date 2017-07-15

Suggests testthat

NeedsCompilation no

Author Jurian Baas [aut, cre, cph], Ad Feelders [ctb]
Ames Housing data.

Data set contains information from the Ames Assessor Office used in computing assessed values for individual residential properties sold in Ames, IA from 2006 to 2010. Tab characters are used to separate variables in the data file. The data has 82 columns which include 23 nominal, 23 ordinal, 14 discrete, and 20 continuous variables (and 2 additional observation identifiers).

Usage

ames
Format

A data frame with 2930 rows and 82 variables:

- **Order** (Discrete): Observation number
- **PID** (Nominal): Parcel identification number - can be used with city web site for parcel review
- **MS.SubClass** (Nominal): Identifies the type of dwelling involved in the sale
- **MS.Zoning** (Nominal): Identifies the general zoning classification of the sale
- **Lot.Frontage** (Continuous): Linear feet of street connected to property
- **Lot.Area** (Continuous): Lot size in square feet
- **Street** (Nominal): Type of road access to property
- **Alley** (Nominal): Type of alley access to property
- **Lot.Shape** (Ordinal): General shape of property
- **Land.Contour** (Nominal): Flatness of the property
- **Utilities** (Ordinal): Type of utilities available
- **Lot.Config** (Nominal): Lot configuration
- **Land.Slope** (Ordinal): Slope of property
- **Neighborhood** (Nominal): Physical locations within Ames city limits (map available)
- **Condition.1** (Nominal): Proximity to various conditions
- **Condition.2** (Nominal): Proximity to various conditions (if more than one is present)
- **Bldg.Type** (Nominal): Type of dwelling
- **House.Style** (Nominal): Style of dwelling
- **Overall.Qual** (Ordinal): Rates the overall material and finish of the house
- **Overall.Cond** (Ordinal): Rates the overall condition of the house
- **Year.Built** (Discrete): Original construction date
- **Year.Remod.Add** (Discrete): Remodel date (same as construction date if no remodeling or additions)
- **Roof.Style** (Nominal): Type of roof
- **Roof.Matl** (Nominal): Roof material
- **Exterior.1st** (Nominal): Exterior covering on house
- **Exterior.2nd** (Nominal): Exterior covering on house (if more than one material)
- **Mas.Vnr.Type** (Nominal): Masonry veneer type
- **Mas.Vnr.Area** (Continuous): Masonry veneer area in square feet
- **Exter.Qual** (Ordinal): Evaluates the quality of the material on the exterior
- **Exter.Cond** (Ordinal): Evaluates the present condition of the material on the exterior
- **Foundation** (Nominal): Type of foundation
- **Bsmt.Qual** (Ordinal): Evaluates the height of the basement
- **Bsmt.Cond** (Ordinal): Evaluates the general condition of the basement
- **Bsmt.Exposure** (Ordinal): Refers to walkout or garden level walls
BsmtFin.Type.1 (Ordinal): Rating of basement finished area
BsmtFin.SF.1 (Continuous): Type 1 finished square feet
BsmtFin.Type.2 (Ordinal): Rating of basement finished area (if multiple types)
BsmtFin.SF.2 (Continuous): Type 2 finished square feet
Bsmt.Unf.SF (Continuous): Unfinished square feet of basement area
Total.Bsmt.SF (Continuous): Total square feet of basement area
Heating (Nominal): Type of heating
Heating.QC (Ordinal): Heating quality and condition
Central.Air (Nominal): Central air conditioning
Electrical (Ordinal): Electrical system
X1st.Flr.SF (Continuous): First Floor square feet
X2nd.Flr.SF (Continuous): Second floor square feet
Low.Qual.Fin.SF (Continuous): Low quality finished square feet (all floors)
Gr.Liv.Area (Continuous): Above grade (ground) living area square feet
Bsmt.Full.Bath (Discrete): Basement full bathrooms
Bsmt.Half.Bath (Discrete): Basement half bathrooms
Full.Bath (Discrete): Full bathrooms above grade
Half.Bath (Discrete): Half baths above grade
Bedroom.AbvGr (Discrete): Bedrooms above grade (does NOT include basement bedrooms)
Kitchen.AbvGr (Discrete): Kitchens above grade
Kitchen.Qual (Ordinal): Kitchen quality
TotRms.AbvGrd (Discrete): Total rooms above grade (does not include bathrooms)
Functional (Ordinal): Home functionality (Assume typical unless deductions are warranted)
Fireplaces (Discrete): Number of fireplaces
Fireplace.Qu (Ordinal): Fireplace quality
Garage.Type (Nominal): Garage location
Garage.Yr.Blt (Discrete): Year garage was built
Garage.Finish (Ordinal): Interior finish of the garage
Garage.Cars (Discrete): Size of garage in car capacity
Garage.Area (Continuous): Size of garage in square feet
Garage.Qual (Ordinal): Garage quality
Garage.Cond (Ordinal): Garage condition
Paved.Drive (Ordinal): Paved driveway
Wood.Deck.SF (Continuous): Wood deck area in square feet
Open.Porch.SF (Continuous): Open porch area in square feet
Enclosed.Porch (Continuous): Enclosed porch area in square feet
X3Ssn.Porch (Continuous): Three season porch area in square feet
Screen.Porch (Continuous): Screen porch area in square feet
Pool.Area (Continuous): Pool area in square feet
Pool.QC (Ordinal): Pool quality
Fence (Ordinal): Fence quality
Misc.Feature (Nominal): Miscellaneous feature not covered in other categories
Misc.Val (Continuous): $Value of miscellaneous feature
Mo.Sold (Discrete): Month Sold (MM)
Yr.Sold (Discrete): Year Sold (YYYY)
Sale.Type (Nominal): Type of sale
Sale.Condition (Nominal): Condition of sale
SalePrice (Continuous): Sale price

