Package ‘symbolicDA’

August 8, 2019

Title Analysis of Symbolic Data
Version 0.6-2
Date 2019-08-07
Author Andrzej Dudek, Marcin Pelka <marcin.pelka@ue.wroc.pl>, Justyna Wilk <justyna.wilk@ue.wroc.pl> (to 2017-09-20), Marek Walesiak <Marek.Walesiak@ue.wroc.pl> (from 2018-02-01)
Maintainer Andrzej Dudek <andrzej.dudek@ue.wroc.pl>
Depends R(>= 3.6.0), clusterSim,XML
Imports rgl, shapes, e1071, ade4, cluster, RSDA
License GPL (>= 2)
URL http://keii.ue.wroc.pl/symbolicDA
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2019-08-08 15:30:03 UTC
R topics documented:

bagging.SDA ... 2
boosting.SDA ... 4
cars ... 5
cluster.Description.SDA ... 6
data_symbolic .. 8
DClust ... 8
decisionTree.SDA .. 9
dist_SDA ... 11
draw.decisionTree.SDA .. 13
generate.SO ... 14
HINoV.SDA ... 15
IchinoFS.SDA ... 17
index.G1d .. 18
interscal.SDA ... 20
isca1.SDA .. 21
kernel.SDA .. 23
kohonen.SDA ... 24
parse.SO .. 25
PCA.centers.SDA .. 26
PCA.mr pca.SDA .. 27
PCA.spaghetti.SDA ... 28
PCA.spca.SDA .. 30
PCA.vertices.SDA .. 31
plot3dInterval .. 32
random.forest.SDA ... 32
replication.SDA .. 34
RSDA2SymbolicDA ... 36
save.SO .. 38
SCLust .. 39
simple2SO ... 40
SO2Simple .. 41
subsdt.SDA .. 42
symbolic.object .. 43
symscal.SDA ... 46
zoomStar .. 48

Index ... 50

| bagging.SDA | Bagging algorithm for optimal split based on decision tree for symbolic objects |

Description

Bagging algorithm for optimal split based on decision (classification) tree for symbolic objects
Usage

`bagging.SDA(sdt, formula, testSet, mfinal = 20, rf = FALSE, ...)`

Arguments

- `sdt`: Symbolic data table
- `formula`: formula as in `lm` function
- `testSet`: a vector of integers indicating classes to which each objects are allocated in learning set
- `mfinal`: number of partial models generated
- `rf`: random forest like drawing of variables in partial models
- `...`: arguments passed to `decisionTree.SDA` function

Details

The bagging, which stands for bootstrap aggregating, was introduced by Breiman in 1996. The diversity of classifiers in bagging is obtained by using bootstrapped replicas of the training data. Different training data subsets are randomly drawn with replacement from the entire training data set. Then each training data subset is used to train a decision tree (classifier). Individual classifiers are then combined by taking a simple majority vote of their decisions. For any given instance, the class chosen by most number of classifiers is the ensemble decision.

Value

An object of class `bagging.SDA`, which is a list with the following components:

- `predclass`: the class predicted by the ensemble classifier
- `confusion`: the confusion matrix for ensemble classifier
- `error`: the classification error
- `pred`: ?
- `classfinal`: final class memberships

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl> Marcin Pełka <marcin.pelka@ue.wroc.pl>
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/symbolicDA

References

See Also

boosting.SDA, random.forest.SDA, decisionTree.SDA

Examples

#define your example here
#Example will be available in next version of package, thank You for your patience :-)

boosting.SDA

Boosting algorithm for optimal split based decision tree for symbolic objects

Usage

boosting.SDA(sdt, formula, testSet, mfinal = 20, ...)

Arguments

sdt Symbolic data table
formula formula as in ln function
testSet a vector of integers indicating classes to which each objects are allocated in learning set
mfinal number of partial models generated
... arguments passed to decisionTree.SDA function

Details

Boosting, similar to bagging, also creates an ensemble of classifiers by resampling the data. The results are then combined by majority voting. Resampling in boosting provides the most informative training data for each consecutive classifier. In each iteration of boosting three weak classifiers are created: the first classifier C1 is trained with a random subset of the training data. The training data subset for the next classifier C2 is chosen as the most informative subset, given C1.C2 is trained on a training data only half of which is correctly classified by C1 and the other half is misclassified. The third classifier C3 is trained with instances on which C1 and C2 disagree. Then the three classifiers are combined through a three-way majority vote.
Value

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>a symbolic description of the model that was used</td>
</tr>
<tr>
<td>trees</td>
<td>trees built while making the ensemble</td>
</tr>
<tr>
<td>weights</td>
<td>weights for each object from test set</td>
</tr>
<tr>
<td>votes</td>
<td>final consensus clustering</td>
</tr>
<tr>
<td>class</td>
<td>predicted class memberships</td>
</tr>
<tr>
<td>error</td>
<td>error rate of the ensemble clustering</td>
</tr>
</tbody>
</table>

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl> Marcin Pelka <marcin.pelka@ue.wroc.pl>
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/symbolicDA

References

See Also

bagging.SDA, random.forest.SDA, decisionTree.SDA

Examples

Example will be available in next version of package, thank You for your patience :-)

cars real data set in symbolic form - selected car models described by a set of symbolic variables

Description

symbolic data set: 30 observations on 12 symbolic variables - 9 interval-valued and 3 multinominal variables, third dimension represents the beginning and the end of intervals for interval-valued variable’s implementation or a set of categories for multinominal variable’s implementation

Format

symbolic data table (see (link{symbolic.object}))
Source

the original data on 30 selected car models and their prices, chasis and engine types were collected from the websites of authorized car dealers. Then the data were converted (aggregated) to symbolic format (second order symbolic objects). Each symbolic object - e.g. "Seat Leon", "Citroen C4" - represents all chasis, engine types and price range of this kind of car model available on the Polish market in 2010. For example the price range [54,900; 96,190] PLN, hatchback and saloon body style, petrol and diesel engine, acceleration 0-100 kph range [10.00; 11.90] seconds are, in general, the characteristics of "Toyota Corolla".

Examples

```r
# LONG RUNNING - UNCOMMENT TO RUN
#data("cars",package="symbolicDA")
#sdt<-cars
#r<- HINoV.SDA(sdt, u=5, distance="U_3")
#plot(r$stopri[,2], xlab="Variable number", ylab="topri",
#xaxt="n", type="b")
#axis(1,at=c(1:max(r$stopri[,1])),labels=r$stopri[,1])
```

Description

description of clusters of symbolic objects is obtained by a generalisation operation using in most cases descriptive statistics calculated separately for each cluster and each symbolic variable.

