Package ‘targeted’

February 22, 2024

Type Package
Title Targeted Inference
Version 0.5
Date 2024-02-22
Author Klaus K. Holst [aut, cre],
Andreas Nordland [aut]
Maintainer Klaus K. Holst <klaus@holst.it>
Description Various methods for targeted and semiparametric inference including
 augmented inverse probability weighted (AIPW) estimators for missing data and
 variable importance and conditional average treatment effects (CATE)
 estimators for risk differences and relative risks (Richardson et al. (2017)
 <doi:10.1080/01621459.2016.1192546>), assumption lean inference for generalized
 linear model parameters (Vansteelandt et al. (2022) <doi:10.1111/rssb.12504>).
Depends R (>= 4.0), lava (>= 1.7.0)
Imports data.table, digest, futile.logger, future.apply, optimx,
 progresr, methods, mets, R6, Rcpp (>= 1.0.0), survival
Suggests grf, mgcv, testthat (>= 0.11), rmarkdown, scatterplot3d,
 SuperLearner (>= 2.0-28), knitr, xgboost, viridisLite
BugReports https://github.com/kkholst/targeted/issues
License Apache License (== 2.0)
LinkingTo Rcpp, RcppArmadillo
LazyLoad yes
NeedsCompilation yes
ByteCompile yes
RcppModules riskregmodel
Encoding UTF-8
RoxygenNote 7.3.1
VignetteBuilder knitr
Description

AIPW for the mean (and linear projections of the EIF) with missing observations
Usage

aipw(response_model, data, formula = ~1, missing_model, ...)

Arguments

response_model Model for the response given covariates (ml_model or formula)
data data.frame
formula design specifying the OLS estimator with outcome given by the EIF
missing_model Optional missing_model (ml_model or formula). By default will use the same
design as the response_model.
...
arguments to cate

Examples

m <- lvm(y ~ x+z, r ~ x)
distribution(m,~ r) <- binomial.lvm()
transform(m, y0~r+y) <- function(x) { x[x[,1]==0,2] <- NA; x[,2] }
d <- sim(m,1e3,seed=1)
aipw(y0 ~ x, data=d)

alean

Assumption Lean inference for generalized linear model parameters

Description

Assumption lean inference via cross-fitting (Double ML). See <doi:10.1111/rssb.12504>

Usage

alean(
response_model,
exposure_model,
data,
link = "identity",
g_model,
nfolds = 1,
silent = FALSE,
mc.cores,
...
)
Arguments

response_model formula or ml_model object (formula => glm)
exposure_model model for the exposure
data data.frame
link Link function (g)
g_model Model for $E[g(Y|A, W)|W]$
nfolds Number of folds
silent supress all messages and progressbars
mc.cores mc.cores Optional number of cores. parallel::mcmapply used instead of future...

Details

Let Y be the response variable, A the exposure and W covariates. The target parameter is:

$$\Psi(P) = \frac{E(Cov[A, g\{E(Y|A, W)\} | W])}{E\{Var(A | W)\}}$$

The response_model is the model for $E(Y|A, W)$, and exposure_model is the model for $E(A|W)$. link specifies g.

Value

alean.targeted object

Author(s)

Klaus Kähler Holst

Examples

```r
sim1 <- function(n, family=gaussian(), ...) {
  m <- lvm() |>
  distribution(~ y, binomial.lvm()) |>
  regression('a', value=function(l) l) |>
  regression('y', value=function(a,l) a + l)
  if (family$family=="binomial")
    distribution(m, -a) <- binomial.lvm()
  sim(m, n)
}

library(splines)
f <- binomial()
d <- sim1(1e4, family=f)
e <- alean(response_model=ML(y ~ a + bs(l, df=3), family=binomial),
             exposure_model=ML(a ~ bs(l, df=3), family=f),
             data=d,
```
AIPW (doubly-robust) estimator for Average Treatment Effect

Description

Augmented Inverse Probability Weighting estimator for the Average (Causal) Treatment Effect. All nuisance models are here parametric (glm). For a more general approach see the cate implementation. In this implementation the standard errors are correct even when the nuisance models are misspecified (the influence curve is calculated including the term coming from the parametric nuisance models). The estimate is consistent if either the propensity model or the outcome model / Q-model is correctly specified.

