Title Create Publication Quality Tables and Plots
Version 0.0.3
Description Create publication quality plots and tables for Item Response Theory and Classical Test theory based item analysis, exploratory and confirmatory factor analysis.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
URL https://github.com/masiraji/tabledown
BugReports https://github.com/masiraji/tabledown/issues
Language en-US
Depends R (>= 2.10)
Imports psych, MOTE, stats, dplyr, tibble, magrittr, data.table, tidyselect, lavaan, mirt, ggplot2
Suggests rmarkdown, knitr, markdown, spelling, testthat (>= 3.0.0)
NeedsCompilation no
Author Mushfiqul Anwar Siraji [aut, cre]
(Mushfiqul Anwar Siraji [aut, cre]
(<https://orcid.org/0000-0003-0127-9982>)
Maintainer Mushfiqul Anwar Siraji <siraji1993@gmail.com>
Repository CRAN
Date/Publication 2022-09-30 17:40:02 UTC

R topics documented:

bedTime .. 2
cfa.tab ... 3
cfa.tab.multi ... 4
des.tab .. 5
fac.tab .. 6
A Function for calculating time spent in bed.

Description

This function will help you to calculate the time a person spent in bed based on their sleep log. This type of calculation is very common in sleep research. However, as one can guess, working with dates in R is a bit tricky. This function will ease the task. More importantly you do not require to entry the dates to calculate bed time. Just wake up time and time to go to bed is enough (24 hour format).

Usage

```r
bedTime(x, y)
```

Arguments

- `x` A vector containing time to do to bed.
- `y` A vector containing time of wake.

Value

Calculates time spent in bed in hours. Output class is numeric.

Examples

```r
# Please use 24 hour format.
# Easiest way is to enter the data as character.
bed <- c("20:00", "21:00", "23:00")
wake <- c("6:00", "7:00", "8:00")
bedtime <- bedTime(bed, wake)
```
Description

This function will create publication worthy tables with CFA fit indices from lavaan class object.

Usage

cfa.tab(x, robust = FALSE)

Arguments

x A lavaan class object.

robust If TRUE, will provide robust fit indices when applicable instead of the default indices.

Value

A summary with CFA fit indices in a matrix structure.

Examples

data <- tabledown::FFMQ.CFA
FF.model.Original <- "Observe =~ item1 + item6 + item11 + item15 +
item20 + item26 + item31 + item 36
Describe =~ item2 + item7 + Ritem12 + Ritem16 + Ritem22 + item27 +
item32 + item37
Awareness =~ Ritem5 + Ritem8 + Ritem13 + Ritem18 + Ritem23 + Ritem28
 + Ritem34 + Ritem38
Nonjudge =~ Ritem3 + Ritem10 + Ritem14 + Ritem17 + Ritem25 + Ritem30+
Ritem35 + Ritem39
Nonreact =~ item4 + item9 + item19 + item21 + item24 + item29 + item33"
fit.original <- lavaan::cfa(FF.model.Original, data = data, estimator = "MLR",
mimic = "Mplus")
table <- cfa.tab(fit.original, robust = TRUE)
cfa.tab.multi

\[\text{A Function for Creating Publication Quality Tables with CFA fit indices from several lavaan objects.} \]

Description

Often researchers are required to show fit indices from several CFA models. This function will create publication worthy tables with CFA fit indices from several lavaan class objects. To run this function successfully one need to provide at least two lavaan objects. This command supports up-to five lavaan models.

Usage

cfa.tab.multi(x, y, z = NULL, a = NULL, b = NULL, robust = FALSE)

Arguments

- **x**: first object of class lavaan (Mandatory).
- **y**: second object of class lavaan (Mandatory).
- **z**: third object of class lavaan (Optional).
- **a**: fourth object of class lavaan (Optional).
- **b**: fifth object of class lavaan (Optional).
- **robust**: If TRUE, will provide robust fit indices when applicable instead of the default indices.

Value

A summary of CFA fit indices from several lavaan class objects. Output object is a matrix.