Usage

```
cluster.Description.SDA(table.Symbolic, clusters, precission=3)
```

Arguments

table.Symbolic Symbolic data table
clusters a vector of integers indicating the cluster to which each object is allocated
precission Number of digits to round the results

Value

A List of cluster numbers, variable number and labels.
The description of clusters of symbolic objects which differs according to the symbolic variable type:
- for interval-valued variable:
"min value" - minimum value of the lower-bounds of intervals observed for objects belonging to the cluster
"max value" - maximum value of the upper-bounds of intervals observed for objects belonging to the cluster

- for multinominal variable:
 "categories" - list of all categories of the variable observed for symbolic belonging to the cluster
- for multinominal with weights variable:
 "min probabilities" - minimum weight of each category of the variable observed for objects belonging to the cluster
 "max probabilities" - maximum weight of each category of the variable observed for objects belonging to the cluster
 "avg probabilities" - average weight of each category of the variable calculated for objects belonging to the cluster
 "sum probabilities" - sum of weights of each category of the variable calculated for objects belonging to the cluster

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>, Justyna Wilk <justyna.wilk@ue.wroc.pl> Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA

References

See Also

SClust,DClust; hclus in stats library; pam in cluster library

Examples

LONG RUNNING - UNCOMMENT TO RUN
#data("cars",package="symbolicDA")
y<-cars
c1<-SClust(y, 4, iter=150)
print(c1)
o<-cluster.Description.SDA(y, c1)
print(o)
data_symbolic Symbolic interval data

Description
Artificially generated symbolic interval data

Format
3-dimensional array: 125 objects, 6 variables, third dimension represents beginning and end of interval, 5-class structure

Source
Artificially generated data

DClust Dynamical clustering based on distance matrix

Description
Dynamical clustering of objects described by symbolic and/or classic (metric, non-metric) variables based on distance matrix

Usage
DClust(dist, cl, iter=100)

Arguments
 dist distance matrix
 cl number of clusters or vector with initial prototypes of clusters
 iter maximum number of iterations

Details
See file ..//doc/DClust_details.pdf for further details

Value
a vector of integers indicating the cluster to which each object is allocated

Author(s)
Andrzej Dudek <andrzej.dudek@ue.wroc.pl>, Justyna Wilk <justyna.wilk@ue.wroc.pl> Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA
References

See Also

SClust, dist_SDA; dist in stats library; dist.GDM in clusterSim library; pam in cluster library

Examples

```r
# LONG RUNNING - UNCOMMENT TO RUN
#data("cars",package="symbolicDA")
#sdt<-cars
#dist<-dist_SDA(sdt, type="U_3")
#clust<-DClust(dist, cl=5, iter=100)
#print(clust)
```

decisionTree.SDA

Decision tree for symbolic data

Description

Optimal split based decision tree for symbolic objects

Usage

decisionTree.SDA(sdt,formula,testSet,treshMin=0.0001,treshW=-1e10,
 tNodes=NULL,minSize=2,epsilon=1e-4,useEM=FALSE,
 multiNominalType="ordinal",rf=FALSE,rf.size,objectSelection)

Arguments

- **sdt**: Symbolic data table
- **formula**: formula as in `lm` function
- **testSet**: a vector of integers indicating classes to which each objects are allocated in learning set
- **treshMin**: parameter for tree creation algorithm
threshW parameter for tree creation algorithm
tNodes parameter for tree creation algorithm
minSize parameter for tree creation algorithm
epsilon parameter for tree creation algorithm
useEM use Expectation Optimalization algorithm for estimating conditional probabilities
multiNominalType "ordinal" - function treats multi-nominal data as ordered or "nominal" function treats multi-nominal data as unordered (longer performance times)
rf if TRUE symbolic variables for tree creation are randomly chosen like in random forest algorithm
rf.size the number of variables chosen for tree creation if rf is true
objectSelection optional, vector with symbolic object numbers for tree creation

Details
For further details see ../doc/decisionTree_SDA.pdf

Value

- nodes nodes in tree
- nodeObjects contribution of each objects nodes in tree
- conditionalProb conditional probability of belongingness of nodes to classes
- prediction predicted classes for objects from testSet

Author(s)
Andrzej Dudek <andrzej.dudek@ue.wroc.pl> Marcin Pelka <marcin.pelka@ue.wroc.pl>
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/symbolicDA

References

See Also
drawing.SDA, boosting.SDA, random.forest.SDA, draw.decisionTree.SDA
Examples

Example 1
LONG RUNNING - UNCOMMENT TO RUN
File samochody.xml needed in this example
can be found in /inst/xml library of package
sda<-parse.SO("samochody")
tree<-decisionTree.SDA(sda, "Typ_samochodu-.", testSet=1:33)
summary(tree) # a very general information
tree # summary information

dist_SDA distance measurement for symbolic data

Description

calculates distances between symbolic objects described by interval-valued, multinominal and multi-
nominal with weights variables

Usage

dist_SDA(table.Symbolic, type="U_2", subType=NULL, gamma=0.5, power=2, probType="J",
probAggregation="P_1", s=0.5, p=2, variableSelection=NULL, weights=NULL)

Arguments

table.Symbolic: symbolic data table

type: distance measure for boolean symbolic objects: H, U_2, U_3, U_4, C_1, SO_1,
SO_2, SO_3, SO_4, SO_5; mixed symbolic objects: L_1, L_2

subType: comparison function for C_1 and SO_1: D_1, D_2, D_3, D_4, D_5

gamma: gamma parameter for U_2 and U_3, gamma [0, 0.5]

power: power parameter for U_2 and U_3; power [1, 2, 3, ..]

probType: distance measure for probabilistic symbolic objects: J, CHI, REN, CHER, LP

probAggregation: aggregation function for J, CHI, REN, CHER, LP: P_1, P_2

s: parameter for Renyi (REN) and Chernoff (CHE) distance, s [0, 1]

p: parameter for Minkowski (LP) metric; p=1 - manhattan distance, p=2 - euclidean distance

variableSelection: numbers of variables used for calculation or NULL for all variables

weights: weights of variables for Minkowski (LP) metrics
Details

Distance measures for boolean symbolic objects:

H - Hausdorff’s distance for objects described by interval-valued variables, U_2, U_3, U_4 - Ichino-Yaguchi’s distance measures for objects described by interval-valued and/or multinominal variables, C_1, SO_1, SO_2, SO_3, SO_4, SO_5 - de Carvalho’s distance measures for objects described by interval-valued and/or multinominal variables.