Usage

ate(
 formula,
 data = parent.frame(),
 weights,
 offset,
 family = stats::gaussian(identity),
 nuisance = NULL,
 propensity = nuisance,
 all,
 labels = NULL,
 ...
)

Arguments

formula Formula (see details below)
data data.frame
weights optional frequency weights
offset optional offset (character or vector). can also be specified in the formula.
family Exponential family argument for outcome model
nuisance outcome regression formula (Q-model)
propensity propensity model formula
all If TRUE all standard errors are calculated (default TRUE when exposure only has two levels)
labels Optional treatment labels
... Additional arguments to lower level functions

Details

The formula may either be specified as: response ~ treatment | nuisance-formula | propensity-formula

For example: ate(y~a | x+z+a | x*z, data=...)

Alternatively, as a list: ate(list(y~a, ~x+z, ~x+z), data=...)

Or using the nuisance (and propensity argument): ate(y~a, nuisance=~x+z, ...)

Value

An object of class 'ate.targeted' is returned. See targeted-class for more details about this class and its generic functions.

Author(s)

Klaus K. Holst

See Also
cate

Examples

m <- lvm(y ~ a+x, a~x)
distribution(m, ~y) <- binomial.lvm()
m <- ordinal(m, K=4, ~a)
transform(m, ~a) <- factor
d <- sim(m, 1e3, seed=1)
(a <- ate(y~a|a*x|x, data=d))
ate(y~a, nuisance=a*x, propensity=x, ...)

Comparison with randomized experiment
m0 <- cancel(m, a~x)
lm(y~a-1, sim(m0,2e4))

Choosing a different contrast for the association measures
summary(a, contrast=c(2,4))
calibration

Calibration (training)

Description

Calibration for multiclassification methods

Usage

calibration(
 pr,
 cl,
 weights = NULL,
 threshold = 10,
 method = "bin",
 breaks = nclass.Sturges,
 df = 3,
 ...)

Arguments

pr matrix with probabilities for each class
cl class variable
weights counts
threshold do not calibrate if less then 'threshold' events
method either 'isotonic' (pava), 'logistic', 'mspline' (monotone spline), 'bin' (local constant)
breaks optional number of bins (only for method 'bin')
df degrees of freedom (only for spline methods)
... additional arguments to lower level functions

Details

...

Value

An object of class 'calibration' is returned. See calibration-class for more details about this class and its generic functions.

Author(s)

Klaus K. Holst
Examples

```r
sim1 <- function(n, beta=c(-3, rep(.5,10)), rho=.5) {
  p <- length(beta)-1
  xx <- lava::rmvn0(n,sigma=diag(nrow=p)*(1-rho)+rho)
  y <- rbinom(n, 1, lava::expit(cbind(1,xx)%*%beta))
  d <- data.frame(y=y, xx)
  names(d) <- c("y", paste0("x",1:p))
  return(d)
}

set.seed(1)
beta <- c(-2,rep(1,10))
d <- sim1(1e4, beta=beta)
a1 <- NB(y ~ ., data=d)
a2 <- glm(y ~ ., data=d, family=binomial)
## a3 <- randomForest(factor(y) ~ ., data=d, family=binomial)

d0 <- sim1(1e4, beta=beta)
p1 <- predict(a1, newdata=d0)
p2 <- predict(a2, newdata=d0, type="response")
## p3 <- predict(a3, newdata=d0, type="prob")

c2 <- calibration(p2, d0$y, method="isotonic")
c1 <- calibration(p1, d0$y, breaks=100)
if (interactive()) {
  plot(c1)
  plot(c2,col="red",add=TRUE)
  abline(a=0,b=1)##'
  with(c1$xy[[1]], points(pred,freq,type="b", col="red"))
}

set.seed(1)
beta <- c(-2,rep(1,10))
dd <- lava::csplit(sim1(1e4, beta=beta), k=3)
mod <- NB(y ~ ., data=dd[[1]])
p1 <- predict(mod, newdata=dd[[2]])
cal <- calibration(p1, dd[[2]]$y)
p2 <- predict(mod, newdata=dd[[3]])
pp <- predict(cal, p2)
cc <- calibration(pp, dd[[3]]$y)
if (interactive()) {##'
  plot(cal)
  plot(cc, add=TRUE, col="blue")
}
```
Description

