Package ‘surrosurv’

January 18, 2019

Type Package

Title Evaluation of Failure Time Surrogate Endpoints in Individual Patient Data Meta-Analyses

Version 1.1.25

Date 2019-01-18

Author Federico Rotolo [aut],
Xavier Paoletti [ctr],
Marc Buyse [ctr],
Tomasz Burzykowski [ctr],
Stefan Michiels [ctr, cre]

Maintainer Stefan Michiels <stefan.michiels@gustaveroussy.fr>

Description Provides functions for the evaluation of surrogate endpoints when both the surrogate and the true endpoint are failure time variables. The approaches implemented are:
(1) the two-step approach (Burzykowski et al, 2001) <DOI:10.1111/1467-9876.00244> with a copula model (Clayton, Plackett, Hougaard) at the first step and either a linear regression of log-hazard ratios at the second step (either adjusted or not for measurement error);
(2) mixed proportional hazard models estimated via mixed Poisson GLM (Rotolo et al, 2019 <DOI:10.1177/0962280217718582>).

Depends R (>= 2.10), stats, optimx, grDevices

Imports copula, eha, lme4, MASS, Matrix, msm, mvmeta, optextras, parallel, parfm, survival, SurvCorr

License GPL-2

VignetteBuilder R.rsp

Suggests R.rsp

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2019-01-18 21:50:03 UTC
Description

Provides functions for the evaluation of surrogate endpoints when both the surrogate and the true endpoint are failure time variables. The approaches implemented are: (1) the two-step approach (Burzykowski et al, 2001) <DOI:10.1111/1467-9876.00244> with a copula model (Clayton, Plackett, Hougaard) at the first step and either a linear regression of log-hazard ratios at the second step (either adjusted or not for measurement error); (2) mixed proportional hazard models estimated via mixed Poisson GLM (Rotolo et al, 2019 <DOI:10.1177/0962280217718582>).

Details

The DESCRIPTION file:

<table>
<thead>
<tr>
<th>Package:</th>
<th>surrosurv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Title:</td>
<td>Evaluation of Failure Time Surrogate Endpoints in Individual Patient Data Meta-Analyses</td>
</tr>
<tr>
<td>Version:</td>
<td>1.1.25</td>
</tr>
<tr>
<td>Date:</td>
<td>2019-01-18</td>
</tr>
<tr>
<td>Authors@R:</td>
<td>c(person("Federico", "Rotolo", role="aut"), person("Xavier", "Paoletti", role="ctr"), person("Marc", "Buyse", role="ctr"), person("Tomasz", "Burzykowski", role="ctr"), person("Stefan", "Michiels", email="stefan.michiels@gustaveroussy.fr", role="ctr", role="cre"))</td>
</tr>
<tr>
<td>Maintainer:</td>
<td>Stefan Michiels stefan.michiels@gustaveroussy.fr</td>
</tr>
<tr>
<td>Description:</td>
<td>Provides functions for the evaluation of surrogate endpoints when both the surrogate and the true endpoint are failure time variables.</td>
</tr>
<tr>
<td>Depends:</td>
<td>R (>= 2.10), stats, optimx, grDevices</td>
</tr>
<tr>
<td>Imports:</td>
<td>copula, eha, lme4, MASS, Matrix, msm, mvmeta, optextras, parallel, parfm, survival, SurvCorr</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2</td>
</tr>
<tr>
<td>VignetteBuilder:</td>
<td>R.rsp</td>
</tr>
<tr>
<td>Suggests:</td>
<td>R.rsp</td>
</tr>
<tr>
<td>Encoding:</td>
<td>UTF-8</td>
</tr>
</tbody>
</table>
surrosurv-package

Index of help topics:

- **convergence**: Assesses the convergence of fitted models for surrogacy evaluation
- **gastadj**: Individual data from the adjuvant GASTRIC meta-analysis
- **gastadv**: Individual data from the advanced GASTRIC meta-analysis
- **loocv**: Leave-one-trial-out cross-validation for treatment effect prediction
- **poissonize**: Transform survival data for fitting a Poisson model
- **simData.re**: Generate survival times for two endpoints in a meta-analysis of randomized trials
- **ste**: Surrogate threshold effect
- **surroSurv**: Fit and print the models for evaluating the surrogacy strength of a candidate surrogate endpoint
- **surrosurv-package**: Evaluation of Failure Time Surrogate Endpoints in Individual Patient Data Meta-Analyses