Details
Sources: Ames, Iowa Assessor Office

Source
https://ww2.amstat.org/publications/jse/v19n3/decock/datadocumentation.txt

credit

Credit scoring data.

Description
A dataset containing the attributes of people who did or did not default on their loan.

Usage
credit

Format
A data frame with 10 rows and 6 variables:

- **age** age of person
- **married** is the person married or not, boolean
- **house** is the person a homeowner or not, boolean
- **income** income of person, in thousands
- **gender** factor with levels male, female
- **class** class variable (0 or 1)
Details

Toy example, useful for debugging purposes.

Source

http://www.cs.uu.nl/docs/vakken/adm/bump.pdf

pima

Pima Indians Diabetes Database.

Description

Sources: (a) Original owners: National Institute of Diabetes and Digestive and Kidney Diseases (b) Donor of database: Vincent Sigillito <vgs@apl.cen.apl.jhu.edu> Research Center, RMI Group Leader Applied Physics Laboratory The Johns Hopkins University Johns Hopkins Road Laurel, MD 20707 (301) 953-6231 (c) Date received: 9 May 1990

Usage

pima

Format

A data frame with 768 rows and 9 variables:

- pregnant Number of times pregnant
- glucose Plasma glucose concentration a 2 hours in an oral glucose tolerance test
- bp Diastolic blood pressure (mm Hg)
- skin_thickness Triceps skin fold thickness (mm)
- insulin 2-Hour serum insulin (mu U/ml)
- bmi Body mass index (weight in kg/(height in m)^2)
- diabetes Diabetes pedigree function
- age Age (years)
- class Class variable (0 or 1)

Details

The diagnostic, binary-valued variable investigated is whether the patient shows signs of diabetes according to World Health Organization criteria (i.e., if the 2 hour post-load plasma glucose was at least 200 mg/dl at any survey examination or if found during routine medical care). The population lives near Phoenix, Arizona, USA.
Results: Their ADAP algorithm makes a real-valued prediction between 0 and 1. This was transformed into a binary decision using a cutoff of 0.448. Using 576 training instances, the sensitivity and specificity of their algorithm was 76.

Relevant Information: Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.

Source

https://archive.ics.uci.edu/ml/datasets/pima+indians+diabetes

plot.prim.cover Plot PRIM cover result

Description

Plot an S3 object of class prim.cover

Usage

```r
## S3 method for class 'prim.cover'
plot(x, ...)
```

Arguments

- `x`
 An S3 object of class prim.cover
- `...`
 Optional arguments to pass on

Value

Nothing, this function is called for its side-effects

Author(s)

Jurian Baas
plot.prime.peel

plot.prime.diversify *Plot PRIM diversify result*

Description

Plot an S3 object of class prim.diversify

Usage

```r
## S3 method for class 'prim.diversify'
plot(x, ...)
```

Arguments

- `x`: An S3 object of class prim.diversify
- `...`: Optional arguments to pass on

