Package ‘surveyplanning’

October 26, 2017

Type Package
Title Survey Planning Tools
Version 2.9
Date 2017-10-26
Depends R (>= 3.0.0), data.table (>= 1.10.4), stats, laeken
Maintainer Juris Breidaks <rcsb@csb.gov.lv>
Description Tools for sample survey planning, including sample size calculation, estimation of expected precision for the estimates of totals, and calculation of optimal sample size allocation.
License GPL (>= 2)
Encoding latin1
Repository CRAN
URL https://csblatvia.github.io/surveyplanning/
BugReports https://github.com/CSBLatvia/surveyplanning/issues/
NeedsCompilation yes
Author Juris Breidaks [aut, cre],
 Martins Liberts [aut],
 Janis Jukams [aut]
Date/Publication 2017-10-26 20:52:14 UTC

R topics documented:
surveyplanning-package .. 2
dom_optimal_allocation ... 2
dom_optimal_allocation ... 2
depsize .. 6
depvar ... 7
dep_min_count .. 10
dep_min_prop ... 11
MoE_P ... 12
MoE_Y ... 13
optsize ... 14
prop_dom_optimal_allocation 15
s2 ... 17
Survey Planning Tools

Description

Tools for sample survey planning, including sample size calculation, estimation of expected precision for the estimates of totals, and calculation of optimal sample size allocation.

Details

Package: surveyplanning
Version: 2.9
Date: 2017-10-26
Depends: R (>= 3.0.0), data.table (>= 1.10.4), stats, laeken
License: GPL (>= 2)
URL: https://github.com/CSBLatvia/surveyplanning/
BugReports: https://github.com/CSBLatvia/surveyplanning/issues/

Index:

- dom_optimal_allocation
- expsize
- expvar
- min_count
- min_prop
- MoE_Y
- MoE_P
- optsize
- s2
- surveyplanning-package

Author(s)

Juris Breidaks [aut, cre], Martins Liberts [aut], Janis Jukams [aut]
Maintainer: Juris Breidaks <rcsb@csb.gov.lv>
The function computes optimal sample size allocation over strata and domain for population.

Usage

```r
dom_optimal_allocation(id, Dom, H, Y, Rh = NULL, deffh = NULL, indicator, sup_w, sup_cv, min_size = 3, correction_before = FALSE, dataset = NULL)
```

Arguments

- **id**: Variable for unit ID codes. One dimensional object convertible to one-column `data.table` or variable name as character, column number.
- **Dom**: Optional variables used to define population domains. If supplied, values are calculated for each domain. An object convertible to `data.table` or variable names as character vector, column numbers.
- **H**: The unit stratum variable. One dimensional object convertible to one-column `data.table` or variable name as character, column number.
- **Y**: Variable of interest. Object convertible to `data.table` or variable names as character, column numbers.
- **Rh**: The expected response rate in each stratum (optional). If not defined, it is assumed to be 1 in each stratum (full-response). Object convertible to one-column `data.table`, variable name as character, or column number.
- **deffh**: The expected design effect for the estimate of variable (optional). If not defined, it is assumed to be 1 for each variable in each stratum. If is defined, then variables is defined the same arrangement as Yh. Object convertible to `data.table`, variable name as character vector, or column numbers.
- **indicator**: Variable for detection fully surveyed units. Object convertible to `data.table` or variable names as character, column numbers.
- **sup_w**: Variable for weight limit in domain of stratum. Object convertible to `data.table` or variable names as character, column numbers.
- **sup_cv**: Variable for maximum coefficient of variation (CV) in percentage for domain. Object convertible to `data.table` or variable names as character, column numbers.
- **correction_before**: by default FALSE; correction of sample size is made before ending, if true, correction of sample size is made at the end.
- **min_size**: A numeric value for sample size.
- **dataset**: Optional survey data object convertible to `data.table` with one row for each stratum.
Value

A list with eights data objects:

- **data**
 An object as `data.table`, with variables:
 - `id` - variable with unit ID codes,
 - `Dom` - optional variables used to define population domains,
 - `H` - the unit stratum variable,
 - `Y` - variable of interest,
 - `Rh` - the expected response rate in each stratum,
 - `deffh` - the expected design effect,
 - `indicator` - variable for full surveys,
 - `sup_w` - variable for weight limit in domain of stratum,
 - `sup_cv` - Variable for maximum coefficient of variation,
 - `poph` - population size,
 - `nh` - sample size.

