Package ‘svrpath’
June 29, 2018

Type Package
Title The SVR Path Algorithm
Version 0.1.2
Description Computes the entire solution paths for Support Vector Regression (SVR) with respect to the regularization parameter, lambda and epsilon in epsilon-intensive loss function, efficiently. We call each path algorithm svr-path and epspath. See Wang, G. et al (2008) <doi:10.1109/TNN.2008.2002077> for details regarding the method.
Imports quadprog, svmpath
Depends R (>= 3.4.0)
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
Author Do Hyun Kim [aut, cre], Seung Jun Shin [aut]
Maintainer Do Hyun Kim <09dohkim@gmail.com>
Repository CRAN
Date/Publication 2018-06-29 14:07:55 UTC

R topics documented:

epspath ... 2
plot.epspath .. 3
plot.svrpath ... 4
predict.epspath ... 4
predict.svrpath ... 5
solve.svr .. 6
svrpath ... 7

Index 9
epspath

Fit the entire epsilon path for Support Vector Regression

Description

The Support Vector Regression (SVR) employs epsilon-intensive loss which ignores errors smaller than epsilon. This algorithm computes the entire paths for SVR solution as a function of epsilon at a given regularization parameter lambda, which we call epsilon path.

Usage

epspath(x, y, lambda = 1, kernel.function = radial.kernel,
 param.kernel = 1, ridge = 1e-08, eps = 1e-07, eps.min = 1e-08, ...)

Arguments

x
The data matrix (n x p) with n rows (observations) on p variables (columns)
y
The real number valued response variable
lambda
The regularization parameter value.
kernel.function
User defined kernel function. See svmpath.
param.kernel
Parameter(s) of the kernels. See svmpath.
ridge
Sometimes the algorithm encounters singularities; in this case a small value of ridge can help, default is ridge = 1e-8
eps
A small machine number which is used to identify minimal step sizes
eps.min
The smallest value of epsilon for termination of the algorithm. Default is eps.min = 1e-8
...
Generic compatibility

Value

An 'epspath' object is returned.

Author(s)

Do Hyun Kim, Seung Jun Shin

See Also

predict.epspath, plot.epspath, svrpath
Examples

```r
set.seed(1)
n <- 30
p <- 50

x <- matrix(rnorm(n*p), n, p)
e <- rnorm(n, 0, 1)
beta <- c(1, 1, rep(0, p-2))
y <- x %*% beta + e
lambda <- 1
eobj <- epspath(x, y, lambda = lambda)
```

Description

produces a plot of the SVR epsilon path.

Usage

```r
## S3 method for class 'epspath'
plot(x, intercept = FALSE, ...)
```

Arguments

- `x` The epspath object
- `intercept` If it is `TRUE`, then an intercept path plot is given.
- `...` Generic compatibility

Value

The entire solution path of SVR solution as a function of epsilon.

Author(s)

Do Hyun Kim, Seung Jun Shin

Examples

```r
# The 'eobj' is given by examples description of epspath()
plot(eobj, lty = 2, lwd = 2, col = 2, cex.lab = 1.5)
```
plot.svrpath

plot the svrpath, solution paths of SVR as a function of lambda

Description
produces a plot of the SVR lambda path.

Usage
S3 method for class 'svrpath'
plot(x, intercept = FALSE, ...)

Arguments
- x: The svrpath object
- intercept: If it is TRUE, then an intercept path plot is given.
- ...: Generic compatibility

Value
The entire solution path of SVR solution as a function of lambda.

Author(s)
Do Hyun Kim, Seung Jun Shin

Examples
The 'obj' is given by examples description of svrpath().
plot(obj, lty = 2, lwd = 2, col = 2, cex.lab = 1.5)

predict.epspath

Make predictions from an "epspath" object

Description
Provides a prediction value at a given epsilon from epspath object.

Usage
S3 method for class 'epspath'
predict(object, newx, svr.eps = 1, ...)

predict.svrpath

Arguments

- **object**: The epspath object
- **newx**: Values of x to be predicted. This is a matrix with observations per row. Default is x in the epspath object.
- **svr eps**: The value of the "epsilon-insensitive loss" parameter, epsilon.
- **...**: Generic compatibility

Value

In each case, the desired prediction.

