Package ‘systemicrisk’

January 13, 2019

Type Package
Title A Toolbox for Systemic Risk
Version 0.4.2
Date 2019-01-13
Author Axel Gandy and Luitgard A.M. Veraart
Maintainer Axel Gandy <a.gandy@imperial.ac.uk>
Description A toolbox for systemic risk based on liabilities matrices. Contains a Gibbs sampler for liabilities matrices where only row and column sums of the liabilities matrix as well as some other fixed entries are observed. Includes models for power law distribution on the degree distribution.
License GPL-3
Imports lpSolve, Rcpp (>= 0.11.2), stats, utils
LinkingTo Rcpp
Suggests coda, testthat, knitr
VignetteBuilder knitr
RoxygenNote 6.0.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-01-13 21:40:03 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>calibrate_ER</td>
<td>2</td>
</tr>
<tr>
<td>calibrate_ER.nonsquare</td>
<td>3</td>
</tr>
<tr>
<td>calibrate_FitnessEmp</td>
<td>5</td>
</tr>
<tr>
<td>choosethin</td>
<td>6</td>
</tr>
<tr>
<td>cloneMatrix</td>
<td>7</td>
</tr>
<tr>
<td>default</td>
<td>8</td>
</tr>
<tr>
<td>default_cascade</td>
<td>9</td>
</tr>
<tr>
<td>default_clearing</td>
<td>10</td>
</tr>
<tr>
<td>diagnose</td>
<td>11</td>
</tr>
</tbody>
</table>
calibrate_ER

Description

The model is an Erdos-Renyi model for the existence of links (a link exists independently of other links with a fixed probability) and the weight of each existing link follows an exponential distribution with a fixed rate parameter. This function chooses the two parameters such that the density of the network (the average proportion of existing links) is a certain desired value. Diagonal elements are being set to 0.

Usage

```r
calibrate_ER(l, a, targetdensity, L_fixed = NA, nsamples_calib = 100, thin_calib = 100)
```

Arguments

- `l` row sums of matrix to be reconstructed
- `a` column sum of matrix to be reconstructed
- `targetdensity` desired proportion of reconstructed entries to be positive
calibrate_ER.nonsquare

L_fixed Matrix containing known values of L, where NA signifies that an element is not known. If L_fixed equates to NA (the default) then no values are assumed to be known.

nsamples_calib number of matrices to generate during calibration.

thin_calib amount of thinning to use during calibration

Value

Model that can be used to generate the desired samples using `sample_HierarchicalModel`.

Examples

```r
## first generate a true network
n <- 10  # size of network
p <- 0.45
lambda <- 0.1
L <- matrix(nrow=n,ncol=n,prob=p,size=1)*rexp(n*n,rate=lambda)

# then reconstruct with a target density of 0.55
model <- calibrate_ER(l=rowSums(L),a=colSums(L),
                      targetdensity=0.55,nsamples_calib=10)
Lsamp <- sample_HierarchicalModel(l=rowSums(L),a=colSums(L),model=model,
                                   nsamples=10,thin=1e2)

# check row sums
rowSums(L)
rowSums(Lsamp$[[10]])

# now an example with some fixed entries
L_fixed <- L
L_fixed[1:(n/2),] <- NA
# then reconstruct with a target density of 0.9
model <- calibrate_ER(l=rowSums(L),a=colSums(L),L_fixed=L_fixed,
                      targetdensity=0.9,nsamples_calib=10)
Lsamp <- sample_HierarchicalModel(l=rowSums(L),a=colSums(L),L_fixed=L_fixed,
                                   model=model,nsamples=10,thin=1e2)

mean(Lsamp$[[10]][-(1:(n/2)),]>0)  # known entries
mean(Lsamp$[[10]][(1:(n/2)),]>0)  # reconstructed entries
```

calibrate_ER.nonsquare

Calibrate ER model to a given density with a nonsquare matrix

Description

The model is an Erdos-Renyi model for the existence of links (a link exists independently of other links with a fixed probability) and the weight of each existing link follows an exponential distribution with a fixed rate parameter. This function chooses the two parameters such that the density of
the network (the average proportion of existing links) is a certain desired value. This function does not set diagonal values to 0.

Usage

calibrate_ER.nonsquare(l, a, targetdensity, L_fixed = NA, nsamples_calib = 100, thin_calib = 100)

Arguments

l row sums of matrix to be reconstructed
a column sum of matrix to be reconstructed
targetdensity desired proportion of reconstructed entries to be positive
L_fixed Matrix containing known values of L, where NA signifies that an element is not known. If L_fixed equates to NA (the default) then no values are assumed to be known.
nsamples_calib number of matrices to generate during calibration.
thin_calib amount of thinning to use during calibration

Value

Model that can be used to generate the desired samples using sample_HierarchicalModel.