- **nh_larger_then_Nh**
 An object as `data.table`, with variables:
 - `H` - the stratum variable,
 - `nh` - sample size, `poph` - population size.

- **dom_strata_size**
 An object as `data.table`, with variables:
 - `H` - the unit stratum variable,
 - `Dom` - optional variables used to define population domains,
 - `sup_w` - variable for weight limit in domain of stratum,
 - `poph` - population size,
 - `nh` - sample size,
 - `sample100` - sample size for fully surveyed units,
 - `design_weights` - design weights.

- **dom_size**
 An object as `data.table`, with variables:
 - `Dom` - optional variables used to define population domains,
 - `poph` - population size,
 - `nh` - sample size,
 - `sample100` - sample size for fully surveyed units,
 - `design_weights` - design weights.

- **size**
 An object as `data.table`, with variables:
 - `poph` - population size,
 - `nh` - sample size,
 - `sample100` - sample size for fully surveyed units.

- **dom_strata_expected_precision**
 An object as `data.table`, with variables:
 - `H` - stratum,
 - `variable` - the name of variable of interest,
 - `estim` - total value,
 - `deffh` - the expected design effect,
 - `s2h` - population variance S^2,
 - `nh` - sample size,
 - `Rh` - the expected response rate,
dom_optimal_allocation

deffh - the expected design effect,
poph - population size,
nrh - expected number of respondents,
var - expected variance,
se - expected standard error,
cv - expected coefficient of variance.

dom_expected_precision
An object as data.table, with variables:
Dom - domain,
variable - the name of variable of interest,
poph - the population size,
nh - sample size,
nrh - expected number of respondents,
estim - total value,
var - the expected variance,
se - the expected standard error,
cv - the expected coefficient of variance.

total_expected_precision
An object as data.table, with variables:
variable - the name of variable of interest,
poph - the population size,
nh - sample size,
nrh - expected number of respondents,
estim - total value,
var - the expected variance,
se - the expected standard error,
cv - the expected coefficient of variance.

See Also
expsize, optsize

Examples

data(ses)
data <- data.table(ses)
data[, H := paste(location, NACE1, size, sep = " ")]
data[, id := .I]
data[, full := 0]
data[, sup_cv := 10]
data[, sup_w := 20]
#vars <- dom_optimal_allocation(id = "id", dom = "sex",
H = "H", Y = "earnings",
indicator = "full",
sup_w = "sup_w",
sup_cv = "sup_cv",
min_size = 3,
correction_before = FALSE,
Description

The function computes minimum sample size for each stratum to achieve defined precision (CV) for the estimates of totals in each stratum. The calculation takes into account expected totals, population variance, expected response rate and design effect in each stratum.

Usage

```
expsize(yh, H, s2h, poph, Rh = NULL, deffh = NULL, CVh, dataset = NULL)
```

Arguments

- **Yh**: The expected totals for variables of interest in each stratum. Object convertible to `data.table`, variable names as character vector, or column numbers.
- **H**: The stratum variable. One dimensional object convertible to one-column `data.table`, variable name as character, or column number.
- **s2h**: The expected population variance S^2 for variables of interest in each stratum. Object convertible to `data.table`, variable name as character vector, or column numbers.
- **poph**: Population size in each stratum. One dimensional object convertible to one-column `data.table`, variable name as character, or column number.
- **Rh**: The expected response rate in each stratum (optional). If not defined, it is assumed to be 1 in each stratum (full-response). Object convertible to one-column `data.table`, variable name as character, or column number.
- **deffh**: The expected design effect for the estimates of totals (optional). If not defined, it is assumed to be 1 for each variable in each stratum. Object convertible to `data.table`, variable name as character vector, or column numbers.
- **CVh**: Coefficient of variation (in percentage) to be achieved for each stratum. One dimensional object convertible to one-column `data.table`, variable name as character, or column number.
- **dataset**: Optional survey data object convertible to `data.table` with one row for each stratum.
expvar

Value

A data table is returned by the function, with variables:

- **striatum**, the name of variable of interest,
- **estim** - total value,
- **deffh** - the expected design effect,
- **s2h** - population variance S^2.
- **cvh** - the expected coefficient of variation,
- **rh** - the expected response rate,
- **poph** - population size,
- **nh** - minimal sample size to achieve defined precision (CV).