Examples

data <- tabledown::FFMQ.CFA
FF.model.Original <- "Observe =~ item1 + item6 + item11 + item15 + item20 + item26 + item31 + item36
Describe =~ item2 + item7 + Ritem12 + Ritem16 + Ritem22 + item27 + item32 + item37
Awareness =~ Ritem5 + Ritem8 + Ritem13 + Ritem18 + Ritem23 + Ritem28 + Ritem34 + Ritem38
Nonjudge =~ Ritem3 + Ritem10 + Ritem14 + Ritem17 + Ritem25 + Ritem30 + Ritem35 + Ritem39
Nonreact =~ item4 + item9 + item19 + item21 + item24 + item29 + item33"
fit.original <- lavaan::cfa(FF.model.Original, data = data, estimator = "MLR", mimic = "Mplus")
FF.model.Cor <- "Observe =~ item1 + item6 + item11 + item15 + item20 + item26 + item31 + item36
Describe =~ item2 + item7 + item27 + item32 + item37 + item38
Awareness =~ Ritem5 + Ritem8 + Ritem13 + Ritem18 + Ritem23 + Ritem28 + Ritem34 + Ritem38
Nonjudge =~ Ritem3 + Ritem10 + Ritem14 + Ritem17 + Ritem25 + Ritem30 + Ritem35 + Ritem39
Nonreact =~ item4 + item9 + item19 + item21 + item24 + item29 + item33"
fit.cor <- lavaan::cfa(FF.model.Cor, data = data, estimator = "MLR", mimic = "Mplus")
Ritem28 + Ritem34
Nonjudge =~ Ritem10 + Ritem14 + Ritem25 + Ritem30 + Ritem35
Nonreact =~ item4 + item9 + item19 + item21 + item24 + item29 + item33
Ritem28 ~~ Ritem34
Ritem23 ~~ Ritem34

fit.Cor <- lavaan::cfa(FF.model.Cor, data = data, estimator = "MLR", mimic = "Mplus")
FF.short <- "Observe =~ item36 + item26 + item20 + item11
Describe =~ item2 + item7 + item27 + item32
Awareness =~ Ritem8 + Ritem13 + Ritem23 + Ritem28
Nonjudge =~ Ritem10 + Ritem25 + Ritem30 + Ritem35
Nonreact =~ item9 + item19 + item21 + item24"
fit.short <- lavaan::cfa(FF.short, data = data, estimator = "MLR", mimic = "Mplus")
table <- cfa.tab.multi(fit.original, fit.Cor, fit.short, robust = TRUE)

des.tab

A Function for Descriptive data for item analysis.

Description

This function will create a publication ready essential descriptive table for item analysis. Normality is tested using shapiro.test from base stats with Bonferroni Correction.

Usage

```r
des.tab(df)
```

Arguments

- `df` A data frame.

Value

Returns a summary table of descriptives in a data frame structure.

Examples

```r
data <- tabledown::Rotter[,11:31]
table <- des.tab(data)
```
fac.tab

A Function for Creating Publication Quality Factor Tables.

Description

This function will create publication worthy factor tables from objects created from psych pack. I have came across this beautiful piece of codes at https://www.anthonyschmidt.co/post/2020-09-27-efa-tables-in-r/ and modified it a bit.

Usage

```r
fac.tab(x, cut, complexity = TRUE)
```

Arguments

- `x`
 A psych package object.
- `cut`
 The value under which all factor loading will be suppressed.
- `complexity`
 To add complexity parameters.

Value

A publication ready summary table for the Factor analysis conducted by psych Package. Output structure is data frame.

Examples

```r
data <- tabledown::Rotter[, 11:31]
correlations <- psych::polychoric(data, correct = 0)
fa.5F.1 <- psych::fa(r=correlations$rho, nfactors = 5, fm= "pa", rotate ="varimax",
  residuals = TRUE, SMC = TRUE, n.obs =428)
table <- fac.tab(fa.5F.1, .3)
#always save the output into an object
data <- tabledown::Rotter[, 11:31]
correlations <- psych::polychoric(data, correct = 0)
fa.5F.1 <- psych::fa(r=correlations$rho, nfactors = 5, fm= "pa", rotate ="varimax",
  residuals = TRUE, SMC = TRUE, n.obs =428)
table <- fac.tab(fa.5F.1, .3)
#always save the output into an object
```

FFMQ.CFA

Structural Validity data of FFMQ

Description

This is the structural validation data of Bangla Five Facet Mindfulness Questionnaire

Usage

```r
FFMQ.CFA
```
Format

A data frame with 277 rows and 47 variables:

ID double COLUMN_DESCRIPTION
Gender character COLUMN_DESCRIPTION
Education character COLUMN_DESCRIPTION
Education Years double COLUMN_DESCRIPTION
Income double COLUMN_DESCRIPTION
Profession character COLUMN_DESCRIPTION
Marital Status character COLUMN_DESCRIPTION
Social_status double COLUMN_DESCRIPTION
item1 double COLUMN_DESCRIPTION
item2 double COLUMN_DESCRIPTION
Ritem3 double COLUMN_DESCRIPTION
item4 double COLUMN_DESCRIPTION
Ritem5 double COLUMN_DESCRIPTION
item6 double COLUMN_DESCRIPTION
item7 double COLUMN_DESCRIPTION
Ritem8 double COLUMN_DESCRIPTION
item9 double COLUMN_DESCRIPTION
Ritem10 double COLUMN_DESCRIPTION
item11 double COLUMN_DESCRIPTION
Ritem12 double COLUMN_DESCRIPTION
Ritem13 double COLUMN_DESCRIPTION
Ritem14 double COLUMN_DESCRIPTION
item15 double COLUMN_DESCRIPTION
Ritem16 double COLUMN_DESCRIPTION
Ritem17 double COLUMN_DESCRIPTION
Ritem18 double COLUMN_DESCRIPTION
item19 double COLUMN_DESCRIPTION
item20 double COLUMN_DESCRIPTION
item21 double COLUMN_DESCRIPTION
Ritem22 double COLUMN_DESCRIPTION
Ritem23 double COLUMN>Description
item24 double COLUMN_DESCRIPTION
Ritem25 double COLUMN_DESCRIPTION
item26 double COLUMN_DESCRIPTION
item27 double COLUMN_DESCRIPTION
FFMQ.Val double COLUMN_DESCRIPTION
Ritem28 double COLUMN_DESCRIPTION
item29 double COLUMN_DESCRIPTION
Ritem30 double COLUMN_DESCRIPTION
item31 double COLUMN_DESCRIPTION
item32 double COLUMN_DESCRIPTION
item33 double COLUMN_DESCRIPTION
Ritem34 double COLUMN_DESCRIPTION
Ritem35 double COLUMN_DESCRIPTION
item36 double COLUMN_DESCRIPTION
item37 double COLUMN_DESCRIPTION
Ritem38 double COLUMN_DESCRIPTION
Ritem39 double COLUMN_DESCRIPTION

Source

FFMQ.Val Correlational based Validity evidence of FFMQ

Description
Correlational based Validity evidence of Bangla FFMQ

Usage
FFMQ.Val

Format
A data frame with 255 rows and 106 variables:

id double COLUMN_DESCRIPTION
Age double COLUMN_DESCRIPTION
Gender double COLUMN_DESCRIPTION
Education_Years double COLUMN_DESCRIPTION
Profession character COLUMN_DESCRIPTION
Marital_Status character COLUMN_DESCRIPTION
Social_Status double COLUMN_DESCRIPTION
item1 double COLUMN_DESCRIPTION
item2 double COLUMN_DESCRIPTION
Ritem3 double COLUMN_DESCRIPTION
<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>item4</td>
<td>double</td>
</tr>
<tr>
<td>Ritem5</td>
<td>double</td>
</tr>
<tr>
<td>item6</td>
<td>double</td>
</tr>
<tr>
<td>item7</td>
<td>double</td>
</tr>
<tr>
<td>Ritem8</td>
<td>double</td>
</tr>
<tr>
<td>item9</td>
<td>double</td>
</tr>
<tr>
<td>Ritem10</td>
<td>double</td>
</tr>
<tr>
<td>item11</td>
<td>double</td>
</tr>
<tr>
<td>Ritem12</td>
<td>double</td>
</tr>
<tr>
<td>Ritem13</td>
<td>double</td>
</tr>
<tr>
<td>Ritem14</td>
<td>double</td>
</tr>
<tr>
<td>item15</td>
<td>double</td>
</tr>
<tr>
<td>Ritem16</td>
<td>double</td>
</tr>
<tr>
<td>Ritem17</td>
<td>double</td>
</tr>
<tr>
<td>Ritem18</td>
<td>double</td>
</tr>
<tr>
<td>item19</td>
<td>double</td>
</tr>
<tr>
<td>item20</td>
<td>double</td>
</tr>
<tr>
<td>item21</td>
<td>double</td>
</tr>
<tr>
<td>Ritem22</td>
<td>double</td>
</tr>
<tr>
<td>Ritem23</td>
<td>double</td>
</tr>
<tr>
<td>item24</td>
<td>double</td>
</tr>
<tr>
<td>Ritem25</td>
<td>double</td>
</tr>
<tr>
<td>item26</td>
<td>double</td>
</tr>
<tr>
<td>item27</td>
<td>double</td>
</tr>
<tr>
<td>Ritem28</td>
<td>double</td>
</tr>
<tr>
<td>item29</td>
<td>double</td>
</tr>
<tr>
<td>Ritem30</td>
<td>double</td>
</tr>
<tr>
<td>item31</td>
<td>double</td>
</tr>
<tr>
<td>item32</td>
<td>double</td>
</tr>
<tr>
<td>item33</td>
<td>double</td>
</tr>
<tr>
<td>Ritem34</td>
<td>double</td>
</tr>
<tr>
<td>Ritem35</td>
<td>double</td>
</tr>
<tr>
<td>item36</td>
<td>double</td>
</tr>
<tr>
<td>item37</td>
<td>double</td>
</tr>
<tr>
<td>Ritem38</td>
<td>double</td>
</tr>
<tr>
<td>Ritem39</td>
<td>double</td>
</tr>
<tr>
<td>EI1</td>
<td>character</td>
</tr>
<tr>
<td>EI2</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI3</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI4</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI5</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI6</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI7</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI8</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI9</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI10</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI11</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI12</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI13</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI14</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI15</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI16</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI17</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI18</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI19</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI20</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI21</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI22</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI23</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI24</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI25</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI26</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI27</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI28</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI29</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI30</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI31</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI32</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI33</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>EI34</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>01</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>02</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>03</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>04</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>Column</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>E5</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>E6</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>E7</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>E8</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>N1</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>N2</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>N3</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>N4</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>N5</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>N6</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>N7</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
<tr>
<td>N8</td>
<td>character COLUMN_DESCRIPTION</td>
</tr>
</tbody>
</table>

Source

Description

Demo project breakdown to create Gantt

Usage

Gantt
Format

A data frame with 25 rows and 4 variables:

- `wp` character Main Component
- `activity` character Activities
- `start_date` character Start Date
- `end_date` character End Date

Source

ggicc

A Function for Creating Publication Quality Item Response Theory based item characteristic plot.

Description

This function will create publication worthy Item Response Theory based item characteristic plot using ggplot2 from objects created from mirt pack. Using ggplot2 will enable the user to modify the item characteristic plot.

Usage

`ggicc(model, item, theta)`

Arguments

- `model` A mirt package fitted object.
- `item` Item number (i.e. 1,2,3,4).
- `theta` Theta range. Put only one number. Theta =3 will be considered as theta range (-3 to 3).

Value

A publication quality item characteristic plot. Output object is a ggplot object.

Examples

```r
data <- tabledown::Rotter[, 11:31]
model <- mirt::mirt(data, model = 1, itemtype = '2PL', SE = TRUE, Se.type = 'MHRM')
plot <- tabledown::ggicc(model, 1, 3)
```
Description

This function will create publication worthy Item Response Theory based item information plot using ggplot2 from objects created from mirt pack.

Usage

`ggiteminfo(model, item, theta)`

Arguments

- `model`: A mirt package fitted object.
- `item`: Item number (i.e. 1,2,3,4).
- `theta`: Theta range. Put only one number. Theta =3 will be considered as theta range (-3 to 3).

Value

A publication quality item information plot. Output object is a ggplot object.

Examples

```r
data <- tabledown::Rotter[, 11:31]
model <- mirt::mirt(data, model = 1, itemtype = '2PL')
plot <- ggiteminfo(model, 1, 3)
```

Description

This function will create publication worthy Item Response Theory based reliability plot with standard error using ggplot2 from objects created from mirt pack. Using ggplot2 will enable the user to modify the Item plot.

Usage

`ggreliability(dataframe, model)`
Arguments

- **dataframe**: your data.
- **model**: A mirt package fitted object.

Value

A publication quality reliability plot (dashed line). Output object is a ggplot object.

