Package ‘superml’

February 24, 2020

Type Package

Title Build Machine Learning Models Like Using Python's Scikit-Learn Library in R

Version 0.5.2

Maintainer Manish Saraswat <manish06saraswat@gmail.com>

Description The idea is to provide a standard interface to users who use both R and Python for building machine learning models. This package provides a scikit-learn's fit, predict interface to train machine learning models in R.

License GPL-3 | file LICENSE

Encoding UTF-8

LazyData true

URL https://github.com/saraswatmks/superml

BugReports https://github.com/saraswatmks/superml/issues

Depends R(>= 3.5), R6(>= 2.2)

Imports data.table (>= 1.10), Rcpp (>= 1.0), assertthat (>= 0.2), parallel, doParallel (>= 1.0), Metrics (>= 0.1)

LinkingTo Rcpp, BH

Suggests knitr, rlang, testthat, rmarkdown, naivebayes(>= 0.9), ClusterR(>= 1.1), FNN(>= 1.1), ranger(>= 0.10), caret(>= 6.0), xgboost(>= 0.6), glmnet(>= 2.0), e1071(>= 1.7)

RoxygenNote 7.0.1

VignetteBuilder knitr

NeedsCompilation yes

Author Manish Saraswat [aut, cre]

Repository CRAN

Date/Publication 2020-02-24 17:40:02 UTC
R topics documented:

- bm25 ... 2
- cla_train ... 4
- Counter .. 4
- CountVectorizer .. 5
- GridSearchCV ... 8
- kFoldMean ... 11
- KMeansTrainer .. 12
- KNNTrainer ... 16
- LabelEncoder ... 19
- LMTrainer .. 23
- NBTrainer ... 29
- RandomSearchCV ... 31
- reg_train .. 33
- RFTrainer .. 34
- smoothMean .. 38
- TfIdfVectorizer .. 39
- XGBoostTrainer .. 43

Index

bm25

Best Matching(BM25)

Description

Computer BM25 distance between sentences/documents.

Details

BM25 stands for Best Matching 25. It is widely used for ranking documents and a preferred method than TF*IDF scores. It is used to find the similar documents from a corpus, given a new document. It is popularly used in information retrieval systems. This implementation uses multiple cores for faster and parallel computation.

Public fields

corpus a list containing sentences
use_parallel enables parallel computation, defaults to FALSE

Methods

- Public methods:
 - bm25$new()
 - bm25$most_similar()
 - bm25$clone()
Method new():

Usage:
bm25$new(corpus, use_parallel)

Arguments:
corpus list, a list containing sentences
use_parallel logical, enables parallel computation, defaults to FALSE. if TRUE uses n - 1 cores.

Details: Create a new 'bm25' object.

Returns: A 'bm25' object.

Examples:
example <- c('white audi 2.5 car','black shoes from office','new mobile iphone 7','audi tyres audi a3','nice audi bmw toyota corolla')
obj <- bm25$new(example, use_parallel=FALSE)

Method most_similar():

Usage:
bm25$most_similar(document, topn = 1)

Arguments:
document character, for this value we find most similar sentences.
topn integer, top n sentences to retrieve

Details: Returns a list of the most similar sentence

Returns: a vector of most similar documents

Examples:
example <- c('white audi 2.5 car','black shoes from office','new mobile iphone 7','audi tyres audi a3','nice audi bmw toyota corolla')
get_bm <- bm25$new(example, use_parallel=FALSE)
input_document <- c('white toyota corolla')
get_bm$most_similar(document = input_document, topn = 2)

Method clone(): The objects of this class are cloneable with this method.

Usage:
bm25$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

--
Method `bm25$new`
--
example <- c('white audi 2.5 car','black shoes from office',
'new mobile iphone 7','audi tyres audi a3',
'nice audi bmw toyota corolla')
obj <- bm25$new(example, use_parallel=FALSE)

Method 'bm25$most_similar'
example <- c('white audi 2.5 car','black shoes from office',
'new mobile iphone 7','audi tyres audi a3',
'nice audi bmw toyota corolla')
get_bm <- bm25$new(example, use_parallel=FALSE)
input_document <- c('white toyota corolla')
get_bm$most_similar(document = input_document, topn = 2)

dataframe

cla_train

Description
Training Dataset used for classification examples. This is classic titanic dataset used to predict if a passenger will survive or not in titanic ship disaster.

Usage
cla_train

Format
An object of class data.table (inherits from data.frame) with 891 rows and 12 columns.

Source
https://www.kaggle.com/c/titanic/data

counter

Calculate count of values in a list or vector

Description
Handy function to calculate count of values given in a list or vector

Usage
Counter(data, sort = TRUE, decreasing = FALSE)
CountVectorizer

Arguments

- `data`: should be a vector or list of input values
- `sort`: a logical value, to sort the result or not
- `decreasing`: a logical value, the order of sorting to be followed

Value

- count of values in a list

Examples

```r
d <- list(c('i','am','bad'),c('you','are','also','bad'))
counts <- CountVectorizer(d, sort=TRUE, decreasing=TRUE)
```

CountVectorizer

Count Vectorizer

Description

Creates CountVectorizer Model.

Details

Given a list of text, it generates a bag of words model and returns a sparse matrix consisting of token counts.

Public fields

- `sentences`: a list containing sentences
- `max_df`: When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold, value lies between 0 and 1.
- `min_df`: When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold, value lies between 0 and 1.
- `max_features`: Build a vocabulary that only consider the top max_features ordered by term frequency across the corpus.
- `ngram_range`: The lower and upper boundary of the range of n-values for different word n-grams or char n-grams to be extracted. All values of n such such that min_n <= n <= max_n will be used. For example an ngram_range of c(1, 1) means only unigrams, c(1, 2) means unigrams and bigrams, and c(2, 2) means only bigrams.
- `split`: splitting criteria for strings, default: " "
- `lowercase`: convert all characters to lowercase before tokenizing
- `regex`: regex expression to use for text cleaning.
- `remove_stopwords`: a list of stopwords to use, by default it uses its inbuilt list of standard stopwords
- `model`: internal attribute which stores the count model
Methods

Public methods:

- CountVectorizer$new()
- CountVectorizer$fit()
- CountVectorizer$fit_transform()
- CountVectorizer$transform()
- CountVectorizer$clone()

Method new():

Usage:
CountVectorizer$new(
 min_df,
 max_df,
 max_features,
 ngram_range,
 regex,
 remove_stopwords,
 split,
 lowercase
)

Arguments:

min_df numeric, When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold, value lies between 0 and 1.
max_df numeric, When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold, value lies between 0 and 1.
max_features integer, Build a vocabulary that only consider the top max_features ordered by term frequency across the corpus.
ngram_range vector, The lower and upper boundary of the range of n-values for different word n-grams or char n-grams to be extracted. All values of n such such that min_n <= n <= max_n will be used. For example an ngram_range of c(1, 1) means only unigrams, c(1, 2) means unigrams and bigrams, and c(2, 2) means only bigrams.
regex character, regex expression to use for text cleaning.
remove_stopwords list, a list of stopwords to use, by default it uses its inbuilt list of standard english stopwords
split character, splitting criteria for strings, default: " "
lowercase logical, convert all characters to lowercase before tokenizing, default: TRUE

Details: Create a new ‘CountVectorizer’ object.

Returns: A ‘CountVectorizer’ object.

