Package ‘sweater’

May 4, 2022

Title Speedy Word Embedding Association Test and Extras Using R

Version 0.1.6

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

URL https://github.com/chainsawriot/sweater

BugReports https://github.com/chainsawriot/sweater/issues

LinkingTo Rcpp

Imports Rcpp, purrr, quanteda, LiblineaR, proxy, data.table, cli, combinat

Suggests covr, testthat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 3.5)

NeedsCompilation yes

Author Chung-hong Chan [aut, cre] (<https://orcid.org/0000-0002-6232-7530>)

Maintainer Chung-hong Chan <chainsawtiney@gmail.com>

Repository CRAN

Date/Publication 2022-05-04 07:30:02 UTC
calculate_es

Description

This function calculates the effect of a query.

Usage

```r
calculate_es(x, ...)
```

Arguments

- `x` an S3 object returned from a query, either by the function `query()` or underlying functions such as `mac()`
- `...` additional parameters for the effect size functions
 - `r` for `weat`: a boolean to denote whether convert the effect size to biserial correlation coefficient.
 - `standardize` for `weat`: a boolean to denote whether to correct the difference by the standard division. The standardized version can be interpreted the same way as Cohen’s d.
Details

The following methods are supported.

- **mac**: mean cosine distance value. The value makes sense only for comparison (e.g. before and after debiasing). But a lower value indicates greater association between the target words and the attribute words.

- **rnd**: sum of all relative norm distances. It equals to zero when there is no bias.

- **rnsb**: Kullback-Leibler divergence of the predicted negative probabilities, P, from the uniform distribution. A lower value indicates less bias.

- **ect**: Spearman Coefficient of an Embedding Coherence Test. The value ranges from -1 to +1 and a larger value indicates less bias.

- **weat**: The standardized effect size (default) can be interpreted the same way as Cohen’s D.

Value

effect size

Author(s)

Chung-hong Chan

References

See Also

weat_es(), mac_es(), rnd_es(), rnsb_es(), ect_es()
Description

This function estimates the Embedding Coherence Test (ECT) of word embeddings (Dev & Philips, 2019). If possible, please use `query()` instead.

Usage

```r
ect(w, S_words, A_words, B_words, verbose = FALSE)
```

Arguments

- `w` a numeric matrix of word embeddings, e.g. from `read_word2vec`
- `S_words` a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...
- `A_words` a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.
- `B_words` a character vector of the second set of attribute words. In an example of studying gender stereotype, it can include words such as woman, female, she, her.
- `verbose` logical, whether to display information

Value

A list with class "ect" containing the following components:

- `$A_words` the input A_words
- `$B_words` the input B_words
- `$S_words` the input S_words
- `$u_a` Cosine similarity between each word vector of S_words and average vector of A_words
- `$u_b` Cosine similarity between each word vector of S_words and average vector of B_words

Author(s)

Chung-hong Chan

References

See Also

- `ect_es()` can be used to obtain the effect size of the test. `plot_ect()` can be used to visualize the result.
Examples

data(googlenews)
garg_f1 <- ect(googlenews, S1, A1, B1)
plot_ect(garg_f1)

ect_es

Calculate the Spearman Coefficient of an ECT result

Description

This function calculates the Spearman Coefficient of an Embedding Coherence Test. The value ranges from -1 to +1 and a larger value indicates less bias. If possible, please use `calculate_es()` instead.

Usage

`ect_es(x)`

Arguments

- `x`: an `ect` object from the `ect()` function.

Value

Spearman Coefficient

Author(s)

Chung-hong Chan
References

glove_math

Description
This is a subset of the original pretrained GLoVE word vectors provided by Pennington et al (2017). The same word vectors were used in Caliskan et al. (2017) to study biases.

Usage
glove_math

Format
An object of class matrix (inherits from array) with 32 rows and 300 columns.

References

googlenews

Description
This is a subset of the original pretrained word2vec word vectors trained on Google News. The same word vectors were used in Garg et al. (2018) to study biases.

Usage
googlenews

Format
An object of class matrix (inherits from array) with 116 rows and 300 columns.
mac

References

mac

Mean average cosine similarity

Description
This function calculates the mean average cosine similarity (MAC) score proposed in Manzini et al (2019). If possible, please use query() instead.