Distance measurement for probabilistic symbolic objects consists of two steps: 1. Calculation of distance between objects for each variable using componentwise distance measures: J (Kullback-Leibler divergence), CHI (Chi-2 divergence), REN (Renyi’s divergence), CHER (Chernoff’s distance), LP (modified Minkowski metrics). 2. Calculation of aggregative distance between objects based on componentwise distance measures using objectwise distance measure: P_1 (manhattan distance), P_2 (euclidean distance).

Distance measures for mixed symbolic objects - modified Minkowski metrics: L_1 (manhattan distance), L_2 (euclidean distance).

See file ../doc/dist_SDA.pdf for further details

NOTE !!!: In previous version of package this function has been called dist.SDA.

Value

distance matrix of symbolic objects

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>, Justyna Wilk <justyna.wilk@ue.wroc.pl> Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA

References

draw.decisionTree.SDA

See Also

DClust, index.G1d; dist.Symbolic in clusterSim library

Examples

LONG RUNNING - UNCOMMENT TO RUN
#data("cars",package="symbolicDA")
#dist<-dist_SDA(cars, type="U_3", gamma=0.3, power=2)
#print(dist)

draw.decisionTree.SDA Draws optimal split based decision tree for symbolic objects

Description

Draws optimal split based decision tree for symbolic objects

Usage

draw.decisionTree.SDA(decisionTree.SDA,boxWidth=1,boxHeight=3)

Arguments

decisionTree.SDA
 optimal split based decision tree for symbolic objects (result of decisionTree.SDA function)
boxWidth width of single box in drawing
boxHeight height of single box in drawing

Details

Draws optimal split based decision (classification) tree for symbolic objects.

Value

A draw of optimal split based decision (classification) tree for symbolic objects.

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl> Marcin Pelka <marcin.pelka@ue.wroc.pl>
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/symbolicDA
References

See Also
decisionTree.SDA

Examples

LONG RUNNING - UNCOMMENT TO RUN
Files samochody.xml and wave.xml needed in this example
can be found in /inst/xml library of package

Example 1
sda<-parse.SO("samochody")
tree<-decisionTree.SDA(sda, "Typ_samochodu.", testSet=26:33)
draw.decisionTree.SDA(tree,boxWidth=1,boxHeight=3)

Example 2
sda<-parse.SO("wave")
tree<-decisionTree.SDA(sda, "WaveForm.", testSet=1:30)
draw.decisionTree.SDA(tree,boxWidth=2,boxHeight=3)

generate.SO

generation of artificial symbolic data table with given cluster structure

Description

generation of artificial symbolic data table with given cluster structure

Usage

generate.SO(numObjects,numClusters,numIntervalVariables,numMultivaluedVariables)

Arguments

numObjects number of objects in each cluster
numClusters number of objects
numIntervalVariables
numMultivaluedVariables

Number of symbolic interval variables in generated data table

Number of symbolic multi-valued variables in generated data table
Value

data symbolic data table with given cluster structure
clusters vector with cluster numbers for each object

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>

Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/symbolicDA

References

See Also

see symbolic.object for symbolic data table R structure representation

Examples

Example will be available in next version of package, thank You for your patience :-)

| HINoV.SDA | Modification of HINoV method for symbolic data |

Description

Carmone, Kara \& Maxwell’s Heuristic Identification of Noisy Variables (HINoV) method for symbolic data

Usage

HINoV.SDA(table.Symbolic, u=NULL, distance="H", Index="cRAND", method="pam",...)
Arguments

table.Symbolic symbolic data table
u number of clusters
distance symbolic distance measure as parameter type in dist_SDA
method clustering method: "single", "ward", "complete", "average", "mcquitty", "median", "centroid", "pam" (default), "SClust", "DClust"
Index "cRAND" - adjusted Rand index (default); "RAND" - Rand index
... additional argument passed to dist_SDA function

Details

For HINoV in symbolic data analysis there can be used methods based on distance matrix such as hierarchical ("single", "ward", "complete", "average", "mcquitty", "median", "centroid") and optimization methods ("pam", "DClust") and also methods based on symbolic data table ("SClust"). See file ../doc/HINoVSDA_details.pdf for further details

Value

parim m x m symmetric matrix (m - number of variables). Matrix contains pairwise adjusted Rand (or Rand) indices for partitions formed by the j-th variable with partitions formed by the l-th variable
topri sum of rows of parim
stopri ranked values of topri in decreasing order

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>, Justyna Wilk <justyna.wilk@ue.wroc.pl> Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA

References

Ichino's method for identifying non-noisy variables in symbolic data set.

Usage

IchinoFS.SDA(table.Symbolic)

Arguments

- `table.Symbolic`: symbolic data table

Details

See file `../doc/IchinoFSSDA_details.pdf` for further details.

Value

- `plot`: plot of the gradient illustrating combinations of variables, in which the axis of ordinates (Y) represents the maximum number of mutual neighbor pairs and the axis of the abscissae (X) corresponds to the number of features (m).
- `combination`: the best combination of variables, i.e. the combination most differentiating the set of objects.
- `maximum results`: step-by-step combinations of variables up to m variables.
- `calculation results`:

See Also

DClust, SClust, dist.SDA; HINoV.Symbolic, dist.Symbolic in clusterSim library; hclust in stats library; pam in cluster library.

Examples

```r
# LONG RUNNING - UNCOMMENT TO RUN
#data("cars",package="symbolicDA")
#r<- HINoV.SDA(cars, u=3, distance="U_2")
#print(r$stopri)
#plot(r$stopri[,2], xlab="Variable number", ylab="topri",
#xaxt="n", type="b")
#axis(1,at=c(1:max(r$stopri[,1])),labels=r$stopri[,1])
```

IchinoFS.SDA

Ichino's feature selection method for symbolic data
Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>, Justyna Wilk <justyna.wilk@ue.wroc.pl> Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA

References

See Also

HINoV.SDA; HINoV.Symbolic in clusterSim library

Examples

LONG RUNNING - UNCOMMENT TO RUN
#data("cars",package="symbolicDA")
#sdt<-cars
#ichino<-IchinoFS.SDA(sdt)
#print(ichino)

index.G1d

Calinski-Harabasz pseudo F-statistic based on distance matrix

Description

Calculates Calinski-Harabasz pseudo F-statistic based on distance matrix

Usage

index.G1d (d,cl)

Arguments

d distance matrix (see dist_SDA)
cl a vector of integers indicating the cluster to which each object is allocated