Author(s)

Federico Rotolo [aut], Xavier Paoletti [ctr], Marc Buyse [ctr], Tomasz Burzykowski [ctr], Stefan Michiels [ctr, cre]

Maintainer: Stefan Michiels <stefan.michiels@gustaveroussy.fr>

References

See Also

Surrogate, mvmeta
convergence

Assesses the convergence of fitted models for surrogacy evaluation

Description

This function evaluates whether the fitted models for evaluating the surrogacy of a candidate end-point have converged. Convergence is assessed by checking whether the maximum gradient is small enough, and whether the Hessian matrix and the variance-covariance matrix of random treatment effects are positive definite.

Usage

```r
## S3 method for class 'surrosurv'
convals(x, ...)
## S3 method for class 'surrosurv'
convergence(x, kkttol = 1e-2, kkt2tol = 1e-8, ...)
```

Arguments

- `x` The fitted models, an object of class `surrosurv`.
- `kkttol` The tolerance threshold for the assessing whether the maximum (absolute) scaled gradient is small enough.
- `kkt2tol` The tolerance threshold for checking whether the Hessian matrix and the variance-covariance matrix of random treatment effects are positive definite. The threshold is for the minimum of the eigenvalues.
- `...` Further parameters (not implemented)

Value

The function `convals()` returns a matrix with one row per model and three columns, reporting the values of the maximum scaled gradient (`maxSgrad`), of the minimum eigenvalue of the Hessian matrix (`minHev`), and of the minimum eigenvalue of the estimated variance-covariance matrix of random treatment effects (`minREev`). The function `convergence()` returns a matrix with the same structure as `convals()`, with TRUE/FALSE values for the test of the results of `convals()` against the given thresholds `kkttol` and `kkt2tol`.

Author(s)

Federico Rotolo [aut], Xavier Paoletti [ctr], Marc Buyse [ctr], Tomasz Burzykowski [ctr], Stefan Michiels [ctr, cre]
Description

The gastadj dataset contains individual data (overall and disease-free survival) of 3288 patients with resectable gastric cancer from 14 randomized trials of adjuvant chemotherapy.

Usage

data(gastadj)

Format

A dataframe with variables:

- **timeT**: Overall survival time (days).
- **statusT**: Overall survival indicator (0=censored, 1=death).
- **timeS**: Disease-free survival time (days).
- **statusS**: Disease-free survival indicator (0=censored, 1=progression on death).
- **trialref**: Trial indicator
- **trt**: Treatment arm (-0.5 = control, 0.5=chemotherapy).
- **id**: Patient identifier.

Source

The authors thank the GASTRIC (Global Advanced/Adjuvant Stomach Tumor Research International Collaboration) Group for permission to use their data. The investigators who contributed to GASTRIC are listed in Oba et al (2013) and GASTRIC (2010). The GASTRIC Group data are available within the surrosurv package for research purposes, under the conditions that (1) the research be scientifically appropriate, (2) the confidentiality of individual patient data be protected, (3) the results of the analyses be shared with the GASTRIC Group prior to public communication, (4) the source of data be fully acknowledged as above, and (5) resulting data and results be further shared with the research community.

References

Examples

```r
## Not run:
data('gastadj')
allSurroRes <- surrosurv(gastadj, c('Clayton', 'PoissonT1a'), verbose = TRUE)
convergence(allSurroRes)
allSurroRes
predict(allSurroRes)
plot(allSurroRes)
```

End(Not run)

gastadv

Individual data from the advanced GASTRIC meta-analysis

Description

The gastadv dataset contains individual data (overall and progression-free survival) of 4069 patients with advanced/recurrent gastric cancer from 20 randomized trials of chemotherapy.