Examples

```r
## first generate a true network
nrow <- 10 # size of network
col <- 8 # size of network
p <- 0.45
lambda <- 0.1
L <- matrix(nrow=nrow,ncol,prob=p,size=1)*rexp(nrow*ncol,rate=lambda))

# then reconstruct with a target density of 0.55
model <- calibrate_ER.nonsquare(l=rowSums(L),a=colSums(L),
                                 targetdensity=0.55,nsamples_calib=10)
Lsamp <- sample_HierarchicalModel(l=rowSums(L),a=colSums(L),model=model,
                                  nsamples=10,thin=1e2)

# check row sums
rowSums(L)
rowSums(Lsamp$L[[10]])

# check calibration
mean(Lsamp$L[[10]]>0)

# now an example with some fixed entries
L_fixed <- L
L_fixed[1:(nrow/2),] <- NA
# then reconstruct with a target density of 0.9
model <- calibrate_ER.nonsquare(l=rowSums(L),a=colSums(L),L_fixed=L_fixed,
                                 targetdensity=0.9,nsamples_calib=10)
Lsamp <- sample_HierarchicalModel(l=rowSums(L),a=colSums(L),L_fixed=L_fixed,
                                  targetdensity=0.9,nsamples_calib=10)
```
calibrate_FitnessEmp

Description

The model is an empirical fitness based model for the existence of links (more details below) which contains one fixed parameter and the weight of each existing link follows an exponential distribution with a fixed rate parameter. This function chooses the two parameters such that the density of the network (the average proportion of existing links) with these given row and column sums is a certain desired value.

Usage

```r
calibrate_FitnessEmp(l, a, targetdensity, L_fixed = NA,
nsamples_calib = 100, thin_calib = 100)
```

Arguments

- `l`: row sums of matrix to be reconstructed
- `a`: column sum of matrix to be reconstructed
- `targetdensity`: desired proportion of reconstructed entries to be positive
- `L_fixed`: Matrix containing known values of L, where NA signifies that an element is not known. If `L_fixed` equates to NA (the default) then no values are assumed to be known.
- `nsamples_calib`: number of matrices to generate during calibration.
- `thin_calib`: amount of thinning to use during calibration

Details

The empirical fitness model assumes that every node $f[i] = \log(l[i] + a[i])$ has a fitness given by the observed row and column sum and that the existence probability of a link between node i and j is then given by $p[i, j] = 1/(1 + exp(-(alpha + f[i] + f[j])))$, where alpha is an additional parameter. The resulting model uses observed quantities (the row and column sums of the matrix) as input to the model and is thus an empirical Bayes approach.

Value

Model that can be used to generate the desired samples using `sample_HierarchicalModel`.

model=model, nsamples=10, thin=1e2)
mean(Lsamp$L[[10]]-(1:nrow/2),j>0) # known entries
mean(Lsamp$L[[10]][(1:nrow/2),j>0] # reconstructed entries

calibrate_FitnessEmp Calibrate empirical fitness model to a given density

```r
model=model, nsamples=10, thin=1e2)
mean(Lsamp$L[[10]]-(1:nrow/2),j>0) # known entries
mean(Lsamp$L[[10]][(1:nrow/2),j>0] # reconstructed entries
```
Examples

```r
## first generate a true network
n <- 10 # size of network
ftrue <- rnorm(n) # vector of underlying fitnesses
p <- outer(ftrue, ftrue, FUN = function(x, y) 1/(1+exp(-(x+y))))
lambda <- 0.1
L <- matrix(nrow = n, rbinom(n*n, prob = p, size = 1) + rexp(n*n, rate = lambda))

# then reconstruct with a target density of 0.7
model <- calibrate_FitnessEmp(l = rowSums(L), a = colSums(L),
                               targetdensity = 0.7, nsamples_calib = 10, thin_calib = 50)
lsamp <- sample_HierarchicalModel(l = rowSums(L), a = colSums(L), model = model,
                                  nsamples = 10, thin = 1e2)

# check row sums
rowSums(L)
rowSums(lsamp$L[[10]])

# check calibration
mean(lsamp$L[[10]] > 0)

# now an example with some fixed entries
L_fixed <- L
L_fixed[1:(n/2), ] <- NA

# then reconstruct with a target density of 0.9
model <- calibrate_FitnessEmp(l = rowSums(L), a = colSums(L), L_fixed = L_fixed,
                               targetdensity = 0.9, nsamples_calib = 10, thin_calib = 50)
lsamp <- sample_HierarchicalModel(l = rowSums(L), a = colSums(L), L_fixed = L_fixed,
                                  model = model, nsamples = 10, thin = 1e2)

mean(lsamp$L[[10]][-(1:(n/2)), ] > 0) # known entries
mean(lsamp$L[[10]][(1:(n/2)), ] > 0) # reconstructed entries
```

choosethin

Calibrate Thinning

Description

Attempts to automatically choose a thinning parameter to achieve an overall relative effective sample size (defined as the effective sample size divided by the number of samples) for all parameters in the model (that do not seem to be constant). This function provides no guarantees that the desired relative effective sample size (rESS) will actually be achieved - it is best treated as a rough guide for this.

