Package ‘targeted’

December 19, 2023

Type Package
Title Targeted Inference
Version 0.4
Date 2023-12-10
Author Klaus K. Holst [aut, cre], Andreas Nordland [aut]
Maintainer Klaus K. Holst <klaus@holst.it>
Depends R (>= 4.0), lava (>= 1.7.0)
Imports data.table, digest, futile.logger, future.apply, optimx, progresr, methods, mets, R6, Rcpp (>= 1.0.0), survival
Suggests grf, mgcv, testthat (>= 0.11), rmarkdown, scatterplot3d, SuperLearner (>= 2.0-28), knitr, xgboost, viridisLite
BugReports https://github.com/kkholst/targeted/issues
License Apache License (== 2.0)
LinkingTo Rcpp, RcppArmadillo
LazyLoad yes
NeedsCompilation yes
ByteCompile yes
RcppModules riskregmodel
Encoding UTF-8
RoxygenNote 7.2.3
VignetteBuilder knitr
targetted-package

Description

Methods for targeted and semiparametric inference.

Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>targeted-package</td>
<td>2</td>
</tr>
<tr>
<td>aipw</td>
<td>3</td>
</tr>
<tr>
<td>alean</td>
<td>4</td>
</tr>
<tr>
<td>ate</td>
<td>5</td>
</tr>
<tr>
<td>calibration</td>
<td>7</td>
</tr>
<tr>
<td>calibration-class</td>
<td>9</td>
</tr>
<tr>
<td>cate</td>
<td>10</td>
</tr>
<tr>
<td>cate_link</td>
<td>11</td>
</tr>
<tr>
<td>cross_validated-class</td>
<td>13</td>
</tr>
<tr>
<td>crr</td>
<td>14</td>
</tr>
<tr>
<td>cv</td>
<td>15</td>
</tr>
<tr>
<td>design</td>
<td>17</td>
</tr>
<tr>
<td>expand.list</td>
<td>17</td>
</tr>
<tr>
<td>ML</td>
<td>18</td>
</tr>
<tr>
<td>ml_model</td>
<td>18</td>
</tr>
<tr>
<td>NB</td>
<td>22</td>
</tr>
<tr>
<td>NB-class</td>
<td>23</td>
</tr>
<tr>
<td>nondom</td>
<td>24</td>
</tr>
<tr>
<td>pava</td>
<td>25</td>
</tr>
<tr>
<td>predict.density</td>
<td>25</td>
</tr>
<tr>
<td>predict.NB</td>
<td>26</td>
</tr>
<tr>
<td>RATE</td>
<td>27</td>
</tr>
<tr>
<td>RATE.surv</td>
<td>28</td>
</tr>
<tr>
<td>riskreg</td>
<td>29</td>
</tr>
<tr>
<td>riskreg_cens</td>
<td>32</td>
</tr>
<tr>
<td>scoring</td>
<td>33</td>
</tr>
<tr>
<td>SL</td>
<td>35</td>
</tr>
<tr>
<td>softmax</td>
<td>35</td>
</tr>
<tr>
<td>solve_ode</td>
<td>36</td>
</tr>
<tr>
<td>specify_ode</td>
<td>37</td>
</tr>
<tr>
<td>targeted-ode</td>
<td>38</td>
</tr>
</tbody>
</table>

Repository CRAN

Date/Publication 2023-12-19 22:50:02 UTC
aipw

Author(s)
Klaus K. Holst (Maintainer) klaus@holst.it

Examples
Not run:
example(riskreg)
example(cate)
example(ate)
example(calibration)

End(Not run)

aipw

AIPW estimator

Description
AIPW for the mean (and linear projections of the EIF) with missing observations

Usage
aipw(response_model, data, formula = ~1, missing_model, ...)

Arguments
response_model Model for the response given covariates (ml_model or formula)
data data.frame
formula design specifying the OLS estimator with outcome given by the EIF
missing_model Optional missing_model (ml_model or formula). By default will use the same
design as the response_model.
... arguments to cate

Examples
m <- lvm(y ~ x+z, r ~ x)
distribution(m,~ r) <- binomial.lvm()
transform(m, y0~r+y) <- function(x) { x[x[,1]==0,2] <- NA; x[,2] }
d <- sim(m,1e3,seed=1)
aipw(y0 ~ x, data=d)
aLean

Assumption Lean inference for generalized linear model parameters

Description

Assumption lean inference via cross-fitting (Double ML). See <doi:10.1111/rssb.12504>

Usage

aLean(
 response_model, exposure_model, data, link = "identity", g_model, n_folds = 1, silent = FALSE, mc.cores, ...
)

Arguments

response_model formula or ml_model object (formula => glm)
exposure_model model for the exposure
data data.frame
link Link function (g)
g_model Model for $E[g(Y|A,W)|W]$
nfolds Number of folds
silent supress all messages and progressbars
mc.cores mc.cores Optional number of cores. parallel::mcmapply used instead of future
...
additional arguments to future.apply::future_mapply

Details

Let Y be the response variable, A the exposure and W covariates. The target parameter is:

$$
\Psi(P) = \frac{E(Cov[A, g(E(Y|A,W)) | W])}{E(Var(A | W))}
$$

The response_model is the model for $E(Y|A,W)$, and exposure_model is the model for $E(A|W)$. link specifies g.