Usage

```r
data(gastadv)
```

Format

A dataframe with variables:

- **timeT**: Overall survival time (days).
- **statusT**: Overall survival indicator (0=censored, 1=death).
- **timeS**: Progression-free survival time (days).
- **statusS**: Progression-free survival indicator (0=censored, 1=progression on death).
- **trialref**: Trial indicator
- **trt**: Treatment arm (-0.5 = control, 0.5=chemotherapy).
- **id**: Patient identifier.

Source

The authors thank the GASTRIC (Global Advanced/Adjuvant Stomach Tumor Research International Collaboration) Group for permission to use their data. The investigators who contributed to GASTRIC are listed in Paoletti et al (2013) and GASTRIC (2013). The GASTRIC Group data are available within the surrosurv package for research purposes, under the conditions that (1) the research be scientifically appropriate, (2) the confidentiality of individual patient data be protected, (3) the results of the analyses be shared with the GASTRIC Group prior to public communication, (4) the source of data be fully acknowledged as above, and (5) resulting data and results be further shared with the research community.
References

Examples

```r
## Not run:
data('gastadv')
allSurroRes <- surrosurv(gastadv, c('Clayton', 'PoissonT1a'), verbose = TRUE)
convergence(allSurroRes)
allSurroRes
predict(allSurroRes)
plot(allSurroRes)

## End(Not run)
```

loocv

Leave-one-trial-out cross-validation for treatment effect prediction

Description

The function `loocv()` computed leave-one-out prediction of the treatment effect on the true endpoint for each trial, based on the observed effect on the surrogate endpoint in the trial itself and based on the meta-analytic model fitted on the remaining trials (Michiels et al, 2009).

Usage

```r
## S3 method for class 'surrosurv'
loocv(object, models, nCores, parallel = TRUE, ...)

## S3 method for class 'loocvSurrosurv'
print(x, n = min(length(x), 6), silent = FALSE, ...)

## S3 method for class 'loocvSurrosurv'
plot(x, models, exact.models, plot.type = c('classic', 'regression'),
     main, ylab, xlab, ...)```
Arguments

object Either an object of class `surrosurv` with an attribute `data` of class `data.frame` or a `data.frame` with columns
- `trialref`, the trial reference
- `trt`, the treatment arm (-0.5 or 0.5)
- `id`, the patient id
- `timeT`, the value of the true endpoint T
- `statusT`, the censoring/event (0/1) indicator of the true endpoint T
- `timeS`, the value of the surrogate endpoint S
- `statusS`, the censoring/event (0/1) indicator of the surrogate endpoint S

nCores The number of cores for parallel computing

parallel Should results be computed using parallelization?

models, exact.models Which models should be fitted (see `surrosurv`). By default, the same models fitted in object (or x).

x The fitted models, an object of class `surrosurv`

n the number of rows to print

silent Should the results be return for storing without printing them?

plot.type The type of x-scale for the loocv plot: either the trial number (`classic`) or the log-HR on the surrogate endpoint (`regression`).

main, ylab, xlab, ... Further parameters to be passed to `surrosurv` (for loocv) or to the generics `print()` and `plot()`

Value

An object of class `loocvSurrosurv` containing, for each trial:

margPars the observed treatment effects on the surrogate endpoint (alpha) and on the true endpoint (beta)

... for each method in models the predicted value and prediction interval for beta.

Author(s)

Federico Rotolo [aut], Xavier Paoletti [ctr], Marc Buyse [ctr], Tomasz Burzykowski [ctr], Stefan Michiels [ctr, cre]

References

poissonize

Examples

# Possibly long computation time!
data('gastadv')
cvRes <- loocv(gastadv)
cvRes
plot(cvRes)

Description

This function transforms survival data into a format compatible with the `glm()` function for fitting an auxiliary Poisson model, providing the parameter estimates of the associated proportional hazard model.

Usage