Value

Nothing, this function is called for its side-effects

Author(s)

Jurian Baas

plot.prime.peel

plot.prime.peel *Plot PRIM peel result*

Description

Plot an S3 object of class prim.peel

Usage

```r
## S3 method for class 'prim.peel'
plot(x, ...)
```

Arguments

- `x`: An S3 object of class prim.peel
- `...`: Optional arguments to pass on

Value

Nothing, this function is called for its side-effects
plot.prime.validate

Author(s)
Jurian Baas

Description
Plot an S3 object of class prim.validate

Usage
S3 method for class 'prim.validate'
plot(x, ...)

Arguments
x An S3 object of class prim.validate
... Optional arguments to pass on

Value
Nothing, this function is called for its side-effects

Author(s)
Jurian Baas

predict.prime.cover

Description
Predicted values based on the PRIM cover object

Usage
S3 method for class 'prim.cover'
predict(object, newdata, ...)

Arguments
object Object of class prim.cover
newdata A data frame in which to look for variables with which to predict.
... Further arguments passed to or from other methods
Value

Depends on the quality function used. In the case of base::mean, the mean of the target variable of the first matching box.

Author(s)

Jurian Baas

prim.box.optimal

Find the optimal box depending on the strategy

Description

Finds the box with the highest quality or the box closest to the maximum quality minus 2 times the standard error

Usage

`prim.box.optimal(prim.validate)`

Arguments

- `prim.validate` An object of type "prim.validate"

Value

The index of the optimal box

Author(s)

Jurian Baas

prim.candidates.find

PRIM find split candidates

Description

Find all box candidates for a given (sub)set

Usage

`prim.candidates.find(X, y, peeling.quantile, min.support, max.peel, quality.function)`
Arguments

\texttt{x} \quad \text{Data frame with observations (may be a subset of original data)}

\texttt{y} \quad \text{Dependent variable, usually a numeric vector}

\texttt{peeling.quantile} \quad \text{Quantile to peel off}

\texttt{min.support} \quad \text{Minimal size of a box}

\texttt{max.peel} \quad \text{Maximal size of a peel}

\texttt{quality.function} \quad \text{Function to use to determine box quality}

Details

This function goes through all columns of the dataset and tries to find box candidates based on the quantile \texttt{peeling.quantile} and minimum support \texttt{min.support}. Note that the indexes returned are those that have to be removed in order to create the box!

Value

A list of potential boxes

Author(s)

Jurian Baas

\begin{verbatim}
prim.cover
\end{verbatim}

\textit{PRIM covering strategy}

Description

In bump hunting it is customary to follow a so-called covering strategy. This means that the same box construction (rule induction) algorithm is applied sequentially to subsets of the data.

Usage

\begin{verbatim}
prim.cover(formula, data, X, y, peeling.quantile = 0.03, min.support = 0.05, max.peel = 0.1, train.fraction = 0.66, max.boxes = NA, quality.function = base::mean, plot = FALSE, minimize = FALSE, optimal.box = c("best", "2se"))
\end{verbatim}
Arguments

- **formula**: Formula with a response and terms
- **data**: Data frame to find rules in
- **x**: Optionally instead of using a formula: Data frame to find rules in
- **y**: Optionally instead of using a formula: Response vector, usually of type numeric
- **peeling.quadtile**: Quantile to peel off for numerical variables
- **min.support**: Minimal size of a box to be valid
- **max.peel**: Maximal size of a peel, as a fraction. Defaults to 0.1
- **train.fraction**: Train-test split fraction used in validation, defaults to 0.66
- **max.boxes**: Maximum number of boxes, NA or leave out for no limit
- **quality.function**: Function to use for determining set quality, defaults to mean
- **plot**: Plot intermediate results, defaults to false
- **minimize**: Should the quality be minimized? Same as setting the quality function to function(x)-quality.function(x). Defaults to FALSE
- **optimal.box**: During validation, choose the box with the highest quality or a simpler box, two standard errors from the optimum

Value

An S3 object of class prim.cover

Author(s)