Value

aLean-targeted object
Examples

```r
sim1 <- function(n, family=gaussian(), ...) {
m <- lvm() |> 
distribution(~ y, binomial.lvm()) |> 
regression('a', value=function(l) l) |> 
regression('y', value=function(a,l) a + l)
if (family$family=="binomial")
distribution(m, ~a) <- binomial.lvm()
sim(m, n)
}
```

```r
library(splines)
f <- binomial()
d <- sim1(1e4, family=f)
e <- alean(response_model=ML(y ~ a + bs(l, df=3), family=binomial),
exposure_model=ML(a ~ bs(l, df=3), family=f),
data=d,
link = "logit", mc.cores=1, nfolds=1)
e

e <- alean(response_model=ML(y ~ a + l, family=binomial),
exposure_model=ML(a ~ l),
data=d,
link = "logit", mc.cores=1, nfolds=1)
e
```

AIPW (doubly-robust) estimator for Average Treatment Effect

Description

Augmented Inverse Probability Weighting estimator for the Average (Causal) Treatment Effect. All nuisance models are here parametric (glm). For a more general approach see the `cate` implementation. In this implementation the standard errors are correct even when the nuisance models are misspecified (the influence curve is calculated including the term coming from the parametric nuisance models). The estimate is consistent if either the propensity model or the outcome model / Q-model is correctly specified.

Usage

```r
ate(
  formula,
  data = parent.frame(),
  weights,
)
offset,
family = stats::gaussian(identity),
nuisance = NULL,
propensity = nuisance,
all,
labels = NULL,
...
)

Arguments

- **formula**: Formula (see details below)
- **data**: data.frame
- **weights**: optional frequency weights
- **offset**: optional offset (character or vector). can also be specified in the formula.
- **family**: Exponential family argument for outcome model
- **nuisance**: outcome regression formula (Q-model)
- **propensity**: propensity model formula
- **all**: If TRUE all standard errors are calculated (default TRUE when exposure only has two levels)
- **labels**: Optional treatment labels
- **...**: Additional arguments to lower level functions

Details

The formula may either be specified as: response ~ treatment | nuisance-formula | propensity-formula

For example: `ate(y ~ a | x + z + a | x*z, data=...)`
Alternatively, as a list: `ate(list(y ~ a, ~ x + z, ~ x*z), data=...)`
Or using the nuisance (and propensity argument): `ate(y ~ a, nuisance=~x+z, ...)`

Value

An object of class 'ate.targeted' is returned. See [targeted-class](#) for more details about this class and its generic functions.

Author(s)

Klaus K. Holst

See Also

cate
Examples

```r
m <- lvm(y ~ a+x, a~x)
distribution(m, ~y) <- binomial.lvm()
m <- ordinal(m, K=4, ~a)
transform(m, ~a) <- factor
d <- sim(m, 1e3, seed=1)
(a <- ate(y~a|x, data=d))
ate(y=a, nuisance=a*x, propensity=x, ...)

Comparison with randomized experiment
m0 <- cancel(m, a~x)
lm(y~a-1, sim(m0,2e4))

Choosing a different contrast for the association measures
summary(a, contrast=c(2,4))
```

---

**calibration**

**Calibration (training)**

### Description

Calibration for multiclassification methods

### Usage

```r
calibration(
 pr,
 cl,
 weights = NULL,
 threshold = 10,
 method = "bin",
 breaks = nclass.Sturges,
 df = 3,
 ...
)
```

### Arguments

- `pr`: matrix with probabilities for each class
- `cl`: class variable
- `weights`: counts
- `threshold`: do not calibrate if less than ‘threshold’ events
- `method`: either 'isotonic' (pava), 'logistic', 'mspline' (monotone spline), 'bin' (local constant)
- `breaks`: optional number of bins (only for method 'bin')
- `df`: degrees of freedom (only for spline methods)
- `...`: additional arguments to lower level functions
Details...

Value

An object of class 'calibration' is returned. See `calibration-class` for more details about this class and its generic functions.

Author(s)

Klaus K. Holst

Examples

```r
sim1 <- function(n, beta=c(-3, rep(.5,10)), rho=.5) {
 p <- length(beta)-1
 xx <- lava::rmvn0(n,sigma=diag(nrow=p)*(1-rho)+rho)
 y <- rbinom(n, 1, lava::expit(cbind(1,xx)%*%beta))
 d <- data.frame(y=y, xx)
 names(d) <- c("y",paste0("x",1:p))
 return(d)
}
set.seed(1)
beta <- c(-2,rep(1,10))
d <- sim1(1e4, beta=beta)
a1 <- NB(y ~ ., data=d)
a2 <- glm(y ~ ., data=d, family=binomial)
a3 <- randomForest(factor(y) ~ ., data=d, family=binomial)
d0 <- sim1(1e4, beta=beta)
p1 <- predict(a1, newdata=d0)
p2 <- predict(a2, newdata=d0, type="response")
p3 <- predict(a3, newdata=d0, type="prob")
c2 <- calibration(p2, d0$y, method="isotonic")
c1 <- calibration(p1, d0$y, breaks=100)
if (interactive()) {
 plot(c1)
 plot(c2,col="red",add=TRUE)
 abline(a=0,b=1)##
 with(c1$xy[[1]], points(pred,freq,type="b", col="red"))
}
set.seed(1)
beta <- c(-2,rep(1,10))
dd <- lava::csplit(sim1(1e4, beta=beta), k=3)
mod <- NB(y ~ ., data=dd[[1]])
p1 <- predict(mod, newdata=dd[[2]])
cal1 <- calibration(p1, dd[[2]]$y)
p2 <- predict(mod, newdata=dd[[3]])
pp <- predict(cal1, p2)
```
calibration-class

cc <- calibration(pp, dd[[3]]$y)
if (interactive()) {
  plot(cal)
  plot(cc, add=TRUE, col="blue")
}

calibration-class calibration class object

Description

The functions calibration returns an object of the class calibration.
An object of class 'calibration' is a list with at least the following components:

stepfun estimated step-functions (see stepfun) for each class
classes the unique classes
model model/method type (string)
xy list of data.frame's with predictions (pr) and estimated probabilities of success (only for 'bin' method)

Value

objects of the S3 class 'calibration'

S3 generics

The following S3 generic functions are available for an object of class targeted:

predict Apply calibration to new data.
plot Plot the calibration curves (reliability plot).
print Basic print method.

See Also

calibration, calibrate

Examples

## See example(calibration) for examples
**Description**

Conditional Average Treatment Effect estimation via Double Machine Learning

**Usage**

cate(
  treatment,
  response_model,
  propensity_model,
  contrast = c(1, 0),
  data,
  nfolds = 5,
  type = "dml2",
  silent = FALSE,
  stratify = FALSE,
  mc.cores,
  ...
)

**Arguments**

- **treatment**: formula specifying treatment and variables to condition on
- **response_model**: formula or ml_model object (formula => glm)
- **propensity_model**: formula or ml_model object (formula => glm)
- **contrast**: treatment contrast (default 1 vs 0)
- **data**: data.frame
- **nfolds**: Number of folds
- **type**: 'dml1' or 'dml2'
- **silent**: supress all messages and progressbars
- **stratify**: If TRUE the response_model will be stratified by treatment
- **mc.cores**: mc.cores Optional number of cores. parallel::mcmapply used instead of future
- **...**: additional arguments to future.apply::future_maply

**Value**

cate.targeted object

**Author(s)**

Klaus Kähler Holst
Examples