See Also

expvar, optsize

Examples

data <- data.table(H=1:3, Yh=10*1:3, Yh1=10*4:6,
 s2h=10*runif(3), s2h2=10*runif(3),
 CVh=rep(4.9, 3),
 poph=8*1:3, Rh=rep(1,3),
 deffh=rep(2,3), deffh2=rep(3,3))

size <- expsize(Yh=c("Yh", "Yh1"), H="H",
 s2h=c("s2h", "s2h2"), poph="poph",
 Rh="Rh", deffh=c("deffh", "deffh2"),
 CVh="CVh", dataset = data)

size

expvar

Expected precision for the estimates of totals

Description

The function computes expected precision as variance, standard error, and coefficient of variation for the estimates.

Usage

expvar(Yh, Zh = NULL, H, s2h,
 nh, poph, Rh = NULL,
 deffh = NULL, Dom = NULL,
 dataset = NULL)
Arguments

\(Yh \)
The expected totals for variables of interest in each stratum. Object convertible to \texttt{data.table}, variable names as character vector, or column numbers.

\(Zh \)
Optional variables of denominator for the expected ratio estimation in each stratum. Object convertible to \texttt{data.table}, variable names as character vector, or column numbers.

\(H \)
The stratum variable. One dimensional object convertible to one-column \texttt{data.table}, variable name as character, or column number.

\(s2h \)
The expected population variance \(S^2 \) for variables of interest in each stratum. Variables is defined the same arrangement as \(Yh \). Object convertible to \texttt{data.table}, variable name as character vector, or column numbers.

\(nh \)
Sample size in each stratum. One dimensional object convertible to one-column \texttt{data.table}, variable name as character, or column number.

\(poph \)
Population size in each stratum. One dimensional object convertible to one-column \texttt{data.table}, variable name as character, or column number.

\(Rh \)
The expected response rate in each stratum (optional). If not defined, it is assumed to be 1 in each stratum (full-response). Object convertible to one-column \texttt{data.table}, variable name as character, or column number.

\(deffh \)
The expected design effect for the estimates of totals (optional). If not defined, it is assumed to be 1 for each variable in each stratum. If is defined, then variables is defined the same arrangement as \(Yh \). Object convertible to \texttt{data.table}, variable name as character vector, or column numbers.

\(Dom \)
Optional variables used to define population domains. Only domains as unions of strata can be defined. If supplied, estimated precision is calculated for each domain. An object convertible to \texttt{data.table}, variable names as character vector, or column numbers.

\(dataset \)
Optional survey data object convertible to \texttt{data.table} with one row for each stratum.

Value

A list with three data objects:

\(resultH \)
An object as \texttt{data.table}, with variables:

- \texttt{H} - stratum,
- \texttt{variableY} - the name of variable of interest,
- \texttt{variableZ} - the name of optional variable of denominator for the expected ratio estimation,
- \texttt{estim} - total value,
- \texttt{deffh} - the expected design effect,
- \texttt{s2h} - population variance \(S^2 \),
- \texttt{nh} - sample size,
- \texttt{Rh} - the expected response rate,
- \texttt{poph} - population size,
- \texttt{nrh} - expected number of respondents,
- \texttt{var} - expected variance,
expvar

se - expected standard error,
cv - expected coefficient of variance.

resultDom
An object as data.table, with variables:
Dom - domain,
variableY - the name of variable of interest,
variableZ - the name of optional variable of denominator for the expected ratio estimation,
poph - the population size,
NH - sample size,
Nrh - expected number of respondents,
estim - total value,
var - the expected variance,
se - the expected standard error,
cv - the expected coefficient of variance.

result
An object as data.table, with variables:
variableY - the name of variable of interest,
variableZ - the name of optional variable of denominator for the expected ratio estimation,
poph - the population size,
NH - sample size,
Nrh - expected number of respondents,
estim - total value,
var - the expected variance,
se - the expected standard error,
cv - the expected coefficient of variance.