Usage

```r
choosethin(l, a, L_fixed = NA, model, relESSTarget = 0.3, burnin = 100,
           matrpertheta = length(l)^2, silent = FALSE, maxthin = 10000)
```
cloneMatrix

Arguments

- `l` observed row sum
- `a` observed column sum
- `L_fixed` Matrix containing known values of L, where NA signifies that an element is not known. If `L_fixed` equates to NA (the default) then no values are assumed to be known.
- `model` Underlying model for p and lambda.
- `relESStarget` Target for the relative effective sample size, must be in (0,1). Default 0.3.
- `burnin` number of iterations for the burnin. Defaults to 5 of the steps in the sampling part.
- `matrpertheta` number of matrix updates per update of theta.
- `silent` (default FALSE) suppress all output (including progress bars).
- `maxthin` Upper bound on thinning to consider. Default 10000.

Details

The approach used involves a pilot run of the sampler, followed by a computation of the acf (auto-correlation function) for each component. The acf is used only up to (and excluding) the point used where it becomes negative for the first time. This part of the acf is then used to approximate the rESS and to determine the amount of thinning needed. The reported result is the thinning needed to achieve the rESS for all components (the matrix as well as the parameter theta). The initial pilot run may not be sufficient and further pilot runs may have to be started.

Examples

```r
n <- 10
m <- Model.Indep.p.lambda(Model.p.BetaPrior(n),
                          Model.lambda.GammaPrior(n, scale=1e-1))
x <- genL(m)
l <- rowSums(x$L)
a <- colSums(x$L)
## Not run:
choosethin(l,a,model=m)
choosethin(l,a,model=m,relESStarget=0.7)
## End(Not run)
```

Description

Useful when calling `ERE_step_cycle` or `GibbsSteps_kcycle` to ensure that there are no side effects for the return values.
Usage

cloneMatrix(M)

Arguments

M A matrix

Value

A deep copy of the matrix.

Examples

lambda <- matrix(0.5,nrow=2,ncol=2)
po <- matrix(0.7, nrow=2,ncol=2)
L <- matrix(rexp(4),nrow=2);
L
Lold <- L
Lcopy <- cloneMatrix(L)
ERE_step_cycle(r=c(0,1),c=c(0,1),L=L,lambda=lambda,p=p)

L ## new value
Lold ## equal to L !!!
Lcopy ## still has the original value

__

default Default of Banks

Description

Computes bank defaults based on a liabilities matrix and external assets and liabilities.

Usage

default(L, ea, el = 0, method = c("clearing", "cascade"), ...)

Arguments

L liability matrix
ea vector of external assets
el vector of external liabilities.
method the method to be used. See Details.
... Additional information for the various methods. See Details.
Value

A list with at least one element "defaultind", which is a vector indicating which banks default (1=default, 0= no default). Depending on the method, other results such as the clearing vector may also be reported.

See Also

default_cascade, default_clearing.

Examples

ea <- c(1/2,5/8,3/4)
el <- c(3/2,1/2,1/2)
x <- 0.5
L <- matrix(c(0,x,1-x,1-x,0,x,x,1-x,0),nrow=3)
default_cascade(L,ea,el)
default_cascade(L,ea,el,"cascade")

default_cascade Default Cascade

Description

Computes bank defaults via the default cascade algorithm.

Usage

default_cascade(L, ea, el = 0, recoveryrate = 0)

Arguments

<table>
<thead>
<tr>
<th>L</th>
<th>liability matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>ea</td>
<td>vector of external assets</td>
</tr>
<tr>
<td>el</td>
<td>vector of external liabilities (default 0)</td>
</tr>
<tr>
<td>recoveryrate</td>
<td>recovery rate in [0,1] (defaults to 0)</td>
</tr>
</tbody>
</table>

Value

vector indicating which banks default (1=default, 0= no default)

Examples

ea <- c(1/2,5/8,3/4)
el <- c(3/2,1/2,1/2)
x <- 0.5
L <- matrix(c(0,x,1-x,1-x,0,x,x,1-x,0),nrow=3)
default_cascade(L,ea,el)
default_clearing

Clearing Vector with Bankruptcy Costs

Description

Computes bank defaults for the clearing vector approach without and with bankruptcy costs (Eisenberg and Noe, 2001), (Rogers and Veraart, 2013).