```r
sim1 <- function(n=1e4,
 seed=NULL,
 return_model=FALSE, ...) {
 suppressPackageStartupMessages(require("lava"))
 if (!is.null(seed)) set.seed(seed)
 m <- lava::lvm()
 regression(m, ~a) <- function(z1,z2,z3,z4,z5)
 cos(z1)+sin(z1*z2)+z3+z4+z5^2
 regression(m, ~u) <- function(a,z1,z2,z3,z4,z5)
 (z1+z2+z3)*a + z1+z2+z3 + a
 distribution(m, ~a) <- binomial.lvm()
 if (return_model) return(m)
 lava::sim(m, n, p=par)
}

d <- sim1(200)
e <- cate(a ~ z1+z2+z3, response=u~., data=d)
e
```

---

cate_link

### Conditional Relative Risk estimation

#### Description

Conditional average treatment effect estimation via Double Machine Learning

#### Usage

```r
cate_link(
 treatment,
 link = "identity",
 response_model,
 propensity_model,
 importance_model,
 contrast = c(1, 0),
 data,
 nfolds = 5,
 type = "dml1",
 ...
)
```

#### Arguments

- `treatment` formula specifying treatment and variables to condition on
- `link` Link function
- `response_model` SL object
propensity_model
    SL object
importance_model
    SL object
contrast
    treatment contrast (default 1 vs 0)
data
    data.frame
nfolds
    Number of folds
type
    'dml1' or 'dml2'
    additional arguments to SuperLearner

Value
    cate.targeted object

Author(s)
    Klaus Kähler Holst & Andreas Nordland

Examples
    # Example 1:
    sim1 <- function(n=1e4,
        seed=NULL,
        return_model=FALSE, ...){
        suppressPackageStartupMessages(require("lava"))
        if (!is.null(seed)) set.seed(seed)
        m <- lava::lvm()
        distribution(m, ~x) <- gaussian.lvm()
        distribution(m, ~v) <- gaussian.lvm(mean = 10)
        distribution(m, ~a) <- binomial.lvm("logit")
        regression(m, "a") <- function(v, x){.1*v + x}
        distribution(m, "y") <- gaussian.lvm()
        regression(m, "y") <- function(a, v, x){v+x+a*x+a*v*v}
        if (return_model) return(m)
        lava::sim(m, n = n)
    }

    if (require("SuperLearner", quietly=TRUE)) {
        d <- sim1(n = 1e3, seed = 1)
        e <- cate_link(data=d,
            type = "dml2",
            treatment = a ~ v,
            response_model = y ~ a*(x + v + I(v^2)),
            importance_model = SL(D_ ~ v + I(v^2)),
            nfolds = 10)
        summary(e) # the true parameters are c(1,1)
    }
Description

The functions `cv` returns an object of the type `cross_validated`. An object of class `cross_validated` is a list with at least the following components:

- **cv**: An array with the model score(s) evaluated for each fold, repetition, and model. (estimates (see `estimate.default`)
- **names**: Names (character vector) of the models
- **rep**: Number of repetitions of the CV
- **folds**: Number of folds of the CV

Value

objects of the S3 class `cross_validated`

S3 generics

The following S3 generic functions are available for an object of class `cross_validated`:

- `coef`: Extract average model scores from the cross-validation procedure.
- `print`: Basic print method.
- `summary`: Summary of the cross-validation procedure.

See Also

`cv`

Examples

```r
See example(cv) for examples
```
Description

Conditional Relative Risk estimation via Double Machine Learning

Usage

crr(
  treatment,
  response_model,
  propensity_model,
  importance_model,
  contrast = c(1, 0),
  data,
  nfolds = 5,
  type = "dml1",
  ...
)

Arguments

treatment formula specifying treatment and variables to condition on
response_model SL object
propensity_model SL object
importance_model SL object
contrast treatment contrast (default 1 vs 0)
data data.frame
nfolds Number of folds
type 'dml1' or 'dml2'
... additional arguments to SuperLearner

Value
cate.targeted object

Author(s)
Klaus Kähler Holst & Andreas Nordland
Examples

```r
sim1 <- function(n=1e4,
 seed=NULL,
 return_model=FALSE, ...){
 suppressPackageStartupMessages(require("lava"))
 if (!is.null(seed)) set.seed(seed)
 m <- lava::lvm()
 distribution(m, ~x) <- gaussian.lvm()
 distribution(m, ~v) <- gaussian.lvm(mean = 10)
 distribution(m, ~a) <- binomial.lvm("logit")
 regression(m, "a") <- function(v, x){.1*v + x}
 distribution(m, "y") <- gaussian.lvm()
 regression(m, "y") <- function(a, v, x){v+x+a*x+a*v*v}
 if (return_model) return(m)
 lava::sim(m, n = n)
}

d <- sim1(n = 2e3, seed = 1)
if (require("SuperLearner",quietly=TRUE)) {
 e <- crr(data = d,
 type = "dml2",
 treatment = a ~ v,
 response_model = ML(y ~ a*(x + v + I(v^2))),
 importance_model = ML(D_ ~ v + I(v^2)),
 propensity_model = ML(a ~ x + v + I(v^2), family = binomial),
 nfolds = 2)
 summary(e) # the true parameters are c(1,1)
}
```

---

**cv**

**Cross-validation**

**Description**

Generic cross-validation function

**Usage**

