Package ‘survxai’

August 24, 2018

Title Visualization of the Local and Global Survival Model Explanations

Version 0.2.0

Description Survival models may have very different structures. This package contains functions for creating a unified representation of a survival models, which can be further processed by various survival explainers. Tools implemented in 'survxai' help to understand how input variables are used in the model and what impact do they have on the final model prediction. Currently, four explanation methods are implemented. We can divide them into two groups: local and global.

License GPL

Encoding UTF-8

LazyData true

RoxygenNote 6.1.0

Imports breakDown, ggplot2, pec, scales, survival, survminer

Depends prodlim

Suggests CFC, covr, knitr, randomForestSRC, rmarkdown, rms, testthat, tibble

VignetteBuilder knitr

URL https://mi2datalab.github.io/survxai/

BugReports https://github.com/MI2DataLab/survxai/issues

NeedsCompilation no

Author Aleksandra Grudziaz [aut, cre], Alicja Gosiewska [aut], Przemyslaw Biecek [aut, ths]

Maintainer Aleksandra Grudziaz <aleksandra.grudziaz@gmail.com>

Repository CRAN

Date/Publication 2018-08-24 15:50:12 UTC
Description

The `ceteris_paribus()` function computes the predictions for the neighbor of our chosen observation. The neighbor is defined as the observations with changed value of one of the variable.

Usage

```r
ceteris_paribus(explainer, observation, grid_points = 5,
selected_variables = NULL)
```

Arguments

- `explainer` a model to be explained, preprocessed by the 'survxai::explain' function
- `observation` a new observation for which predictions need to be explained
- `grid_points` grid_points number of points used for response path
- `selected_variables` if specified, then only these variables will be explained

Value

An object of the class surv_ceteris_paribus_explainer. It’s a data frame with calculated average responses.
explain.default

Examples

```r
library(survxai)
library(rms)
data("pbctrain")
data("pbctest")
predict_times <- function(model, data, times){
  prob <- rms::survest(model, data, times = times)$surv
  return(prob)
}
cph_model <- cph(Surv(years, status)~., data = pbcTrain, surv = TRUE, x = TRUE, y=TRUE)
surve_cph <- explain(model = cph_model, data = pbctest[-c(1,5)],
                      y = Surv(pbctest$years, pbctest$status),
                      predict_function = predict_times)
cp_cph <- ceteris_paribus(surve_cph, pbctest[1,-c(1,5)])
```

explain.default Create Survival Model Explainer

Description

Survival models may have very different structures. This function creates a unified representation of a survival model, which can be further processed by various survival explainers (see also `explain`).

Please NOTE, that the model is actually the only required argument. But some survival explainers may require additional arguments.

Usage

```r
explain.default(model, data = NULL, y, times = NULL,
                 predict_function = yhat, link = I, label = tail(class(model), 1),
                 ...)

explain(model, data = NULL, y, times = NULL, predict_function = yhat,
         link = I, label = tail(class(model), 1), ...)
```

Arguments

- **model**: object - a survival model to be explained
- **data**: data.frame, tibble or matrix - data that will be used by survival explainers. If not provided then will be extracted from the model
- **y**: object of class `surv`, contains event status and times
- **times**: optional argument, the vector of time points on which survival probability will be predicted
predict_function
function that takes three arguments: model, new data, vector with times, and returns numeric vector or matrix with predictions. If not passed, function `predictSurvProb` is used.

link
function - a transformation/link function that shall be applied to raw model predictions

label
character - the name of the survival model. By default it's extracted from the 'class' attribute of the model.

Value
An object of the class 'surv_explainer'.

It's a list with following fields:

• model the explained model
• data the dataset
• y event statuses and times
• times time points on which survival probability is predicted
• predict_function function that may be used for model predictions, shall return a single numerical value for each time.
• link function - a transformation/link function that shall be applied to raw model predictions
• class class/classes of a model
• label label, by default it's the last value from the class vector, but may be set to any character.