```r
poissonize(data,
 all.breaks = NULL, interval.width = NULL, nInts = 8,
 factors = NULL, compress = TRUE)
plotsson(x, type = c('survival', 'hazard'),
 add = FALSE, xscale = 1, by, col, ...)
```

Arguments

data a data frame with columns:
  - id: the patient identifier
  - time: the event/censoring time
  - status: the event(1) or censoring(0) indicator
  - ...: other factors such like the covariables needed in the regression model

all.breaks the breakpoints between time intervals

interval.width the width of the time intervals on which the risks will be assumed constant, in case of intervals of the same length. This parameter is ignored if all.breaks is specified

nInts the number of intervals containing the same expected number of events (used only if is.null(interval.width), see Details). This parameter is ignored if either all.breaks or interval.width is specified

factors a vector of characters, containing the names of the factors to be kept in the transformed data set

compress a logical, indicating whether the record with the same factor profile should be summarized into one record, i.e. whether the data should be expressed in a short form
The fitted Poisson model on the poissonized data

The type of plot, either 'haz' for the hazard function or 'Surv', for the survival curve

Should the plot added to the active device?

The scaling factor for the time (x) axis

The covariate for which a different curve per level has to be plotted

Other graphical parameters

Details

If `interval.width` is not null, the study period is divided into equal-length intervals of length `interval.width`. Otherwise, `nInts` intervals are used, and the location of their bounds is computed based on the empirical quantiles of the survival function.

Note

This code is hugely inspired by original code made publicly available by Stephanie Kovalchik [web link]

Author(s)

Federico Rotolo [aut], Xavier Paoletti [ctr], Marc Buyse [ctr], Tomasz Burzykowski [ctr], Stefan Michiels [ctr, cre]

References


Examples

```r
Example 1 - KIDNEY data
library(survival)
data(kidney)
kidney <- kidney[1:(nrow(kidney)/2)*2,]
head(kidney)

par(mfrow=c(1, 3))
for (int in c(50, 20, 10)) {
 head(wdata1 <- poissonize(kidney, interval.width = int,
 factors = c('disease'), compress = FALSE))
 head(wdata2 <- poissonize(kidney, interval.width = int,
 factors = c('disease'), compress = TRUE))
}
fitcox <- coxph(Surv(time, status) ~ disease, data = kidney)
fitpoi1 <- glm(event ~ -1 + interval + disease + offset(log(time)),
 data = wdata1, family = 'poisson')
fitpoi2 <- glm(m ~ -1 + interval + offset(log(Rt)) + disease,
 data = wdata2, family = 'poisson')
cox.base <- basehaz(fitcox, centered = FALSE)
plot(stepfun(cox.base$time[-nrow(cox.base)],
 exp(-cox.base$hazard)), ylim = 0:1, xlim = c(0, max(cox.base$time)),
dom.points = FALSE, verticals = FALSE, xaxs = 'i',
main = paste0('KIDNEY data set
Interval width = ', int),
xlab = 'Time', ylab = 'Survival probability')
plotsson(fitpoi1, 'Surv', add = TRUE, col = 2, lty = 2)
plotsson(fitpoi2, 'Surv', add = TRUE, col = 3, lty = 3)
legend('topright', col = 1:3, lty = 1:3,
legend = c('Breslow (Cox)', 'Poisson',
'Poisson (compressed dataset)'))
}
print(cbind(Cox = coef(fitcox),
 Poisson = rev(rev(coef(fitpoi1))[1:3]),
 Poisson_Compressed = rev(rev(coef(fitpoi2))[1:3]),
 digits = 2)

Example 2 - COLON data
library(survival)
data(colon)
head(wdata1 <- poissonize(subset(colon, etype == 1),
 interval.width = 365.25,
 factors=c('surg', 'sex', 'age'),
 compress = FALSE))
head(wdata2 <- poissonize(subset(colon, etype == 1),
 interval.width = 365.25,
 factors=c('surg', 'sex', 'age'),
 compress = TRUE))

fitcox <- coxph(Surv(time, status) ~ surg + sex + age,
 data = subset(colon, etype == 1))

system.time(
 fitpoi1 <- glm(event ~ -1 + interval + surg + sex + age + offset(log(time)),
 data = wdata1, fam = 'poisson')
})

