crisk_cat

Modify the Output for Uni-variable and Multi-variable Competing Risk Analysis (Categorical Only)

Description
This function generates a table of competing risk analysis result with number of patients, number of event, number of competing event,

Usage

```r
crisk_cat(
  csurv,  # the duration of follow-up time in months.
  cevent, # the status indicator, which is generally 0 = alive, 1 = event, 2 = other event
  cvars,  # a vector, which has the variable’s values (categorical only)
  gnames, # a text string, which is the name of the variable.
  month = 0, # a number to get the month-rate of competing risk.
  y1 = TRUE, # logical value indicating whether the 1-year competing risk rate should be reported.
  y2 = TRUE, # logical value indicating whether the 2-year competing risk rate should be reported.
  y5 = TRUE # logical value indicating whether the 5-year competing risk rate should be reported.
)
```

Arguments

- `csurv`: the duration of follow-up time in months.
- `cevent`: the status indicator, which is generally 0 = alive, 1 = event, 2 = other event
- `cvars`: a vector, which has the variable’s values (categorical only)
- `gnames`: a text string, which is the name of the variable.
- `month`: a number to get the month-rate of competing risk.
- `y1`: logical value indicating whether the 1-year competing risk rate should be reported.
- `y2`: logical value indicating whether the 2-year competing risk rate should be reported.
- `y5`: logical value indicating whether the 5-year competing risk rate should be reported.

Value

- A tibble of competing risk analysis output.

Examples

```r
Dat <- MASS::Melanoma
Dat$time <- Dat$time/30.5
output <- crisk_cat(Dat$time, Dat$status, Dat$ulcer, "ulcer")
```
crisk_con

Modify the Output for Uni-variable and Multi-variable Competing Risk Analysis (Continuous and Ordinal Only)

Description

This function generates a table of competing risk analysis result with HR (95% Confidence Interval), P value.

Usage

```r
crisk_con(csurv, cevent, cvars, gnames)
```

Arguments

- `csurv`: the duration of follow-up time in months.
- `cevent`: the status indicator, which is generally 0 = alive, 1 = event, 2 = other event
- `cvars`: a matrix, which has the variables’ values (continuous and ordinal only)
- `gnames`: a text vector, which are the names of the variables.

Value

A dataframe containing HRs (with 95% Confidence Intervals) and P values.

Examples

```r
Dat <- MASS::Melanoma
cDat$time <- Dat$time/30.5
X <- cbind(Dat$age, Dat$thickness)
Gnames <- c("Var age", "Var thickness")
output <- crisk_con(Dat$time, Dat$status, X, Gnames)
```

crisk_multi

Modify the Output for a Multi-variable Competing Risk Analysis.

Description

Create a table with the general multi-variable competing risk analysis results, including the HR (95 percent CI), P value.

Usage

```r
crisk_multi(dat, csurv, cevent, convars = NULL, catvars = NULL)
```
Arguments

- `dat`: a data.frame in which to interpret the variables.
- `csurv`: this is the follow up time.
- `cevent`: the status indicator, normally 0=alive, 1=dead.
- `convars`: a vector of con variable names.
- `catvars`: a vector of cat variable names.

Value

a tibble of competing risk analysis output.

Examples

```r
Dat <- MASS::Melanoma
Dat$time <- Dat$time/30.5
con_var <- c("age","thickness")
cat_var <- c("sex","ulcer")
multi_out <- crisk_multi(Dat, "time", "status", catvars = cat_var, convars = con_var)
```

Description

This function generates a table of competing risk analysis result with number of patients, number of event, number of competing event.

Usage

```r
crisk_multiuni(  
    dat,  
    csurv,  
    cevent,  
    catvars = NULL,  
    convars = NULL,  
    ordvars = NULL,  
    y1 = TRUE,  
    y2 = TRUE,  
    y5 = TRUE,  
    month = 0  
)
```
Arguments

- dat: a data.frame in which to interpret the variables.
- csurv: this is the follow up time.
- cevent: the status indicator, normally 0=alive, 1=dead.
- catvars: a vector of cat variable names.
- convars: a vector of con variable names.
- ordvars: a vector of ordinal variable names.
- y1: logical value indicating whether the 1-year competing risk rate should be reported.
- y2: logical value indicating whether the 2-year competing risk rate should be reported.
- y5: logical value indicating whether the 5-year competing risk rate should be reported.
- month: a number to get the month-rate of competing risk.