Examples:
cv = CountVectorizer$new(min_df=0.1)

Method fit():

Usage:
CountVectorizer

CountVectorizer$fit(sentences)
Arguments:
sentences a list of text sentences
Details: Fits the countvectorizer model on sentences
Returns: NULL
Examples:
sents = c('i am alone in dark.', 'mother_mary a lot',
 'alone in the dark?', 'many mothers in the lot....')
cv = CountVectorizer$new(min_df=0.1)
cv$fit(sents)

Method fit_transform():
Usage:
CountVectorizer$fit_transform(sentences)
Arguments:
sentences a list of text sentences
Details: Fits the countvectorizer model and returns a sparse matrix of count of tokens
Returns: a sparse matrix containing count of tokens in each given sentence
Examples:
sents = c('i am alone in dark.', 'mother_mary a lot',
 'alone in the dark?', 'many mothers in the lot....')
cv <- CountVectorizer$new(min_df=0.1)
cv_count_matrix <- cv$fit_transform(sents)

Method transform():
Usage:
CountVectorizer$transform(sentences)
Arguments:
sentences a list of new text sentences
Details: Returns a matrix of count of tokens
Returns: a sparse matrix containing count of tokens in each given sentence
Examples:
sents = c('i am alone in dark.', 'mother_mary a lot',
 'alone in the dark?', 'many mothers in the lot....')
new_sents <- c("dark at night","mothers day")
cv = CountVectorizer$new(min_df=0.1)
cv$fit(sents)
cv_count_matrix <- cv$transform(new_sents)

Method clone(): The objects of this class are cloneable with this method.
Usage:
CountVectorizer$clone(deep = FALSE)
Arguments:
derp Whether to make a deep clone.
Examples

```r
## Method `CountVectorizer$new`
## ----------------------------------
cv = CountVectorizer$new(min_df=0.1)
## ----------------------------------

sents = c('i am alone in dark.', 'mother_mary a lot', 'alone in the dark?', 'many mothers in the lot....')
cv = CountVectorizer$new(min_df=0.1)
cv$fit(sents)
## ----------------------------------

sents = c('i am alone in dark.', 'mother_mary a lot', 'alone in the dark?', 'many mothers in the lot....')
cv <- CountVectorizer$new(min_df=0.1)
cv_count_matrix <- cv$fit_transform(sents)
## ----------------------------------

sents = c('i am alone in dark.', 'mother_mary a lot', 'alone in the dark?', 'many mothers in the lot....')
new_sents <- c('dark at night', 'mothers day')
cv = CountVectorizer$new(min_df=0.1)
cv$fit(sents)
cv_count_matrix <- cv$transform(new_sents)
```

GridSearchCV

Grid Search CV

Description

Runs grid search cross validation scheme to find best model training parameters.

Details

Grid search CV is used to train a machine learning model with multiple combinations of training hyper parameters and finds the best combination of parameters which optimizes the evaluation metric. It creates an exhaustive set of hyperparameter combinations and train model on each combination.
Public fields

- **trainer**: superml trainer object, could be either XGBTrainer, RFTrainer, NBTrainer etc.
- **parameters**: a list of parameters to tune
- **n_folds**: number of folds to use to split the train data
- **scoring**: scoring metric used to evaluate the best model, multiple values can be provided. Currently supports: auc, accuracy, mse, rmse, logloss, mae, f1, precision, recall
- **evaluation_scores**: parameter for internal use

Methods

Public methods:

- `GridSearchCV$new()`
- `GridSearchCV$fit()`
- `GridSearchCV$best_iteration()`
- `GridSearchCV$clone()`

Method new():

Usage:

`GridSearchCV$new(trainer = NA, parameters = NA, n_folds = NA, scoring = NA)`

Arguments:

- **trainer**: superml trainer object, could be either XGBTrainer, RFTrainer, NBTrainer etc.
- **parameters**: list, a list of parameters to tune
- **n_folds**: integer, number of folds to use to split the train data
- **scoring**: character, scoring metric used to evaluate the best model, multiple values can be provided. Currently supports: auc, accuracy, mse, rmse, logloss, mae, f1, precision, recall

Details: Create a new `GridSearchCV` object.

Returns: A `GridSearchCV` object.

Examples:

```r
rf <- RFTrainer$new()
gst <- GridSearchCV$new(trainer = rf,
parameters = list(n_estimators = c(100),
max_depth = c(5, 2, 10)),
n_folds = 3,
scoring = c('accuracy', 'auc'))
```

Method fit():

Usage:

`GridSearchCV$fit(X, y)`

Arguments:

- **X**: data.frame or data.table
- **y**: character, name of target variable

Details: Trains the model using grid search
Returns: NULL

Examples:
rf <- RFTrainer$new()
gst <- GridSearchCV$new(trainer = rf,
 parameters = list(n_estimators = c(100),
 max_depth = c(5,2,10)),
 n_folds = 3,
 scoring = c('accuracy', 'auc'))

data("iris")
gst$fit(iris, "Species")

Method best_iteration():

Usage:
GridSearchCV$best_iteration(metric = NULL)

Arguments:
metric character, which metric to use for evaluation

Details: Returns the best parameters

Returns: a list of best parameters

Examples:
rf <- RFTrainer$new()
gst <- GridSearchCV$new(trainer = rf,
 parameters = list(n_estimators = c(100),
 max_depth = c(5,2,10)),
 n_folds = 3,
 scoring = c('accuracy', 'auc'))

data("iris")
gst$fit(iris, "Species")
gst$best_iteration()

Method clone(): The objects of this class are cloneable with this method.

Usage:
GridSearchCV$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

--
Method `GridSearchCV$new`
--
rf <- RFTrainer$new()
gst <- GridSearchCV$new(trainer = rf,
 parameters = list(n_estimators = c(100),
 max_depth = c(5,2,10)),
 n_folds = 3,
 scoring = c('accuracy', 'auc'))
kFoldMean Calculator

Description
Calculates out-of-fold mean features (also known as target encoding) for train and test data. This strategy is widely used to avoid overfitting or causing leakage while creating features using the target variable. This method is experimental. If the results you get are unexpected, please report them in github issues.

Usage
kFoldMean(train_df, test_df, colname, target, n_fold = 5, seed = 42)

Arguments
- train_df: train dataset
- test_df: test dataset
- colname: name of categorical column
KMeansTrainer

Description

Trains a k-means machine learning model in R

Details

Trains a unsupervised K-Means clustering algorithm. It borrows mini-batch k-means function from ClusterR package written in c++, hence it is quite fast.

Public fields

- **clusters**: the number of clusters
- **batch_size**: the size of the mini batches
- **num_init**: number of times the algorithm will be run with different centroid seeds
- **max_iters**: the maximum number of clustering iterations
- **init_fraction**: percentage of data to use for the initialization centroids (applies if initializer is kmeans++ or optimal_init). Should be a float number between 0.0 and 1.0.

Examples

```r
train <- data.frame(region=c('del','csk','rcb','del','csk','pune','guj','del'),
                    win = c(0,1,0,0,0,0,0,1))

# Train and test data frame
test <- data.frame(region=c('rcb','csk','rcb','del','guj','pune','csk','kol'))

train_result <- kFoldMean(train_df = train,
                           test_df = test,
                           colname = 'region',
                           target = 'win',
                           seed = 1220)$train

# Test data frame

test_result <- kFoldMean(train_df = train,
                          test_df = test,
                          colname = 'region',
                          target = 'win',
                          seed = 1220)$test
```

KMeansTrainer

<table>
<thead>
<tr>
<th>K-Means Trainer</th>
</tr>
</thead>
</table>

Value

- a train and test data table with out-of-fold mean value of the target for the given categorical variable

Examples

```r
train <- data.frame(region=c('del','csk','rcb','del','csk','pune','guj','del'),
                    win = c(0,1,0,0,0,0,0,1))

# Train and test data frame
test <- data.frame(region=c('rcb','csk','rcb','del','guj','pune','csk','kol'))

train_result <- kFoldMean(train_df = train,
                           test_df = test,
                           colname = 'region',
                           target = 'win',
                           seed = 1220)$train

# Test data frame

test_result <- kFoldMean(train_df = train,
                          test_df = test,
                          colname = 'region',
                          target = 'win',
                          seed = 1220)$test
```
initializer the method of initialization. One of, optimal_init, quantile_init, kmeans++ and random.

early_stop_iter continue that many iterations after calculation of the best within-cluster-sum-of-squared-error

verbose either TRUE or FALSE, indicating whether progress is printed during clustering

centroids a matrix of initial cluster centroids. The rows of the CENTROIDS matrix should be equal to the number of clusters and the columns should be equal to the columns of the data
tol a float number. If, in case of an iteration (iteration > 1 and iteration < max_iters) "tol" is greater than the squared norm of the centroids, then kmeans has converged
tol_optimal_init tolerance value for the 'optimal_init' initializer. The higher this value is, the far apart from each other the centroids are.

seed integer value for random number generator (RNG)

model use for internal purpose

max_clusters either a numeric value, a contiguous or non-contiguous numeric vector specifying the cluster search space