system.time(
 fitpoi2 <- glm(m ~ -1 + interval + offset(log(Rt)) + surg + sex + age,
 data = wdata2, family = 'poisson')
})
{
 cox.base <- basehaz(fitcox, centered = FALSE)
 par(mfrow = c(1, 1))
 plot(stepfun(cox.base$time[-nrow(cox.base)],
 exp(-cox.base$hazard)), ylim = 0:1, xlim = c(0, max(cox.base$time)),
dom.points = FALSE, verticals = FALSE, xaxs = 'i',
main = 'COLON data set', xlab = 'Time', ylab = 'Survival probability')
 plotsson(fitpoi1, 'Surv', add = TRUE, col = 2, lty = 2)
 plotsson(fitpoi2, 'Surv', add = TRUE, col = 3, lty = 3)
simData

legend('topright', col = 1:3, lty = 1:3,
 legend = c('Cox', 'Poisson', 'Poisson (compressed dataset')
)
print(cbind(Cox = coef(fitcox),
 Poisson = rev(rev(coef(fitpoil))[1:3]),
 Poisson_Compressed = rev(rev(coef(fitpoil2))[1:3])), digits = 2)

library(survival)
data(lung)
lung$status <- lung$status - 1
lung$id <- 1:nrow(lung)
head(wdata1 <- poissonize(lung, interval.width = 365.25/12,
 factors = c('pat.karno', 'sex', 'age'),
 compress = FALSE))
head(wdata2 <- poissonize(lung, interval.width = 365.25/12,
 factors = c('pat.karno', 'sex', 'age'),
 compress = TRUE))

fitcox <- coxph(Surv(time, status) ~ pat.karno + sex + age, data = lung)

system.time(
 fitpoil <- glm(event ~ -1 + interval + pat.karno + sex + age +
 offset(log(time)),
 data = wdata1, family = 'poisson')
)

system.time(
 fitpoil2 <- glm(m ~ -1 + interval + pat.karno + sex + age + offset(log(Rt)),
 data = wdata2, family = 'poisson')
)

{
 cox.base <- basehaz(fitcox, centered = FALSE)
 plot(stepfun(cox.base$time[-nrow(cox.base)], exp(-cox.base$hazard)),
 ylim = 0:1, xlim = c(0, max(cox.base$time)),
 do.points = FALSE, verticals = FALSE, xaxs = 'i',
 main = 'LUNG data set', xlab = 'Time', ylab = 'Survival probability')
 plotsso(fitpoil1, 'Surv', add = TRUE, col = 2, lty = 2)
 plotsso(fitpoil2, 'Surv', add = TRUE, col = 3, lty = 3)
 legend('topright', col = 1:3, lty = 1:3,
 legend = c('Cox', 'Poisson', 'Poisson (compressed dataset'))
 }
print(cbind(Cox = coef(fitcox),
 Poisson = rev(rev(coef(fitpoil)))[1:3]),
 Poisson_Compressed = rev(rev(coef(fitpoil2)))[1:3]), digits = 2)
Generate survival times for two endpoints in a meta-analysis of randomized trials

Description

Data are generated from a mixed proportional hazard model, a Clayton copula model (Burzykowski and Cortinas Abrahantes, 2005), a Gumbel-Hougaard copula model, or a mixture of half-normal and exponential random variables (Shi et al., 2011).

Usage

```
simData.re(R2 = 0.6, N = 30, ni = 200,
            nifix = TRUE, gammaWei = c(1, 1), censorT, censorA,
            kTau= 0.6, baseCorr = 0.5, baseVars = c(0.2, 0.2),
            alpha = 0, beta = 0,
            alphaVar = 0.1, betaVar = 0.1,
            mstS = 4 * 365.25, mstT = 8 * 365.25)
```

```
simData.cc(R2 = 0.6, N = 30, ni = 200,
            nifix = TRUE, gammaWei = c(1, 1), censorT, censorA,
            kTau= 0.6, baseCorr = 0.5, baseVars = c(0.2, 0.2),
            alpha = 0, beta = 0,
            alphaVar = 0.1, betaVar = 0.1,
            mstS = 4 * 365.25, mstT = 8 * 365.25)
```

```
simData.gh(R2 = 0.6, N = 30, ni = 200,
            nifix = TRUE, gammaWei = c(1, 1), censorT, censorA,
            kTau= 0.6, baseCorr = 0.5, baseVars = c(0.2, 0.2),
            alpha = 0, beta = 0,
            alphaVar = 0.1, betaVar = 0.1,
            mstS = 4 * 365.25, mstT = 8 * 365.25)
```

```
simData.mx(R2 = 0.6, N = 30, ni = 200,
            nifix = TRUE, gammaWei = c(1, 1), censorT, censorA,
            indCorr = TRUE, baseCorr = 0.5, baseVars = c(0.2, 0.2),
            alpha = 0, beta = 0,
            alphaVar = 0.1, betaVar = 0.1,
            mstS = 4 * 365.25, mstT = 8 * 365.25)
```