```r
cv(
 models,
 data,
 response = NULL,
 nfolds = 5,
 rep = 1,
 weights = NULL,
 modelscore,
 seed = NULL,
 shared = NULL,
```
Arguments

models List of fitting functions
data data.frame or matrix
response Response variable (vector or name of column in data).
nfolds Number of folds (default 5. K=0 splits in 1:n/2, n/2:n with last part used for testing)
rep Number of repetitions (default 1)
weights Optional frequency weights
modelscore Model scoring metric (default: RMSE / Brier score). Must be a function with arguments: response, prediction, weights, ...
seed Random seed (argument parsed to future_apply::future_lapply)
shared Function applied to each fold with results send to each model
args.pred Optional arguments to prediction function (see details below)
args.future Arguments to future.apply::future_maply
mc.cores Optional number of cores. parallel::mcmapply used instead of future
... Additional arguments parsed to models in models

Details

models should be list of objects of class ml_model. Alternatively, each element of models should be a list with a fitting function and a prediction function.

The response argument can optionally be a named list where the name is then used as the name of the response argument in models. Similarly, if data is a named list with a single data.frame/matrix then this name will be used as the name of the data/design matrix argument in models.

Value

An object of class 'cross_validated' is returned. See cross_validated-class for more details about this class and its generic functions.

Author(s)

Klaus K. Holst

Examples

f0 <- function(data,...) lm(....,data=data)
f1 <- function(data,...) lm(Sepal.Length~Species,data=data)
f2 <- function(data,...) lm(Sepal.Length~Species+Petal.Length,data=data)
x <- cv(list(m0=f0,m1=f1,m2=f2),rep=10, data=iris, formula=Sepal.Length~.)
x
design

*Extract design matrix*

**Description**

Extract design matrix from data.frame and formula

**Usage**

design(formula, data, intercept = FALSE, rm_envir = FALSE, ...)

**Arguments**

- `formula`: formula
- `data`: data.frame
- `intercept`: If FALSE (default) an intercept is not included
- `rm_envir`: Remove environment
- `...`: additional arguments (e.g., specials such as weights, offsets, subset)

**Value**

An object of class 'design'

**Author(s)**

Klaus Kähler Holst

---

expand.list

*Create a list from all combination of input variables*

**Description**

Similar to `expand.grid` function, this function creates all combinations of the input arguments but returns the result as a list.

**Usage**

expand.list(...) 

**Arguments**

- `...`: input variables

**Value**

list
Author(s)
Klaus Kähler Holst

Examples
expand.list(x=2:4, z=c("a","b"))

ML  ML model

Description
Wrapper for ml_model

Usage
ML(formula, model = "glm", ...)

Arguments
formula  formula
model    model (sl, rf, pf, glm, ...)
...      additional arguments to model object

Details
model 'sl' (SuperLearner::SuperLearner) args: SL.library, cvControl, family, method example:
model 'grf' (grf::regression_forest) args: num.trees, mtry, sample.weights, sample.fraction, min.node.size, ...
... example:
model 'grf.binary' (grf::probability_forest) args: num.trees, mtry, sample.weights, ...
... example:
model 'glm' args: family, weights, offset, ...

ml_model  R6 class for prediction models

Description
R6 class for prediction models
R6 class for prediction models

Details
Provides standardized estimation and prediction methods
Public fields

- **info** Optional information/name of the model
- **formals** List with formal arguments of estimation and prediction functions
- **formula** Formula specifying response and design matrix
- **args** Additional arguments specified during initialization

Active bindings

- **fit** Active binding returning estimated model object

Methods

**Public methods:**

- `ml_model$new()`
- `ml_model$estimate()`
- `ml_model$predict()`
- `ml_model$update()`
- `ml_model$print()`
- `ml_model$response()`
- `ml_model$design()`
- `ml_model$opt()`
- `ml_model$clone()`

**Method** `new()`: Create a new prediction model object

**Usage:**

```r
ml_model$new(
 formula = NULL,
 estimate,
 predict = stats::predict,
 predict.args = NULL,
 info = NULL,
 specials,
 response.arg = "y",
 x.arg = "x",
 ...
)
```

**Arguments:**

- **formula** formula specifying outcome and design matrix
- **estimate** function for fitting the model (must be a function response, 'y', and design matrix, 'x'. Alternatively, a function with a single 'formula' argument)
- **predict** prediction function (must be a function of model object, 'object', and new design matrix, 'newdata')
- **predict.args** optional arguments to prediction function
- **info** optional description of the model
specials  optional additional terms (weights, offset, id, subset, ...) passed to 'estimate'
response.arg  name of response argument
x.arg  name of design matrix argument
...  optional arguments to fitting function

**Method** estimate(): Estimation method

*Usage:*

```r
ml_model$estimate(data, ..., store = TRUE)
```

*Arguments:*

data  data.frame
...  Additional arguments to estimation method
store  Logical determining if estimated model should be stored inside the class.

**Method** predict(): Prediction method

*Usage:*

```r
ml_model$predict(newdata, ..., object = NULL)
```

*Arguments:*

newdata  data.frame
...  Additional arguments to prediction method
object  Optional model fit object

**Method** update(): Update formula

*Usage:*

```r
ml_model$update(formula, ...)
```

*Arguments:*

formula  formula or character which defines the new response
...  Additional arguments to lower level functions

**Method** print(): Print method

*Usage:*

```r
ml_model$print(...)
```

*Arguments:*

...  Additional arguments to lower level functions

**Method** response(): Extract response from data

*Usage:*

```r
ml_model$response(data, ...)
```

*Arguments:*

data  data.frame
...  additional arguments to 'design'

**Method** design(): Extract design matrix (features) from data

*Usage:*

```r```
ml_model

ml_model$design(data, ...)