Methods

Public methods:
• KMeansTrainer$new()
• KMeansTrainer$fit()
• KMeansTrainer$predict()
• KMeansTrainer$clone()

Method new():

Usage:
KMeansTrainer$new(
 clusters,
 batch_size = 10,
 num_init = 1,
 max_iters = 100,
 init_fraction = 1,
 initializer = "kmeans++",
 early_stop_iter = 10,
 verbose = FALSE,
 centroids = NULL,
 tol = 1e-04,
 tol_optimal_init = 0.3,
 seed = 1,
 max_clusters = NA
)

Arguments:
clusters numeric, When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold, value lies between 0 and 1.
batch_size numeric. When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold, value lies between 0 and 1.

num_init integer, use top features sorted by count to be used in bag of words matrix.

max_iters character, regex expression to use for text cleaning.

init_fraction list, a list of stopwords to use, by default it uses its inbuilt list of standard stopwords

initializer character, splitting criteria for strings, default: " "

early_stop_iter continue that many iterations after calculation of the best within-cluster-sum-ofsquared-error

verbose either TRUE or FALSE, indicating whether progress is printed during clustering

centroids a matrix of initial cluster centroids. The rows of the CENTROIDS matrix should be equal to the number of clusters and the columns should be equal to the columns of the data

tol a float number. If, in case of an iteration (iteration > 1 and iteration < max_iters) "tol" is greater than the squared norm of the centroids, then kmeans has converged

tol_optimal_init tolerance value for the 'optimal_init' initializer. The higher this value is, the far apart from each other the centroids are.

seed integer value for random number generator (RNG)

max_clusters either a numeric value, a contiguous or non-contiguous numeric vector specifying the cluster search space

Details: Create a new 'KMeansTrainer' object.

Returns: A 'KMeansTrainer' object.

Examples:
data <- rbind(replicate(20, rnorm(1e4, 2)),
 replicate(20, rnorm(1e4, -1)),
 replicate(20, rnorm(1e4, 5)))
km_model <- KMeansTrainer$new(clusters=2, batch_size=30, max_clusters=6)

Method fit():

Usage:
KMeansTrainer$fit(X, y = NULL, find_optimal = FALSE)

Arguments:
X data.frame or matrix containing features
y NULL only kept here for superml's standard way
find_optimal logical, to find the optimal clusters automatically

Details: Trains the KMeansTrainer model

Returns: NULL

Examples:
data <- rbind(replicate(20, rnorm(1e4, 2)),
 replicate(20, rnorm(1e4, -1)),
 replicate(20, rnorm(1e4, 5)))
km_model <- KMeansTrainer$new(clusters=2, batch_size=30, max_clusters=6)
kml_model$fit(data, find_optimal = FALSE)
Method `predict()`:

Usage:

```
KMeansTrainer$predict(X)
```

Arguments:

- `X` : data.frame or matrix

Details: Returns the prediction on test data

Returns: a vector of predictions

Examples:

```r
data <- rbind(replicate(20, rnorm(1e4, 2)),
              replicate(20, rnorm(1e4, -1)),
              replicate(20, rnorm(1e4, 5)))
km_model <- KMeansTrainer$new(clusters=2, batch_size=30, max_clusters=6)
kmc_model$fit(data, find_optimal = FALSE)
predictions <- km_model$predict(data)
```

Method `clone()`: The objects of this class are cloneable with this method.

Usage:

```
KMeansTrainer$clone(deep = FALSE)
```

Arguments:

- `deep` : Whether to make a deep clone.

Examples

```r
## Method `KMeansTrainer$new`
```
```r
data <- rbind(replicate(20, rnorm(1e4, 2)),
              replicate(20, rnorm(1e4, -1)),
              replicate(20, rnorm(1e4, 5)))
kmc_model <- KMeansTrainer$new(clusters=2, batch_size=30, max_clusters=6)
```

```r
## Method `KMeansTrainer$fit`
```
```r
data <- rbind(replicate(20, rnorm(1e4, 2)),
              replicate(20, rnorm(1e4, -1)),
              replicate(20, rnorm(1e4, 5)))
kmc_model <- KMeansTrainer$new(clusters=2, batch_size=30, max_clusters=6)
kmc_model$fit(data, find_optimal = FALSE)
```

```r
## Method `KMeansTrainer$predict`
```
```r
```
data <- rbind(replicate(20, rnorm(1e4, 2)),
 replicate(20, rnorm(1e4, -1)),
 replicate(20, rnorm(1e4, 5)))
km_model <- KMeansTrainer$new(clusters=2, batch_size=30, max_clusters=6)
km_model$fit(data, find_optimal = FALSE)
predictions <- km_model$predict(data)

KNNTrainer

K Nearest Neighbours Trainer

Description

Trains a k nearest neighbour model using fast search algorithms. KNN is a supervised learning algorithm which is used for both regression and classification problems.

Format

R6Class object.

Usage

For usage details see [Methods, Arguments and Examples](#) sections.

bst = KNNTrainer$new(k=1, prob=FALSE, algorithm=NULL, type="class")
bst$fit(X_train, X_test, "target")
bst$predict(type)

Methods

$new() Initialise the instance of the trainer
$fit() trains the knn model and stores the test prediction
$predict() returns predictions

Arguments

- **k** number of neighbours to predict
- **prob** if probability should be computed, default=FALSE
- **algorithm** algorithm used to train the model, possible values are 'kd_tree', 'cover_tree', 'brute'
- **type** type of problem to solve i.e. regression or classification, possible values are 'reg' or 'class'

Public fields

- **k** number of neighbours to predict
- **prob** if probability should be computed, default=FALSE
- **algorithm** algorithm used to train the model, possible values are 'kd_tree', 'cover_tree', 'brute'
- **type** type of problem to solve i.e. regression or classification, possible values are 'reg' or 'class'
- **model** for internal use
Methods

Public methods:

• KNNTrainer$new()
• KNNTrainer$fit()
• KNNTrainer$predict()
• KNNTrainer$clone()

Method new():

Usage:
KNNTrainer$new(k, prob, algorithm, type)

Arguments:
k k number of neighbours to predict
prob if probability should be computed, default=FALSE
algorithm algorithm used to train the model, possible values are 'kd_tree', 'cover_tree', 'brute'
type type of problem to solve i.e. regression or classification, possible values are 'reg' or 'class'

Details: Create a new ‘KNNTrainer’ object.

Returns: A ‘KNNTrainer’ object.

Examples:
data("iris")
iris$Species <- as.integer(as.factor(iris$Species))
xtrain <- iris[1:100,]
xtest <- iris[101:150,]
bst <- KNNTrainer$new(k=3, prob=TRUE, type="class")
bst$fit(xtrain, xtest, 'Species')
pred <- bst$predict(type="raw")

Method fit():

Usage:
KNNTrainer$fit(train, test, y)

Arguments:
train data.frame or matrix
test data.frame or matrix
y character, name of target variable

Details: Trains the KNNTrainer model

Returns: NULL

Examples:
data("iris")
iris$Species <- as.integer(as.factor(iris$Species))

xtrain <- iris[1:100,]
xtest <- iris[101:150,]

bst <- KNNTrainer$new(k=3, prob=TRUE, type="class")
bst$fit(xtrain, xtest, 'Species')

Method predict():

Usage:
KNNTrainer$predict(type = "raw")

Arguments:
type character, 'raw' for labels else 'prob'

Details:
Predits the nearest neighbours for test data

Returns:
a list of predicted neighbours

Examples:
data("iris")

iris$Species <- as.integer(as.factor(iris$Species))

xtrain <- iris[1:100,]
xtest <- iris[101:150,]

bst <- KNNTrainer$new(k=3, prob=TRUE, type="class")
bst$fit(xtrain, xtest, 'Species')
pred <- bst$predict(type="raw")

Method clone(): The objects of this class are cloneable with this method.

Usage:
KNNTrainer$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.