Details

See file ../../../doc/indexG1d_details.pdf for further details
Value

value of Calinski-Harabasz pseudo F-statistic based on distance matrix

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>, Justyna Wilk <justyna.wilk@ue.wroc.pl> Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA

References

See Also

Examples

LONG RUNNING - UNCOMMENT TO RUN
Example 1
library(stats)
data("cars", package="symbolicDA")
x<-cars
d<-dist_SDA(x, type="U_2")
wynik<-hclust(d, method="ward", members=NULL)
clusters<-cutree(wynik, 4)
G1d<-index.G1d(d, clusters)
print(G1d)

Example 2

data("cars", package="symbolicDA")
md <- dist_SDA(cars, type="U_3", gamma=0.5, power=2)
nc - number_of_clusters
min_nc=2
max_nc=10
res <- array(0,c(max_nc-min_nc+1,2))
res[,1] <- min_nc:max_nc
clusters <- NULL
for (nc in min_nc:max_nc)
{
cl2 <- pam(md, nc, diss=TRUE)
res[nc-min_nc+1,2] <- G1d <- index.G1d(md,cl2$clustering)
clusters <- rbind(clusters, cl2$clustering)
}
print(paste("max G1d for",(min_nc:max_nc)[which.max(res[,2])],"clusters=" ,max(res[,2])))
print("clustering for max G1d")
print(clusters[which.max(res[,2]),])
write.table(res,file="G1d_res.csv",sep=";",dec="",row.names=TRUE,col.names=FALSE)
plot(res, type="p", pch=0, xlab="Number of clusters", ylab="G1d", xaxt="n")
axis(1, c(min_nc:max_nc))

interscal.SDA

Multidimensional scaling for symbolic interval data - InterScal algorithm

Description

Multidimensional scaling for symbolic interval data - InterScal algorithm

Usage

interscal.SDA(x,d=2,calculateDist=FALSE)

Arguments

x symbolic interval data: a 3-dimensional table, first dimension represents object number, second dimension - variable number, and third dimension contains lower- and upper-bounds of intervals (Simple form of symbolic data table)
d Dimensionality of reduced space
calculateDist if TRUE x are treated as raw data and min-max dist matrix is calculated. See details

Details

Interscal is the adaptation of well-known classical multidimensional scaling for symbolic data. The input for Interscal is the interval-valued dissimilarity matrix. Such dissimilarity matrix can be obtained from symbolic data matrix (that contains only interval-valued variables), judgements obtained from experts, respondents. See Lechevallier Y. (2001) for details on calculating interval-valued distance. See file ../doc/Symbolic_MDS.pdf for further details
iscal.SDA

Value

- `xprim`: coordinates of rectangles
- `stress.sym`: final STRESSSym value

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl> Marcin Pelka <marcin.pelka@ue.wroc.pl>
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/symbolicDA

References

See Also

- `iscal.SDA`, `symscal.SDA`

Examples

```r
# LONG RUNNING - UNCOMMENT TO RUN
#sda<-parse.SO("samochody")
#data<-sda$indivIC
#mds<-interscal.SDA(data, d=2, calculateDist=TRUE)
```

iscal.SDA

Multidimensional scaling for symbolic interval data - IScal algorithm

Description

Multidimensional scaling for symbolic interval data - IScal algorithm

Usage

```r
iscal.SDA(x,d=2,calculateDist=FALSE)
```
Arguments

- **x**: symbolic interval data: a 3-dimensional table, first dimension represents object number, second dimension - variable number, and third dimension contains lower- and upper-bounds of intervals (Simple form of symbolic data table)
- **d**: Dimensionality of reduced space
- **calculateDist**: if TRUE x are treated as raw data and min-max dist matrix is calculated. See details

Details

IScal, which was proposed by Groenen et. al. (2006), is an adaptation of well-known nonmetric multidimensional scaling for symbolic data. It is an iterative algorithm that uses I-STRESS objective function. This function is normalized within the range \([0; 1]\) and can be interpreted like classical STRESS values. IScal, like Interscal and SymScal, requires interval-valued dissimilarity matrix. Such dissimilarity matrix can be obtained from symbolic data matrix (that contains only interval-valued variables), judgements obtained from experts, respondents. See Lechevallier Y. (2001) for details on calculating interval-valued distance. See file `../doc/Symbolic_MDS.pdf` for further details

Value

- **xprim**: coordinates of rectangles
- **STRESSSym**: final STRESSSym value

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>

Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland

http://keii.ue.wroc.pl/symbolicDA

References

See Also

intervalscal.SDA,symscal.SDA
Examples

Example will be available in next version of package, thank You for your patience :-)
kohonen.SDA

Kohonen’s self-organizing maps for symbolic interval-valued data

Description

Kohonen’s self-organizing maps for a set of symbolic objects described by interval-valued variables

Usage

kohonen.SDA(data, rlen=100, alpha=c(0.05,0.01))

Arguments

data symbolic data table in simple form (see SO2Simple)
rlen number of iterations (the number of times the complete data set will be presented to the network)
alpha learning rate, determining the size of the adjustments during training. Default is to decline linearly from 0.05 to 0.01 over rlen updates

Details

See file ../doc/kohonenSDA_details.pdf for further details
Value

clas vector of mini-class belonginers in a test set
prot prototypes

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>, Justyna Wilk <justyna.wilk@ue.wroc.pl> Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA

References

See Also

SO2Simple; som in kohonens library

Examples

Example will be available in next version of package, thank You for your patience :-)
Value
Symbolic data table parsed from XML file

Author(s)
Andrzej Dudek <andrzej.dudek@ue.wroc.pl>
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/clusterSim

References

See Also
save.SO, generate.SO

Examples
cars<-parse.SO("cars")

PCA.centers.SDA principal component analysis for symbolic objects described by symbolic interval variables. Centers algorithm

Description
principal component analysis for symbolic objects described by symbolic interval variables. Centers algorithm

Usage
PCA.centers.SDA(t, pc.number=2)

Arguments
t symbolic interval data: a 3-dimensional table, first dimension represents object number, second dimension - variable number, and third dimension contains lower- and upper-bounds of intervals (Simple form of symbolic data table)
pc.number number of principal components
Details

See file `../doc/PCA_SDA.pdf` for further details

Value

Data in reduced space (symbolic interval data: a 3-dimensional table)

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>

Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland

http://keii.ue.wroc.pl/symbolicDA

References

See Also

`PCA.mrpca.SDA`, `PCA.spaghetti.SDA`, `PCA.spca.SDA`, `PCA.vertices.SDA`

Examples

```r
# Example will be available in next version of package, thank You for your patience :-) 
```