Usage
mac(w, S_words, A_words, verbose = FALSE)

Arguments
w a numeric matrix of word embeddings, e.g. from read_word2vec
S_words a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...
A_words a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.
verbose logical, whether to display information

Value
A list with class "mac" containing the following components:

$P a vector of cosine similarity values for every word in S_words
$S_words the input S_words
$A_words the input A_words

mac_es can be used to obtain the effect size of the test.

Author(s)
Chung-hong Chan

References
Examples

data(googlenews)
x <- mac(googlenews, S1, A1)
x$P

mac_es

Calculation of MAC Effect Size

Description

This function calculates the mean of cosine distance values. If possible, please use calculate_es() instead.

Usage

mac_es(x)

Arguments

x an object from the function mac

Value

Mean of all cosine similarity values

Author(s)

Chung-hong Chan

References

nas

Calculate Normalized Association Score

Description

This function quantifies the bias in a set of word embeddings by Caliskan et al (2017). In comparison to WEAT introduced in the same paper, this method is more suitable for continuous ground truth data. See Figure 1 and Figure 2 of the original paper. If possible, please use `query()` instead.

Usage

```
nas(w, S_words, A_words, B_words, verbose = FALSE)
```

Arguments

- `w`: a numeric matrix of word embeddings, e.g. from `read_word2vec`
- `S_words`: a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...
- `A_words`: a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.
- `B_words`: a character vector of the second set of attribute words. In an example of studying gender stereotype, it can include words such as woman, female, she, her.
- `verbose`: logical, whether to display information

Value

A list with class "nas" containing the following components:

- `$P`: a vector of normalized association score for every word in S
- `$raw`: a list of raw results used for calculating normalized association scores
- `$S_words`: the input S_words
- `$A_words`: the input A_words
- `$B_words`: the input B_words

Author(s)

Chung-hong Chan

References

plot_bias
Visualize the bias of words in S

Description
For `ect`, this function calls `plot_ect()`. For other tests (except `weat`), this function plots the bias of words in S as a Cleveland Dot Plot. Plotting the result of `weat` is not supported.

Usage
```r
plot_bias(x)
```

S3 method for class 'sweater'
```r
plot(x, ...)
```

Arguments
- `x`: an S3 object returned from `mac`, `rnd`, `semaxis`, `nas` or `rnsb`
- `...`: other parameters

Value
a plot

Author(s)
Chung-hong Chan

plot_ect
Plot an ECT result on a two-dimensional plane

Description
This function plots the words in `S_words` on a 2D plane according to their association with the average vectors of `A_words` and `B_words`. A equality line is also added. Words along the equality line have less bias. Words located on the upper side of the equality line have a stronger association with `A_words` and vice versa.

Usage
```r
plot_ect(x, ...)
```

Arguments
- `x`: an `ect` object from the `ect` function.
- `...`: additional parameters to the underlying `plot()` function
query

Value
a plot

Author(s)
Chung-hong Chan

query. A common interface for making query

Description
This function makes a query based on the supplied parameters. The object can then be displayed by
the S3 method print.sweater() and plotted by plot.sweater().

Usage
query(
 w,
 S_words,
 T_words,
 A_words,
 B_words,
 method = "guess",
 verbose = FALSE,
 ...
)

S3 method for class 'sweater'
print(x, ...)

Arguments

w
da numeric matrix of word embeddings, e.g. from read_word2vec

S_words
da character vector of the first set of target words. In an example of studying
gender stereotype, it can include occupations such as programmer, engineer,
scientists...

T_words
da character vector of the second set of target words. In an example of studying
gender stereotype, it can include occupations such as nurse, teacher, librarian...

A_words
da character vector of the first set of attribute words. In an example of studying
gender stereotype, it can include words such as man, male, he, his.