Jurian Baas

Examples

data(pima)
p.cov <- prim.cover(
 class ~ .,
 data = pima,
 peeling.quadtile = 0.05,
 min.support = 0.1,
 plot = TRUE,
 optimal.box = "rse"
)

summary(p.cov)
plot(p.cov)
prim.diversify

PRIM diversify strategy

Description

Provide a (hopefully) diverse number of box definitions

Usage

```r
prim.diversify(formulaL, dataL, xL, yL, nL, peeling.quantile = 0.03,
    min.support = 0.05, max.peel = 0.1, train.fraction = 0.66,
    quality.function = base::meanL, plot = FALSE, parallel = TRUE,
    minimize = FALSE, optimal.box = c("best", "2se"))
```

Arguments

- **formula**: Formula with a response and terms
- **data**: Data frame to find rules in
- **x**: Optionally instead of using a formula: Data frame to find rules in
- **y**: Optionally instead of using a formula: Response vector, usually of type numeric
- **n**: Number of attempts to run the PRIM algorithm
- **peeling.quantile**: Quantile to peel off for numerical variables
- **min.support**: Minimal size of a box to be valid
- **max.peel**: Maximal size of a peel, as a fraction. Defaults to 0.1
- **train.fraction**: Train-test split fraction used in validation, defaults to 0.66
- **quality.function**: Function to use for determining subset quality, defaults to mean
- **plot**: Plot intermediate results, defaults to false. Note that intermediate plotting is unavailable when running in parallel
- **parallel**: Compute each run in parallel, defaults to TRUE. This will use all but one core. Note that intermediate plotting is unavailable when running in parallel
- **minimize**: Should the quality be minimized? Same as setting the quality function to function(x)-quality.function(x). Defaults to FALSE
- **optimal.box**: During validation, choose the box with the highest quality or a simpler box, two standard errors from the optimum

Details

Because the final box depends on the data used, we re-run the PRIM peeling algorithm multiple times, each with a different random train/test split. Each run is independent from the others, so this algorithm is run in parallel by default.
Value

An S3 object of type `prim.diversify`

Author(s)

Jurian Baas

Examples

data(ames)
p.div <- prim.diversify(
 SalePrice ~ . - PID - Order,
 data = ames,
 n = 3,
 plot = TRUE,
 parallel = FALSE,
 optimal.box = "best"
)

summary(p.div)
plot(p.div)

`prim.diversify.compare`

Compare PRIM diversify results

Description

Compares all attempts of a PRIM diversify operation with each other

Usage

`prim.diversify.compare(X, p.div)`

Arguments

- `X` Data frame to do intersect and union operations
- `p.div` An S3 object of type "prim.diversify"

Details

Comparison is done by the following formula \[\frac{|A \cap B|}{|A \cup B|} \]

Value

A matrix with the comparisons laid out by position
prim.peel

Author(s)

Jurian Baas

Description

Peeling function for bump hunting using the Patient Rule Induction Method (PRIM).

Usage

```r
prim.peel(X, y, N, peeling.quantile, min.support, max.peel, quality.function)
```

Arguments

- `X`: Data frame to find rules in
- `y`: Response vector, usually of type numeric
- `N`: Size of entire data set
- `peeling.quantile`: Quantile to peel off for numerical variables
- `min.support`: Minimal size of a box to be valid, as a fraction
- `max.peel`: Maximal size of a peel, as fraction
- `quality.function`: Which function to use to determine the quality of a box

Value

An S3 object of class `prim.peel`

Author(s)

Jurian Baas
prim.rule.condense
Condense multiple (redundant) rules

Description
This function condenses the many (redundant) rules of an S3 object of class prim.peel or prim.validate to a single rule.

Usage

```r
prim.rule.condense(prim.object)
```

Arguments
- `prim.object`
 An S3 object of class prim.validate

Details
This function condenses the many (redundant) rules of an S3 object of class prim.peel or prim.validate to a single rule.

Value
The condensed rule as a single string

Author(s)
Jurian Baas

prim.rule.match
Create box matching index

Description
Generate a logical vector in which elements are true iff applying the rule to a record evaluates to true.

Usage

```r
prim.rule.match(prim.object, X)
```

Arguments
- `prim.object`
 An S3 object of class prim.peel or prim.validate result
- `X`
 A data frame with at least those columns that were used in creating the prim S3 object
prim.rule.operations

Value

A logical index of matching records

Author(s)

Jurian Baas

prim.rule.operations
Intersection of multiple rules

Description

This function applies the rules given by the parameters to a dataset and calculates the intersection, i.e. those observations where all rules evaluate to TRUE are returned as TRUE.

