Getting started with subgxe

Introduction

subgxe is an R package for combining summary data from multiple association studies or multiple phenotypes in a single study by incorporating potential gene-environment (G-E) interactions into the testing procedure. It is an implementation of the \textit{p value-assisted subset testing for associations (pASTA)} framework proposed by Yu et al. (2019). The goal is to identify a subset of studies or traits that yields the strongest evidence of associations and give a meta-analytic p-value. This vignette offers a brief introduction to the basic use of \texttt{subgxe}. For more details on the algorithms used by \texttt{subgxe} please refer to the paper.

subgxe Example

We use simulated data of $K = 5$ independent case-control studies that come along with the package to illustrate the basic use of \texttt{subgxe}. In each data set, \texttt{G}, \texttt{E}, and \texttt{D} denote the genetic variant, environmental factor, and disease status (binary outcome), respectively. In this case, \texttt{G} is coded as binary (under a dominant or recessive susceptibility model). It can also be coded as allele count (under the additive model). Two of the 5 studies have non-null genetic associations with the true marginal genetic odds ratio being 1.09. Each study has 6,000 cases and 6,000 controls, with the total sample size n_k being 12,000. For the specific underlying parameters of the data generating model, please refer to the original article (Table A4, Scenario 2).

```r
# library(devtools)
# install_github("umich-cphds/subgxe", build_opts = c())
library(subgxe)
```

We first obtain a $K \times 1$ vector of input p-values by conducting association test for each study. For study k, $k = 1, \cdots, K$, the joint model with G-E interaction is

$$\text{logit}[E(D_{ki}|G_{ki}, E_{ki})] = \beta_0^{(k)} + \beta_G^{(k)} G_{ki} + \beta_E^{(k)} E_{ki} + \beta_{GE}^{(k)} G_{ki} E_{ki}$$

where $i = 1, \cdots, n_k$. The model can be further adjusted for potential confounders, which we drop from the presentation for the simplicity of notation.

To detect the genetic association while accounting for the G-E interaction, one can test the null hypothesis

$$\beta_G^{(k)} = \beta_{GE}^{(k)} = 0$$

based on the joint model for each study k. The coefficients can be estimated by maximum likelihood using the \texttt{glm} function. For alternative null hypotheses and methods for estimation of coefficients, see the reference mentioned above.

A common choice for testing the null hypothesis $\beta_G^{(k)} = \beta_{GE}^{(k)} = 0$ is the likelihood ratio test (LRT) with 2 degrees of freedom, which can be carried out with the \texttt{lrtest} function in the package \texttt{lmtest}. We use the results of LRT as an example to demonstrate the use of \texttt{subgxe}. For comparative purposes, we also look at the p-values of the marginal genetic associations obtained by Wald test, i.e. the p-values of $\hat{\alpha}_G^{(k)}$ in the model

$$\text{logit}[E(D_{ki}|G_{ki})] = \alpha_0^{(k)} + \alpha_G^{(k)} G_{ki}.$$
for(i in 1:K) {
 joint.model <- glm(D ~ G + E + I(G*E), data=studies[[i]], family="binomial")
 null.model <- glm(D ~ E, data=studies[[i]], family="binomial")
 marg.model <- glm(D ~ G, data=studies[[i]], family="binomial")
 study.pvals.marg[i] <- summary(marg.model)$coef[2,4]
 study.pvals.joint[i] <- lmtest::lrtest(null.model, joint.model)$[2,5]
}

Then we use the \texttt{pasta()} function in the \texttt{subgxe} package to conduct subset analysis and obtain a meta-analytic p-value for the genetic association.

- The \texttt{cor} parameter is a correlation matrix of the study-specific p-values. In this example, since the studies are independent, the p-values are independent as well, and therefore the \texttt{cor} should be an identity matrix. In a \textit{multiple-phenotype} analysis where the phenotypes are measured on the same set of subjects, one way to approximate the correlations among p-values is to use the phenotypic correlations.

\begin{verbatim}
study.sizes <- c(nrow(studies[[1]]), nrow(studies[[2]]), nrow(studies[[3]]),
 nrow(studies[[4]]), nrow(studies[[5]]))
cor.matrix <- diag(1, K)
pasta.joint <- pasta(p.values=study.pvals.joint, study.sizes=study.sizes, cor=cor.matrix)
pasta.marg <- pasta(p.values=study.pvals.marg, study.sizes=study.sizes, cor=cor.matrix)
\end{verbatim}

\begin{verbatim}
pasta.joint$p.pasta # delete 'joint'
[1] 0.001859015
pasta.joint$test.statistic$selected.subset
[1] 4 1 1 0 0 0

pasta.marg$p.pasta # delete 'joint'
[1] 0.03312643
pasta.marg$test.statistic$selected.subset
[1] 8 1 1 1 0 0
\end{verbatim}

From the output we observe that when the G-E interaction is taken into account, \texttt{pasta} yields a meta-analytic p-value of 0.002 and identifies the first two studies as non-null. On the other hand, if we only consider the marginal associations, the meta-analytic p-value becomes much larger (p=0.033) and the first three studies are identified as having significant associations.

\textbf{Reference}