Usage

default_clearing(L, ea, el = 0, alpha = 1, beta = 1)

Arguments

L Liabilities matrix
ea Vector of external assets
el Vector of external liabilities (default 0)
alpha 1-proportional default costs on external assets in [0, 1] (default to 1).
beta 1-proportional default costs on interbank assets in [0, 1] (defaults to 1).

Details

Without bankruptcy costs the approach of Eisenberg and Noe (2001) is used using a linear programme. With bankruptcy costs, the implementation is based on the Greatest Clearing Vector Algorithm (GA), see Definition 3.6, Rogers & Veraart (2013).

Value

A list consisting of a vector indicating which banks default (1=default, 0= no default) and the greatest clearing vector.

References

Examples

ea <- c(1/2,5/8,3/4)
el <- c(3/2,1/2,1/2)
x <- 0.5
L <- matrix(c(0,x,1-x,1-x,0,x,x,1-x,0),nrow=3)
default_clearing(L,ea,el)
default_clearing(L,ea,el, alpha=0.5, beta=0.7)
diagnose

Outputs Effective Sample Size Diagonis for MCMC run

Description

Computes the Effective Sample Size using the method `effectiveSize` in of the package coda.

Usage

```r
diagnose(res)
```

Arguments

- `res` output from `sample_HierarchicalModel`.

Details

Currently only works with L where the diagonal is 0. The function ignores the diagonal and tries to determine from the row and column sums which parts of the matrix are 0.

ERE_step_cycle

Does one Gibbs Step on a cycle

Description

Execute one Gibbs step on a cycle keeping row and column sums fixed

Usage

```r
ERE_step_cycle(r, c, L, lambda, p, eps = 1e-10)
```

Arguments

- `r` Row indices of cycle, starting at 0 (vector of length k)
- `c` Column indices of cycle, starting at 0 (vector of length k)
- `L` nxn matrix with nonnegative values (will be modified)
- `lambda` nxn matrix of intensities
- `p` nxn matrix of probabilities (must be in [0,1] and 0 on diagonal)
- `eps` Threshold for values to be interpreted as equal to 0 (default = 1e-10)

Value

no return value
findFeasibleMatrix

Finds a Nonnegative Matrix Satisfying Row and Column Sums

Description

Given row and column sums and a matrix p which indicates which elements of the matrix can be present, this function computes a nonnegative matrix that match these row and column sums. If this is not possible then the function returns an error message.

Usage

findFeasibleMatrix(r, c, p, eps = 1e-09)

Arguments

r vector of row sums (nonnegative)
c vector of column sums (nonnegative)
p matrix of probabilities (must be in [0, 1]), matching the dimensions of r and c. Values of p=0 are interpreted that the corresponding matrix elements have to be 0. Note: p=1 does not force the corresponding matrix element to exist.
eps row and col sums can at most be different by eps. Default 1e-9.

Details

The function transforms the problem into a Maximum Flow problem of a graph and uses the Edmonds-Karp algorithm to solve it. If the error message "Could not find feasible matrix." is produced then this could be due to p imposing disconnected components in the graph implied by row and column sums that are not compatible with the row and column sums.

Value

A feasible matrix.
findFeasibleMatrix_targetmean

Examples

p = matrix(c(1,0,0,1), nrow=2)
findFeasibleMatrix(c(1,1), c(1,1), p=p)

n <- 4
M <- matrix(nrow=n, ncol=n, rexp(n*n)*(runif(n*n) > 0.6))
M
r <- rowSums(M)
c <- colSums(M)
Mnew <- findFeasibleMatrix(r=r, c=c, p=(M>0)*0.5)
Mnew
rowSums(M); rowSums(Mnew)
colSums(M); colSums(Mnew)

findFeasibleMatrix_targetmean

Creates a feasible starting matrix with a desired mean average degree

Description

This extension of findFeasibleMatrix attempts to create a feasible matrix where a certain proportion of the entries is positive. There is no guarantee that this proportion is achieved. If it is not possible then this matrix will report a warning and simply return the matrix constructed by findFeasibleMatrix.

Usage

findFeasibleMatrix_targetmean(r, c, p, eps = 1e-09, targetmean = 0.3)

Arguments

- **r**: vector of row sums (nonnegative)
- **c**: vector of column sums (nonnegative)
- **p**: matrix of probabilities (must be in [0,1]), matching the dimensions of r and c. Values of p=0 are interpreted that the corresponding matrix elements have to be 0. Note: p=1 does not force the corresponding matrix element to exist.
- **eps**: row and col sums can at most be different by eps. Default 1e-9.
- **targetmean**: Average proportion of positive entries of the resulting matrix. Defaults to 0.3
getfeasibleMatr

Generate Liabilities Matrix from Prior

Description
Generates a liabilities matrix using a the prior distribution from a given model for p and lambda.