Value

A tibble of competing risk analysis output.

Examples

```r
Dat <- MASS::Melanoma
Dat$time <- Dat$time/30.5
Dat$ulcer <- as.factor(Dat$ulcer)
con_var <- c("age")
ord_var <- c("ulcer")
cat_var <- c("sex")
uni_out <- crisk_multiuni(Dat, "time", "status", cat_var, con_var, ord_var)
```

Modify the Output for Uni-variable and Multi-variable Competing Risk Analysis (Ordinal Only)

Description

This function generates a table of competing risk analysis result with number of patients, number of event, number of competing event,
Usage

```r
crisk_ord(
  csurv,
  cevent,
  cvars,
  gnames,
  month = 0,
  y1 = TRUE,
  y2 = TRUE,
  y5 = TRUE
)
```

Arguments

- **csurv**: the duration of follow-up time in months.
- **cevent**: the status indicator, which is generally 0 = alive, 1 = event, 2 = other event
- **cvars**: a vector, which has the variable’s values (ordinal only)
- **gnames**: a text string, which is the name of the variable.
- **month**: a number to get the month-rate of competing risk.
- **y1**: logical value indicating whether the 1-year competing risk rate should be reported.
- **y2**: logical value indicating whether the 2-year competing risk rate should be reported.
- **y5**: logical value indicating whether the 5-year competing risk rate should be reported.

Value

a tibble of competing risk analysis output.

Examples

```r
Dat <- MASS::Melanoma
Dat$时间 <- Dat$时间/30.5
output <- crisk_ord(Dat$时间, Dat$状态, as.factor(Dat$year), "year")
```

factor2ind

Make An Integer Matrix Out of A Factor Variable.

Description

Create an indicator matrix of dimension length(x) x (nlevels(x)-1) with the column corresponding to the baseline level removed (by default the first level is used as baseline).
Usage

factor2ind(x, baseline)

Arguments

- x: a variable.
- baseline: a string indicating the reference level.

Value

a matrix

Examples

x = gl(4, 2, labels = c("A", "B", "C", "D"))
factor2ind(x)
factor2ind(x, "C")

p2excel

Export the A Single Dataframe to An Excel Sheet

Description

The function saves a dataframe into an excel sheet with a predetermined format.

Usage

p2excel(
 tabname = "Default",
 datastable,
 tablename = "Default",
 filename = "Default.xlsx"
)

Arguments

- tabname: a string with the tab's name.
- datastable: the dataframe that will be exported to Excel.
- tablename: a string containing the table label and title, which will appear as the first row
- filename: the name of the spreadsheet

Value

a spreadsheet containing an exported tables
p2excel_pre	Prepare to Export the Dataframe to An Excel Sheet.

Description
The function saves the dataframe as a tab and prepares it for output into an excel sheet with a predetermined format.

Usage
p2excel_pre(tabname = "Default", datastable, tablename = "Default", filename)

Arguments
- `tabname`: a string with the tab’s name.
- `datastable`: the dataframe that will be exported to Excel.
- `tablename`: a string containing the table label and title, which will appear as the first row
- `filename`: the name of the spreadsheet

Value
a spreadsheet containing all of the exported tables

Examples
Dat <- survival::lung
results <- surv_uni_cat(Dat, "time", "status", "sex", report_index = TRUE)
w <- openxlsx::createWorkbook()
w <- p2excel_pre("survival_results", results,"Table 1. Overall Survival anlaysis",w)
Not run:
saveWorkbook(wb, file = "os.xlsx", overwrite = TRUE)
End(Not run)

surv_multi	Modify the Output for a Multi-variable Survival Analysis.

Description
Create a table with the general multi-variable survival analysis results, including the HR (95 percent CI), P value.