Arguments

- **R2** The desired trial-level surrogacy R^2
- **N** The number of trials
- **ni** The (fixed or average) number of patients per trial
- **nifix** Should all trials have the same size (if nifix = TRUE) or should the $N \times ni$ patients be randomly assigned to trials with random probabilities (if nifix = FALSE)?
The shape parameter(s) of the Weibull distributions. Either one or two values. If one value is provided, it is used for both endpoints.

censorT: censoring rate for the true endpoint T (before adding administrative censoring)
censorA: administrative censoring at time censorA

kTau: The desired individual-level dependence between S and T (Kendall’s tau)

indCorr: Should S and T be correlated or not? (for .mx method)

baseCorr: correlation between baseline hazards ($\rho_{basehaz}$)

baseVars: variances of baseline random effects (S and T)

alpha: average treatment effect on S

beta: average treatment effect on T

alphaVar: variance of $a_i (\theta^2_a)$

betaVar: variance of $b_i (\theta^2_b)$

mstS: median survival time for S in the control arm

mstT: median survival time for T in the control arm

Details

The function `simData.re` generates data from a proportional hazard model with random effects at individual level and random effects and random treatment effects at trial level. Individual dependence can be tuned in terms of Kendall’s tau (k_Tau).

The function `simData.cc` generates data from a Copula function as shown by Burzykowski and Cortinas Abrahantes (2005). Individual dependence can be tuned in terms of Kendall’s tau (k_Tau).

The function `simData.mx` implements the simulation method by Shi et al. (2011). This model is based on a mixture of half-normal and exponential random variables. Under this model, individual dependence can be induced by using the same half-normal random variable for S and T. This is obtained by setting `indCorr = TRUE`, but the amount of correlation is not dependent on a single parameter.

Value

A data.frame with columns

- `trialref`: the trial reference
- `trt`: the treatment arm (-0.5 or 0.5)
- `id`: the patient id
- `timeT`: the value of the true endpoint T
- `statusT`: the censoring/event (0/1) indicator of the true endpoint T
- `timeS`: the value of the surrogate endpoint S
- `statusS`: the censoring/event (0/1) indicator of the surrogate endpoint S

Author(s)

Federico Rotolo [aut], Xavier Paoletti [ctr], Marc Buyse [ctr], Tomasz Burzykowski [ctr], Stefan Michiels [ctr, cre]
References

Examples

```r
set.seed(1)
simData.re(N = 2, ni = 5)
simData.cc(N = 2, ni = 5)
simData.mx(N = 2, ni = 5)
```

ste Surrogate threshold effect

Description

The function `ste()` computes the surrogate threshold effect (STE) of a.

Usage

```r
ste(x, models = names(x), exact.models)
## S3 method for class 'steSurrosurv'
print(x, digits = 2, ...)
```

Arguments

- `x` The fitted models, an object of class `surrosurv`
- `models`, `exact.models` Which models should be fitted (see `surrosurv()`)
- `digits` the number of digits
- `...` Further parameters to be passed to the generic `print()` function

Value

An object of class `steSurrosurv` containing, for each trial:
Author(s)
Federico Rotolo [aut], Xavier Paoletti [ctr], Marc Buyse [ctr], Tomasz Burzykowski [ctr], Stefan Michiels [ctr, cre]

References

Examples

```r
# Possibly long computation time!
data('gastadv')
mod <- surrosurv(gastadv, 'Clayton')
ste(mod)
```

__surrosurv__

Fit and print the models for evaluating the surrogacy strength of a candidate surrogate endpoint

Description
The function `surrosurv` fits (all or a subset of) statistical models to evaluate a surrogate endpoint S for a given true endpoint T, using individual data from a meta-analysis of randomized controlled trials.