Usage
genL(model)

Arguments
model a model for p and lambda.

Value
A list consisting of a liabilities matrix and the parameter vector theta.

Examples
n <- 5
m <- Model.Indep.p.lambda(Model.p.BetaPrior(n),
 Model.lambda.GammaPrior(n, scale=1e-1))
genL(m)

getfeasibleMatr Creates a feasible starting matrix

Description
Creates a matrix with nonnegative entries, given row and column sums and 0 on the diagonal. Superseeded by the more flexible findFeasibleMatrix.

Usage
generateFeasibleMatr(L, A)

Arguments
L Vector of row sums
A Vector of column sums

Value
A matrix with nonnegative entries and given row/column sums and 0 on the diagonal.
GibbsSteps_kcycle

Gibbs sampling step of a matrix in the ERE model

Examples

getfeasibleMatr(c(0.5,1,0),c(0.5,0,1))
getfeasibleMatr(rep(1,4),rep(1,4))
getfeasibleMatr(2^(1:3),2^(3:1))
getfeasibleMatr(1:5,1:5)
getfeasibleMatr(1:5,5:1)

Description

The sampling is conditional on row and column sums and uses k-cycle steps. Then dimensions of L, lambda and p must match.

Usage

GibbsSteps_kcycle(L, lambda, p, it = 1000L, eps = 1e-10, debug = 0L)

Arguments

- **L** Starting matrix - will be modified to contain the results.
- **lambda** Matrix of intensities
- **p** Matrix of probabilities (must be in [0,1])
- **it** Number of iterations (default=1000)
- **eps** Threshold for values to be interpreted as equal to 0 (default = 1e-10)
- **debug** Should additional debug information be printed? (0 no output, 1 output debug information)

Value

no return value

Examples

```
L <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3)
diag(L) <- 0
lambda <- matrix(0.5,nrow=3,ncol=3)
p <- matrix(0.7, nrow=3,ncol=3)
diag(p) <- 0
GibbsSteps_kcycle(L=L,lambda=diag(lambda),p=p)
L
L <- matrix(1:16,nrow=4)
diag(L) <- 0
lambda <- matrix(0.5,nrow=4,ncol=4)
p <- matrix(0.25, nrow=4,ncol=4)
diag(p) <- 0
GibbsSteps_kcycle(L=L,lambda=diag(lambda),p=p)
L
```
Model.additivelink.exponential.fitness

Fitness model for liabilities matrix

Description

Assumes a diagonal consisting of 0s.

Usage

```r
Model.additivelink.exponential.fitness(n, alpha, beta, gamma = 1, lambdaprior, 
sdpropfitness = 1/sqrt(n))
```

Arguments

- `n` Number of nodes in the model.
- `alpha` Exponent of the power law of the degree distribution. Must be <0.
- `beta` Lower endpoint of the relative expected out degree (expected out degree divided by n-1). Must be >=0.
- `gamma` Upper endpoint of the relative expected out degree (expected out degree divided by n-1). Must be at least beta and at most 1.
- `lambdaprior` Prior on zeta and eta. For the type of object required see `Model.fitness.genlambdaparprior`.
- `sdpropfitness` Standard deviation for the log-normally distributed multiplicative proposals for Metropolis-Hastings updates of the fitness. Defaults to 1/sqrt{n}.

Value

A model to be used by `sample_HierarchicalModel`. This is a list of functions. It includes a function `accrates()` that reports acceptance rates for the Metropolis-Hastings steps involved.

Examples

```r
mod <- Model.additivelink.exponential.fitness(10, alpha=-2.5, beta=0.1, 
  lambdaprior=Model.fitness.genlambdaparprior(ratescale=1e3))
theta <- mod$rtheta()
L <- genL(mod)
l <- rowSums(L$L)
a <- colSums(L$L)
## increase number of samples and thinning in real examples
res <- sample_HierarchicalModel(l=l, a=a, model=mod, nsamples=4, thin=50)
mod$accrates()
```
Model.fitness.conditionalmeandegree

Mean out-degree of a node with given fitness in the fitness model

Description

Computes the mean out-degree of a node with given fitness x in the fitness model implemented in `Model.additivelink.exponential.fitness`. The function returns the mean out-degree divided by $n-1$.