See Also

expsize, optsize, dom_optimal_allocation

Examples

data <- data.table(H = 1:3,
 Yh = 10 * 1:3, Yh1 = 10 * 4:6,
 s2h = 10 * runif(3), s2h2 = 10 * runif(3),
 nh = rep(4 * 1:3),
 poph = 8 * 1:3,
 Rh = rep(1, 3),
 deffh = rep(2, 3), deffh2 = rep(3, 3),
 dd = c(1, 1, 1))

vars <- expvar(Yh = c("Yh", "Yh1"), H = "H",
 s2h = c("s2h", "s2h2"),
 nh = "nh", poph = "poph",
 Rh = "Rh", deffh = c("deffh", "deffh2"),
 dataset = data)

vars
min_count

Minimal count of respondents for the given relative margin of error

Description

The function computes minimal proportion for the given relative margin of error. The calculation takes into sample size, population size, margin of error, expected response rate and design effect.

Usage

```
min_count(n, pop, RMoE, confidence = .95,
    R = 1, deff_sam = 1, deff_est = 1)
```

Arguments

- `n`: The expected sample size.
- `pop`: Population size.
- `RMoE`: The expected relative margin of error.
- `confidence`: Optional positive value for confidence interval. This variable by default is 0.95.
- `R`: The expected response rate (optional). If not defined, it is assumed to be 1 (full-response).
- `deff_sam`: The expected design effect of sample design for the estimates (optional). If not defined, it is assumed to be 1.
- `deff_est`: The estimated design effect of estimator for the estimates (optional). If not defined, it is assumed to be 1.

Value

The estimate of minimal count of respondents for the given relative margin of error.

See Also

`expvar`, `optsize`, `MoE_P`

Examples

```
min_count(n = 15e3, pop = 2e6, RMoE = 0.1)
```

Not run:

```
min_count(n = c(10e3, 15e3, 20e3), pop = 2e6, 0.1)
```

```
n <- seq(10e3, 30e3, length.out = 11)
# n <- sort(c(n, 22691))
n
```
`min_prop`

```r
RMoE <- seq(.02, .2, length.out = 10)
RMoE
dt <- data.table(n = rep(n, each = length(RMoE)), RMoE = RMoE)
dt[, Y := min_count(n = n, pop = 2.1e6, RMoE = RMoE, R = 1) / 1e3]
dt

## End(Not run)
```

Description

The function computes minimal proportion for the given relative margin of error. The calculation takes into sample size, population size, margin of error, expected response rate and design effect.

Usage

```r
min_prop(n, pop, RMoE, confidence = .95,
          R = 1, deff_sam = 1, deff_est = 1)
```

Arguments

- `n`: The expected sample size.
- `pop`: Population size.
- `RMoE`: The expected relative margin of error.
- `confidence`: Optional positive value for confidence interval. This variable by default is 0.95.
- `R`: The expected response rate (optional). If not defined, it is assumed to be 1 (full-response).
- `deff_sam`: The expected design effect of sample design for the estimates (optional). If not defined, it is assumed to be 1.
- `deff_est`: The estimated design effect of estimator for the estimates (optional). If not defined, it is assumed to be 1.

Value

The estimate of minimal proportion for the given relative margin of error.

See Also

`expvar`, `optsize`, `MoE_P`

Examples

```r
min_prop(n = 100, pop = 1000, RMoE = 0.1)
```
MoE_P

Margin of error for proportion

Description

The function computes margin of error for proportion. The calculation takes into proportion, expected response rate and design effect.