Examples:
data("iris")

iris$Species <- as.integer(as.factor(iris$Species))

xtrain <- iris[1:100,]
xtest <- iris[101:150,]

bst <- KNNTrainer$new(k=3, prob=TRUE, type="class")
bst$fit(xtrain, xtest, 'Species')
LabelEncoder

```
pred <- bst$predict(type="raw")

# -----------------------------------------------
# Method 'KNNTrainer$new'
# -----------------------------------------------
data("iris")
iris$Species <- as.integer(as.factor(iris$Species))
xtrain <- iris[1:100,]
xtest <- iris[101:150,]
bst <- KNNTrainer$new(k=3, prob=TRUE, type="class")
bst$fit(xtrain, xtest, 'Species')
pred <- bst$predict(type="raw")

# -----------------------------------------------
# Method 'KNNTrainer$fit'
# -----------------------------------------------
data("iris")
iris$Species <- as.integer(as.factor(iris$Species))
xtrain <- iris[1:100,]
xtest <- iris[101:150,]
bst <- KNNTrainer$new(k=3, prob=TRUE, type="class")
bst$fit(xtrain, xtest, 'Species')

# -----------------------------------------------
# Method 'KNNTrainer$predict'
# -----------------------------------------------
data("iris")
iris$Species <- as.integer(as.factor(iris$Species))
xtrain <- iris[1:100,]
xtest <- iris[101:150,]
bst <- KNNTrainer$new(k=3, prob=TRUE, type="class")
bst$fit(xtrain, xtest, 'Species')
pred <- bst$predict(type="raw")
```
Description

Encodes and decodes categorical variables into integer values and vice versa. This is a commonly performed task in data preparation during model training, because all machine learning models require the data to be encoded into numerical format. It takes a vector of character or factor values and encodes them into numeric.

Format

R6Class object.

Usage

For usage details see Methods, Arguments and Examples sections.

```r
lbl = LabelEncoder$new()
lbl$fit(x)
lbl$fit_transform(x)
lbl$transform(x)
```

Methods

$new() Initialise the instance of the encoder
$fit() creates a memory of encodings but doesn’t return anything
$transform() based on encodings learned in fit method is applies the transformation
$fit_transform() encodes the data and keep a memory of encodings simultaneously
$inverse_transform() encodes the data and keep a memory of encodings simultaneously

Arguments

data a vector or list containing the character / factor values

Public fields

input_data internal use
encodings internal use
decodings internal use
fit_model internal use

Methods

Public methods:

- LabelEncoder$fit()
- LabelEncoder$fit_transform()
- LabelEncoder$transform()
- LabelEncoder$inverse_transform()
- LabelEncoder$clone()
Method `fit()`:

Usage:
LabelEncoder$fit(data_col)

Arguments:
data_col a vector containing non-null values

Details: Fits the labelencoder model on given data

Returns: NULL, calculates the encoding and save in memory

Examples:
```r
data_ex <- data.frame(Score = c(10, 20, 30, 4), Name=c('Ao', 'Bo', 'Bo', 'Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$fit_transform(data_ex$Name)
decode_names <- lbl$inverse_transform(data_ex$Name)
```

Method `fit_transform()`:

Usage:
LabelEncoder$fit_transform(data_col)

Arguments:
data_col a vector containing non-null values

Details: Fits and returns the encoding

Returns: encoding values for the given input data

Examples:
```r
data_ex <- data.frame(Score = c(10, 20, 30, 4), Name=c('Ao', 'Bo', 'Bo', 'Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$fit_transform(data_ex$Name)
```

Method `transform()`:

Usage:
LabelEncoder$transform(data_col)

Arguments:
data_col a vector containing non-null values

Details: Returns the encodings from the fitted model

Returns: encoding values for the given input data

Examples:
```r
data_ex <- data.frame(Score = c(10, 20, 30, 4), Name=c('Ao', 'Bo', 'Bo', 'Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$transform(data_ex$Name)
```

Method `inverse_transform()`:
Usage:
LabelEncoder$inverse_transform(coded_col)

Arguments:
coded_col a vector containing label encoded values

Details: Gives back the original values from a encoded values

Returns: original values from the label encoded data

Examples:
```r
data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$fit_transform(data_ex$Name)
dedecode_names <- lbl$inverse_transform(data_ex$Name)
```

Method clone(): The objects of this class are cloneable with this method.

Usage:
LabelEncoder$clone(deep = FALSE)

Arguments:
dee Whether to make a deep clone.

Examples
```r
data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$fit_transform(data_ex$Name)
dedecode_names <- lbl$inverse_transform(data_ex$Name)
```

```r
## Method LabelEncoder$fit
## ------------------------------------------------
data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$fit_transform(data_ex$Name)
dedecode_names <- lbl$inverse_transform(data_ex$Name)
```

```r
## Method LabelEncoder$fit_transform
## ------------------------------------------------
data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$fit_transform(data_ex$Name)
dedecode_names <- lbl$inverse_transform(data_ex$Name)
```

```r
## Method LabelEncoder$transform
## ------------------------------------------------
data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$fit_transform(data_ex$Name)
dedecode_names <- lbl$inverse_transform(data_ex$Name)
```
```r
data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$transform(data_ex$Name)

## ------------------------------------------------
## Method `LabelEncoder$inverse_transform`
## ------------------------------------------------

data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$fit_transform(data_ex$Name)
decode_names <- lbl$inverse_transform(data_ex$Name)
```

LMTrainer

Linear Models Trainer

Description

Trains regression, lasso, ridge model in R

Details

Trains linear models such as Logistic, Lasso or Ridge regression model. It is built on glmnet R package. This class provides fit, predict, cross validation functions.

Public fields

- `family` type of regression to perform, values can be "gaussian" ,"binomial" ,"multinomial","mgaussian"
- `weights` observation weights. Can be total counts if responses are proportion matrices. Default is 1 for each observation
- `alpha` The elasticnet mixing parameter, alpha=1 is the lasso penalty, alpha=0 the ridge penalty, alpha=NULL is simple regression
- `lambda` the number of lambda values - default is 100
- `standardize` normalise the features in the given data
- `standardize.response` normalise the dependent variable between 0 and 1, default = FALSE
- `model` internal use
- `cvmodel` internal use
- `Flag` internal use
- `is_lasso` internal use
- `iid_names` internal use
Methods

Public methods:

• `LMTrainer$new()`
• `LMTrainer$fit()`
• `LMTrainer$predict()`
• `LMTrainer$cv_model()`
• `LMTrainer$cv_predict()`
• `LMTrainer$get_importance()`
• `LMTrainer$clone()`

Method `new()`:

Usage:
`LMTrainer$new(family, weights, alpha, lambda, standardize.response)`

Arguments:
- `family` character, type of regression to perform, values can be "gaussian", "binomial", "multinomial", "mgaussian"
- `weights` numeric, observation weights. Can be total counts if responses are proportion matrices. Default is 1 for each observation
- `alpha` integer, The elasticnet mixing parameter, alpha=1 is the lasso penalty, alpha=0 the ridge penalty, alpha=NULL is simple regression
- `lambda` integer, the number of lambda values - default is 100
- `standardize.response` logical, normalise the dependent variable between 0 and 1, default = FALSE

Details: Create a new ‘LMTrainer’ object.

Returns: A ‘LMTrainer’ object.

Examples:
```r
dontrtest{
  LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
  housing <- read.table(LINK)
  names <- c("CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE", "DIS",
             "RAD", "TAX", "PRTATIO", "B", "LSTAT", "MEDV")
  names(housing) <- names
  lf <- LMTrainer$new(family = 'gaussian', alpha=1)
}
```

Method `fit()`:

Usage:
`LMTrainer$fit(X, y)`

Arguments:
- `X` data.frame containing train features
- `y` character, name of target variable

Details: Fits the LMTrainer model on given data
Returns: NULL, train the model and saves internally

Examples:
\donttest{
LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
 "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing) <- names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$fit(X = housing, y = 'MEDV')
}

Method predict():

Usage:
LMTrainer$predict(df, lambda = NULL)

Arguments:
df data.frame containing test features
lambda integer, the number of lambda values - default is 100. By default it picks the best value
 from the model.