Examples

```r
library(surveXai)
library(rms)
library(randomForestSRC)
data(pbc, package = "randomForestSRC")
pbc <- pbc[complete.cases(pbc),]
predict_times <- function(model, data, times){
  prob <- rms::survest(model, data, times = times)$surv
  return(prob)
}
cph_model <- cph(Surv(days/365, status)~., data=pbc, surv=TRUE, x = TRUE, y=TRUE)
surve_cph <- explain(model = cph_model, data = pbc[,c(-1,2)], y = Surv(pbc$days/365, pbc$status), predict_function = predict_times)
```
Description

Function `model_performance` calculates the prediction error for chosen survival model.

Usage

```r
model_performance(explainer, type = "BS", ...)
```

Arguments

- `explainer`: a model to be explained, preprocessed by the `survxai::explain` function
- `type`: character - type of the response to be calculated. Currently following options are implemented: 'BS’ for Expected Brier Score
- `...`: other parameters

Details

For `type = "BS"` prediction error is the time dependent estimates of the population average Brier score. At a given time point t, the Brier score for a single observation is the squared difference between observed survival status and a model based prediction of surviving time t.

References

Examples

```r
library(survxai)
library(rms)
data("pbcTrain")
data("pbcTest")
cph_model <- cph(Surv(years, status) ~ , data=pbcTrain, surv=TRUE, x = TRUE, y=TRUE)
surve_cph <- explain(model = cph_model, data = pbcTest[,-c(1,5)],
y = Surv(pbcTest$years, pbcTest$status))
mp_cph <- model_performance(surve_cph)
```
Description

PBC test set Data set based on pbc from randomForestSRC package. The data consists of 138 randomly chosen observations The pbcTest contains only complete cases for each observation. It contains 5 variables: 'status', 'sex', 'bili', 'stage', and 'years'.

Source

randomForestSRC

References

Examples

```r
data("pbcTest", package = "survxai")
head(pbcTest)
```

Description

PBC train set Data set based on pbc from randomForestSRC package. The data consists of 138 randomly chosen observations The pbcTrain contains only complete cases for each observation. It contains 5 variables: 'status', 'sex', 'bili', 'stage', and 'years'.

Source

randomForestSRC

References

Examples

```r
data("pbcTrain", package = "survxai")
head(pbcTrain)
```
plot.surv_ceteris_paribus_explainer

Plot for ceteris_paribus object

Description

Function plot for ceteris_paribus object visualise estimated survival curve of mean probabilities in chosen time points. Black lines on each plot correspond to survival curve for our new observation specified in the ceteris_paribus function.

Usage

```r
# S3 method for class 'surv_ceteris_paribus_explainer'
plot(x, ..., 
  selected_variable = NULL, scale_type = "factor", scale_col = NULL, 
  ncol = 1)
```

Arguments

- `x`: object of class "surv_ceteris_paribus_explainer"
- `...`: other arguments
- `selected_variable`: name of variable we want to draw ceteris paribus plot
- `scale_type`: type of scale of colors, either "discrete" or "gradient"
- `scale_col`: vector containing values of low and high ends of the gradient, when "gradient" type of scale was chosen
- `ncol`: number of columns for faceting

Examples

```r
library(survxai)
library(rms)
data("pbctest")
data("pbctrain")
predict_times <- function(model, data, times){
  prob <- rms::survest(model, data, times = times)$surv
  return(prob)
}
cph_model <- cph(Surv(years, status)~., data=pbctrain, surv=TRUE, x = TRUE, y=TRUE)
surve_cph <- explain(model = cph_model, data = pbctest[-c(1,5)], 
  y = Surv(pbctest$years, pbctest$status), predict_function = predict_times)
cp_cph <- ceteris_paribus(surve_cph, pbctest[1,-c(1,5)])
plot(cp_cph)
```
plot.surv_explainer
Plot for surv_explainer object

Description
Function plot for surv_explainer object visualise estimated survival curve of mean probabilities in chosen time points.

Usage
```r
## S3 method for class 'surv_explainer'
plot(x, ...)
```

Arguments
- `x`: object of class "surv_explainer"
- `...`: other arguments for function `ggsurvplot`

Examples
```r
library(survxai)
library(rms)
data("pbcTest")
data("pbcTrain")
predict_times <- function(model, data, times){
  prob <- rms::survest(model, data, times = times)$surv
  return(prob)
}
cph_model <- cph(Surv(years, status)~., data=pbcTrain, surv=TRUE, x = TRUE, y=TRUE)
surve_cph <- explain(model = cph_model, data = pbcTest[,c(1:5)],
  y = Surv(pbcTest$years, pbcTest$status), predict_function = predict_times)
plot(surve_cph)
```

plot.surv_model_performance_explainer
Plot for surv_model_performance object

Description
Function plot for surv_model_performance object.

