Package ‘subgxe’

June 14, 2019

Title Combine Multiple GWAS by Using Gene-Environment Interactions

Version 0.9.0

Description Classical methods for combining summary data from genome-wide association studies (GWAS) only use marginal genetic effects and power can be compromised in the presence of heterogeneity. 'subgxe' is a R package that implements p-value assisted subset testing for association (pASTA), a method developed by Yu et al. (2019) <doi:10.1159/000496867>. pASTA generalizes association analysis based on subsets by incorporating gene-environment interactions into the testing procedure.

License GPL-3

URL https://github.com/umich-cphds/subgxe

BugReports https://github.com/umich-cphds/subgxe/issues

Suggests lmtest, knitr, rmarkdown

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Youfei Yu [aut], Alexander Rix [cre]

Maintainer Alexander Rix <alexrix@umich.edu>

Repository CRAN

Date/Publication 2019-06-14 13:30:03 UTC

R topics documented:

pasta ... 2
studies .. 3

Index 4
Description

Search for the subset that yields the strongest evidence of association and calculate the meta-analytic p-value, possibly in the presence of gene-environmental interaction.

Usage

```r
pasta(p.values, study.sizes, cor)
```

Arguments

- `p.values` The p.value of each study.
- `study.sizes` The sample size of each study.
- `cor` The correlation matrix of the studies. For example, if each study is independent, cor would be the identity matrix.

Value

A list containing the joint p value and the test statistic, which contains the optimal subset.

References

Examples

```r
# grab synthetic study for example
data("studies")
n.studies <- 5
study.sizes <- c(nrow(studies[,1]), nrow(studies[,2]), nrow(studies[,3]),
                 nrow(studies[,4]), nrow(studies[,5]))
study.pvals <- rep(0, n.studies)
# Correlations of p-values among the studies.
# In this case the studies were generated independently so its just I
# cor.matrix <- diag(1, n.studies)
# load the lrtest() function to conduct the likelihood ratio test
# Used just to generate the input p-values, not required in pasta itself.
library(lmtest)

for(i in 1:n.studies) {
  # model with gene(G) by environment(E) interaction
  model <- glm(D ~ G + E + GbyE, data = studies[[i]], family = binomial)
  # this fails if D is not binary
  # it only tests the interaction term, not the other coefficients
  lrtest(model)
  # save the p-value for this study
  study.pvals[i] <- paste0("lrtest: ", round(summary(model)$p.value, 4))
}
```
model without G and GE interaction
null.model <- glm(D ~ E, data = studies[[i]], family = binomial)
likelihood ratio test from the package lmtest
study.pvals[i] = lmtest::lrtest(null.model, model)[2, 5]

pasta <- pasta(study.pvals, study.sizes, cor.matrix)
pasta$p.pasta
pasta$test.statistic$selected.subset

Description

Synthetic data for subgxe

Usage

studies

Format

A list of 5 data.frames with 12000 observations (6000 cases, 6000 controls) on 4 variables:

- **D**: Disease status. Numeric 0-1
- **G**: Genetic variant. Numeric 0-1
- **E**: Exposure. Numeric 0-1
- **GbyE**: G * E. Either 1 or 0.
Index

*Topic datasets
 studies, 3

pasta, 2

studies, 3