Usage

```r
Model.fitness.conditionalmeandegree(x, alpha, beta, gamma = 1)
```

Arguments

- **x**
 - Fitness of node. A nonnegative number.
- **alpha**
 - Exponent of the power law of the degree distribution. Must be <0.
- **beta**
 - Lower endpoint of the relative expected out degree (expected out degree divided by $n-1$). Must be ≥ 0.
- **gamma**
 - Upper endpoint of the relative expected out degree (expected out degree divided by $n-1$). Must be at least beta and at most 1.

Model.fitness.genlambdaparprior

Prior distribution for eta and zeta in the fitness model

Description

Assumes a uniform distribution on the shape parameter ζ and an exponential distribution on the scale parameter η. To be used as prior for `Model.additivelink.exponential.fitness`.

Usage

```r
Model.fitness.genlambdaparprior(shapemin = 0.75, shapemax = 1.5, ratescale, 
    sdshapeprob = 0.1, sdpropscale = 0.1)
```

Arguments

- **shapemin**
 - Minimal Value of the shape parameter. Default: 0.75.
- **shapemax**
 - Maximal Value of the shape parameter. Default: 1.5.
- **ratescale**
 - Rate parameter for the prior distribution of the scale parameter. In the model this is on the same scale as the entries of L.

Model.Indep.p.lambda

sdshapeprob Standard deviation for the additive normally distributed random walk proposal for the shape parameter. Defaults to 0.1.
sdpropscale Standard deviation for the multiplicative lognormal proposals for the scale parameter.

Value

list of functions necessary for constructing Metropolis-Hastings updates.

Model.fitness.meandegree

Mean out-degree of a random node the fitness model

Description

Computes the relative mean out-degree of a randomly chosen node given fitness x in the fitness model implemented in Model.additivelink.exponential.fitness. The function returns the mean out-degree divided by n-1.

Usage

Model.fitness.meandegree(alpha, beta, gamma = 1)

Arguments

alpha Exponent of the power law of the degree distribution. Must be <0.
beta Lower endpoint of the relative expected out degree (expected out degree divided by n-1). Must be >=0.
gamma Upper endpoint of the relative expected out degree (expected out degree divided by n-1). Must be at least beta and at most 1.

Model.Indep.p.lambda

Combination of Independent Models for p and lambda

Description

Combination of Independent Models for p and lambda

Usage

Model.Indep.p.lambda(model.p, model.lambda)

Arguments

model.p model for p.
model.lambda model for lambda.
Model.lambda.constant

Examples

```r
n <- 5
m <- Model.Indep.p.lambda(Model.p.BetaPrior(n),
                          Model.lambda.GammaPrior(n, scale=1e-1))
genL(m)
```

Model.lambda.constant Model for a Constant lambda

Description

This model assumes that the parameter lambda is known.

Usage

```r
Model.lambda.constant(lambda, n)
```

Arguments

- **lambda**: parameter for the size of the liabilities. Either a matrix of dimension `n` or a single numeric value.
- **n**: dimension of matrix.

Value

the resulting model.

Examples

```r
m <- Model.lambda.constant(n=5, lambda=0.25)
m$matr(m$rtheta())
lambda<-matrix(c(NA, 1, 1e-4, NA, 1e-4, 1e4, 1e4, NA), nrow=3)
m <- Model.lambda.constant(n=3, lambda=lambda)
m$matr(m$rtheta())
```
Model.lambda.constant.nonsquare

Model for a Constant lambda and Non-Square Matrices

Description

This model assumes that the parameter lambda is known.

Usage

```r
Model.lambda.constant.nonsquare(lambda, nrow, ncol)
```

Arguments

- `lambda` parameter for the size of the liabilities. A single numeric value.
- `nrow` number of rows of the matrix.
- `ncol` number of columns of the matrix.

Value

the resulting model.

Examples

```r
m <- Model.lambda.constant.nonsquare(nrow=5, ncol=3, lambda=0.25)
m$matr(m$rtheta())
```

Model.lambda.GammaPrior

Model with Gamma Prior on Lambda

Description

Assumes that all elements of lambda are equal to a parameter θ, which has a Gamma prior.

Usage

```r
Model.lambda.GammaPrior(n, shape = 1, scale = 1)
```

Arguments

- `n` dimension of matrix
- `shape` shape parameter for prior on θ. Default 1.
- `scale` scale parameter for prior on θ. Default 1.
Model.lambda.Gammaprior_mult

Model Using Multiple Independent Components

Description
Assumes a multivariate hyperparameter θ with each component following an independent Beta distribution. A matrix indicates which component θ is used for what component of lambda.

Usage
Model.lambda.Gammaprior_mult(Ilambda, shape = 1, scale = 1)

Arguments
- Ilambda: matrix consisting of integers that describe which component of theta is used for a given position in the matrix. Must consist of nonnegative integers using all integers in the range.
- shape: shape parameter for prior on θ. Default 1.
- scale: scale parameter for prior on θ. Default 1.