Details: Returns predictions for test data

Returns: vector, a vector containing predictions

Examples:
\donttest{
LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
 "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing) <- names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$fit(X = housing, y = 'MEDV')
predictions <- lf$cv_predict(df = housing)
}

Method cv_model():

Usage:
LMTrainer$cv_model(X, y, nfolds, parallel, type.measure = "deviance")

Arguments:
X data.frame containing test features
y character, name of target variable
nfolds integer, number of folds
parallel logical, if do parallel computation. Default=FALSE
 type.measure character, evaluation metric type. Default = deviance

Details: Train regression model using cross validation
Returns: NULL, trains the model and saves it in memory

Examples:
\donttest{
 LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
 housing <- read.table(LINK)
 names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
 "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
 names(housing) <- names
 lf <- LMTrainer$new(family = 'gaussian', alpha=1)
 lf$cv_model(X = housing, y = 'MEDV', nfolds = 5, parallel = FALSE)
}

Method cv_predict():
Usage:
LMTrainer$cv_predict(df, lambda = NULL)
Arguments:
df data.frame containing test features
lambda integer, the number of lambda values - default is 100. By default it picks the best value from the model.

Details: Get predictions from the cross validated regression model
Returns: vector a vector containing predicted values

Examples:
\donttest{
 LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
 housing <- read.table(LINK)
 names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
 "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
 names(housing) <- names
 lf <- LMTrainer$new(family = 'gaussian', alpha=1)
 lf$cv_model(X = housing, y = 'MEDV', nfolds = 5, parallel = FALSE)
 predictions <- lf$cv_predict(df = housing)
}

Method get_importance():
Usage:
LMTrainer$get_importance()

Details: Get feature importance using model coefficients
Returns: a matrix containing feature coefficients

Examples:
\donttest{
 LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
 housing <- read.table(LINK)
 names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
 "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
 names(housing) <- names
 lf <- LMTrainer$new(family = 'gaussian', alpha=1)
 lf$cv_model(X = housing, y = 'MEDV', nfolds = 5, parallel = FALSE)
 predictions <- lf$cv_predict(df = housing)
 importance <- lf$get_importance()
}
names(housing) <- names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$cv_model(X = housing, y = 'MEDV', nfolds = 5, parallel = FALSE)
predictions <- lf$cv_predict(df = housing)
coefs <- lf$get_importance()

Method clone(): The objects of this class are cloneable with this method.

Usage:
LMTrainer$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.

Examples

--
Method `LMTrainer$new`
--

LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
 "RAD","TAX","PRTATIO","B","LSTAT","MEDV")
names(housing) <- names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)

--
Method `LMTrainer$fit`
--

LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
 "RAD","TAX","PRTATIO","B","LSTAT","MEDV")
names(housing) <- names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$fit(X = housing, y = 'MEDV')

--
Method `LMTrainer$predict`
--

LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
 "RAD","TAX","PRTATIO","B","LSTAT","MEDV")

LMTrainer

"RAD","TAX","PTRATIO","B","LSTAT","MEDV"

names(housing) <- names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$fit(X = housing, y = 'MEDV')
predictions <- lf$cv_predict(df = housing)

--
Method `LMTrainer$cv_model`
--

LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
"RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing) <- names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$cv_model(X = housing, y = 'MEDV', nfolds = 5, parallel = FALSE)

--
Method `LMTrainer$cv_predict`
--

LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
"RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing) <- names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$cv_model(X = housing, y = 'MEDV', nfolds = 5, parallel = FALSE)
predictions <- lf$cv_predict(df = housing)

--
Method `LMTrainer$get_importance`
--

LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
"RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing) <- names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$cv_model(X = housing, y = 'MEDV', nfolds = 5, parallel = FALSE)
predictions <- lf$cv_predict(df = housing)
coefs <- lf$get_importance()
Description

Trains a probabilistic naive bayes model

Details

Trains a naive bayes model. It is built on top high performance naivebayes R package.

Public fields

- `prior`: numeric vector with prior probabilities. vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
- `laplace`: value used for Laplace smoothing. Defaults to 0 (no Laplace smoothing)
- `usekernel`: if TRUE, density is used to estimate the densities of metric predictors
- `model`: for internal use

Methods

Public methods:

- `NBTrainer$new()`
- `NBTrainer$fit()`
- `NBTrainer$predict()`
- `NBTrainer$clone()`

Method new():

Usage:

`NBTrainer$new(prior, laplace, usekernel)`

Arguments:

- `prior`: numeric, prior numeric vector with prior probabilities. vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
- `laplace`: numeric, value used for Laplace smoothing. Defaults to 0 (no Laplace smoothing)
- `usekernel`: logical, if TRUE, density is used to estimate the densities of metric predictors

Details:
Create a new 'NBTrainer' object.

Returns:
A 'NBTrainer' object.

Examples:

data(iris)
nb <- NBTrainer$new()
Method fit():

Usage:
NBTrainer$fit(X, y)

Arguments:
X data.frame containing train features
y character, name of target variable

Details: Fits the naive bayes model

Returns: NULL, trains and saves the model in memory

Examples:
data(iris)
b <- NBTrainer$new()
b$fit(iris, 'Species')

Method predict():

Usage:
NBTrainer$predict(X, type = "class")

Arguments:
X data.frame containing test features
type character, if the predictions should be labels or probability

Details: Returns predictions from the model

Returns: NULL, trains and saves the model in memory

Examples:
data(iris)
b <- NBTrainer$new()
b$fit(iris, 'Species')
y <- b$predict(iris)

Method clone(): The objects of this class are cloneable with this method.

Usage:
NBTrainer$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

```r
## --------------------------------
## Method NBTrainer$new
## --------------------------------

data(iris)
b <- NBTrainer$new()
```
Method

```r
data(iris)
nb <- NBTrainer$new()
nb$fit(iris, 'Species')
```

Method

```r
data(iris)
nb <- NBTrainer$new()
nb$fit(iris, 'Species')
y <- nb$predict(iris)
```

Description

Hyperparameter tuning using random search scheme.

Details

Given a set of hyper parameters, random search trainer provides a faster way of hyper parameter tuning. Here, the number of models to be trained can be defined by the user.

Super class

`superml::GridSearchCV` -> `RandomSearchTrainer`

Public fields

- `n_iter` number of models to be trained

Methods

Public methods:

- `RandomSearchCV$new()`
- `RandomSearchCV$fit()`
- `RandomSearchCV$clone()`

Method new():

Usage:
RandomSearchCV$new(
 trainer = NA,
 parameters = NA,
 n_folds = NA,
 scoring = NA,
 n_iter = NA
)

Arguments:
trainer superml trainer object, must be either XGBTrainer, LMTrainer, RFTrainer, NBTrainer
parameters list, list containing parameters
n_folds integer, number of folds to use to split the train data
scoring character, scoring metric used to evaluate the best model, multiple values can be pro-
vided. currently supports: auc, accuracy, mse, rmse, logloss, mae, f1, precision, recall
n_iter integer, number of models to be trained

Details: Create a new ‘RandomSearchTrainer’ object.

Returns: A ‘RandomSearchTrainer’ object.

Examples:
rf <- RFTrainer$new()
rst <- RandomSearchCV$new(trainer = rf,
 parameters = list(n_estimators = c(100, 500),
 max_depth = c(5, 2, 10, 14)),
 n_folds = 3,
 scoring = c('accuracy', 'auc'),
 n_iter = 4)

Method fit():

Usage:
RandomSearchCV$fit(X, y)

Arguments:
X data.frame containing features
y character, name of target variable

Details: Train the model on given hyperparameters

Returns: NULL, tunes hyperparameters and stores the result in memory

Examples:
rf <- RFTrainer$new()
rst <- RandomSearchCV$new(trainer = rf,
 parameters = list(n_estimators = c(100, 500),
 max_depth = c(5, 2, 10, 14)),
 n_folds = 3,
 scoring = c('accuracy', 'auc'),
 n_iter = 4)
data("iris")
rst$fit(iris, "Species")
rst$best_iteration()
Method clone(): The objects of this class are cloneable with this method.

Usage:

RandomSearchCV$clone(deep = FALSE)

Arguments:

- `deep` Whether to make a deep clone.