Arguments:
 data data.frame
 ... additional arguments to ‘design’

Method opt(): Get options

Usage:
 ml_model$opt(arg, ...)

Arguments:
 arg name of option to get value of
 ... additional arguments to lower level functions

Method clone(): The objects of this class are cloneable with this method.

Usage:
 ml_model$clone(deep = FALSE)

Arguments:
 deep Whether to make a deep clone.

Author(s)
 Klaus Kähler Holst

Examples

data(iris)
 rf <- function(formula, ...)
 ml_model$new(formula, info="grf::probability_forest",
 estimate=function(x,y, ...) grf::probability_forest(X=x, Y=y, ...),
 predict=function(object, newdata) predict(object, newdata)$predictions, ...)

 args <- expand.list(num.trees=c(100,200), mtry=1:3,
 formula=c(Species ~ ., Species ~ Sepal.Length + Sepal.Width))
 models <- lapply(args, function(par) do.call(rf, par))

 x <- models[[1]]$clone()
 x$estimate(iris)
 predict(x, newdata=head(iris))

 # Reduce Ex. timing
 a <- targeted::cv(models, data=iris)
 cbind(coef(a), attr(args, "table"))

 ff <- ml_model$new(estimate=function(y,x) lm.fit(x=x, y=y),
 predict=function(object, newdata) newdata%*%object$coefficients)
 ## tmp <- ff$estimate(y, x=x)
 ## ff$predict(x)
Naive Bayes Classifier

Usage

\[
\text{NB}(\text{formula, data, weights = NULL, kernel = FALSE, laplace.smooth = 0, prior = NULL, ...})
\]

Arguments

- **formula**: Formula with syntax: response ~ predictors \mid weights
- **data**: data.frame
- **weights**: optional frequency weights
- **kernel**: If TRUE a kernel estimator is used for numeric predictors (otherwise a gaussian model is used)
- **laplace.smooth**: Laplace smoothing
- **prior**: optional prior probabilities (default estimated from data)
- **...**: additional arguments to lower level functions

Value

An object of class 'NB' is returned. See \texttt{NB-class} for more details about this class and its generic functions.

Author(s)

Klaus K. Holst

Examples

```r
data(iris)
m2 <- NB(Species ~ Sepal.Width + Petal.Length, data=iris)
pr2 <- predict(m2, newdata=iris)
```
Description

The functions \texttt{NB} returns an object of the type \texttt{NB}.

An object of class '\texttt{NB}' is a list with at least the following components:

- \texttt{prior} Matrix with prior probabilities, i.e. marginal class probabilities \(\text{Pr}(\text{class})\)
- \texttt{pcond} list of matrices with conditional probabilities of the features given the classes (one list element per class), \(\text{Pr}(\text{x|class})\)
- \texttt{classes} Names (character vector) of the classes
- \texttt{xvar} number of repetitions of the CV
- \texttt{xmodel} Number of folds of the CV
- \texttt{model} Number of folds of the CV

Value

objects of the S3 class '\texttt{NB}'

S3 generics

The following S3 generic functions are available for an object of class \texttt{NB}:

- \texttt{predict} Predict class probabilities for new features data.
- \texttt{print} Basic print method.

See Also

\texttt{NB, NB2}

Examples

See example(NB) for examples
nondom

Find non-dominated points of a set

Description

Find the non-dominated point of a set (minima of a point set).

Usage

nondom(x, ...)

Arguments

x matrix

... additional arguments to lower level functions

Details

A point x dominates y if it is never worse and at least in one case strictly better. Formally, let \(f_i \) denote the ith coordinate of the condition (objective) function, then for all i: \(f_i(x) \leq f_i(y) \) and there exists j: \(f_j(x) < f_j(y) \).

Based on the algorithm of Kung et al. 1975.

Value

matrix

Author(s)

Klaus Kähler Holst

Examples

```r
rbind(
  c(1.0, 0.5),
  c(0.0, 1.0),
  c(1.0, 0.0),
  c(0.5, 1.0),
  c(1.0, 1.0),
  c(0.8, 0.8)) |> nondom()
```
Description

Pooled Adjacent Violators Algorithm

Usage

```r
pava(y, x = numeric(0), weights = numeric(0))
```

Arguments

- `y`: response variable
- `x`: (optional) predictor vector (otherwise `y` is assumed to be a priori sorted according to relevant predictor)
- `weights`: weights (optional) weights

Value

List with index (idx) of jump points and values (value) at each jump point.

Author(s)

Klaus K. Holst

Examples

```r
x <- runif(5e3, -5, 5)
pr <- lava::expit(-1 + x)
y <- rbinom(length(pr), 1, pr)
pv <- pava(y, x)
plot(pr ~ x, cex=0.3)
with(pv, lines(sort(x)[index], value, col="red", type="s"))
```

Description

Prediction for kernel density estimates

Usage

```r
## S3 method for class 'density'
predict(object, xnew, ...)
```
Arguments

object: density object
xnew: New data on which to make predictions for
...
additional arguments to lower level functions

Author(s)

Klaus K. Holst

Description

Naive Bayes Classifier predictions

Usage

S3 method for class 'NB'
predict(object, newdata, expectation = NULL, threshold = c(0.001, 0.001), ...)