Value
the resulting model.

Model.p.BetaPrior

Model for a Random One-dimensional p

Description
Assumes a Beta prior on the one-dimensional link existence probabilities p. This model has a one-dimensional parameter.

Usage
Model.p.BetaPrior(n, shape1 = 1, shape2 = 1)

Arguments
- n: dimension of matrix.
- shape1: first parameter of Beta prior. Default 1.
\textbf{Value}

the resulting model.

\textbf{Examples}

\begin{verbatim}
 m <- Model.p.BetaPrior(5)
m$matr(m$theta())
\end{verbatim}

\textbf{Model.p.Betaprior_mult}

\textit{Model Using Multiple Independent Components}

\textbf{Description}

Assumes a multivariate hyperparameter θ with each component following an independent Beta distribution. A matrix indicates which component θ is used for what component of p.

\textbf{Usage}

\begin{verbatim}
 Model.p.Betaprior_mult(Ip, shape1 = 1, shape2 = 1)
\end{verbatim}

\textbf{Arguments}

- \texttt{Ip} matrix consisting of integers that describe which component of \texttt{theta} is used for a given position in the matrix. Must consist of nonnegative integers (0 encoding forced 0s in the matrix), using all integers in the range.
- \texttt{shape1} first parameter of Beta prior on \texttt{theta}. Default 1.
- \texttt{shape2} second parameter of Beta prior \texttt{theta}. Default 1.

\textbf{Value}

the resulting model.

\textbf{Model.p.constant}

\textit{Model for a Constant p}

\textbf{Description}

This model assumes that the link existence probabilities of the matrix are known.

\textbf{Usage}

\begin{verbatim}
 Model.p.constant(n, p)
\end{verbatim}
Model.p.constant.nonsquare

Arguments

- **n**
 dimension of matrix.
- **p**
 existence probability of a link. Either a matrix of dimension n or a single numeric value. A single numeric value leads to a matrix of existence probabilities that has 0 on the diagonal.

Value

the resulting model.

Examples

```r
m <- Model.p.constant(5, 0.25)
m$matr(m$rtheta())

p <- matrix(c(0, 0.99, 0.99, 0.5, 0.5, 0, 0.01, 0.01, 0), nrow=3)
m <- Model.p.constant(5, p)
m$matr(m$rtheta())
```

Description

This model assumes that the link existence probabilities of the matrix are known.

Usage

```r
Model.p.constant.nonsquare(nrow, ncol, p)
```

Arguments

- **nrow**
 number of rows of the matrix.
- **ncol**
 number of columns of the matrix.
- **p**
 existence probability of a link. A single numeric value.

Value

the resulting model.

Examples

```r
m <- Model.p.constant.nonsquare(5, 3, 0.25)
m$matr(m$rtheta())
```
Model.p.Fitness.Servedio

Multiplicative Fitness Model for Power Law

Description

This model has a power law of the degree distribution with a parameter α and is tuned to a desired link existence probability. It is based on a fitness model.

Usage

```
Model.p.Fitness.Servedio(n, alpha, meandegree, sdprop = 0.1)
```

Arguments

- **n** dimension of matrix.
- **alpha** exponent for power law. Must be ≤ -1.
- **meandegree** overall mean degree (expected degree divided by number of nodes). Must be in (0,1).
- **sdprop** standard deviation of updated steps.

Details

Every node i has a fitness θ_i being an independent realisation of a U[0,1] distribution. The probability of a link between a node with fitness x and a node with fitness y is $g(x)g(y)$ where g is as follows. If $\alpha = -1$ then

$$g(x) = g_0 \exp(-\log(g_0) * x)$$

Otherwise,

$$g(x) = (g_0(\alpha + 1) + (1 - g_0(\alpha + 1)) * x)^{(1/(\alpha + 1))}$$

where g_0 is tuned numerically to achieve the desired overall mean degree.

Updating of the model parameters in the MCMC setup is done via a Metropolis-Hastings step, adding independent centered normal random variables to each node fitness in θ.

References

Examples

```r
n <- 5
mf <- Model.p.Fitness.Servedio(n=n, alpha=-2.5, meandegree=0.5)
m <- Model.Indep.p.lambda(model.p=mf,
    model.lambda=Model.lambda.GammaPrior(n,scale=1e-1))
x <- genL(m)
l <- rowSums(x$L)
```
sample_ERE

Sample from the ERE model with given row and column sums

Description

Samples from the Erdos Reny model with Exponential weights and known marginals. Runs a Gibbs sampler to do this. A starting liabilities is generated via `getfeasibleMatr` before `steps_ERE` is called.