Examples

```r
## Method `RandomSearchCV$new`
rf <- RFTrainer$new()
rst <- RandomSearchCV$new(trainer = rf,
                          parameters = list(n_estimators = c(100,500),
                                           max_depth = c(5,2,10,14)),
                          n_folds = 3,
                          scoring = c('accuracy', 'auc'),
                          n_iter = 4)
```

```r
## Method `RandomSearchCV$fit`
rf <- RFTrainer$new()
rst <- RandomSearchCV$new(trainer = rf,
                          parameters = list(n_estimators = c(100,500),
                                           max_depth = c(5,2,10,14)),
                          n_folds = 3,
                          scoring = c('accuracy', 'auc'),
                          n_iter = 4)

data("iris")
rst$fit(iris, "Species")
rst$best_iteration()
```

Description

Training Dataset used for regression examples. In this data set, we have to predict the sale price of the houses.

Usage

reg_train
RFTrainer

Format

An object of class `data.table` (inherits from `data.frame`) with 1460 rows and 81 columns.

Source

RFTrainer

Random Forest Trainer

Description

Trains a random forest model.

Details

Trains a Random Forest model. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. This implementation uses ranger R package which provides faster model training.

Public fields

- **n_estimators** the number of trees in the forest, default= 100
- **max_features** the number of features to consider when looking for the best split. Possible values are `auto` (default) takes `sqrt(num_of_features)`, `sqrt` same as auto, `log` takes `log(num_of_features)`, `none` takes all features
- **max_depth** the maximum depth of each tree
- **min_node_size** the minimum number of samples required to split an internal node
- **criterion** the function to measure the quality of split. For classification, gini is used which is a measure of gini index. For regression, the variance of responses is used.
- **classification** whether to train for classification (1) or regression (0)
- **verbose** show computation status and estimated runtime
- **seed** seed value
- **class_weights** weights associated with the classes for sampling of training observation
- **always_split** vector of feature names to be always used for splitting
- **importance** Variable importance mode, one of 'none', 'impurity', 'impurity_corrected', 'permutation'. The 'impurity' measure is the Gini index for classification, the variance of the responses for regression. Defaults to "impurity"
Methods

Public methods:

- RFTrainer$new()
- RFTrainer$fit()
- RFTrainer$predict()
- RFTrainer$get_importance()
- RFTrainer$clone()

Method `new()`:

Usage:

```r
RFTrainer$new(  
  n_estimators,  
  max_depth,  
  max_features,  
  min_node_size,  
  classification,  
  class_weights,  
  always_split,  
  verbose,  
  save_model,  
  seed,  
  importance  
)
```

Arguments:

- `n_estimators` integer, the number of trees in the forest, default= 100
- `max_depth` integer, the maximum depth of each tree
- `max_features` integer, the number of features to consider when looking for the best split. Possible values are `auto` (default) takes `sqrt(num_of_features)`, `sqrt` same as auto, `log` takes `log(num_of_features)`, `none` takes all features
- `min_node_size` integer, the minimum number of samples required to split an internal node
- `classification` integer, whether to train for classification (1) or regression (0)
- `class_weights` weights associated with the classes for sampling of training observation
- `always_split` vector of feature names to be always used for splitting
- `verbose` logical, show computation status and estimated runtime
- `save_model` logical, whether to save model
- `seed` integer, seed value
- `importance` Variable importance mode, one of 'none', 'impurity', 'impurity_corrected', 'permutation'. The 'impurity' measure is the Gini index for classification, the variance of the responses for regression. Defaults to "impurity"

Details: Create a new ‘RFTrainer’ object.

Returns: A ‘RFTrainer’ object.

Examples:
data("iris")
bst <- RFTrainer$new(n_estimators=10,
 max_depth=4,
 classification=1,
 seed=42,
 verbose=TRUE)

Method fit():
Usage:
RFTrainer$fit(X, y)
Arguments:
X data.frame containing train features
y character, name of the target variable
Details: Trains the random forest model
Returns: NULL, trains and saves the model in memory
Examples:
data("iris")
bst <- RFTrainer$new(n_estimators=10,
 max_depth=4,
 classification=1,
 seed=42,
 verbose=TRUE)
bst$fit(iris, "Species")

Method predict():
Usage:
RFTrainer$predict(df)
Arguments:
df data.frame containing test features
Details: Return predictions from random forest model
Returns: a vector containing predictions
Examples:
data("iris")
bst <- RFTrainer$new(n_estimators=10,
 max_depth=4,
 classification=1,
 seed=42,
 verbose=TRUE)
bst$fit(iris, "Species")
predictions <- bst$predict(iris)

Method get_importance():
Usage:
RFTrainer$get_importance()
Details: Returns feature importance from the model

Returns: a data frame containing feature predictions

Examples:

```r
data("iris")
bst <- RFTrainer$new(n_estimators=50, 
    max_depth=4, 
    classification=1, 
    seed=42, 
    verbose=TRUE)
bst$fit(iris, 'Species')
predictions <- bst$predict(iris)
bst$get_importance()
```

Method `clone()`: The objects of this class are cloneable with this method.

Usage:

`RFTrainer$clone(deep = FALSE)`

Arguments:

- `deep` Whether to make a deep clone.

Examples

```r
## Method `RFTrainer$new`

data("iris")
bst <- RFTrainer$new(n_estimators=10, 
    max_depth=4, 
    classification=1, 
    seed=42, 
    verbose=TRUE)

## Method `RFTrainer$fit`

data("iris")
bst <- RFTrainer$new(n_estimators=10, 
    max_depth=4, 
    classification=1, 
    seed=42, 
    verbose=TRUE)
bst$fit(iris, 'Species')

## Method `RFTrainer$predict`
```
data("iris")
bst <- RFTrainer$new(n_estimators=10,
 max_depth=4,
 classification=1,
 seed=42,
 verbose=TRUE)
bst$fit(iris, 'Species')
predictions <- bst$predict(iris)

--
Method `RFTrainer$get_importance`
--

data("iris")
bst <- RFTrainer$new(n_estimators=50,
 max_depth=4,
 classification=1,
 seed=42,
 verbose=TRUE)
bst$fit(iris, 'Species')
predictions <- bst$predict(iris)
bst$get_importance()

smoothMean

smoothMean Calculator

Description

Calculates target encodings using a smoothing parameter and count of categorical variables. This approach is more robust to possibility of leakage and avoid overfitting.

Usage

smoothMean(
 train_df,
 test_df,
 colname,
 target,
 min_samples_leaf = 1,
 smoothing = 1,
 noise_level = 0
)

Arguments

train_df train dataset

test_df test dataset

colname name of categorical column
TfIdfVectorizer

- **target**: name of target column
- **min_samples_leaf**: minimum samples to take category average into account
- **smoothing**: smoothing effect to balance categorical average vs prior
- **noise_level**: random noise to add, optional

Value

A train and test data table with mean encodings of the target for the given categorical variable

Examples

```r
train <- data.frame(region=c('del','csk','rcb','del','csk','pune','del'),
                    win = c(0,1,0,1,0,1))
test <- data.frame(region=c('rcb','csk','rcb','del','guj','pune','csk','kol'))
# calculate encodings
all_means <- smoothMean(train_df = train,
                         test_df = test,
                         colname = 'region',
                         target = 'win')
train_mean <- all_means$train
test_mean <- all_means$test
```

TfIdfVectorizer

TfIDF (Term Frequency Inverse Document Frequency) Vectorizer

Description

Creates a tf-idf matrix

Details

Given a list of text, it creates a sparse matrix consisting of tf-idf score for tokens from the text.