B_words
da character vector of the second set of attribute words. In an example of studying
gender stereotype, it can include words such as woman, female, she, her.

method
string, the method to be used to make the query. Available options are: weat, mac, nas, semaxis, rnsb, rnd, nas, ect and guess. If "guess", the function
selects one of the following methods based on your provided wordsets.
query

- S_words & A_words - "mac"
- S_words, A_words & B_words - "rnd"
- S_words, T_words, A_words & B_words - "weat"

verbose

logical, whether to display information

... additional parameters for the underlying function

1 for "semaxis": an integer indicates the number of words to augment each word in A and B based on cosine, see An et al (2018). Default to 0 (no augmentation).

levels for "rnsb": levels of entries in a hierarchical dictionary that will be applied (see quanteda::dfm_lookup())

x

a sweater S3 object

Value

a sweater S3 object

Author(s)

Chung-hong Chan

See Also

weat(), mac(), nas(), semaxis(), rnsb(), rnd(), nas(), ect()

Examples

data(googlenews)
garg_f1 <- query(googlenews, S_words = S1, A_words = A1, B_words = B1)
garg_f1
plot(garg_f1)
read_word2vec

A helper function for reading word2vec format

Description

This function reads word2vec text format and return a dense matrix that can be used by this package. The file can have or have not the "verification line", i.e. the first line contains the dimensionality of the matrix. If the verification line exists, the function will check the returned matrix for correctness.

Usage

```r
call(read_word2vec(x))
```

Arguments

- `x` path to your text file

Value

a dense matrix

Author(s)

Chung-hong Chan

rnd

Relative Norm Distance

Description

This function calculate the relative norm distance (RND) of word embeddings. If possible, please use `query()` instead.

Usage

```r
call(rnd(w, S_words, A_words, B_words, verbose = FALSE))
```

Arguments

- `w` a numeric matrix of word embeddings, e.g. from `read_word2vec`
- `S_words` a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...
- `A_words` a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.
- `B_words` a character vector of the second set of attribute words. In an example of studying gender stereotype, it can include words such as woman, female, she, her.
- `verbose` logical, whether to display information
Value

A list with class "rnd" containing the following components:

norm_diff a vector of relative norm distances for every word in S_words
S_words the input S_words
A_words the input A_words
B_words the input B_words

\text{rnd_es} can be used to obtain the effect size of the test.

Author(s)

Chung-hong Chan

References

Examples

data(googlenews)
S1 <- c("janitor", "statistician", "midwife", "bailiff", "auctioneer",
"photographer", "geologist", "shoemaker", "athlete", "cashier", "dancer",
"housekeeper", "accountant", "physicist", "gardener", "dentist", "weaver",
"blacksmith", "psychologist", "supervisor", "mathematician", "surveyor",
"tailor", "designer", "economist", "mechanic", "laborer", "postmaster",
"broker", "chemist", "librarian", "attendant", "clerical", "musician",
"porter", "scientist", "carpenter", "sailor", "instructor", "sheriff",
"pilot", "inspector", "mason", "baker", "administrator", "architect",
"collector", "operator", "surgeon", "driver", "painter", "conductor",
"nurse", "cook", "engineer", "retired", "sales", "lawyer", "clergy",
"physician", "farmer", "clerk", "manager", "guard", "artist", "smith",
"official", "police", "doctor", "professor", "student", "judge",
"teacher", "author", "secretary", "soldier")
"male", "brother", "sons", "fathers", "men", "boys", "males", "brothers",
"uncle", "uncles", "nephew", "nephews")
B1 <- c("she", "daughter", "hers", "her", "mother", "woman", "girl",
"herself", "female", "sister", "daughters", "mothers", "women", "girls",
"females", "sisters", "aunt", "aunts", "niece", "nieces")
garg_f1 <- rnd(googlenews, S1, A1, B1)
plot_bias(garg_f1)
Description

This function calculates the sum of all relative norm distances from the relative norm distance test. If possible, please use `calculate_es()` instead.

Usage

```r
rnd_es(x)
```

Arguments

- `x` an object from the function `rnd`

Value

Sum of all relative norm distances

Author(s)

Chung-hong Chan

References

Description

This function estimate the Relative Negative Sentiment Bias (RNSB) of word embeddings (Sweeney & Najafian, 2019). If possible, please use `query()` instead.

Usage

```r
rnsb(w, S_words, A_words, B_words, levels = 1, verbose = FALSE)
```
Arguments

- **w**: a numeric matrix of word embeddings, e.g. from `read_word2vec`
- **S_words**: a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...
- **A_words**: a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.
- **B_words**: a character vector of the second set of attribute words. In an example of studying gender stereotype, it can include words such as woman, female, she, her.
- **levels**: levels of entries in a hierarchical dictionary that will be applied (see `quanteda::dfm_lookup()`)
- **verbose**: logical, whether to display information

Value

A list with class "rnsb" containing the following components:

- **classifier**: a logistic regression model with L2 regularization trained with LiblineaR
- **A_words**: the input A_words
- **B_words**: the input B_words
- **S_words**: the input S_words
- **P**: the predicted negative sentiment probabilities

`rnsb_es` can be used to obtain the effect size of the test.