Usage

```r
sample_ERE(l, a, p, lambda, nsamples = 10000, thin = 1000, burnin = 10000)
```

Arguments

- `l`: vector of interbank liabilities
- `a`: vector of interbank assets
- `p`: probability of existence of a link (either a numerical value or a matrix). A single numerical value is converted into a matrix with 0s on the diagonal.
- `lambda`: intensity parameters - either a numerical value or a matrix with positive entries.
- `nsamples`: Number of samples to return.
- `thin`: Frequency at which samples should be generated (default=1, every step).
- `burnin`: Number of initial steps to discard.

Value

List of simulation results

Examples

```r
l <- c(1,2.5,3)
a <- c(0.7,2.7,3.1)
l <- sample_ERE(l,a,p=0.5,lambda=0.25,nsamples=5,thin=20,burnin=10)
l
```
sample_HierarchicalModel

Sample from Hierarchical Model with given Row and Column Sums

Description

Sample from Hierarchical Model with given Row and Column Sums

Usage

```r
sample_HierarchicalModel(l, a, L_fixed = NA, model, nsamples = 10000,
  thin = choosethin(l = l, a = a, L_fixed = L_fixed, model = model,
  matrpertheta = matrpertheta, silent = silent), burnin = NA,
  matrpertheta = length(l)^2, silent = FALSE,
  tol = .Machine$double.eps^0.25)
```

Arguments

- `l`: observed row sum
- `a`: observed column sum
- `L_fixed`: Matrix containing known values of L, where NA signifies that an element is not known. If L_fixed equates to NA (the default) then no values are assumed to be known.
- `model`: Underlying model for p and lambda.
- `nsamples`: number of samples to return.
- `thin`: how many updates of theta to perform before outputting a sample.
- `burnin`: number of iterations for the burnin. Defaults to 5 of the steps in the sampling part.
- `matrpertheta`: number of matrix updates per update of theta.
- `silent`: (default FALSE) suppress all output (including progress bars).
- `tol`: tolerance used in checks for equality. Defaults to .Machine$double.eps^0.25.

Examples

```r
n <- 10
m <- Model.Indep.p.lambda(Model.p.BetaPrior(n),
  Model.lambda.GammaPrior(n, scale=1e-1))
x <- genL(m)
l <- rowSums(x$L)
a <- colSums(x$L)
## Not run:
res <- sample_HierarchicalModel(l,a,model=m)

## End(Not run)
# fixing one values
```
Perform Steps of the Gibbs Sampler of the ERE model

Description

Runs a Gibbs sampler in the Erdos Renyi model with Exponential weights (ERE model) and fixed marginals. The algorithm starts from a given matrix.

Usage

```
steps_ERE(L, p, lambda, nsamples = 10000, thin = 1000, burnin = 10000)
```

Arguments

- **L**: Starting matrix for the Gibbs sampler. Implicitly defines the fixed marginals.
- **p**: A matrix with entries in [0,1]
- **lambda**: A matrix with nonnegative entries
- **nsamples**: Number of samples to return.
- **thin**: Frequency at which samples should be generated (default=1, every step)
- **burnin**: Number of initial steps to discard.

Value

List of simulation results

See Also

- `sample_ERE`

Examples

```
L <- matrix(rexp(4*4), nrow=4, ncol=4); diag(L)=0;
p <- matrix(0.5, nrow=4, ncol=4); diag(p) <- 0;
lambda <- matrix(1, nrow=4, ncol=4); diag(lambda) <- 0;

L <- steps_ERE(L=L, p=p, lambda=lambda, nsamples=5, thin=50, burnin=20)
L
```
Index

calibrate_ER, 2
calibrate_ER.nonsquare, 3
calibrate_FitnessEmp, 5
choosethin, 6
clonematrix, 7
default, 8
defaultCascade, 9, 9
default_clearing, 9, 10
diagnose, 11
ERE_step_cycle, 7, 11
findFeasibleMatrix, 12, 13
findFeasibleMatrix_targetmean, 13
genL, 14
getcherMatrix, 14, 25
GibbsSteps_kcycle, 7, 15
Model.additivelink.exponential.fitness,
 16, 17, 18
Model.fitness.conditionalmeandegree,
 17
Model.fitness.genlambda_parprior, 16, 17
Model.fitness.meandegree, 18
Model.Indep.p.lambda, 18
Model.lambda.constant, 19
Model.lambda.constant.nonsquare, 20
Model.lambda.GammaPrior, 20
Model.lambda.GammaPrior_mult, 21
Model.p.BetaPrior, 21
Model.p.Betaprior_mult, 22
Model.p.constant, 22
Model.p.constant.nonsquare, 23
Model.p.Fitness.Servedio, 24

sample_ER, 25, 27
sample_HierarchicalModel, 3–5, 11, 26
steps_ER, 25, 27