PCA.mrpca.SDA

`principal component analysis for symbolic objects described by symbolic interval variables. Midpoints and radii algorithm`

Description

principal component analysis for symbolic objects described by symbolic interval variables. *Midpoints and radii algorithm*

Usage

`PCA.mrpca.SDA(t, pc.number=2)`
Arguments

t symbolic interval data: a 3-dimensional table, first dimension represents object number, second dimension - variable number, and third dimension contains lower- and upper-bounds of intervals (Simple form of symbolic data table)

pc.number number of principal components

Details

See file ../doc/PCA_SDA.pdf for further details

Value

Data in reduced space (symbolic interval data: a 3-dimensional table)

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/symbolicDA

References

See Also

PCA.centers.SDA, PCA.spaghetti.SDA, PCA.spca.SDA, PCA.vertices.SDA

Examples

Example will be available in next version of package, thank You for your patience :-)

PCA.spaghetti.SDA principal component analysis for symbolic objects described by symbolic interval variables. Spaghetti algorithm

Description

principal component analysis for symbolic objects described by symbolic interval variables. Spaghetti algorithm
Usage

PCA.spaghetti.SDA(t, pc.number=2)

Arguments

t symbolic interval data: a 3-dimensional table, first dimension represents object number, second dimension - variable number, and third dimension contains lower- and upper-bounds of intervals (Simple form of symbolic data table)

pc.number number of principal components

Details

See file ../doc/PCA_SDA.pdf for further details

Value

Data in reduced space (symbolic interval data: a 3-dimensional table)

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>

Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/symbolicDA

References

See Also

PCA.centers.SDA, PCA.mrPCA.SDA, PCA.spca.SDA, PCA.vertices.SDA

Examples

Example will be available in next version of package, thank You for your patience :-}
principal component analysis for symbolic objects described by symbolic interval variables. 'Symbolic' PCA algorithm

Description
principal component analysis for symbolic objects described by symbolic interval variables. 'Symbolic' PCA algorithm

Usage
PCA.spca.SDA(t, pc.number=2)

Arguments
t symbolic interval data: a 3-dimensional table, first dimension represents object number, second dimension - variable number, and third dimension contains lower- and upper-bounds of intervals (Simple form of symbolic data table)
pc.number number of principal components

Details
See file ../doc/PCA_SDA.pdf for further details

Value
Data in reduced space (symbolic interval data: a 3-dimensional table)

Author(s)
Andrzej Dudek <andrzej.dudek@ue.wroc.pl>
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/symbolicDA

References

See Also
PCA.centers.SDA, PCA.mrpca.SDA, PCA.spaghetti.SDA, PCA.vertices.SDA
Examples

Example will be available in next version of package, thank You for your patience :-)
plot3dInterval

3D plot for symbolic interval-valued data

Description

3-dimensional plot for symbolic objects described by interval-valued variables

Usage

plot3dInterval(data, colors)

Arguments

data symbolic data table consists of a set of symbolic objects described by interval-valued variables

colors set of colors (see colors) to mark symbolic objects

Value

3-dimensional plot for symbolic interval-valued data in which each axis represents a symbolic interval-valued variable and each cuboid represents a symbolic object

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>, Justyna Wilk <justyna.wilk@ue.wroc.pl> Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA

References

See Also

SClust; plotInterval in clusterSim library

See Also

PCA.centers.SDA, PCA.mrPCA.SDA, PCA.spaghetti.SDA, PCA.spca.SDA

Examples

Example will be available in next version of package, thank You for your patience :-)

plot3dInterval

3D plot for symbolic interval-valued data

Description

3-dimensional plot for symbolic objects described by interval-valued variables

Usage

plot3dInterval(data, colors)

Arguments

data symbolic data table consists of a set of symbolic objects described by interval-valued variables

colors set of colors (see colors) to mark symbolic objects

Value

3-dimensional plot for symbolic interval-valued data in which each axis represents a symbolic interval-valued variable and each cuboid represents a symbolic object

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>, Justyna Wilk <justyna.wilk@ue.wroc.pl> Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA

References

See Also

SClust; plotInterval in clusterSim library
random.forest.SDA

Examples

LONG RUNNING - UNCOMMENT TO RUN
#means <- matrix(c(0,0,0,
#0,0,6,
#0,6,0,
#0,6,6,
#6,0,0,
#6,0,6,
#6,6,0,
#6,6,6),8,3,byrow=TRUE)
#means<-means*1.5
#means[5:8,1]<-means[5:8,1]-2
#means[5:8,3]<-means[5:8,3]-2
#cov <- matrix(c(1,0,0,0,1,0,0,0,1),3,3)
#t<-cluster.Gen(model=2, means=means, cov=cov, dataType="s", numObjects=10)
#plot3dInterval(t$data, colors=rainbow(8)[t$clusters])
#rgl.viewpoint(15,20,30)
#rgl.snapshot("8_clusters_3d.jpg")

random.forest.SDA Random forest algorithm for optimal split based decision tree for symbolic objects

Description

Random forest algorithm for optimal split based decision tree for symbolic objects

Usage

random.forest.SDA(sdt, formula, testSet, mfinal = 100,...)

Arguments

sdt Symbolic data table
formula formula as in ln function
testSet a vector of integers indicating classes to which each objects are allocated in learnig set
mfinal number of partial models generated
... arguments passed to decisionTree.SDA function

Details

random.forest.SDA implements Breiman’s random forest algorithm for classification of symbolic data set.

Value

Section details goes here
Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl> Marcin Pelka <marcin.pelka@ue.wroc.pl>
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/symbolicDA

References

See Also

bagging.SDA, boosting.SDA, decisionTree.SDA

Examples

Example will be available in next version of package, thank You for your patience :-)

replication.SDA

Description

Replication analysis for cluster validation of symbolic data

Usage

replication.SDA(table.Symbolic, u=2, method="SClust", S=10, fixedAsample=NULL, ...)