Usage
```r
## S3 method for class 'surv_model_performance_explainer'
plot(x, ...)
```
Arguments

x an object of class "surv_model_performance"
...

Examples

library(survxai)
library(rms)
data("pbcTest")
data("pbcTrain")
predict_times <- function(model, data, times){
 prob <- rms::survest(model, data, times = times)$surv
 return(prob)
}
cph_model <- cph(Surv(years, status) ~ ., data=pbcTrain, surv=TRUE, x = TRUE, y=TRUE)
surve_cph <- explain(model = cph_model, data = pbcTest[-c(1,5)],
y = Surv(pbcTest$years, pbcTest$status), predict_function = predict_times)
mp_cph <- model_performance(surve_cph, data = pbcTest)
plot(mp_cph)

Description

Function plot for surv_breakdown object visualise estimated survival curve of mean probabilities in chosen time points.

Usage

S3 method for class 'surv_prediction_breakdown_explainer'
plot(x, ...,
 numerate = TRUE, lines = TRUE, lines_type = 1,
 lines_col = "black", scale_col = c("#010f59", "#e0f6fb"))

Arguments

x an object of class "surv_prediction_breakdown_explainer"
...

numerate logical; indicating whether we want to number curves
lines logical; indicating whether we want to add lines on chosen time point or probability
lines_type a type of line; see http://sape.inf.usi.ch/quick-reference/ggplot2/linetype
plot.surv_variable_response_explainer

lines_col a color of line
scale_col a vector containing two colors for gradient scale in legend

Examples

library(survxai)
library(rms)
data("pbcTest")
data("pbcTrain")
predict_times <- function(model, data, times){
 prob <- rms::survest(model, data, times = times)$surv
 return(prob)
}
cph_model <- cph(Surv(years, status)~., data=pbcTrain, surv=TRUE, x = TRUE, y=TRUE)
surve_cph <- explain(model = cph_model, data = pbcTest[-c(1,5)],
y = Surv(pbcTest$years, pbcTest$status), predict_function = predict_times)
broken_prediction <- prediction_breakdown(surve_cph, pbcTest[1,-c(1,5)])
plot(broken_prediction)

plot.surv_variable_response_explainer

Plot for surv_variable_response object

Description

Function plot for surv_variable_response object shows the expected output condition on a selected variable.

Usage

S3 method for class 'surv_variable_response_explainer'
plot(x, ..., split = "model")

Arguments

x an object of class "surv_variable_response"
...
other arguments
split a character, either "model" or "variable"; sets the variable for faceting

Examples

library(survxai)
library(rms)
data("pbcTest")
data("pbcTrain")
prediction_breakdown

BreakDown for survival models

Description

Function surv_breakdown is an extension of a broken function from breakDown package. It computes the contribution in prediction for the variables in the model. The contribution is defined as the difference between survival probabilities for model with added specific value of variable and with the random levels of this variable.

Usage

prediction_breakdown(explainer, observation, time = NULL, prob = NULL, ...)

Arguments

explainer an object of the class 'surv_explainer'
observation a new observation to explain
time a time point at which variable contributions are computed. If NULL median time is taken.
prob a survival probability at which variable contributions are computed
... other parameters

Value

An object of class surv_prediction_breakdown_explainer

Examples

library(survxai)
library(rms)
data("pbcTest")
data("pbcTrain")
predict_times <- function(model, data, times){
 prob <- rms::survest(model, data, times = times)$surv
 return(prob)
}
cph_model <- cph(Surv(years, status)~., data=pbcTrain, surv=TRUE, x = TRUE, y=TRUE)
surve_cph <- explain(model = cph_model, data = pbcTest[,~c(1,5)], y = Surv(pbcTest$years, pbcTest$status), predict_function = predict_times)
svr_cph <- variable_response(surve_cph, "sex")
plot(svr_cph)
prob <- rms::survest(model, data, times = times)$surv
return(prob)
}
cph_model <- cph(Surv(years, status) ~ ., data=pbctrain, surv=TRUE, x = TRUE, y=TRUE)
surve_cph <- explain(model = cph_model, data = pbcTest[, -c(1:5)],
y = Surv(pbcTest$years, pbcTest$status), predict_function = predict_times)
broken_prediction <- prediction_breakdown(surve_cph, pbcTest[, -c(1:5)])

print.surv_ceteris_paribus_explainer

Ceteris Paribus Print

Description
Ceteris Paribus Print

Usage
S3 method for class 'surv_ceteris_paribus_explainer'
print(x, ...)