Author(s)

Chung-hong Chan

References

Examples

data(googlenews)
Calculation the Kullback-Leibler divergence

Description

This function calculates the Kullback-Leibler divergence of the predicted negative probabilities, P, from the uniform distribution. If possible, please use calculate_es() instead.

Usage

```r
rnsb_es(x)
```

Arguments

- `x`
an `rnsb` object from the `rnsb` function.

Value

the Kullback-Leibler divergence.

Author(s)

Chung-hong Chan

References

Characterise word semantics using the SemAxis framework

Description

This function calculates the axis and the score using the SemAxis framework proposed in An et al (2018). If possible, please use `query()` instead.

Usage

```r
semaxis(w, S_words, A_words, B_words, l = 0, verbose = FALSE)
```

Arguments

- `w` a numeric matrix of word embeddings, e.g. from `read_word2vec`
- `S_words` a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...
- `A_words` a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.
- `B_words` a character vector of the second set of attribute words. In an example of studying gender stereotype, it can include words such as woman, female, she, her.
- `l` an integer indicates the number of words to augment each word in A and B based on cosine , see An et al (2018). Default to 0 (no augmentation).
- `verbose` logical, whether to display information

Value

A list with class "semaxis" containing the following components:

- `$P` for each of words in S, the score according to SemAxis
- `$V` the semantic axis vector
- `$S_words` the input S_words
- `$A_words` the input A_words
- `$B_words` the input B_words

Author(s)

Chung-hong Chan

References

small_reddit

Examples

data(glove_math)
S1 <- c("math", "algebra", "geometry", "calculus", "equations", "computation", "numbers", "addition")
A1 <- c("male", "man", "boy", "brother", "he", "him", "his", "son")
B1 <- c("female", "woman", "girl", "sister", "she", "her", "hers", "daughter")
semaxis(glove_math, S1, A1, B1, l = 0)$P

small_reddit A subset of the pretrained word2vec word vectors on Reddit

Description

This is a subset of the pretrained word2vec word vectors on Reddit provided by An et al. (2018). With this dataset, you can try with the "l" parameter of semaxis() up to 10.

Usage

small_reddit

Format

An object of class matrix (inherits from array) with 106 rows and 300 columns.

References

weat

Speedy Word Embedding Association Test

Description

This functions test the bias in a set of word embeddings using the method by Caliskan et al (2017). If possible, please use query() instead.

Usage

weat(w, S_words, T_words, A_words, B_words, verbose = FALSE)
Arguments

- **w**: a numeric matrix of word embeddings, e.g. from `read_word2vec`
- **S_words**: a character vector of the first set of target words. In an example of studying gender stereotype, it can include occupations such as programmer, engineer, scientists...
- **T_words**: a character vector of the second set of target words. In an example of studying gender stereotype, it can include occupations such as nurse, teacher, librarian...
- **A_words**: a character vector of the first set of attribute words. In an example of studying gender stereotype, it can include words such as man, male, he, his.
- **B_words**: a character vector of the second set of attribute words. In an example of studying gender stereotype, it can include words such as woman, female, she, her.
- **verbose**: logical, whether to display information

Value

A list with class "weat" containing the following components:

- **$S_diff**: for each of words in S_words, mean of the mean differences in cosine similarity between words in A_words and words in B_words
- **$T_diff**: for each of words in T_words, mean of the mean differences in cosine similarity between words in A_words and words in B_words
- **$S_words**: the input S_words
- **$T_words**: the input T_words
- **$A_words**: the input A_words
- **$B_words**: the input B_words

`weat_es` can be used to obtain the effect size of the test; `weat_resampling` for a test of significance.