Arguments

- **table.Symbolic**: symbolic data table
- **u**: number of clusters given arbitrarily
- **method**: clustering method: "SClust" (default), "DClust", "single", "complete", "average", "mcquitty", "median", "centroid", "ward", "pam", "diana"
- **S**: the number of simulations used to compute average adjusted Rand index
- **fixedAsample**: if NULL a sample is generated randomly, otherwise this parameter contains object numbers arbitrarily assigned to A sample
- **...**: additional argument passed to dist_SDA function
Details

See file `../doc/replicationSDA_details.pdf` for further details

Value

- **A**
 - 3-dimensional array containing data matrices for A sample of objects in each simulation (first dimension represents simulation number, second - object number, third - variable number)

- **B**
 - 3-dimensional array containing data matrices for B sample of objects in each simulation (first dimension represents simulation number, second - object number, third - variable number)

- **medoids**
 - 3-dimensional array containing matrices of observations on u representative objects (medoids) for A sample of objects in each simulation (first dimension represents simulation number, second - cluster number, third - variable number)

- **clusteringA**
 - 2-dimensional array containing cluster numbers for A sample of objects in each simulation (first dimension represents simulation number, second - object number)

- **clusteringB**
 - 2-dimensional array containing cluster numbers for B sample of objects in each simulation (first dimension represents simulation number, second - object number)

- **clusteringBB**
 - 2-dimensional array containing cluster numbers for B sample of objects in each simulation according to 4 step of replication analysis procedure (first dimension represents simulation number, second - object number)

- **cRand**
 - Value of average adjusted Rand index for S simulations

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>, Justyna Wilk <justyna.wilk@ue.wroc.pl> Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA

References

RSDA2SymbolicDA

Description

It reads a symbolic data table from a CSV file or converts RSDA object to SymbolicDA "symbolic" class type object.

Usage

```r
RSDA2SymbolicDA(rsda.object=NULL, from.csv=F, file=NULL, header = TRUE, sep, dec, row.names = NULL)
```

Arguments

- `rsda.object` object of class "symb.data.table" from (former) RSDA package
- `from.csv` object of class "symb.data.table" from (former) RSDA package
- `file` optional, The name of the CSV file in RSDA format (see details)
- `header` As in R function read.table
- `sep` As in R function read.table
- `dec` As in R function read.table
- `row.names` As in R function read.table

Details

(as in (former) RSDA package) The labels C means that follows a continuous variable, I means an interval variable, H means a histogram variables and S means set variable. In the first row each labels should be follow of a name to variable and to the case of histogram a set variables types the names of the modalities (categories). In data rows for continuous variables we have just one value, for interval variables we have the minimum and the maximum of the interval, for histogram variables we have the number of modalities and then the probability of each modality and for set variables we have the cardinality of the set and next the elements of the set.

The format is the CSV file should be like:
The internal format is:
$N
[1] 5
$M
[1] 4
$sym.obj.names
[1] 'Case1' 'Case2' 'Case3' 'Case4' 'Case5'
$sym.var.names
[1] 'F1' 'F2' 'F3' 'F4'
$sym.var.types
[1] '$C' '$I' '$H' '$S'
$sym.var.length
[1] 1 2 3 4
$sym.var.starts
[1] 2 4 8 13
$meta
SC F1 $I F2 F2 $H F3 M1 M2 M3 $S F4 E1 E2 E3 E4
Case1 $C 2.8 $I 1 2 $H 3 0.1 0.7 0.2 $S 4 e g k i
Case2 $C 1.4 $I 3 9 $H 3 0.6 0.3 0.1 $S 4 a b c d
Case3 $C 3.2 $I -1 4 $H 3 0.2 0.2 0.6 $S 4 2 1 b c
Case4 $C -2.1 $I 0 2 $H 3 0.9 0.0 0.1 $S 4 3 4 c a
Case5 $C -3.0 $I -4 -2 $H 3 0.6 0.0 0.4 $S 4 e i g k
$data
F1 F2 F2.1 M1 M2 M3 $S F4 E1 E2 E3 E4
Case1 2.8 1 2 0.1 0.7 0.2 e g k i
Case2 1.4 3 9 0.6 0.3 0.1 a b c d
Case3 3.2 -1 4 0.2 0.2 0.6 2 1 b c
Case4 -2.1 0 2 0.9 0.0 0.1 3 4 c a
Case5 -3.0 -4 -2 0.6 0.0 0.4 e i g k

Value

Return a symbolic data table in form of SymbolicDA "symbolic" class type object.
Author(s)
Andrzej Dudek
With included code from (former) RSDA package by Oldemar Rodriguez Rojas

References

See Also
display.sym.table

Examples
Example will be available in next version of package, thank You for your patience :-)

save.SO saves symbolic data table of ‘symbolic’ class to xml file

Description
saves symbolic data table of ‘symbolic’ class to xml file (ASSO format)

Usage
save.SO(sdt,file)

Arguments
sdt Symbolic data table
file file name with extension

Details
see symbolic.object for symbolic data table R structure representation

Value
No value returned

Author(s)
Andrzej Dudek <andrzej.dudek@ue.wroc.pl>
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/symbolicDA
References

See Also

generate.SO, subsdt.SDA, parse.SO

Examples

```r
#data("cars",package="symbolicDA")
#save.SO(cars,file="cars_backup.xml")
```

SClust

Dynamical clustering of symbolic data

Description

Dynamical clustering of symbolic data based on symbolic data table

Usage

```r
SClust(table.Symbolic, cl, iter=100, variableSelection=NULL, objectSelection=NULL)
```

Arguments

- `table.Symbolic`: symbolic data table
- `cl`: number of clusters or vector with initial prototypes of clusters
- `iter`: maximum number of iterations
- `variableSelection`: vector of numbers of variables to use in clustering procedure or NULL for all variables
- `objectSelection`: vector of numbers of objects to use in clustering procedure or NULL for all objects

Details

See file `../doc/SClust_details.pdf` for further details

Value

a vector of integers indicating the cluster to which each object is allocated
simple2SO

Change of representation of symbolic data from simple form to symbolic data table

Description

Change of representation of symbolic data from simple form to symbolic data table

Usage

simple2SO(x)
SO2Simple

Arguments

- `x`: symbolic interval data: a 3-dimensional table, first dimension represents object number, second dimension - variable number, and third dimension contains lower- and upper-bounds of intervals.

Details

see `symbolic.object` for symbolic data table R structure representation.

Value

Symbolic data table in full form.

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>

Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland

http://keii.ue.wroc.pl/symbolicDA

References

See Also

`link{SO2Simple}`

Examples

```r
# Example will be available in next version of package, thank You for your patience :-) 
```

<table>
<thead>
<tr>
<th>SO2Simple</th>
<th>Change of representation of symbolic data from symbolic data table to simple form</th>
</tr>
</thead>
</table>

Description

Change of representation of symbolic data from symbolic data table to simple form.