Arguments
x the model of 'surv_ceteris_paribus_explainer' class
...
other parameters

Value
a data frame

print.surv_explainer

Print Survival Explainer Summary

Description
Print Survival Explainer Summary

Usage
S3 method for class 'surv_explainer'
print(x, ...)

Arguments
x a model survival expaliner created with the 'explain()' function
...
other parameters
print.surv_model_performance_explainer

Print Surv Model Performance

Description

Print Survival Model Performance

Usage

```r
## S3 method for class 'surv_model_performance_explainer'
print(x, times = NULL, ...)
```

Arguments

- `x`: a model to be explained, object of the class ’model_performance_explainer’
- `times`: a vector of integer times on which we want to check the value of prediction error
- `...`: other parameters

print.surv_prediction_breakdown_explainer

Prediction Breakdown Print

Description

Prediction Breakdown Print

Usage

```r
## S3 method for class 'surv_prediction_breakdown_explainer'
print(x, ..., digits = 3,
     rounding_function = round)
```

Arguments

- `x`: the model model of ’surv_prediction_breakdown_explainer’ class
- `...`: other parameters
- `digits`: number of decimal places (round) or significant digits (signif) to be used See the `rounding_function` argument
- `rounding_function`: function that is to used for rounding numbers. It may be `signif()` which keeps a specified number of significant digits. Or the default `round()` to have the same precision for all components
Variable Response Print

Description

Variable Response Print

Usage

```r
## S3 method for class 'surv_variable_response_explainer'
print(x, ...)
```

Arguments

- `x` the model of `surv_variable_response_explainer` class
- `...` other parameters

Value

a data frame

theme_mi2

MI^2 plot theme

Description

`ggplot` theme for charts generated with MI^2 Data Lab packages.

Usage

```r
theme_mi2()
```

Value

theme object that can be added to `ggplot2` plots
variable_response

Variable response for survival models

Description

Function `variable_response` calculates the expected output condition on a selected variable.

Usage

```
variable_response(explainer, variable, type = "pdp",
                  link = explainer$link, ...)
```

Arguments

- **explainer**: an object of the class 'surv_explainer'.
- **variable**: a character with variable name.
- **type**: a character - type of the response to be calculated. Currently following options are implemented: 'pdp' for Partial Dependency.
- **link**: a function - a link function that shall be applied to raw model predictions. This will be inherited from the explainer.
- **...**: other parameters

Examples

```r
library(survxai)
library(rms)
data("pbcTest")
data("pbcTrain")
predict_times <- function(model, data, times){
  prob <- rms::survest(model, data, times = times)$surv
  return(prob)
}
cph_model <- cph(Surv(years, status)~., data=pbctrain, surv=TRUE, x = TRUE, y=TRUE)
surve_cph <- explain(model = cph_model, data = pbcTest[,c(1:5)],
                     y = Surv(pbcTest$years, pbcTest$status), predict_function = predict_times)
svr_cph <- variable_response(surve_cph, "sex")
```
Index

ceteris_paribus, 2
explain, 3
explain(explain.default), 3
explain.default, 3
ggsurvplot, 8
model_performance, 5
pbcTest, 6
pbcTrain, 6
plot.surv_ceteris_paribus_explainer, 7
plot.surv_explainer, 8
plot.surv_model_performance_explainer, 8
plot.surv_prediction_breakdown_explainer, 9
plot.surv_variable_response_explainer, 10
prediction_breakdown, 11
predictSurvProb, 4
print.surv_ceteris_paribus_explainer, 12
print.surv_explainer, 12
print.surv_model_performance_explainer, 13
print.surv_prediction_breakdown_explainer, 13
print.surv_variable_response_explainer, 14
theme_mi2, 14
variable_response, 15