Package ‘sybilDynFBA’

June 6, 2020

Type Package
Title Dynamic FBA : Dynamic Flux Balance Analysis
Version 1.0.2
Date 2020-6-6
Maintainer Abdelmoneim Amer Desouki <abdelmoneim.amer@uni-duesseldorf.de>
Author Abdelmoneim Amer Desouki [aut, cre]
Depends R (>= 2.12.0), sybil (>= 1.2.0)
Imports methods
Description Implements dynamic FBA technique proposed by Varma et al 1994.
LazyLoad yes
License GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-06 11:50:02 UTC

R topics documented:

 sybilDynFBA-package ... 2
dynamicFBA .. 3
Ec_core ... 5
optsol_dynamicFBA-class 6

Index 8
sybilDynFBA-package Dynamic Flux Balance Analysis

Description

The package sybilDynFBA implements dynamic flux balance analysis as proposed by Varma et al (1994). It uses functions from package sybil to find standard FBA solution. Solution can also be plotted.

Details

Package: sybilDynFBA
Type: Package
Version: 1.0.0
Date: 2015-07-24
License: GPL Version 3
LazyLoad: yes
Depends: sybil

Author(s)

Abdelmoneim Amer Desouki
Maintainer: Abdelmoneim Amer Desouki <abdelmoneim.amer@uni-duesseldorf.de>

References

See Also

sybil

Examples

Not run:
The examples here require the package glpkAPI to be
installed. If that package is not available, you have to set
the argument 'solver' (the default is: solver = "glpk").

load the example data set
data(Ec_core)
 mod <- Ec_core
Change bounds for glucose, oxygen and acetate uptake
mod <- changeBounds(mod, react = "EX_glc(e)", lb = -12)
mod <- changeBounds(mod, react = "EX_o2(e)", lb = -10)
mod <- changeBounds(mod, react = "EX_ac(e)", lb = -10)

initial values
init.source <- c("EX_ac(e)", "EX_o2(e)", "EX_glc(e)"
init.conc <- c(10, 50, 28)
init.bmass <- 0.01

dFBA
Ec_df <- dynamicFBA(mod, exclUptakeRxns = c(),
substrateRxns = init.source,
initConcentrations = init.conc,
initBiomass = init.bmass,
timeStep=1, nSteps=200, verbose=3)

Plotting
plot(Ec_df,
plotRxns=c("EX_glc(e)", "EX_ac(e)", "EX_for(e)", "EX_o2(e)"),
legend_cex=0.85, legend_xpos=0, legend_ypos=45)

End(Not run)

dynamicFBA dynamic flux balance analysis

Description

Calculate concentrations of metabolites of exchange reactions at defined time points given the initial concentrations. To accomplish this task this function calls `optimizeProb` function to get the fluxes then update the concentrations and the reaction boundaries etc.

Usage

dynamicFBA(model, substrateRxns, initConcentrations, initBiomass, timeStep, nSteps, exclUptakeRxns,
retOptSol = TRUE,
fld = FALSE, verboseMode = 2, ...)

Arguments

- **model**: An object of class `modelorg`.
- **substrateRxns**: List of exchange reaction names for substrates initially in the media that may change (e.g. not h2o or co2)
initConcentrations
The given start concentrations of substrates

initBiomass
The start value of biomass (must be nonzero)

timeStep
Define the points of time to evaluate the problem at.

nSteps
The maximum number of steps, the procedure may stop before completing this number when the substrate run out.

exclUptakeRxns
List of uptake reactions whose substrate concentrations do not change (Default =’EX_co2(e)’,’EX_o2(e)’,’EX_h2o(e)’,’EX_h(e)’)

retOptSol
Boolean. indicates if optsol calss will be returned or simple list.
Default: TRUE

defld
Boolean. Save the resulting flux distribution.
Default: FALSE

verboseMode
An integer value indicating the amount of output to stdout: 0: nothing, 1: status messages, 2: like 1 plus a progress indicator, 3: a table containing the reaction id’s and the corresponding min max values.
Default: 2

Further arguments passed to sysBiolAlg. Argument solverParm is a good candidate.