Usage

`SO2Simple(sd)`
Arguments

sd Symbolic data table in full form

Details

see symbolic.object for symbolic data table R structure representation

Value

symbolic interval data: a 3-dimensional table, first dimension represents object number, second
dimension - variable number, and third dimension contains lower- and upper-bounds of intervals

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/symbolicDA

References

Billard L., Diday E. (eds.) (2006), Symbolic Data Analysis, Conceptual Statistics and Data Mining,
John Wiley & Sons, Chichester.
statistical information from complex data, Springer-Verlag, Berlin.
Diday E., Noirhomme-Fraiture M. (eds.) (2008), Symbolic Data Analysis with SODAS Software,
John Wiley & Sons, Chichester.

See Also

link{simple2SDA}

Examples

Example will be available in next version of package, thank You for your patience :-)

subsdt.SDA Subset of symbolic data table

Description

This method creates symbolic data table containing only objects, whose indices are given in second
argument

Usage

subsdt.SDA(sdt,objectSelection)
symbolic.object

Arguments

sd t Symbolic data table
objectSelection vector containing symbolic object numbers, default value - all objects from sdt

Details

see symbolic.object for symbolic data table R structure representation

Value

Symbolic data table containing only objects, whose indices are given in second argument. The result is of 'symbolic' class

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/symbolicDA

References

See Also

generate.SO, save.SO, parse.SO

Examples

Example will be available in next version of package, thank You for your patience :-)

__

symbolic.object Symbolic data table Object

Description

These are objects representing symbolic data table structure
Details

For all fields symbol N.A. means not available value.
For further details see ../doc/SDA.pdf

Value

individuals
data frame with one row for each row in symbolic data table with following columns:
num - symbolic object (described by symbolic data table row) ordering number, usually from 1 to number of symbolic objects;
name - short name of symbolic object with no spaces;
label - full descriptive name of symbolic object.

variables
data frame with one row for each column in symbolic data table with following columns:
num - symbolic variable (adequate to symbolic data table column) ordering number, usually from 1 to number of symbolic variables;
name - short name of symbolic variable with no spaces;
label - full descriptive name of symbolic variable;
type - type of symbolic variable: IC (InterContinuous) - Symbolic interval variable type, every realization of symbolic variable of this type on symbolic object takes form of numerical interval; C (Continuous) - Symbolic interval variable type, every realization of symbolic variable of this type on symbolic object takes form of numerical interval for which begging is equal to end (equivalent to simple "numeric" value); MN (MultiNominal) - every realization of multi nominal symbolic variable on symbolic objects takes form of set of nominal values; NM ((Multi) Nominal Modif) - every realization of nominal symbolic variable on symbolic objects takes form of distribution of probabilities (set of nominal values with weights summing to one) N (Nominal) - every realization of nominal symbolic variable on symbolic objects is one value (or N.A.)
details - id of this variable in details table appropriate for this kind of variable (detailsN for nominal and multi nominal variables, detailsIC for symbolic interval variables, detailsC for continuous (metric single-valued) variables, detailsNM of multi nominal with weights variables).

detailsC
data frame describing symbolic continuous (metric, single-valued) variables details with following columns:
na - number of N.A. (not available) variables realization;
u - not used, left for compatibility with ASSO-XML specification;
min - beginning of interval representing symbolic interval variable domain (minimal value of all realizations of this variable on all symbolic objects);
max - end of interval representing symbolic interval variable domain (maximal value of all realizations of this variable on all symbolic objects).

detailsIC
data frame describing symbolic inter-continuous (symbolic interval) variables details with following columns:
na - number of N.A. (not available) variables realizations;
u - not used, left for compatibility with ASSO-XML specification;
min - beginning of interval representing symbolic interval variable domain (minimal value of all beginnings of interval realizations of this variable on all symbolic objects);
max - end of interval representing symbolic interval variable domain (maximal value of all ends of interval realizations of this variable on all symbolic objects).

detailsN data frame describing symbolic nominal and multi nominal variables details with following columns:
na - number of N.A. variables realizations;
nu - not used, left for compatibility with ASSO-XML specification;
modals - number of categories in symbolic variable domain. Each categorie is described in detailsListNom.
detailsListNom data frame describing every category of symbolic nominal and multi nominal variables, with following columns:
details_no - number of variable in detailsN to which domain belongs category;
num - number of category within variable domain;
name - category short name
label - category full name
detailsNM data frame describing symbolic multi nominal modiff (categories sets with weights) variables details with following columns:
na number of N.A. (not available) variables realizations.
nu not used, left for compatibility with ASSO-XML specification
modals number of categories in symbolic variable domain. Each categorie is described in detailsListNomModiff
detailsListNomModif data frame describing every category of symbolic multi nominal modiff variables, with following columns
details_no - number of variable in detailsNM to which domain belongs category
num - number of category within variable domain
name - category short name
label - category full name
indivIC array of symbolic interval variables realizations, with dimensions nr_of_objects X nr_of_variables X 2 containing beginnings and ends of intervals for given object and variable. For values different type than symbolic interval array contains zeros
indivC array of symbolic continues variables realizations, with dimensions nr_of_objects X nr_of_variables X 1 containing single values - realizations of variable on symbolic object. For values different type than symbolic continues array contains zeros
indivN data frame describing symbolic nominal and multi nominal variables realizations with folowing columns:
indiv - id of symbolic object from individuals;
variable - id of symbolic object from variables;
value - id of category object from detailsListNom;
When this data frame contains line i,j,k it means that category k belongs to set that is realization of j-th symbolic variable on i-th symbolic object.

indivNM

Data frame describing symbolic multi nonimal modiff variables realizations with following columns:
- indiv - id of symbolic object from `individuals`;
- variable - id of symbolic object from `variables`;
- value - id of category object from `detailsListNom`;
- frequency - weight of category;

When this data frame contains line i,j,k,w it means that category k belongs to set that is realization of j-th symbolic variable on i-th symbolic object with weight(probability) w.

Structure

The following components must be included in a legitimate symbolic object.

See Also

- `dist_SDA`

Description

Multidimensional scaling for symbolic interval data - SymScal algorithm

Usage

```r
symscal.SDA(x,d=2,calculateDist=FALSE)
```

Arguments

- `x` - symbolic interval data: a 3-dimensional table, first dimension represents object number, second dimension - variable number, and third dimension contains lower- and upper-bounds of intervals (Simple form of symbolic data table)
- `d` - Dimensionality of reduced space
- `calculateDist` - if TRUE x are treated as raw data and min-max dist matrix is calculated. See details
SymScal, which was proposed by Groenen et. al. (2005), is an adaptation of well-known non-metric multidimensional scaling for symbolic data. It is an iterative algorithm that uses STRESS objective function. This function is unnormalized. IScal, like Interscal and SymScal, requires interval-valued dissimilarity matrix. Such dissimilarity matrix can be obtained from symbolic data matrix (that contains only interval-valued variables), judgements obtained from experts, respondents. See Lechevallier Y. (2001) for details on calculating interval-valued distance. See file ../doc/Symbolic_MDS.pdf for further details.