Usage

\[\text{MoE}_P(P = 0.5, n, \text{pop}, \text{confidence} = 0.95, R = 1, \text{deff}_\text{sam} = 1, \text{deff}_\text{est} = 1) \]

Arguments

- \(p \)
The expected proportion for variable of interest.
- \(n \)
The expected sample size.
- \(\text{pop} \)
Population size.
- \(\text{confidence} \)
Optional positive value for confidence interval. This variable by default is 0.95.
- \(R \)
The expected response rate (optional). If not defined, it is assumed to be 1 (full-response).
- \(\text{deff}_\text{sam} \)
The expected design effect of sample design for the estimates (optional). If not defined, it is assumed to be 1.
- \(\text{deff}_\text{est} \)
The estimated design effect of estimator for the estimates (optional). If not defined, it is assumed to be 1.

Value

The estimate of margin of error for proportion.

See Also

expvar, optsize, MoE_Y

Examples

```r
n <- 100
pop <- 1000
MoE_P(P = 0.5, n = n, pop = pop)

DT <- data.table(P = seq(0, 1, 0.01))
DT[, Y := round(pop * P)]
DT[, AMoE := MoE_P(P, n = 100, pop = 1000)]
DT[Y > 0, RMoE := AMoE / Y]
DT
```
MoE_Y

Margin of error for count

Description

The function computes margin of error for count. The calculation takes into proportion, expected response rate and design effect.

Usage

```r
MoE_Y(p = 0.5, n, pop, confidence = .95, 
   R = 1, deff_sam = 1, deff_est = 1)
```

Arguments

- `p`: The expected proportion for variable of interest.
- `n`: The expected sample size.
- `pop`: Population size.
- `confidence`: Optional positive value for confidence interval. This variable by default is 0.95.
- `R`: The expected response rate (optional). If not defined, it is assumed to be 1 (full-response).
- `deff_sam`: The expected design effect of sample design for the estimates (optional). If not defined, it is assumed to be 1.
- `deff_est`: The estimated design effect of estimator for the estimates (optional). If not defined, it is assumed to be 1.

Value

The estimate of margin of error for count.

See Also

expvar, optsize, MoE_P

Examples

```r
n <- 100
pop <- 1000

MoE_Y(p = 0.5, n = n, pop = pop)

DT <- data.table(P = seq(0, 1, 0.01))
DT[, Y := round(pop * P)]
DT[, AMoE := MoE_Y(P, n = 100, pop = 1000)]
DT[Y > 0, RMoE := AMoE / Y]
DT
```
optsize

Optimal sample size allocation

Description

The function computes optimal sample size allocation over strata.

Usage

optsize(H, n, poph,
 s2h = NULL,
 Rh = NULL,
 deffh = NULL,
 fullsampleh = NULL,
 dataset = NULL)

Arguments

H
The stratum variable. One dimensional object convertible to one-column data.table, variable name as character, or column number.

n
Total sample size. One dimensional object with length one.

poph
Population size in each stratum. One dimensional object convertible to one-column data.table, variable name as character, or column number.

s2h
The expected population variance \(S^2 \) for variables of interest in each stratum (optional). If not defined, it is assumed to be 1 in each stratum. Object convertible to data.table, variable name as character vector, or column numbers.

Rh
The expected response rate in each stratum (optional). If not defined, it is assumed to be 1 in each stratum (full-response). Object convertible to one-column data.table, variable name as character vector, or column numbers.

deffh
The expected design effect for the estimate of variable (optional). If not defined, it is assumed to be 1 for each variable in each stratum. If is defined, then variables is defined the same arrangement as yh. Object convertible to data.table, variable name as character vector, or column numbers.

fullsampleh
Variable for detection fully surveyed stratum (optional). If not defined, it is assumed to be 1 in each stratum (full-response). Object convertible to one-column data.table, variable name as character, or column number.

dataset
Optional survey data object convertible to data.table with one row for each stratum.

Details

If s2h and Rh is not defined, the sample allocation will be calculated as proportional allocation (proportional to the population size).

If Rh is not defined, the sample allocation will be calculated as Neyman allocation.
prop_dom_optimal_allocation

Value

An object as data.table, with variables:
- H - stratum,
- variable - the name of variable for population variance S^2,
- s2h - population variance S^2,
- Rh - the expected response rate,
- deffh - the expected design effect,
- poph - population size,
- deffh - design effect,
- fullsampleh - full sample indicator,
- rh - sample size.