The functions `calibration` returns an object of the class `calibration`. An object of class 'calibration' is a list with at least the following components:

- **stepfun**: estimated step-functions (see `stepfun`) for each class
- **classes**: the unique classes
- **model**: model/method type (string)
- **xy**: list of data.frame’s with predictions (pr) and estimated probabilities of success (only for 'bin' method)

Value

objects of the S3 class 'calibration'

S3 generics

The following S3 generic functions are available for an object of class `targeted`:

- **predict**: Apply calibration to new data.
- **plot**: Plot the calibration curves (reliability plot).
- **print**: Basic print method.

See Also

`calibration`, `calibrate`

Examples

```r
## See example(calibration) for examples
```

cate
Conditional Average Treatment Effect estimation

Description

Conditional Average Treatment Effect estimation via Double Machine Learning

Usage

```r
cate(
treatment,  
response_model,  
propensity_model,  
contrast = c(1, 0),  
data,  
nfolds = 5,
```
type = "dml2",
silent = FALSE,
stratify = FALSE,
mc.cores,
...
)

Arguments

treatment formula specifying treatment and variables to condition on
response_model formula or ml_model object (formula => glm)
propensity_model formula or ml_model object (formula => glm)
contrast treatment contrast (default 1 vs 0)
data data.frame
nfolds Number of folds
type 'dml1' or 'dml2'
silent supress all messages and progressbars
stratify If TRUE the response_model will be stratified by treatment
mc.cores mc.cores Optional number of cores. parallel::mcmapply used instead of future
...
additional arguments to future.apply::future_mapply

Value
cate.targeted object

Author(s)
Klaus Kähler Holst

Examples

sim1 <- function(n=1e4,
 seed=NULL,
 return_model=FALSE, ...) {
 suppressPackageStartupMessages(require("lava"))
 if (!is.null(seed)) set.seed(seed)
 m <- lava::lvm()
 regression(m, ~a) <- function(z1,z2,z3,z4,z5)
 cos(z1)+sin(z1*z2)+z3+z4+z5^2
 regression(m, ~u) <- function(a,z1,z2,z3,z4,z5)
 (z1+z2+z3)*a + z1+z2+z3 + a
 distribution(m, ~a) <- binomial.lvm()
 if (return_model) return(m)
 lava::sim(m, n, p=par)
}

d <- sim1(200)

e <- cate(a ~ z1+z2+z3, response=u~., data=d)

cate_link

Description

Conditional average treatment effect estimation via Double Machine Learning

Usage

cate_link(
 treatment,
 link = "identity",
 response_model,
 propensity_model,
 importance_model,
 contrast = c(1, 0),
 data,
 nfolds = 5,
 type = "dml1",
 ...
)

Arguments

treatment formula specifying treatment and variables to condition on
link Link function
response_model SL object
propensity_model SL object
importance_model SL object
contrast treatment contrast (default 1 vs 0)
data data.frame
nfolds Number of folds
type 'dml1' or 'dml2'
... additional arguments to SuperLearner

Value

cate.targeted object
Author(s)

Klaus Kähler Holst & Andreas Nordland

Examples

```r
# Example 1:
sim1 <- function(n=1e4,
    seed=NULL,
    return_model=FALSE, ...){
  suppressPackageStartupMessages(require("lava"))
  if (!is.null(seed)) set.seed(seed)
  m <- lava::lvm()
  distribution(m, ~x) <- gaussian.lvm()
  distribution(m, ~v) <- gaussian.lvm(mean = 10)
  distribution(m, ~a) <- binomial.lvm("logit")
  regression(m, "a") <- function(v, x){.1*v + x}
  distribution(m, "y") <- gaussian.lvm()
  regression(m, "y") <- function(a, v, x){v+x+a*x+a*v*v}
  if (return_model) return(m)
  lava::sim(m, n = n)
}

if (require("SuperLearner",quietly=TRUE)) {
  d <- sim1(n = 1e3, seed = 1)
  e <- cate_link(data=d,
    type = "dml2",
    treatment = a ~ v,
    response_model = y~ a*(x + v + I(v^2)),
    importance_model = SL(D_ ~ v + I(v^2)),
    nfolds = 10)
  summary(e) # the true parameters are c(1,1)
}
```

cross_validated-class
cross_validated class object

description

The functions `cv` returns an object of the type `cross_validated`.
An object of class 'cross_validated' is a list with at least the following components:

- **cv** An array with the model score(s) evaluated for each fold, repetition, and model estimates (see `estimate.default`)
- **names** Names (character vector) of the models
- **rep** number of repetitions of the CV
- **folds** Number of folds of the CV
Value

objects of the S3 class 'cross_validated'

S3 generics

The following S3 generic functions are available for an object of class cross_validated:

 coef Extract average model scores from the cross-validation procedure.
 print Basic print method.
 summary Summary of the cross-validation procedure.'

See Also

 cv

Examples

 ## See example(cv) for examples

crr

Conditional Relative Risk estimation

Description

Conditional Relative Risk estimation via Double Machine Learning

Usage

```r
  crr(  
    treatment,  
    response_model,  
    propensity_model,  
    importance_model,  
    contrast = c(1, 0),  
    data,  
    nfolds = 5,  
    type = "dml1",  
    ...  
  )
```

Arguments

- **treatment**: formula specifying treatment and variables to condition on
- **response_model**: SL object
- **propensity_model**: SL object
importance_model
SL object
contrast
treatment contrast (default 1 vs 0)
data
data.frame
nfolds
Number of folds
type
'dml1' or 'dml2'
... additional arguments to SuperLearner

Value
cate.targeted object

Author(s)
Klaus Kähler Holst & Andreas Nordland

Examples

```r
sim1 <- function(n=1e4,
    seed=NULL,
    return_model=FALSE, ...){
  suppressPackageStartupMessages(require("lava"))
  if (!is.null(seed)) set.seed(seed)
  m <- lava::lvm()
  distribution(m, ~x) <- gaussian.lvm()
  distribution(m, ~v) <- gaussian.lvm(mean = 10)
  distribution(m, ~a) <- binomial.lvm("logit")
  regression(m, "a") <- function(v, x){.1*v + x}
  distribution(m, "y") <- gaussian.lvm()
  regression(m, "y") <- function(a, v, x){v+x+a*x+a*v+v}
  if (return_model) return(m)
  lava::sim(m, n = n)
}

d <- sim1(n = 2e3, seed = 1)
if (require("SuperLearner",quietly=TRUE)) {
  e <- crr(data=d,
    type = "dml2",
    treatment = a ~ v,
    response_model = ML(y~ a*(x + v + I(v^2))),
    importance_model = ML(D_ ~ v + I(v^2)),
    propensity_model = ML(a ~ x + v + I(v^2), family=binomial),
    nfolds = 2)
  summary(e) # the true parameters are c(1,1)
}
```
Cross-validation

Description

Generic cross-validation function

Usage

```r
cv(
  models,
  data,
  response = NULL,
  nfolds = 5,
  rep = 1,
  weights = NULL,
  modelscore,
  seed = NULL,
  shared = NULL,
  args.pred = NULL,
  args.future = list(),
  mc.cores,
  ...
)
```

Arguments

- `models`: List of fitting functions
- `data`: data.frame or matrix
- `response`: Response variable (vector or name of column in `data`).
- `nfolds`: Number of folds (default 5. K=0 splits in 1:n/2, n/2:n with last part used for testing)
- `rep`: Number of repetitions (default 1)
- `weights`: Optional frequency weights
- `modelscore`: Model scoring metric (default: MSE / Brier score). Must be a function with arguments: response, prediction, weights, ...
- `seed`: Random seed (argument parsed to `future_Apply::future_lapply`)
- `shared`: Function applied to each fold with results send to each model
- `args.pred`: Optional arguments to prediction function (see details below)
- `args.future`: Arguments to `future.apply::future_mapply`
- `mc.cores`: Optional number of cores. `parallel::mcmapply` used instead of `future`
- `...`: Additional arguments parsed to models in models
Details

models should be list of objects of class ml_model. Alternatively, each element of models should be a list with a fitting function and a prediction function.

The response argument can optionally be a named list where the name is then used as the name of the response argument in models. Similarly, if data is a named list with a single data.frame/matrix then this name will be used as the name of the data/design matrix argument in models.