Author(s)

Do Hyun Kim, Seung Jun Shin

Examples

```r
# The 'eobj' is given by examples description of epspath().
predict(eobj, svr eps = .1)
```

predict.svrpath

Make predictions from a "svrpath" object

Description

Provides a prediction value at a given lambda from svrpath object.

Usage

```r
## S3 method for class 'svrpath'
predict(object, newx, lambda = NULL, criterion = "sic", ...)  
```

Arguments

- **object**: The svrpath object
- **newx**: Values of x to be predicted. This is a matrix with observations per row. Default is x in the epspath object.
- **lambda**: The value of the regularization parameter, lambda.
- **criterion**: It provides predictions at an optimal lambda selected by SIC or GACV. "sic" or "gacv".
- **...**: Generic compatibility
Value
In each case, the desired prediction.

Author(s)
Do Hyun Kim, Seung Jun Shin

Examples

The 'eobj' is given by examples description of epspath().
predict.svrpath(obj, lambda = 10) # or
predict(obj, criterion = 'sic')

solve.svr | QP solver for SVR

Description
solves quadratic programming(QP) for SVR.

Usage

S3 method for class 'svr'
solve(a, b, lambda = 1, svr.ep = 1,
 kernel.function = radial.kernel, param.kernel = 1, ...)

Arguments

a | The data matrix (n x p) with n rows (observations) on p variables (columns)
b | The real number valued response variable
lambda | The regularization parameter
svr.ep | Epsilon in epsilon-insensitive loss function
kernel.function | User defined kernel function. See svmpath.
param.kernel | Parameter(s) of the kernels. See svmpath.
... | Generic compatibility

Value
SVR solution at a given lambda and epsilon

Author(s)
Dohyun Kim, Seung Jun Shin
svrpath

Examples

```r
# set.seed(1)
n <- 30
p <- 50
x <- matrix(rnorm(n*p), n, p)
e <- rnorm(n, 0, 1)
beta <- c(1, 1, rep(0, p-2))
y <- x %*% beta + e
solve.svr(x, y)
```

svrpath

Fit the entire regularization path for Support Vector Regression

Description

This algorithm computes the entire regularization path for the support vector regression with a relatively low cost compared to quadratic programming problem.

Usage

```r
svrpath(x, y, svr eps = 1, kernel function = radial.kernel,
param kernel = 1, ridge = 1e-08, eps = 1e-08, lambda min = 1e-08, ...)
```

Arguments

- `x`: The data matrix (n x p) with n rows (observations) on p variables (columns)
- `y`: The real number valued response variable
- `svr eps`: An epsilon in epsilon-insensitive loss function
- `kernel function`: This is a user-defined function. Provided are `poly.kernel` (the default, with parameter set to default to a linear kernel) and `radial.kernel`
- `param kernel`: The parameter(s) for the kernel. For this radial kernel, the parameter is known in the fields as "gamma". For the polynomial kernel, it is the "degree"
- `ridge`: Sometimes the algorithm encounters singularities; in this case a small value of ridge can help, default is `ridge = 1e-8`
- `eps`: A small machine number which is used to identify minimal step sizes
- `lambda min`: The smallest value of lambda for termination of the algorithm. Default is `lambda min = 1e-8`
- `...`: Generic compatibility

Value

A `svrpath` object is returned, for which there are lambda values and corresponding values of theta for each data point.
Author(s)

Do Hyun Kim, Seung Jun Shin

See Also

predict.svrpath, plot.svrpath, epspath

Examples

set.seed(1)
n <- 30
p <- 50

x <- matrix(rnorm(n*p), n, p)
e <- rnorm(n, 0, 1)
beta <- c(1, 1, rep(0, p-2))
y <- x %*% beta + e
svr.eps <- 1
obj <- svrpath(x, y, svr.eps = svr.eps)
Index

epspath, 2, 8
plot.epspath, 2, 3
plot.svrpath, 4, 8
predict.epspath, 2, 4
predict.svrpath, 5, 8
solve.svr, 6
svrpath, 2, 7