Usage

```r
prim.rule.operations(X, prim.objects, operation = c("union", "intersect"))
```

Arguments

- `X`: Data frame to apply rules to
- `prim.objects`: A list of objects of class "prim.peel" and/or "prim.validate"
- `operation`: One of "union", "intersect"

Value

Logical vector, true iff all rules evaluate to TRUE for a certain observation

Author(s)

Jurian Baas

prim.validate
Bump hunting using the Patient Rule Induction Method

Description

Validate the results taken from the PRIM peeling process

Usage

```r
prim.validate(peel.result, X, y, optimal.box)
```
Arguments
- **peel.result**
 An S3 object of class prim.peel
- **x**
 A data frame with at least those columns that were used in creating the prim.peel S3 object
- **y**
 Response vector, usually of type numeric
- **optimal.box**
 Choose the box with the highest quality or a simpler box, two standard errors from the optimum

Details
This function takes the result of the prim peeling process and applies it to new data. Usually the optimal box in the peeling process is not the best on unobserved data.

Value
An S3 object of type prim.validate

Author(s)
Jurian Baas

prim.validate.metrics
Calculate statistical metrics

Description
This function calculates the mean, standard deviation, standard error of the mean, 95%

Usage

```r
prim.validate.metrics(prim.validate)
```

Arguments
- **prim.validate**
 An object of type "prim validate"

Value
A list with elements described above

Author(s)
Jurian Baas
quasi.convex.hull Calculate a frontier of dominating points

Description
During the diversify process, we are really only interested in the attempts which dominate all others in performance.

Usage
quasi.convex.hull(p.div)

Arguments
p.div An object of type "prim.diversify"

Value
A vector of indexes for the dominating points

Author(s)
William Huber & Jurian Baas

See Also
https://stats.stackexchange.com/a/65157

summary.prim.cover Summarize a PRIM cover result object

Description
Summarize a PRIM cover result object

Usage
S3 method for class 'prim.cover'
summary(object, ..., round = TRUE, digits = 2)

Arguments
object An S3 object of class prim.cover
... Optional arguments to pass on
round Optional setting to disable rounding
digits Optional setting to control number of digits to round
summary.prim.diversify

Summarize a PRIM diversify object

Description

Summarize a PRIM diversify result object

Usage

```r
## S3 method for class 'prim.diversify'
summary(object, ..., round = TRUE, digits = 2)
```

Arguments

- `object` An S3 object of class `prim.diversify`
- `...` Optional arguments to pass on
- `round` Optional setting to disable rounding
- `digits` Optional setting to control number of digits to round

Value

Nothing, this function is called for its side-effects

Author(s)

Jurian Baas
summary.prim.peel
Summarize a PRIM peeling result object

Description
Summarize a PRIM peeling result object

Usage
```r  
## S3 method for class 'prim.peel'  
summary(object, ..., round = TRUE, digits = 2)  
```

Arguments
- `object`: An S3 object of class `prim.peel`
- `...`: Optional arguments to pass on
- `round`: Optional setting to disable rounding
- `digits`: Optional setting to control number of digits to round

Value

Nothing, this function is called for its side-effects

Author(s)

Jurian Baas

summary.prim.validate
Summarize a PRIM test result object

Description
Summarize a PRIM test result object

Usage
```r  
## S3 method for class 'prim.validate'  
summary(object, ..., round = TRUE, digits = 2)  
```

Arguments
- `object`: An S3 object of class `prim.validate`
- `...`: Optional arguments to pass on
- `round`: Optional setting to disable rounding
- `digits`: Optional setting to control number of digits to round
Value

Nothing, this function is called for its side-effects

Author(s)

Jurian Baas
Index

*Topic **datasets**
 ames, 2
 credit, 5
 pima, 6

ames, 2

credit, 5

pima, 6
plot. prim. cover, 7
plot. prim. diversify, 8
plot. prim. peel, 8
plot. prim. validate, 9
predict. prim. cover, 9
prim. box. optimal, 10
prim. candidates. find, 10
prim. cover, 11
prim. diversify, 13
prim. diversify. compare, 14
prim. peel, 15
prim. rule. condense, 16
prim. rule. match, 16
prim. rule. operations, 17
prim. validate, 17
prim. validate. metrics, 18
quasi. convex. hull, 19

summary. prim. cover, 19
summary. prim. diversify, 20
summary. prim. peel, 21
summary. prim. validate, 21