Arguments

object: density object
newdata: new data on which to make predictions
expectation: Variable to calculate conditional expectation wrt probabilities from NB classifier
threshold: Threshold parameters. First element defines the threshold on the probabilities and the second element the value to set those truncated probabilities to.
...
additional arguments to lower level functions

Author(s)

Klaus K. Holst
RATE

Responder Average Treatment Effect

Description

Estimation of the Average Treatment Effect among Responders

Usage

RATE(
 response,
 post.treatment,
 treatment,
 data,
 family = gaussian(),
 M = 5,
 pr.treatment,
 treatment.level,
 SL.args.response = list(family = gaussian(), SL.library = c("SL.mean", "SL.glm")),
 SL.args.post.treatment = list(family = binomial(), SL.library = c("SL.mean", "SL.glm")),
 preprocess = NULL,
 efficient = TRUE,
 ...
)

Arguments

response Response formula (e.g, Y~D*A)
post.treatment Post treatment marker formula (e.g., D~W)
treatment Treatment formula (e.g, A~1)
data data.frame
family Exponential family for response (default gaussian)
M Number of folds in cross-fitting (M=1 is no cross-fitting)
pr.treatment (optional) Randomization probability of treatment.
treatment.level Treatment level in binary treatment (default 1)
SL.args.response Arguments to SuperLearner for the response model
SL.args.post.treatment Arguments to SuperLearner for the post treatment indicator
preprocess (optional) Data preprocessing function
efficient If TRUE, the estimate will be efficient. If FALSE, the estimate will be a simple plug-in estimate.
... Additional arguments to lower level functions
Value

estimate object

Author(s)

Andreas Nordland, Klaus K. Holst

RATE.surv

Responder Average Treatment Effect

Description

Estimation of the Average Treatment Effect among Responders for Survival Outcomes

Usage

```r
RATE.surv(
  response, post.treatment, treatment, censoring, tau, data, 
  M = 5, pr.treatment, call.response,
  args.response = list(),
  SL.args.post.treatment = list(family = binomial(), SL.library = c("SL.mean", "SL.glm")),
  call.censoring, 
  args.censoring = list(),
  preprocess = NULL, ...
)
```

Arguments

- `response`: Response formula (e.g., `Surv(time, event) ~ D + W`).
- `post.treatment`: Post treatment marker formula (e.g., `D ~ W`).
- `treatment`: Treatment formula (e.g., `A ~ 1`).
- `censoring`: Censoring formula (e.g., `Surv(time, event == 0) ~ D + A + W`).
- `tau`: Time-point of interest, see Details.
- `data`: data.frame.
- `M`: Number of folds in cross-fitting (M=1 is no cross-fitting).
call.response Model call for the response model (e.g. "mets::phreg").
args.response Additional arguments to the response model.
SL.args.post.treatment Additional arguments to SuperLearner for the post treatment indicator model.
call.censoring Similar to call.response.
args.censoring Similar to args.response.
preprocess (optional) Data pre-processing function.
... Additional arguments to lower level data pre-processing functions.

Details

Estimation of
\[
\frac{P(T \leq \tau | A = 1) - P(T \leq \tau | A = 1)}{E[D|A = 1]}
\]

under right censoring based on plug-in estimates of \(P(T \leq \tau | A = a) \) and \(E[D|A = 1] \).

An efficient one-step estimator of \(P(T \leq \tau | A = a) \) is constructed using the efficient influence function
\[
\frac{I\{A = a\}}{P(A = a)} \left(\Delta \frac{A}{S_0(T|X)} I\{\tilde{T} \leq \tau\} + \int_0^\tau \frac{S_0(u|X) - S_0(\tau|X)}{S_0(u|X)S_0'(u|X)} dM_0(u|X) \right) + \left(1 - \frac{I\{A = a\}}{P(A = a)} \right) F_0(\tau | A = a, W) - P(T \leq \tau | A = a)
\]

An efficient one-step estimator of \(E[D|A = 1] \) is constructed using the efficient influence function
\[
\frac{A}{P(A = 1)} (D - E[D|A = 1, W]) + E[D|A = 1, W] - E[D|A = 1].
\]

Value

estimate object

Author(s)

Andreas Nordland, Klaus K. Holst

riskreg
Risk regression

Description

Risk regression with binary exposure and nuisance model for the odds-product.

Let \(A \) be the binary exposure, \(V \) the set of covariates, and \(Y \) the binary response variable, and define \(p_0(v) = P(Y = 1 | A = a, V = v), a \in \{0, 1\} \).

The **target parameter** is either the relative risk
\[
RR(v) = \frac{p_1(v)}{p_0(v)}
\]
or the risk difference

\[RD(v) = p_1(v) - p_0(v) \]

We assume a target parameter model given by either

\[\log\{RR(v)\} = \alpha^t v \]

or

\[\text{arctanh}\{RD(v)\} = \alpha^t v \]

and similarly a working linear nuisance model for the odds-product

\[\phi(v) = \log\left(\frac{p_0(v)p_1(v)}{(1 - p_0(v))(1 - p_1(v))} \right) = \beta^t v \]

A propensity model for \(E(A = 1|V) \) is also fitted using a logistic regression working model

\[\logit\{E(A = 1 | V = v)\} = \gamma^t v. \]

If both the odds-product model and the propensity model are correct the estimator is efficient. Further, the estimator is consistent in the union model, i.e., the estimator is double-robust in the sense that only one of the two models needs to be correctly specified to get a consistent estimate.