Usage
```
surrosurv(data, 
    models = c('Clayton', 'Plackett', 'Hougaard', 'Poisson I', 'Poisson T', 'Poisson TI', 'Poisson T1a'), 
    intWidth = NULL, nInts = 8, 
    cop.OPTIMIZER = "bobyqa", 
    poi.OPTIMIZER = "bobyqa", 
    verbose = TRUE, 
    twoStage = FALSE, 
    keep.data = TRUE)
```

```r
## S3 method for class 'surrosurv'
predict(object, models = names(object), exact.models, ...)
```

```r
## S3 method for class 'surrosurv'
print(x, silent = FALSE, 
    digits = 2, na.print = "-.-", ...)
```
S3 method for class 'predictSurrosurv'

print(x, n = 6, ...)

S3 method for class 'surrosurv'

plot(x, ...)

S3 method for class 'predictSurrosurv'

plot(x, models = names(x), exact.models,
 pred.ints = TRUE,
 show.ste = TRUE,
 surro.stats = TRUE,
 xlab, ylab,
 xlim, ylim, mfrow, main, ...)

Arguments

- **data**
 A data.frame with columns
 - `trialref`, the trial reference
 - `trt`, the treatment arm (-0.5 or 0.5)
 - `id`, the patient id
 - `timeT`, the value of the true endpoint T
 - `statusT`, the censoring/event (0/1) indicator of the true endpoint T
 - `timeS`, the value of the surrogate endpoint S
 - `statusS`, the censoring/event (0/1) indicator of the surrogate endpoint S

- **models**
 For `surrosurv()`, the models should be fitted/plotted/predicted. Possible models are: Clayton copula (unadjusted and adjusted), Plackett copula (unadjusted and adjusted), Hougaard copula (unadjusted and adjusted), Poisson (with individual-level heterogeneity only, with trial-level heterogeneity only, with both individual- and trial-level heterogeneity, with both individual- and trial-level heterogeneity and with random per-trial intercept).

- **exact.models**
 If `TRUE`, plots or predictions are generated only for the elements of `x` which match exactly any of `models`. If `exact.models = TRUE`, partial matching is used. By default, `exact.models = TRUE` if all the `models` match exactly any of the `names(x)` (or `names(object)`) and `exact.models = FALSE` otherwise.

- **intWidth**
 the width of time intervals for data Poissonization (see `poissonize`)

- **nInts**
 the number of time intervals for data Poissonization (see `poissonize`)

- **cop.OPTIMIZER**
 the optimizer for copula models (see `optimx`)

- **poi.OPTIMIZER**
 the optimizer for Poisson models (see `optimx`)

- **verbose**
 should the function print out the model being fitted

- **twoStage**
 should the parameters of the baseline hazard functions fixed to their marginal estimates (Shih and Louis, 1995)

- **keep.data**
 should the data object be kept as attribute of the returned results? (this is needed for `confint.surrosurv()`)

- **x, object**
 The fitted models, an object of class `surrosurv`
silent

digits, na.print, xlab, ylab, xlim, ylim, main, ...

other parameters for print or plot

mfrow

the number of rows and columns for displaying the plots (see par). If missing, the default is computed using the function n2mfrow

n

the number of rows to print

pred.ints

Should the prediction intervals be plotted?

show.ste

Should the surrogate threshold effect be showed?

surro.stats

Should the surrogacy statistics be showed?

Details

Three copula models can be fit: Clayton (1978), Plackett (1965), and Hougaard (1986). For all of them the linear regression at the second step is computed both via simple LS regression and via a linear model adjusted for measurement error of the log-hazard ratios estimated at the first step. This adjusted model is the one described by Burzykowski et al. (2001), which relies on the results by van Houwelingen et al. (2002).

The mixed Poisson models that can be fit are used to estimate parameters of mixed proportional hazard models, as described for instance by Crowther et al (2014). The statistical details are provided in Rotolo et al (2019).