Super class

`superml::CountVectorizer` -> `TfIdfVectorizer`

Public fields

- `sentences`: a list containing sentences
- `max_df`: When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold, value lies between 0 and 1.
- `min_df`: When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold, value lies between 0 and 1.
- `max_features`: use top features sorted by count to be used in bag of words matrix.
ngram_range The lower and upper boundary of the range of n-values for different word n-grams or char n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. For example an ngram_range of c(1, 1) means only unigrams, c(1, 2) means unigrams and bigrams, and c(2, 2) means only bigrams.

split splitting criteria for strings, default: " ",

lowercase convert all characters to lowercase before tokenizing

regex regex expression to use for text cleaning.

remove_stopwords a list of stopwords to use, by default it uses its inbuilt list of standard stopwords

smooth_idf logical, to prevent zero division, adds one to document frequencies, as if an extra document was seen containing every term in the collection exactly once

norm logical, if TRUE, each output row will have unit norm ‘l2’: Sum of squares of vector elements is 1. if FALSE returns non-normalized vectors, default: TRUE

Methods

Public methods:

- TfIdfVectorizer$new()
- TfIdfVectorizer$fit()
- TfIdfVectorizer$fit_transform()
- TfIdfVectorizer$transform()
- TfIdfVectorizer$clone()

Method new():

Usage:

```
TfIdfVectorizer$new(
    min_df,
    max_df,
    max_features,
    ngram_range,
    regex,
    remove_stopwords,
    split,
    lowercase,
    smooth_idf,
    norm
)
```

Arguments:

- min_df numeric, When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold, value lies between 0 and 1.
- max_df numeric, When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold, value lies between 0 and 1.
- max_features integer, Build a vocabulary that only consider the top max_features ordered by term frequency across the corpus.
ngram_range vector, The lower and upper boundary of the range of n-values for different word
n-grams or char n-grams to be extracted. All values of n such such that min_n <= n <=
max_n will be used. For example an ngram_range of c(1, 1) means only unigrams, c(1, 2)
means unigrams and bigrams, and c(2, 2) means only bigrams.
regex character, regex expression to use for text cleaning.
remove_stopwords list, a list of stopwords to use, by default it uses its inbuilt list of standard
english stopwords
split character, splitting criteria for strings, default: "
lowercase logical, convert all characters to lowercase before tokenizing, default: TRUE
smooth_idf logical, to prevent zero division, adds one to document frequencies, as if an extra
document was seen containing every term in the collection exactly once
norm logical, if TRUE, each output row will have unit norm ‘l2’: Sum of squares of vector
elements is 1. if FALSE returns non-normalized vectors, default: TRUE
parallel logical, speeds up ngrams computation using n-1 cores, defaults: TRUE

Details: Create a new ‘TfIdfVectorizer’ object.
Returns: A ‘TfIdfVectorizer’ object.
Examples:
TfIdfVectorizer$new()

Method fit():
Usage:
TfIdfVectorizer$fit(sentences)
Arguments:
sentences a list of text sentences
Details: Fits the TfIdfVectorizer model on sentences
Returns: NULL
Examples:
sents = c('i am alone in dark.', 'mother_mary a lot',
'alone in the dark?', 'many mothers in the lot....')
tf = TfIdfVectorizer$new(smooth_idf = TRUE, min_df = 0.3)
tf$fit(sents)

Method fit_transform():
Usage:
TfIdfVectorizer$fit_transform(sentences)
Arguments:
sentences a list of text sentences
Details: Fits the TfIdfVectorizer model and returns a sparse matrix of count of tokens
Returns: a sparse matrix containing tf-idf score for tokens in each given sentence
Examples:
\donttest{
sents <- c('i am alone in dark.', 'mother_mary a lot',
 'alone in the dark?', 'many mothers in the lot....')
tf <- TfIdfVectorizer$new(smooth_idf = TRUE, min_df = 0.1)
tf_matrix <- tf$fit_transform(sents)
}

Method transform():

Usage:
TfIdfVectorizer$transform(sentences)

Arguments:
sentences a list of new text sentences

Details: Returns a matrix of tf-idf score of tokens

Returns: a sparse matrix containing tf-idf score for tokens in each given sentence

Examples:
\donttest{
sents = c('i am alone in dark.', 'mother_mary a lot',
 'alone in the dark?', 'many mothers in the lot....')
new_sents <- c("dark at night", 'mothers day')
tf = TfIdfVectorizer$new(min_df=0.1)
tf$fit(sents)
tf_matrix <- tf$transform(new_sents)
}

Method clone(): The objects of this class are cloneable with this method.

Usage:
TfIdfVectorizer$clone(deep = FALSE)

Arguments:
deeple Whether to make a deep clone.

Examples
Method `TfidfVectorizer$fit_transform`

```
sents <- c('i am alone in dark.','mother_mary a lot',
          'alone in the dark?','many mothers in the lot....')
tf <- TfidfVectorizer$new(smooth_idf = TRUE, min_df = 0.1)
tf_matrix <- tf$fit_transform(sents)
```

Method `TfidfVectorizer$transform`

```
sents = c('i am alone in dark.','mother_mary a lot',
          'alone in the dark?','many mothers in the lot....')
new_sents <- c("dark at night","mothers day")
tf = TfidfVectorizer$new(min_df=0.1)
tf.fit(sents)
tf_matrix <- tf$transform(new_sents)
```

XGBTrainer

Extreme Gradient Boosting Trainer

Description

Trains a XGBoost model in R

Details

Trains a Extreme Gradient Boosting Model. XGBoost belongs to a family of boosting algorithms that creates an ensemble of weak learner to learn about data. It is a wrapper for original xgboost R package, you can find the documentation here: http://xgboost.readthedocs.io/en/latest/parameter.html

Public fields

- **booster** the trainer type, the values are gbtree (default), gblinear, dart:gbtree
- **objective** specify the learning task. Check the link above for all possible values.
- **nthread** number of parallel threads used to run, default is to run using all threads available
- **silent** 0 means printing running messages, 1 means silent mode
- **n_estimators** number of trees to grow, default = 100
- **learning_rate** Step size shrinkage used in update to prevents overfitting. Lower the learning rate, more time it takes in training, value lies between between 0 and 1. Default = 0.3
XGBTrainer

gamma Minimum loss reduction required to make a further partition on a leaf node of the tree. The larger gamma is, the more conservative the algorithm will be. Value lies between 0 and infinity. Default = 0

max_depth the maximum depth of each tree, default = 6

min_child_weight Minimum sum of instance weight (hessian) needed in a child. If the tree partition step results in a leaf node with the sum of instance weight less than min_child_weight, then the building process will give up further partitioning. In linear regression task, this simply corresponds to minimum number of instances needed to be in each node. The larger min_child_weight is, the more conservative the algorithm will be. Value lies between 0 and infinity. Default = 1

subsample Subsample ratio of the training instances. Setting it to 0.5 means that XGBoost would randomly sample half of the training data prior to growing trees. and this will prevent overfitting. Subsampling will occur once in every boosting iteration. Value lies between 0 and 1. Default = 1

colsample_bytree Subsample ratio of columns when constructing each tree. Subsampling will occur once in every boosting iteration. Value lies between 0 and 1. Default = 1

lambda L2 regularization term on weights. Increasing this value will make model more conservative. Default = 1

alpha L1 regularization term on weights. Increasing this value will make model more conservative. Default = 0

eval_metric Evaluation metrics for validation data, a default metric will be assigned according to objective

print_every print training log after n iterations. Default = 50

feval custom evaluation function

early_stopping Used to prevent overfitting, stops model training after this number of iterations if there is no improvement seen

maximize If feval and early_stopping rounds are set, then this parameter must be set as well. When it is TRUE, it means the larger the evaluation score the better.

custom_objective custom objective function

save_period when it is non-NULL, model is saved to disk after every save_period rounds, 0 means save at the end.

save_name the name or path for periodically saved model file.

xgb_model a previously built model to continue the training from. Could be either an object of class xgb.Booster, or its raw data, or the name of a file with a previously saved model.

callbacks a list of callback functions to perform various task during boosting. See callbacks. Some of the callbacks are automatically created depending on the parameters’ values. User can provide either existing or their own callback methods in order to customize the training process.

verbose If 0, xgboost will stay silent. If 1, xgboost will print information of performance. If 2, xgboost will print some additional information. Setting verbose > 0 automatically engages the cb.evaluation.log and cb.print.evaluation callback functions.

watchlist what information should be printed when verbose=1 or verbose=2. Watchlist is used to specify validation set monitoring during training. For example user can specify watchlist=list(validation1=mat1, validation2=mat2) to watch the performance of each round’s model on mat1 and mat2
num_class set number of classes in case of multiclassification problem
weight a vector indicating the weight for each row of the input.
na_missing by default is set to NA, which means that NA values should be considered as ‘missing’
 by the algorithm. Sometimes, 0 or other extreme value might be used to represent missing
 values. This parameter is only used when input is a dense matrix.
feature_names internal use, stores the feature names for model importance
cv_model internal use

Methods

Public methods:

- XGBTrainer$new()
- XGBTrainer$cross_val()
- XGBTrainer$fit()
- XGBTrainer$predict()
- XGBTrainer$show_importance()
- XGBTrainer$clone()

Method new():

Usage:
XGBTrainer$new(
 booster,
 objective,
 nthread,
 silent,
 n_estimators,
 learning_rate,
 gamma,
 max_depth,
 min_child_weight,
 subsample,
 colsample_bytree,
 lambda,
 alpha,
 eval_metric,
 print_every,
 feval,
 early_stopping,
 maximize,
 custom_objective,
 save_period,
 save_name,
 xgb_model,
 callbacks,
 verbose,
 num_class,
weight, na_missing)
)

Arguments:

booster the trainer type, the values are gbtree(default), gblinear, dart:gbtree

objective specify the learning task. Check the link above for all possible values.

nthread number of parallel threads used to run, default is to run using all threads available

silent 0 means printing running messages, 1 means silent mode

n_estimators number of trees to grow, default = 100

learning_rate Step size shrinkage used in update to prevents overfitting. Lower the learning rate, more time it takes in training, value lies between between 0 and 1. Default = 0.3

gamma Minimum loss reduction required to make a further partition on a leaf node of the tree.