See Also

expsize, dom_optimal_allocation

Examples

data <- data.table(H = 1:3,
 s2h = 10 * runif(3),
 s2h2 = 10 * runif(3),
 poph = 8 * 1:3,
 Rh = rep(1, 3),
 dd = c(1, 1, 1))

vars <- optsize(H = "H",
 s2h = c("s2h", "s2h2"),
 n = 10, poph = "poph",
 Rh = "Rh",
 fullsample = NULL,
 dataset = data)

vars

prop_dom_optimal_allocation

Optimal sample size allocation for proportion

Description

The function computes optimal sample size allocation over strata and domain for proportion.

Usage

prop_dom_optimal_allocation(H, Dom, pop,
 R, deff,
 se_max = 0.5,
 prop = 0.5,
Arguments

H
The stratum variable. One dimensional object convertible to one-column data.table or variable name as character, column number.

Dom
Variables used to define population domains. An object convertible to data.table or variable names as character vector, column numbers.

pop
The population size in each stratum.

R
The expected response rate in each stratum (optional). If not defined, it is assumed to be 1 in each stratum (full-response). Object convertible to one-column data.table, variable name as character, or column number.

deff
The expected design effect for the estimate of variable (optional). If not defined, it is assumed to be 1 for each variable in each stratum. If is defined, then variables is defined the same arrangement as **yh**. Object convertible to data.table, variable name as character vector, or column numbers.

se_max
Variable for maximum standarterror (se) in domain.

prop
The excepted ratio proportion.

min_size
A numeric value for minimal sample size.

step
A value for pace.

unit_level
A logical value, if dataset is prepared for unit level then value TRUE, othercase FALSE.

dataset
Optional agrregated survey data object convertible to data.table with one row for each stratum.

Value

A list with two data objects:

datah
An object as data.table, with variables:
- **H** - the unit stratum variable,
- **Dom** - variables used to define population domains,
- **poph** - the population size in each stratum,
- **Rh** - the expected response rate in each stratum,
- **deffh** - the expected design effect,
- **s2h** - variance in domain of stratum,
- **sup_cv** - Variable for maximum coeficient of variation,
- **poph** - population size,
- **nh** - sample size.

aggr_Dom
An object as data.table, with variables:
- **Dom** - optional variables used to define population domains,
- **pop_Dom** - population size,
- **sample_size_Dom** - optional variables used to define population domains,
s2

sample_size - optional variables used to define population domains,
pop - sample size

See Also

expsize, optsize

Examples

data(eusilc)
eusilc <- data.table(eusilc)
data <- eusilc[, .(poph = sum(db090)), by = c("db040")]
data[, dom := "1"]
res <- prop.dom.optimal_allocation(H = "db040", Dom = "dom",
 pop = "poph", R = NULL,
 deff = NULL, se_max = 0.5,
 prop = 0.5, min_size = 3,
 step = 1, unit_level = FALSE,
 dataset = data)

s2

Population variance

Description

The function to estimate population variance S^2.

Usage

s2(y, w)

Arguments

y

Study variable

w

Survey weight (optional). If not defined, it is assumed to be 1 for each element.

Details

If w is not defined, the result is equal to the result of the function var.

Value

Population variance S^2 or the estimate of population variance s^2.
Examples

s2(1:10)
s2(1:10, rep(1:2, each = 5))
all.equal(s2(1:10), var(1:10))
Index

* Topic **package**
 - surveyplanning-package, 2
* Topic **surveyplanning**
 - dom_optimal_allocation, 2
 - expsize, 6
 - expvar, 7
 - min_count, 10
 - min_prop, 11
 - MoE_P, 12
 - MoE_Y, 13
 - optsize, 14
 - prop_dom_optimal_allocation, 15

 dom_optimal_allocation, 2, 9, 15

 expsize, 5, 6, 9, 15, 17
 expvar, 7, 7, 10–13

 min_count, 10
 min_prop, 11
 MoE_P, 10, 11, 12, 13
 MoE_Y, 12, 13

 optsize, 5, 7, 9–13, 14, 17

 prop_dom_optimal_allocation, 15

 s2, 17

 surveyplanning
 - (surveyplanning-package), 2
 surveyplanning-package, 2