Examples

```r
data <- tabledown::Rotter[, 11:31]
model <- mirt::mirt(data, model = 1, itemtype = '2PL')
plot <- ggreliability(data, model)
```

Description

This function will create publication worthy Item Response Theory based Test information plot using ggplot2 from objects created from mirt pack. Using ggplot2 will enable the user to modify the Item plot.

Usage

```r
ggtestinfo(dataframe, model)
```

Arguments

- **dataframe**: your data.
- **model**: A mirt package fitted object.

Value

A publication quality Test information plot. Output object is a ggplot object.

Examples

```r
data <- tabledown::Rotter[, 11:31]
model <- mirt::mirt(data, model = 1, itemtype = '2PL')
plot <- ggtestinfo(data, model)
```
Description

This function will create publication worthy Item Response Theory based Test information plot with standard error using ggplot2 from objects created from mirt pack. Using ggplot2 will enable the user to modify the Item plot.

Usage

```r
ggtestinfo_se(dataframe, model)
```

Arguments

- `dataframe`: your data.
- `model`: A mirt package fitted object.

Value

A publication quality Test information plot with standard error (dashed line). Output object is a ggplot object.

Examples

```r
data <- tabledown::Rotter[, 11:31]
model <- mirt::mirt(data, model = 1, itemtype = '2PL')
plot <- ggtestinfo(data, model)
```

Description

This function will compute normality on entire data set. Sometime in dlookr package p values turns out to be null thus failing to test normality of the data set. This is a good alternative of dlookr function. Here normality is tested using shapiro.test from base stats.

Usage

```r
normality.loop(df, bonf = TRUE, alpha = 0.05)
```
Arguments

- **df**: A data frame.
- **bonf**: If TRUE a bonferonni correction will be conducted.
- **alpha**: Desired alpha.

Value

Provides normality tests results for all columns in a wide data frame in a list format.

Examples

```r
data <- tabledown::Rotter[, 11:31]
normality.loop(data)
```

Description

This is the validation data of Bangla Rotter’s Internal and External Scale.

Usage

`Rotter`

Format

A data frame with 478 rows and 91 variables:

- id double Id
- sample character EFA or CEA
- Age double Age
- Gender character Gender
- Educational Status character Educational Status
- Education Years double COLUMN_DESCRIPTION
- Income double COLUMN_DESCRIPTION
- Religion double COLUMN_DESCRIPTION
- Marital Status double COLUMN_DESCRIPTION
- Social Stance double COLUMN_DESCRIPTION
- item2 double COLUMN_DESCRIPTION
- item3 double COLUMN_DESCRIPTION
- item4 double COLUMN_DESCRIPTION
- item5 double COLUMN_DESCRIPTION
item6 double COLUMN_DESCRIPTION
item7 double COLUMN_DESCRIPTION
item9 double COLUMN_DESCRIPTION
item10 double COLUMN_DESCRIPTION
item11 double COLUMN_DESCRIPTION
item12 double COLUMN_DESCRIPTION
item13 double COLUMN_DESCRIPTION
item15 double COLUMN_DESCRIPTION
item16 double COLUMN_DESCRIPTION
item17 double COLUMN_DESCRIPTION
item18 double COLUMN_DESCRIPTION
item20 double COLUMN_DESCRIPTION
item21 double COLUMN_DESCRIPTION
item22 double COLUMN_DESCRIPTION
item23 double COLUMN_DESCRIPTION
item25 double COLUMN_DESCRIPTION
item26 double COLUMN_DESCRIPTION
item28 double COLUMN_DESCRIPTION
item29 double COLUMN_DESCRIPTION
O1 double COLUMN_DESCRIPTION
O2 double COLUMN_DESCRIPTION
O3 double COLUMN_DESCRIPTION
O4 double COLUMN_DESCRIPTION
O5 double COLUMN_DESCRIPTION
O6 double COLUMN_DESCRIPTION
O7 double COLUMN_DESCRIPTION
O8 double COLUMN_DESCRIPTION
O9 double COLUMN_DESCRIPTION
O10 double COLUMN_DESCRIPTION
Total_Opennes double COLUMN_DESCRIPTION
E1 double COLUMN_DESCRIPTION
E2 double COLUMN_DESCRIPTION
E3 double COLUMN_DESCRIPTION
E4 double COLUMN_DESCRIPTION
E5 double COLUMN_DESCRIPTION
E6 double COLUMN_DESCRIPTION
E7 double COLUMN_DESCRIPTION
<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E8</td>
<td>Total Extro</td>
</tr>
<tr>
<td>N1</td>
<td>N2</td>
</tr>
<tr>
<td>N3</td>
<td>N4</td>
</tr>
<tr>
<td>N5</td>
<td>N6</td>
</tr>
<tr>
<td>N7</td>
<td>N8</td>
</tr>
<tr>
<td>N9</td>
<td>Total Neuro</td>
</tr>
<tr>
<td>DIR1</td>
<td>DIR2</td>
</tr>
<tr>
<td>DIR3</td>
<td>DIR4</td>
</tr>
<tr>
<td>DIR5</td>
<td>DIR6</td>
</tr>
<tr>
<td>DIR7</td>
<td>DIR8</td>
</tr>
<tr>
<td>DIR9</td>
<td>DIR10</td>
</tr>
<tr>
<td>DIR11</td>
<td>DIR12</td>
</tr>
<tr>
<td>DIR13</td>
<td>DIR14</td>
</tr>
<tr>
<td>DIR15</td>
<td>DIR16</td>
</tr>
<tr>
<td>DIR17</td>
<td>DIR18</td>
</tr>
<tr>
<td>DIR19</td>
<td>DIR20</td>
</tr>
<tr>
<td>DIR21</td>
<td>DIR22</td>
</tr>
<tr>
<td>DIR23</td>
<td>DIR24</td>
</tr>
<tr>
<td>DIR25</td>
<td>DIR26</td>
</tr>
<tr>
<td>DIR27</td>
<td>DIR28</td>
</tr>
<tr>
<td>DI_Total</td>
<td>DI_Total</td>
</tr>
</tbody>
</table>
Spot Data