The larger gamma is, the more conservative the algorithm will be. Value lies between 0 and infinity. Default = 0

max_depth the maximum depth of each tree, default = 6

min_child_weight Minimum sum of instance weight (hessian) needed in a child. If the tree partition step results in a leaf node with the sum of instance weight less than min_child_weight, then the building process will give up further partitioning. In linear regression task, this simply corresponds to minimum number of instances needed to be in each node. The larger min_child_weight is, the more conservative the algorithm will be. Value lies between 0 and infinity. Default = 1

subsample Subsample ratio of the training instances. Setting it to 0.5 means that XGBoost would randomly sample half of the training data prior to growing trees. and this will prevent overfitting. Subsampling will occur once in every boosting iteration. Value lies between 0 and 1. Default = 1

colsample_bytree Subsample ratio of columns when constructing each tree. Subsampling will occur once in every boosting iteration. Value lies between 0 and 1. Default = 1

lambda L2 regularization term on weights. Increasing this value will make model more conservative. Default = 1

alpha L1 regularization term on weights. Increasing this value will make model more conservative. Default = 0

eval_metric Evaluation metrics for validation data, a default metric will be assigned according to objective

print_every print training log after n iterations. Default = 50

feval custom evaluation function

early_stopping Used to prevent overfitting, stops model training after this number of iterations if there is no improvement seen

maximize If feval and early_stopping_rounds are set, then this parameter must be set as well.

When it is TRUE, it means the larger the evaluation score the better.

custom_objective custom objective function

save_period when it is non-NULL, model is saved to disk after every save_period rounds, 0 means save at the end.

save_name the name or path for periodically saved model file.

xgb_model a previously built model to continue the training from. Could be either an object of class xgb.Booster, or its raw data, or the name of a file with a previously saved model.
callbacks a list of callback functions to perform various task during boosting. See callbacks. Some of the callbacks are automatically created depending on the parameters’ values. User can provide either existing or their own callback methods in order to customize the training process.

verbose If 0, xgboost will stay silent. If 1, xgboost will print information of performance. If 2, xgboost will print some additional information. Setting verbose > 0 automatically engages the cb.evaluation.log and cb.print.evaluation callback functions.

num_class set number of classes in case of multiclassification problem

weight a vector indicating the weight for each row of the input.

na_missing by default is set to NA, which means that NA values should be considered as 'missing' by the algorithm. Sometimes, 0 or other extreme value might be used to represent missing values. This parameter is only used when input is a dense matrix.

Details: Create a new 'XGBTrainer' object.

Returns: A 'XGBTrainer' object.

Examples:
library(data.table)
df <- copy(iris)

convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
 maximize = FALSE,
 eval_metric = 'merror',
 num_class=3,
 n_estimators = 2)

Method cross_val():

Usage:
XGBTrainer$cross_val(X, y, nfolds = 5, stratified = TRUE, folds = NULL)

Arguments:
X data.frame
y character, name of target variable
 nfolds integer, number of folds
stratified logical, whether to use stratified sampling
folds the list of CV folds’ indices - either those passed through the folds parameter or randomly generated.

Details: Trains the xgboost model using cross validation scheme

Returns: NULL, trains a model and saves it in memory

Examples:
library(data.table)
df <- copy(iris)
convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
 maximize = FALSE,
 eval_metric = 'merror',
 num_class=3,
 n_estimators = 2)

do cross validation to find optimal value for n_estimators
xgb$cross_val(X = df, y = 'Species', nfolds = 3, stratified = TRUE)

Method `fit()`:

Usage:
XGBTrainer$fit(X, y, valid = NULL)

Arguments:
- `X` data.frame, training data
- `y` character, name of target variable
- `valid` data.frame, validation data

Details: Fits the xgboost model on given data

Returns: NULL, trains a model and keeps it in memory

Examples:
library(data.table)
df <- copy(iris)

convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
 maximize = FALSE,
 eval_metric = 'merror',
 num_class=3,
 n_estimators = 2)

xgb$fit(df, 'Species')

Method `predict()`:

Usage:
XGBTrainer$predict(df)

Arguments:
- `df` data.frame, test data set

Details: Returns predicted values for a given test data

Returns: xgboost predictions
Examples:
' library(data.table)
df <- copy(iris)

convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
 maximize = FALSE,
 eval_metric = 'merror',
 num_class=3,
 n_estimators = 2)
xgb$fit(df, 'Species')

make predictions
preds <- xgb$predict(as.matrix(iris[,1:4]))

Method show_importance():
Usage:
XGBTrainer$show_importance(type = "plot", topn = 10)
Arguments:
type character, could be 'plot' or 'table'
topn integer, top n features to display
Details: Shows feature importance plot
Returns: a table or a plot of feature importance
Examples:
library(data.table)
df <- copy(iris)

convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
 maximize = FALSE,
 eval_metric = 'merror',
 num_class=3,
 n_estimators = 2)
xgb$fit(df, 'Species')
xgb$show_importance()

Method clone(): The objects of this class are cloneable with this method.
Usage:
XGBTrainer$clone(deep = FALSE)
Arguments:
depth Whether to make a deep clone.
Examples

```
## Method `XGBTrainer$new`
library(data.table)
df <- copy(iris)
# convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1
# initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
                        maximize = FALSE,
                        eval_metric = 'merror',
                        num_class=3,
                        n_estimators = 2)

## Method `XGBTrainer$cross_val`
library(data.table)
df <- copy(iris)
# convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1
# initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
                        maximize = FALSE,
                        eval_metric = 'merror',
                        num_class=3,
                        n_estimators = 2)
# do cross validation to find optimal value for n_estimators
xgb$cross_val(X = df, y = 'Species', nfolds = 3, stratified = TRUE)

## Method `XGBTrainer$fit`
library(data.table)
df <- copy(iris)
# convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1
# initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
                        maximize = FALSE,
```
XGBTrainer

 eval_metric = 'merror',
 num_class=3,
 n_estimators = 2)

xgb$fit(df, 'Species')

Method 'XGBTrainer$predict'

'library(data.table)
df <- copy(iris)

convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species)) - 1

initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
 maximize = FALSE,
 eval_metric = 'merror',
 num_class=3,
 n_estimators = 2)

xgb$fit(df, 'Species')

make predictions
preds <- xgb$predict(as.matrix(iris[,1:4]))

Method 'XGBTrainer$show_importance'

'library(data.table)
df <- copy(iris)

convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species)) - 1

initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
 maximize = FALSE,
 eval_metric = 'merror',
 num_class=3,
 n_estimators = 2)

xgb$fit(df, 'Species')
xgb$show_importance()
Index

*Topic datasets
 cla_train, 4
 reg_train, 33

bm25, 2

cla_train, 4
Counter, 4
CountVectorizer, 5

GridSearchCV, 8

kFoldMean, 11
KMeansTrainer, 12
KNNTrainer, 16

LabelEncoder, 19
LMTrainer, 23

NBTrainer, 29

R6Class, 16, 20
RandomSearchCV, 31
reg_train, 33
RFTrainer, 34

smoothMean, 38
superml::CountVectorizer, 39
superml::GridSearchCV, 31

TfIdfVectorizer, 39

XGBTrainer, 43