Author(s)

Chung-hong Chan

References

Examples

```r
# Reproduce the number in Caliskan et al. (2017) - Table 1, "Math vs. Arts"
data(glove_math)
S1 <- c("math", "algebra", "geometry", "calculus", "equations", "computation", "numbers", "addition")
T1 <- c("poetry", "art", "dance", "literature", "novel", "symphony", "drama", "sculpture")
A1 <- c("male", "man", "boy", "brother", "he", "him", "his", "son")
B1 <- c("female", "woman", "girl", "sister", "she", "her", "hers", "daughter")
sw <- weat(glove_math, S1, T1, A1, B1)
weat_es(sw)
```
Calculation of WEAT effect size

Description
This function calculates the effect size from a sweater object. The original implementation in Caliskan et al. (2017) assumes the numbers of words in S and in T must be equal. The current implementation eases this assumption by adjusting the variance with the difference in sample sizes. It is also possible to convert the Cohen’s d to Pearson’s correlation coefficient (r). If possible, please use calculate_es() instead.

Usage
weat_es(x, standardize = TRUE, r = FALSE)

Arguments
x an object from the weat function.
standardize a boolean to denote whether to correct the difference by the standard division.
 The standardized version can be interpreted the same way as Cohen’s d.
r a boolean to denote whether convert the effect size to biserial correlation coefficient.

Value
the effect size of the query

Author(s)
Chung-hong Chan

References

Examples
Reproduce the number in Caliskan et al. (2017) - Table 1, "Math vs. Arts"
data(glove_math)
S1 <- c("math", "algebra", "geometry", "calculus", "equations",
 "computation", "numbers", "addition")
T1 <- c("poetry", "art", "dance", "literature", "novel", "symphony", "drama", "sculpture")
A1 <- c("male", "man", "boy", "brother", "he", "him", "his", "son")
B1 <- c("female", "woman", "girl", "sister", "she", "her", "hers", "daughter")
sw <- weat(glove_math, S1, T1, A1, B1)
weat_es(sw)
weat_exact

Test of significance for WEAT

Description

This function conducts the test of significance for WEAT as described in Caliskan et al. (2017). The exact test (proposed in Caliskan et al.) takes an unreasonably long time, if the total number of words in S and T is larger than 10. The resampling test is an approximation of the exact test.

Usage

weat_exact(x)

weat_resampling(x, n_resampling = 9999)

Arguments

- **x**: an object from the `weat` function.
- **n_resampling**: an integer specifying the number of replicates used to estimate the exact test

Value

A list with class "htest"

Author(s)

Chung-hong Chan

References

Examples

Reproduce the number in Caliskan et al. (2017) - Table 1, "Math vs. Arts"
data(glove_math)
S1 <- c("math", "algebra", "geometry", "calculus", "equations", "computation", "numbers", "addition")
T1 <- c("poetry", "art", "dance", "literature", "novel", "symphony", "drama", "sculpture")
A1 <- c("male", "man", "boy", "brother", "he", "him", "his", "son")
B1 <- c("female", "woman", "girl", "sister", "she", "her", "hers", "daughter")
sw <- weat(glove_math, S1, T1, A1, B1)
weat_resampling(sw)
Index

* datasets
 glove_math, 6
 googlenews, 6
 small_reddit, 19

calculate_es, 2
calculate_es(), 5, 8, 15, 17, 21

ect, 4, 10
ect(), 5, 12
ect_es, 5
ect_es(), 3, 4

glove_math, 6
googlenews, 6

mac, 7, 8
mac(), 2, 12
mac_es, 7, 8
mac_es(), 3

nas, 9
nas(), 12

plot(), 10
plot.sweater (plot_bias), 10
plot.sweater(), 11
plot_bias, 10
plot_ect, 10
plot_ect(), 4, 10
print.sweater (query), 11
print.sweater(), 11

quanteda::dfm_lookup(), 12, 16
query, 11
query(), 2, 4, 7, 9, 13, 15, 18, 19

read_word2vec, 4, 7, 9, 11, 13, 16, 18, 20
rnd, 13, 15
rnd(), 12
rnd_es, 14, 15

rnd_es(), 3
rnsb, 15, 17
rnsb(), 12
rnsb_es, 16, 17
rnsb_es(), 3

semaxis, 18
semaxis(), 12, 19
small_reddit, 19

weat, 19, 21, 22
weat(), 12
weat_es, 20, 21
weat_es(), 3
weat_exact, 22
weat_resampling, 20
weat_resampling (weat_exact), 22