Value
returns optsol_dynamicFBA

Author(s)
Abdelmoneim Amer Desouki

References

See Also
modelorg, optsol_dynamicFBA, optimizeProb, sysBiolAlg, SYBIL_SETTINGS

Examples
Not run:
The examples here require the package glpkAPI to be
installed. If that package is not available, you have to set
the argument 'solver' (the default is: solver = "glpk").

load the example data set
data(Ec_core)
lowbnd(Ec_core)[react_id(Ec_core)=='EX_glc(e)']==-10;
lowbnd(Ec_core)[react_id(Ec_core)=='EX_o2(e)']==-18;
run dynamicFBA(), Ec_df will be an object of class \code{\link{optsol_dynamicFBA}}
Ec_df <- dynamicFBA(Ec_core,substrateRxns=c('EX_glc(e)'),initConcentrations=10,
initBiomass=.035,timeStep=.25,nSteps=20,verbose=3)

plot biomass and reactions
plot(Ec_df,plotRxns=c('EX_glc(e)','EX_ac(e)'));

End(Not run)

Ec_core

Escherichia coli Core Energy Metabolism Network

Description

The dataset is a network representation of the *E. coli* core metabolism. It consists of 62 internal reactions, 14 exchange reactions and a biomass objective function.

Usage

data(Ec_core)

Format

An object of class modelorg

Source

http://systemsbiology.ucsd.edu/Downloads/EcoliCore

References

Class "optsol_dynamicFBA"

Description

Structure of the class "optsol_dynamicFBA". Objects of that class are returned by the function `dynamicFBA`. Extends the Class `optsol_optimizeProb`.

Objects from the Class

Objects can be created by calls of the function `optsol_dynamicFBA`:

```r
test <- optsol_dynamicFBA(solver = "glpk", method = "simplex")
```

Slots

- **solver**: Object of class "character" indicating the used solver.
- **method**: Object of class "character" indicating the used method.
- **num_of_prob**: Object of class "integer" indicating the number of optimization problems.
- **lp_num_cols**: Object of class "integer" indicating the number of columns.
- **lp_num_rows**: Object of class "integer" indicating the number of rows.
- **lp_obj**: Object of class "numeric" containing the values of the objective function.
- **lp_ok**: Object of class "integer" containing the exit code of the optimization.
- **lp_stat**: Object of class "integer" containing the solution status of the optimization.
- **lp_dir**: Object of class "character" indicating the direction of optimization.
- **concentrationMatrix**: Object of class "matrix" contains concentrations of extracellular metabolites.
- **excRxnNames**: Object of class "matrix" contains names of exchange reactions for the EC metabolites.
- **fluxdist**: Object of class "fluxDistribution" containing the solutions flux distributions.
- **timeVec**: Object of class "numeric" Vector of time points
- **biomassVec**: Object of class "numeric" Vector of biomass values
- **all_fluxes**: Object of class "matrix" contains fluxes of all reactions at all steps

Extends

Class "optsol_optimizeProb", directly. Class "optsol", by class "optsol_optimizeProb", distance 2.
Methods

plot signature(x = "optsol_dynamicFBA", y = "missing"):
 x An object of class optsol_dynamicFBA.
 y not used but kept for compatibility with generic plot.
 plotRxns List of reaction id's to be plotted
 ... Further arguments passed to sysBiolAlg. Argument solverParm is a good candidate.

Author(s)

Abdelmoneim Amer Desouki

See Also

checkOptSol, optsol, optsol_optimizeProb

Examples

showClass("optsol_dynamicFBA")
Index

*Topic **classes**
 optsol_dynamicFBA-class, 6

*Topic **datasets**
 Ec_core, 5

*Topic **optimize**
 dynamicFBA, 3

*Topic **package**
 sybilDynFBA-package, 2

checkOptSol, 7

dynamicFBA, 3, 6

Ec_core, 5

modelorg, 3, 4

optimizeProb, 3, 4

optsol, 6, 7

optsol_dynamicFBA, 4, 7

optsol_dynamicFBA
 (optsol_dynamicFBA-class), 6

optsol_dynamicFBA-class, 6

optsol_optimizeProb, 6, 7

plot,optsol_dynamicFBA,missing-method
 (optsol_dynamicFBA-class), 6

sybil, 2

SYBIL_SETTINGS, 4

sybilDynFBA (sybilDynFBA-package), 2

sybilDynFBA-package, 2

sysBio1Alg, 4, 7