The function predict() returns the estimated values of the log-hazard ratios on the true and the surrogate endpoints. The list of the prediction functions (for all the models) is available as attr(predict.surrosurv(...), ’predf’).

Value

The fitted models, an object of class surrosurv.

Author(s)

Federico Rotolo [aut], Xavier Paoletti [ctr], Marc Buyse [ctr], Tomasz Burzykowski [ctr], Stefan Michiels [ctr, cre]

References

Examples

```r
set.seed(150)
data <- simData.re(N = 20, ni = 250,
    R2 = 0.8, kTau = 0.4,
    alpha = log(0.95), beta = log(0.85),
    censorA = 15 * 365.25)
library(survival)
par(mfrow = 1:2)
plot(survfit(Surv(timeS, statusS) ~ trt, data = data), lty = 1:2, 
    xscale = 365.25, main = 'Progression-Free Survival\(\ln(S)\)', col = 2)
plot(survfit(Surv(timeT, statusT) ~ trt, data = data), lty = 1:2, 
    xscale = 365.25, main = 'Overall Survival\(\ln(T)\)')

# Long computation time!
surrores <- surrosurv(data, verbose = TRUE)
convergence(surrores)
surrores

# Advanced GASTRIC data

data('gastadv')
allSurroRes <- surrosurv(gastadv, c('Clayton', 'Poisson'), verbose = TRUE)
convergence(allSurroRes)
allSurroRes
predict(allSurroRes)
plot(allSurroRes)
```
Index

*Topic **Clayton**
surrosurv, 16
surrosurv-package, 2

*Topic **Hougaard**
surrosurv, 16
surrosurv-package, 2

*Topic **KKT**
convergence, 4

*Topic **Kuhn–Karush–Tucker conditions**
convergence, 4

*Topic **Plackett**
surrosurv, 16
surrosurv-package, 2

*Topic **Poisson**
poissonize, 9
surrosurv, 16
surrosurv-package, 2

*Topic **Survival data**
poissonize, 9

*Topic **textasciitildekwd1**
simData, 13

*Topic **textasciitildekwd2**
simData, 13

*Topic **adjvant**
gastadj, 5

*Topic **advanced**
gastadv, 6

*Topic **cancer**
gastadj, 5
gastadv, 6

*Topic **convergence**
convergence, 4

*Topic **copula**
surrosurv, 16
surrosurv-package, 2

*Topic **cross-validation**
loocv, 7

*Topic **datasets**
gastadj, 5
gastadv, 6

*Topic **gastadj**
gastadj, 5

*Topic **gastadv**
gastadv, 6

*Topic **gastric**
gastadj, 5
gastadv, 6

*Topic **generalized linear mixed model**
surrosurv, 16
surrosurv-package, 2

*Topic **leave-one-out**
loocv, 7

*Topic **meta-analysis**
surrosurv, 16
surrosurv-package, 2

*Topic **proportional hazard model**
surrosurv, 16
surrosurv-package, 2

*Topic **randomized controlled trial**
surrosurv, 16
surrosurv-package, 2

*Topic **ste**
ste, 15

*Topic **surrogate endpoint**
surrosurv, 16
surrosurv-package, 2

*Topic **surrogate threshold effect**
ste, 15

*Topic **surrogate**
gastadj, 5
gastadv, 6

*Topic **survival**
surrosurv, 16
surrosurv-package, 2

convals (convergence), 4
convergence, 4
INDEX

data.frame, 8, 14, 17

gastadj, 5
gastadv, 6
glm, 9
g graphical parameters, 10

loocv, 7

n2mfrow, 18

optimx, 17

par, 18

plot, 18

plot.loocvSurrosurv(loocv), 7

plot.predictSurrosurv(surrosurv), 16

plot.surrosurv(surrosurv), 16

plotsson(poissonize), 9

poissonize, 9, 17

predict.surrosurv(surrosurv), 16

print, 18

print.loocvSurrosurv(loocv), 7

print.predictSurrosurv(surrosurv), 16

print.steSurrosurv(ste), 15

print.surrosurv(surrosurv), 16

simData, 12

ste, 15

surrosurv, 4, 8, 15, 16, 17, 18

surrosurv-package, 2