Package ‘tapkee’

September 18, 2019

Type Package
Title Wrapper for ‘tapkee’ Dimension Reduction Library
Version 1.1
Date 2019-09-17
Author Alexey Shipunov
Maintainer Alexey Shipunov <dactylorhiza@gmail.com>
Description Wrapper for using ‘tapkee’ command line utility, it allows to run it from inside R and catch the results for further analysis and plotting. ‘Tapkee’ is a program for fast dimension reduction, see ‘package?tapkee’ and <http://tapkee.lisitsyn.me/> for installation and other details.
SystemRequirements ‘tapkee’ (http://tapkee.lisitsyn.me/)
Suggests scatterplot3d, rgl, R.rsp
VignetteBuilder R.rsp
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2019-09-18 07:30:02 UTC

R topics documented:

 tapkee-package .. 2
 Gen.dr.data .. 3
 Tapkee .. 4

Index 7
Description

Here is the description of how to install `tapkee` utility on different operation systems.

General instructions

Download Executable files for macOS, Windows and Linux are available here: https://github.com/lisitsyn/tapkee/releases/tag/1.2

Specific instructions for Linux

Downloaded binary This is a 64 bit version, works on Ubuntu 16.04 LTS and likely will work on other systems. Depends on `ldd tapkee`, install dependencies (you might need to install at least "libarpack2"). Copy `tapkee` binary to where system will find it (`echo $PATH`).

Specific instructions for macOS

1) In Terminal.app, run:
 $ echo $PATH
2) Copy `tapkee` into one of mentioned directories, e.g.:
 $ cp tapkee /usr/local/bin
3) Run:
 $ tapkee -h
 If you see the list of `tapkee` options, everything is OK. If not, you need to check (4) and (5).
4) If you have the message similar to:
 $ dyld: Library not loaded: ...
 install eigen and arpack with Homebrew (install Homebrew first, google how to do it):
 $ brew install arpack &;& brew install eigen
 then run
 $ tapkee -h
 again.
5) You might also run:
 $ echo \$DYLD_LIBRARY_PATH
 to see where installed libraries should be located.

Specific instructions for Windows

1) The executable supplied works under Windows 10. Install Microsoft Visual C++ Redistributable 32-bit (google the link) to get required DLLs.
2) Find the place where to install 'tapkee.exe' and DLLs. Best is to start the command prompt window and run:

```bash
> path
```

Install into one of folders which are in the list. You might also try to install everything in the current folder (to find it, run in R 'getwd()') but this is less usable.

3) Now open command prompt window in some other place, and run:

```bash
> tapkee.exe -h
```

If you see the list of 'tapkee' options, everything is OK. If not, you need to check (1) and (2) again.

Gen.dr.data

Generates 3D data

<table>
<thead>
<tr>
<th>Description</th>
<th>Generates typical 3D dimension reduction data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td><code>Gen.dr.data(type, N=1000)</code></td>
</tr>
<tr>
<td>Arguments</td>
<td><code>type</code> one of "swissroll", "scurve" (S-curve), "helix", "ssphere" (severed sphere)</td>
</tr>
<tr>
<td></td>
<td><code>N</code> number of data points</td>
</tr>
<tr>
<td>Details</td>
<td>'Gen.dr.data()' generates typical 3D data. Formulas taken partly from 'tapkee' 'borsch' script and partly from Python 'scikit-learn'.</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Alexey Shipunov</td>
</tr>
<tr>
<td>Examples</td>
<td><code>SR <- Gen.dr.data("swissroll")</code></td>
</tr>
<tr>
<td></td>
<td><code>rgl::plot3d(SR, col=rainbow(1100))</code></td>
</tr>
<tr>
<td></td>
<td><code>SC <- Gen.dr.data("scurve")</code></td>
</tr>
<tr>
<td></td>
<td><code>scatterplot3d::scatterplot3d(SC, color=colorRampPalette(c("green", "orange"))(1000), pch=20, cex.symbols=1.4)</code></td>
</tr>
<tr>
<td></td>
<td><code>HX <- Gen.dr.data("helix")</code></td>
</tr>
<tr>
<td></td>
<td><code>rgl::plot3d(HX, col=rainbow(1100))</code></td>
</tr>
<tr>
<td></td>
<td><code>SS <- Gen.dr.data("ssphere")</code></td>
</tr>
<tr>
<td></td>
<td><code>rgl::plot3d(SS, col=rainbow(1100))</code></td>
</tr>
</tbody>
</table>
Description

R wrapper for the 'tapkee' dimension reduction library

Usage

```r
Tapkee(data, method="pca", td=2, verbose=FALSE, add="", prefix="Dim", rm=TRUE)
```

Arguments

- `data`: R numerical matrix or data frame (will be converted into matrix)
- `method`: 'tapkee' method, run "system('tapkee -h')" for the list, default is "pca"
- `td`: Number of dimensions to output, default is 2
- `verbose`: If TRUE, 'tapkee' is verbose, default is FALSE
- `add`: 'tapkee' additional arguments as character string: see "system('tapkee -h')"
- `prefix`: Variable name prefix in the resulted data frame, default is "Dim"
- `rm`: Remove temp files (but temp folder will be removed anyway in the end of R session), default is TRUE

Details

Interface (wrapper) for the 'tapkee', flexible and efficient C++ template library for dimension reduction. 'tapkee' is extremely fast comparing with other DR tools.

For methods used in 'tapkee', run 'vignette(tapkee_methods)'.