Usage

\[
\text{riskreg(}
 \text{formula},
 \text{nuisance} = \sim 1,
 \text{propensity} = \sim 1,
 \text{target} = \sim 1,
 \text{data},
 \text{weights},
 \text{type} = "rr",
 \text{optimal} = \text{TRUE},
 \text{std.err} = \text{TRUE},
 \text{start} = \text{NULL},
 \text{mle} = \text{FALSE},
 \ldots
\)
\]

Arguments

- formula: formula (see details below)
- nuisance: nuisance model (formula)
- propensity: propensity model (formula)
- target: (optional) target model (formula)
- data: data.frame
- weights: optional weights
riskreg

- **type**: type of association measure (rd or rr)
- **optimal**: If TRUE optimal weights are calculated
- **std.err**: If TRUE standard errors are calculated
- **start**: optional starting values
- **mle**: Semi-parametric (double-robust) estimate or MLE (TRUE gives MLE)
- **...**: additional arguments to unconstrained optimization routine (nlminb)

Details

The 'formula' argument should be given as `response ~ exposure | target-formula | nuisance-formula` or `response ~ exposure | target | nuisance | propensity`

E.g., `riskreg(y ~ a | 1 | x+z | x+z, data=...)`

Alternatively, the model can be specified using the target, nuisance and propensity arguments: `riskreg(y ~ a, target=~1, nuisance=~x+z, ...)`

The `riskreg_fit` function can be used with matrix inputs rather than formulas.

Value

An object of class 'riskreg.targeted' is returned. See `targeted-class` for more details about this class and its generic functions.

Author(s)

Klaus K. Holst

References

Examples

```r
m <- lvm(a[-2] ~ x, 
    z ~ 1, 
    lp.target[1] ~ 1, 
    lp.nuisance[-1] ~ 2*x)
distribution(m,-a) <- binomial.lvm("logit")
m <- binomial.rr(m, "y","a","lp.target","lp.nuisance")
d <- sim(m,5e2,seed=1)
I <- model.matrix(~1, d)
X <- model.matrix(~1+x, d)
with(d, riskreg_mle(y, a, I, X, type="rr"))

with(d, riskreg_fit(y, a, nuisance=X, propensity=I, type="rr"))
riskreg(y ~ a | 1, nuisance=-x, data=d, type="rr")```
## Model with same design matrix for nuisance and propensity model:
with(d, riskreg_fit(y, a, nuisance=X, type="rr"))

## a <- riskreg(y ~ a, target=~z, nuisance=~x, propensity=~x, data=d, type="rr")
a <- riskreg(y ~ a | z, nuisance=~x, propensity=~x, data=d, type="rr")
a
predict(a, d[1:5,])

riskreg(y ~ a, nuisance=~x, data=d, type="rr", mle=TRUE)

---

**riskreg_cens**

*Binary regression models with right censored outcomes*

### Description

Binary regression models with right censored outcomes

### Usage

```
riskreg_cens(
 response,
 censoring,
 treatment = NULL,
 prediction = NULL,
 data,
 newdata,
 tau,
 type = "risk",
 M = 1,
 call.response = "phreg",
 args.response = list(),
 call.censoring = "phreg",
 args.censoring = list(),
 preprocess = NULL,
 efficient = TRUE,
 control = list(),
 ...
)
```

### Arguments

- **response**: Response formula (e.g., `Surv(time, event) ~ D + W`).
- **censoring**: Censoring formula (e.g., `Surv(time, event == 0) ~ D + A + W)`.
- **treatment**: Optional treatment model (ml_model).
- **prediction**: Optional prediction model (ml_model).
- **data**: data.frame.
scoring

newdata  Optional data.frame. In this case the uncentered influence function evaluated in 'newdata' is returned with nuisance parameters obtained from 'data'.

tau  Time-point of interest, see Details.

type  "risk", "treatment", "rmst", "brier"

M  Number of folds in cross-fitting (M=1 is no cross-fitting).

call.response  Model call for the response model (e.g. "mets::phreg").

args.response  Additional arguments to the response model.

call.censoring  Similar to call.response.

args.censoring  Similar to args.response.

preprocess  (optional) Data pre-processing function.

efficient  If FALSE an IPCW estimator is returned

control  See details

...  Additional arguments to lower level data pre-processing functions.

Details

The one-step estimator depends on the calculation of an integral wrt. the martingale process corresponding to the counting process \( N(t) = I(C>\min(T,\tau)) \). This can be decomposed into an integral wrt the counting process, \( dN_c(t) \) and the compensator \( d\Lambda_c(t) \) where the latter term can be computational intensive to calculate. Rather than calculating this integral in all observed time points, we can make a coarser evaluation which can be controlled by setting \( \text{control}=(\text{sample}=N) \). With \( N=0 \) the (computational intensive) standard evaluation is used.

Value

estimate object

Author(s)

Klaus K. Holst, Andreas Nordland

scoring  Predictive model scoring

Description

Predictive model scoring
scoring

Usage

scoring(
  response,
  ..., 
  type = "quantitative",
  levels = NULL,
  metrics = NULL,
  weights = NULL,
  names = NULL,
  messages = 1
)

Arguments

response 
Observed response

... 
model predictions (continuous predictions or class probabilities (matrices))

type 
continuous or categorical response (the latter is automatically chosen if response
is a factor, otherwise a continuous response is assumed)

levels 
(optional) unique levels in response variable

metrics 
which metrics to report

weights 
optional frequency weights

names 
optional names of models coments (given as ..., alternatively these can be named
arguments)

messages 
controls amount of messages/warnings (0: none)

Value

Numeric matrix of dimension m x p, where m is the number of different models and p is the number
of model metrics

Examples

data(iris)
set.seed(1)
dat <- csplit(iris,2)
g1 <- NB(Species ~ Sepal.Width + Petal.Length, data=dat[[1]])
g2 <- NB(Species ~ Sepal.Width, data=dat[[1]])
pr1 <- predict(g1, newdata=dat[[2]], wide=TRUE)
pr2 <- predict(g2, newdata=dat[[2]], wide=TRUE)
table(colnames(pr1)[apply(pr1,1,which.max)], dat[[2]]$Species)
table(colnames(pr2)[apply(pr2,1,which.max)], dat[[2]]$Species)
scoring(dat[[2]]$Species, pr1=pr1, pr2=pr2)
## quantitative response:
scoring(response=1:10, prediction=rnorm(1:10))
**SL**

*SuperLearner wrapper for ml_model*

**Description**

SuperLearner wrapper for ml_model

**Usage**