Usage
surv_multi(...)
surv_multiuni

Arguments

... arguments will be passed to coxph

Value

a dataframe containing coxph output that includes variable names, HRs (95

Examples

Dat <- survival::lung
surv_multi(survival::Surv(time, status) ~ as.factor(sex) + age + meal.cal, data = Dat)

surv_multiuni

Modify the Output for Multiple Uni-variable Survival Analysis

Description

This function generates a table with the general survival analysis results, including the number of
total patients, the number of sevents, the estimated median, the 1,2,5 year rate, the HR (95 percent
confidence interval), the P value, the AIC, and the C index. This function just modifies the output
table's format.

Usage

surv_multiuni(
 dat,
 stime,
 sevent,
 catvars = NULL,
 convars = NULL,
 y1 = TRUE,
 y2 = TRUE,
 y5 = TRUE,
 medianCI = FALSE,
 report_index = FALSE
)

Arguments

dat a dat.frame.
stime the duration of follow-up time in months.
sevent the status indicator, which is generally 0 = alive, 1 = dead.
catvars a vector of categorical variable names.
convars a vector of continuous variables names.
y1 logical value indicating whether the 1-year survival rate should be reported.
surv_uni_cat

y2 logical value indicating whether the 2-year survival rate should be reported.
y5 logical value indicating whether the 5-year survival rate should be reported.
medianCI logical value indicating whether the 95 percent confidence interval of projected
median survival should be reported.
report_index logical value indicating if to report the show AIC and C index.

Value

A tibble of survival output

Examples

Dat <- survival::lung
covars <- c("age","meal.cal")
catvars <- c("sex")
surv_multiuni(Dat, "time", "status", catvars, covars, medianCI = TRUE)

surv_uni_cat (Modify the Survival Output for a Categorical Variable.)

Description

This function generates a table with the general survival analysis results, including the number of
total patients, the number of sevents, the estimated median, the 1.2.5 year rate, the HR (95 percent
confidence interval), the P value, the AIC, and the C index. This function just modifies the output
table’s format.

Usage

surv_uni_cat(
 dat,
 stime,
 sevent,
 svar,
 month = 0,
 medianCI = TRUE,
 y1 = TRUE,
 y2 = TRUE,
 y5 = TRUE,
 report_index = FALSE
)
surv_uni_con

Arguments

dat a data.frame.
stime the duration of follow-up time in months.
sevent the status indicator, which is generally 0 = alive, 1 = dead.
svar a variable name.
month a number to get the month-rate of survival.
medianCI logical value indicating whether the 95 percent confidence interval of projected median survival should be reported.
y1 logical value indicating whether the 1-year survival rate should be reported.
y2 logical value indicating whether the 2-year survival rate should be reported.
y5 logical value indicating whether the 5-year survival rate should be reported.
report_index logical value indicating if to report the show AIC and C index.

Value

taxe tibble of survival output

Examples

Dat <- survival::lung
surv_uni_cat(Dat, "time", "status", "sex", report_index = TRUE)

surv_uni_con Modify the Survival Output for a Continuous Variable.

Description

This function generates a table with the general survival analysis results, including the number of total patients, the number of events, the P value, the AIC, and the C index. This function just modifies the output table’s format.

Usage

surv_uni_con(dat, stime, sevent, svar, report_index = FALSE)

Arguments

dat a data.frame.
stime the duration of follow-up time in months.
sevent the status indicator, which is generally 0 = alive, 1 = dead.
svar a variable name.
report_index logical value indicating if to report the show AIC and C index.
Value

a tibble of survival results.

Examples

```r
Dat <- survival::lung
surv_uni_con(Dat, "time", "status", "age", report_index = TRUE)
```
Index

crisk_cat, 2
crisk_con, 3
crisk_multi, 3
crisk_multiuni, 4
crisk_ord, 5
factor2ind, 6
p2excel, 7
p2excel_pre, 8
surv_multi, 8
surv_multiuni, 9
surv_uni_cat, 10
surv_uni_con, 11