Users should install 'tapkee' independently from author Web site (https://github.com/lisitsyn/tapkee) or associated GitHub (https://github.com/lisitsyn/tapkee). Run 'package?tapkee' or help("tapkee-package") for details related with your operation system. If 'tapkee' is not installed, Tapkee() will fail gracefully and output the input data with warning.

Please note that "[warning] The neighborhood graph is not connected" message in most cases means that 'tapkee' run was unsuccessful. As a result, Tapkee() might return the matrix of NaN’s. One of possible workarounds is to specify the higher number of neighbors (‘-k’ option, default is 10). See below for the example.

Note that the wrapper catches only one (main) type of 'tapkee' utility outputs. For other possible output types (see 'tapkee -h' for explanation), run 'tapkee' without wrapper.

Value

Data frame with number of columns equal to number of dimensions given and "prefix" column names prefixes.
Author(s)

Alexey Shipunov

References

See Also

tapkee-package

Examples

'tapkee' vs. R base functions
system.time(Tapkee(iris[, -5], method="mds"))
system.time(cmdscale(dist(iris[, -5])))

How to use 'add' option
plot(Tapkee(iris[, -5], "isomap", add="-k 47"), col=iris[, 5])

'tapkee' methods as of March 2019:
TM <- c(
 "lle", # 1) locally_linear_embedding (lle),
 "npe", # 2) neighborhood_preserving_embedding (npe),
 "ltsa", # 3) local_tangent_space_alignment (ltsa),
 "lltsa", # 4) linear_local_tangent_space_alignment (lltsa),
 "hle", # 5) hessian_locally_linear_embedding (hle),
 "la", # 6) laplacian_eigenmaps (la),
 "lpp", # 7) locality_preserving_projections (lpp),
 "dm", # 8) diffusion_map (dm),
 "isomap", # 9) isomap (isomap),
 "l-isomap", # 10) landmark_isomap (l-isomap),
 "mds", # 11) multidimensional_scaling (mds),
 "l-mds", # 12) landmark_multidimensional_scaling (l-mds),
 "spe", # 13) stochastic_proximity_embedding (spe),
 "kpca", # 14) kernel_pca (kpca),
 "pca", # 15) pca (pca),
 "ra", # 16) random_projection (ra),
 "fa", # 17) factor_analysis (fa),
 "t-sne", # 18) t-stochastic_neighborhood_embedding (t-sne),
 "ms" # 19) manifold_sculpting (ms)
)

Iris example
oldpar <- par(mfrow=c(4, 5), mar=c(1, 1, 3, 1))
for (n in c(1:18)) {
 plot(Tapkee(iris[, -5], method=TM[n], add="-k 50"),
 col=iris[, 5], pch=20, main=TM[n], xlab="", ylab="", xaxt="n", yaxt="n")
}
plot(iris[, 1:2], col=iris[, 5], pch=20, main="iris[, 1:2]", xlab="", ylab="",
 xaxt="n", yaxt="n")
par(oldpar)
Generate typical 3D data
SR <- Gen.dr.data("swissroll")
SC <- Gen.dr.data("scurve")
HX <- Gen.dr.data("helix")
SS <- Gen.dr.data("ssphere")

This will separate colors better
COL <- rainbow(1100)[1:1000]

Swiss Roll
oldpar <- par(mfrow=c(4, 5), mar=c(1, 1, 3, 1))
for (n in 1:18) plot(Tapkee(SR, method=TM[n]), col=COL, pch=20, main=TM[n],
 xlab="", ylab="", xaxt="n", yaxt="n")
scatterplot3d::scatterplot3d(SR, color=COL, pch=20, main="Swiss Roll", xlab="", ylab="", zlab="",
 axis=FALSE, tick.marks=FALSE, label.tick.marks=FALSE, mar=c(1, 1, 3, 1))
par(oldpar)

S-Curve
oldpar <- par(mfrow=c(4, 5), mar=c(1, 1, 3, 1))
for (n in 1:18) plot(Tapkee(SC, method=TM[n]), col=COL, pch=20, main=TM[n],
 xlab="", ylab="", xaxt="n", yaxt="n")
scatterplot3d::scatterplot3d(SC, color=COL, pch=20, main="S-Curve", xlab="", ylab="", zlab="",
 axis=FALSE, tick.marks=FALSE, label.tick.marks=FALSE, mar=c(1, 1, 3, 1))
par(oldpar)

Helix
oldpar <- par(mfrow=c(4, 5), mar=c(1, 1, 3, 1))
for (n in 1:18) plot(Tapkee(HX, method=TM[n]), col=COL, pch=20,
 main=TM[n], xlab="", ylab="", xaxt="n", yaxt="n")
scatterplot3d::scatterplot3d(HX, color=COL, pch=20, main="Helix", xlab="", ylab="", zlab="",
 axis=FALSE, tick.marks=FALSE, label.tick.marks=FALSE, mar=c(1, 1, 3, 1))
par(oldpar)

Severed Sphere
oldpar <- par(mfrow=c(4, 5), mar=c(1, 1, 3, 1))
for (n in 1:18) plot(Tapkee(SS, method=TM[n]), col=rainbow(nrow(SS)), pch=20,
 main=TM[n], xlab="", ylab="", xaxt="n", yaxt="n")
scatterplot3d::scatterplot3d(SS, color=rainbow(nrow(SS)), pch=20, main="Severed Sphere", xlab="", ylab="", zlab="",
 axis=FALSE, tick.marks=FALSE, label.tick.marks=FALSE, mar=c(1, 1, 3, 1))
par(oldpar)
Index

*Topic Data
 Gen.dr.data, 3

*Topic Dimension reduction
 Tapkee, 4

Gen.dr.data, 3
Tapkee, 4
tapkee-package, 2