```r
SL(
 formula = \~.,
 \ldots,
 SL.library = c("SL.mean", "SL.glm"),
 binomial = FALSE,
 data = NULL
)
```

**Arguments**

- `formula` Model design
- `\ldots` Additional arguments for SuperLearner::SuperLearner
- `SL.library` character vector of prediction algorithms
- `binomial` boolean specifying binomial or gaussian family (default FALSE)
- `data` Optional data.frame

**Value**

ml_model object

**Author(s)**

Klaus Kähler Holst

---

**softmax**

*Softmax transformation*

**Description**

Softmax transformation

**Usage**

```r
softmax(x, log = FALSE, ref = TRUE, \ldots)
```
solve_ode

Arguments

- **x**: Input matrix (e.g., linear predictors of multinomial logistic model)
- **log**: Return on log-scale (default FALSE)
- **ref**: Add reference level (add 0 column to x)
- **...**: Additional arguments to lower level functions

Value

Numeric matrix of dimension n x p, where n = nrow(x) and p = ncol(x) + (ref==TRUE)

---

**solve_ode**  
*Solve ODE*

Description

Solve ODE with Runge-Kutta method (RK4)

Usage

```
solve_ode(ode_ptr, input, init, par = 0)
```

Arguments

- **ode_ptr**: pointer (externalptr) to C++ function or an R function
- **input**: Input matrix. 1st column specifies the time points
- **init**: Initial conditions
- **par**: Parameters defining the ODE (parsed to ode_ptr)

Details

The external point should be created with the function `targeted::specify_ode`.

Value

Matrix with solution

Author(s)

Klaus Kähler Holst

See Also

- `specify_ode`

Examples

```
example(specify_ode)
```
specify_ode

Specify Ordinary Differential Equation (ODE)

Description

Define compiled code for ordinary differential equation.

Usage

```r
specify_ode(code, fname = NULL, pname = c("dy", "x", "y", "p"))
```

Arguments

- `code`: string with the body of the function definition (see details)
- `fname`: Optional name of the exported C++ function
- `pname`: Vector of variable names (results, inputs, states, parameters)

Details

The model (code) should be specified as the body of a C++ function. The following variables are defined by default (see the argument `pname`)

- `dy`: Vector with derivatives, i.e. the rhs of the ODE (the result).
- `x`: Vector with the first element being the time, and the following elements additional exogenous input variables,
- `y`: Vector with the dependent variable
- `p`: Parameter vector

\[
\begin{align*}
y'(t) &= \beta_0 + \beta_1 y(t) + \beta_2 y(t)x(t) + \beta_3 x(t) \cdot t \\
\end{align*}
\]

All variables are treated as Armadillo (http://arma.sourceforge.net/) vectors/matrices.

As an example consider the Lorenz Equations

\[
\begin{align*}
dx(t) &= \sigma(y(t) - x(t)) \\
du(t) &= x(t)(\rho - z(t)) - y(t) \\
dz(t) &= x(t)y(t) - \beta z(t)
\end{align*}
\]

We can specify this model as

```r
ode <- 'dy(0) = p(0)*(y(1)-y(0)); dy(1) = y(0)*(p(1)-y(2)); dy(2) = y(0)*y(1)-p(2)*y(2);'
dy <- specify_ode(ode)
```

As an example of a model with exogenous inputs consider the following ODE:

\[
\begin{align*}
y'(t) &= \beta_0 + \beta_1 y(t) + \beta_2 y(t)x(t) + \beta_3 x(t) \cdot t \\
\end{align*}
\]

This could be specified as

```r
mod <- 'double t = x(0); dy = p(0) + p(1)*y + p(2)*x(1)*y + p(3)*x(1)*t;'
dy <- specify_ode(mod)
```

Value

pointer (externalptr) to C++ function

Author(s)

Klaus Kähler Holst
See Also

solve_ode

---

targeted-class  

**targeted class object**

Description

The functions `riskreg` and `ate` returns an object of the type targeted. An object of class 'targeted' is a list with at least the following components:

- **estimate**  An estimate object with the target parameter estimates (see `estimate.default`)
- **opt**  Object returned from the applied optimization routine
- **npar**  number of parameters of the model (target and nuisance)
- **type**  String describing the model

Value

objects of the S3 class 'targeted'

S3 generics

The following S3 generic functions are available for an object of class targeted:

- **coef**  Extract target coefficients of the estimated model.
- **vcov**  Extract the variance-covariance matrix of the target parameters.
- **IC**  Extract the estimated influence function.
- **print**  Print estimates of the target parameters.
- **summary**  Extract information on both target parameters and estimated nuisance model.'

See Also

`riskreg`, `ate`

Examples

```r
See example(riskreg) for examples
```
Index

* package
  targeted-package, 2

  aipw, 3
  alean, 4
  ate, 5, 38
  ate.targeted (targeted-class), 38
  calibrate, 9
  calibrate (calibration), 7
  calibration, 7, 9
  calibration-class, 9
  cate, 10
  cate_link, 11
  cross_validated
    (cross_validated-class), 13
  cross_validated-class, 13
  crr, 14
  cv, /3, 15
  design, 17
  estimate.default, /3, 38
  expand.list, 17
  isoreg (pava), 25
  isoregw (pava), 25
  ML, 18
  ml_model, 18
  NB, 22, 23
  NB-class, 23
  NB2, 23
  NB2 (NB), 22
  nondom, 24
  pava, 25
  predict.density, 25
  predict.NB, 26
  RATE, 27

  RATE.surv, 28
  riskreg, 29, 38
  riskreg.targeted (targeted-class), 38
  riskreg_cens, 32
  riskreg_fit (riskreg), 29
  riskreg_mle (riskreg), 29
  scoring, 33
  SL, 35
  softmax, 35
  solve_ode, 36
  specify_ode, 37

  targeted (targeted-package), 2
  targeted-class, 38
  targeted-package, 2