Value

xprim coordinates of rectangles
STRESSSym final STRESSSym value

Author(s)

Andrzej Dudek <andrzej.dudek@ue.wroc.pl>
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
http://keii.ue.wroc.pl/symbolicDA

References

See Also

iscal.SDA, interscal.SDA

Examples

Example will be available in next version of package, thank You for your patience :-)

```R
# Example will be available in next version of package, thank You for your patience :-)
```
Description

Plot in a form of zoom star chart for symbolic object described by interval-valued, multivalued and modal variables.

Usage

```r
googl(zoomStar(table.Symbolic, j, variableSelection=NULL, offset=0.2, firstTick=0.2, labelCex=.8, labelOffset=.7, tickLength=.3, histWidth=0.04, histHeight=2, rotateLabels=TRUE, variableCex=NULL))
```

Arguments

- **table.Symbolic**: symbolic data table
- **j**: symbolic object number in symbolic data table used to create the chart
- **variableSelection**: numbers of symbolic variables describing symbolic object used to create the chart, if NULL all variables are used
- **offset**: relational offset of chart (margin size)
- **firstTick**: place of first tick (relational to length of axis)
- **labelCex**: labels cex parameter of labels
- **labelOffset**: relational offset of labels
- **tickLength**: relational length of single tick of axis
- **histWidth**: histogram (for modal variables) relational width
- **histHeight**: histogram (for modal variables) relational height
- **rotateLabels**: if TRUE labels are rotated due to rotation of axes
- **variableCex**: cex parameter of names of variables

Value

Zoom star chart for selected symbolic object in which each axis represents a symbolic variable. Depending on the type of symbolic variable their implementations are presented as:

- **a)** rectangle - interval range of interval-valued variable,
- **b)** circles - categories of multinominal (or multinominal with weights) variable from among coloured circles means categories of the variable observed for the selected symbolic object
- **bar chart** - additional chart for multinominal with weights variable in which each bar represents a weight (percentage share) of a category of the variable
Author(s)
Andrzej Dudek <andrzej.dudek@ue.wroc.pl>, Justyna Wilk <justyna.wilk@ue.wroc.pl> Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA

References

See Also
plot3dInterval; plotInterval in clusterSim

Examples
LONG RUNNING - UNCOMMENT TO RUN
Example 1
#data("cars",package="symbolicDA")
#sdt<-cars
#zoomStar(sdt, j=12)

Example 2
#data("cars",package="symbolicDA")
#sdt<-cars
#variables<-as.matrix(sdt$variables)
#indivN<-as.matrix(sdt$indivN)
#dist<-as.matrix(dist_SDA(sdt))
#classes<-DClust(dist, cl=5, iter=100)
#for(i in 1:max(classes)){
#getOption("device")()
#zoomStar(sdt, .medoid2(dist, classes, i))}
Index

*Topic MDS
 interscal.SDA, 20
 iscal.SDA, 21
 symscal.SDA, 46
*Topic Multidimensional
 interscal.SDA, 20
 iscal.SDA, 21
 symscal.SDA, 46
*Topic PCA
 PCA.centers.SDA, 26
 PCA.mpca.SDA, 27
 PCA.spaghetti.SDA, 28
 PCA.spca.SDA, 30
 PCA.vertices.SDA, 31
*Topic Principal components analysis
 PCA.centers.SDA, 26
 PCA.mpca.SDA, 27
 PCA.spaghetti.SDA, 28
 PCA.spca.SDA, 30
 PCA.vertices.SDA, 31
*Topic Symbolic
 RSDA2SymbolicDA, 36
*Topic Table
 RSDA2SymbolicDA, 36
*Topic cluster
 bagging.SDA, 2
 boosting.SDA, 4
 cluster.Description.SDA, 6
 DClust, 8
 HINoV.SDA, 15
 IchinoFS.SDA, 17
 index.Gld, 18
 kernel.SDA, 23
 kohonen.SDA, 24
 parse.SO, 25
 replication.SDA, 34
 save.SO, 38
 SClust, 39
 simple2SO, 40
 SO2Simple, 41
 subsdt.SDA, 42
 zoomStar, 48
*Topic datasets
 cars, 5
 data_symbolic, 8
*Topic decision tree
 draw.decisionTree.SDA, 13
 random_forest.SDA, 33
*Topic multivariate
 replication.SDA, 34
*Topic scaling
 interscal.SDA, 20
 iscal.SDA, 21
 symscal.SDA, 46
*Topic symbolic
 decisionTree.SDA, 9
 dist_SDA, 11
 generate.SO, 14
 symbolic.object, 43
 bagging.SDA, 2, 5, 10, 34
 boosting.SDA, 4, 4, 10, 34
 cars, 5
 cluster.Description.SDA, 6
 colors, 32
 data_symbolic, 8
 DClust, 7, 8, 13, 19, 36, 40
 decisionTree.SDA, 4, 5, 9, 14, 34
 dist_SDA, 9, 11, 16, 18, 24, 34, 36, 46
 draw.decisionTree.SDA, 10, 13
 generate.SO, 14, 26, 39, 43
 hclust, 7
 HINoV.SDA, 15, 18
 IchinoFS.SDA, 17
 index.Gld, 13, 18
INDEX

interscal.SDA, 20, 22, 47
iscal.SDA, 21, 21, 47

kernel.SDA, 23
kmeans, 40
kohonen.SDA, 24

parse.SO, 25, 39, 43
PCA.centers.SDA, 26, 28–30, 32
PCA.mr pca.SDA, 27, 27, 29, 30, 32
PCA.spaghetti.SDA, 27, 28, 28, 30, 32
PCA.s pca.SDA, 27–29, 30, 32
PCA.vertices.SDA, 27–30, 31
plot3dInterval, 32, 49

random.forest.SDA, 4, 5, 10, 33
replication.SDA, 34
RSDA2SymbolicDA, 36

save.SO, 26, 38, 43
SClust, 7, 9, 19, 32, 36, 39
simple2SO, 40
SO2Simple, 24, 41
subsdt.SDA, 39, 42
symbolic.object, 15, 25, 38, 41–43, 43
symscal.SDA, 21, 22, 46

zoomStar, 48