Description
Additional demo data for GanTT

Usage
Spot

Format
A data frame with 29 rows and 3 variables:
- activity character Activity
- spot_type character Progress Status
- spot_date character Date of Reporting Progress

Source

tabledown

Description
The tabledown package provides necessary data frames used throughout the book and some neat functions.

tabledown Data-frames
1. Rotter: Psychometric validation data of Bangla Rotter’s Internal- External Scale.
2. Gantt and Spot: Two sample data-frames for creating project management Gantt chart.
3. FFMQ.CFA: Structural Validation data of Bangla Five Factor Mindfulness Questionnaire.
4. FFMQ.Val:Correlational Validity evidences of Bangla Five Factor Mindfulness Questionnaire.
tabledown functions

This packages includes some neat and useful functions to create tables and figures suitable for journal submission:

1. `fac.tab()`: Creates a publication ready table from the output of "psych" package based factor analysis.
2. `des.tab()`: Creates a publication ready descriptive table of Item analysis with the reporting of normality assumptions.
3. `normality.loop()`: Compute normality test on the whole data frame. No grouping variable required.
4. `bedTime()`: Calculate total time spent in bed from the sleep log entry.
5. `cfa.tab()`: Creates a table with necessary fit indices from a "lavaan" class objects.
6. `cfa.tab/multi()`: Creates a table with necessary fit indices from several lavaan class objects.
7. `ggicc`: Creates a ggplot2 based publication ready Item Characteristics Curve from the "mirt" package based item response theory estimations.
8. `ggiteminfo`: Creates a ggplot2 based publication ready Item Information Curve from the "mirt" package based item response theory estimations.
9. `ggtestinfo`: Creates a ggplot2 based publication ready Test Information Curve from the "mirt" package based item response theory estimations.
10. `ggtestinfo_se`: Creates a ggplot2 based publication ready Test Information Curve with standard error from the "mirt" package based item response theory estimations. It is advisable that you load `tidyverse` along with `tabledown`
Index

* datasets
 FFMQ.CFA, 6
 FFMQ.Val, 8
 Gantt, 11
 Rotter, 16
 Spot, 19

bedTime, 2

cfa.tab, 3
cfa.tab.multi, 4

des.tab, 5

fac.tab, 6
FFMQ.CFA, 6
FFMQ.Val, 8

Gantt, 11
ggiccc, 12
ggiteminfo, 13
ggreliaability, 13
ggtestinfo, 14
ggtestinfo.se, 15

normality.loop, 15

Rotter, 16

Spot, 19

tabledown, 19