Value

An object of class 'cross_validated' is returned. See cross_validated-class for more details about this class and its generic functions.

Author(s)

Klaus K. Holst

Examples

f0 <- function(data,...) lm(...,data=data)
f1 <- function(data,...) lm(Sepal.Length~Species,data=data)
f2 <- function(data,...) lm(Sepal.Length~Species+Petal.Length,data=data)
x <- cv(list(m0=f0,m1=f1,m2=f2),rep=10, data=iris, formula=Sepal.Length~.)
x

design

Extract design matrix

description

Extract design matrix from data.frame and formula

Usage

design(formula, data, intercept = FALSE, rm_envir = FALSE, ...)

Arguments

 formula formula
 data data.frame
 intercept If FALSE (default) an intercept is not included
 rm_envir Remove environment
 ... additional arguments (e.g. specials such weights, offsets, subset)

Value

An object of class 'design'
expand.list

Create a list from all combination of input variables

Description

Similar to `expand.grid` function, this function creates all combinations of the input arguments but returns the result as a list.

Usage

```r
expand.list(...)```

**Arguments**

- `...` input variables

**Value**

list

**Author(s)**

Klaus Kähler Holst

**Examples**

```r
expand.list(x=2:4, z=c("a", "b"))```

ML

ML model

Description

Wrapper for ml_model

Usage

```r
ML(formula, model = "glm", ...)```

**Arguments**

- `formula` formula
- `model` model (sl, rf, pf, glm, ...)
- `...` additional arguments to model object
Details
model 'sl' (SuperLearner::SuperLearner) args: SL.library, cvControl, family, method example:
model 'grf' (grf::regression_forest) args: num.trees, mtry, sample.weights, sample.fraction, min.node.size, ...
example:
model 'grf.binary' (grf::probability_forest) args: num.trees, mtry, sample.weights, ...
example:
model 'glm' args: family, weights, offset, ...

---

ml_model

*R6 class for prediction models*

Description
Provides standardized estimation and prediction methods

Public fields
- info  Optional information/name of the model
- formals List with formal arguments of estimation and prediction functions
- formula Formula specifying response and design matrix
- args  additional arguments specified during initialization

Active bindings
- fit  Active binding returning estimated model object

Methods
Public methods:
- ml_model$new()
- ml_model$estimate()
- ml_model$predict()
- ml_model$update()
- ml_model$print()
- ml_model$response()
- ml_model$design()
- ml_model$opt()
- ml_model$clone()

Method new(): Create a new prediction model object

*Usage:*
ml_model$new(
  formula = NULL,
  estimate,
  predict = stats::predict,
  predict.args = NULL,
  info = NULL,
  specials,
  response.arg = "y",
  x.arg = "x",
  ...
)

Arguments:
formula formula specifying outcome and design matrix
estimate function for fitting the model (must be a function response, 'y', and design matrix, 'x'. Alternatively, a function with a single 'formula' argument)
predict prediction function (must be a function of model object, 'object', and new design matrix, 'newdata')
predict.args optional arguments to prediction function
info optional description of the model
specials optional additional terms (weights, offset, id, subset, ...) passed to 'estimate'
response.arg name of response argument
x.arg name of design matrix argument
... optional arguments to fitting function

Method estimate(): Estimation method
Usage:
ml_model$estimate(data, ..., store = TRUE)
Arguments:
data data.frame
... Additional arguments to estimation method
store Logical determining if estimated model should be stored inside the class.

Method predict(): Prediction method
Usage:
ml_model$predict(newdata, ..., object = NULL)
Arguments:
newdata data.frame
... Additional arguments to prediction method
object Optional model fit object

Method update(): Update formula
Usage:
ml_model$update(formula, ...)
Arguments:
formula or character which defines the new response

Additional arguments to lower level functions

**Method print()**: Print method

*Usage:*

```r
ml_model$print(...)
```

*Arguments:*

... Additional arguments to lower level functions

**Method response()**: Extract response from data

*Usage:*

```r
ml_model$response(data, ...)
```

*Arguments:*

data  data.frame
... additional arguments to 'design'

**Method design()**: Extract design matrix (features) from data

*Usage:*

```r
ml_model$design(data, ...)
```

*Arguments:*

data  data.frame
... additional arguments to 'design'

**Method opt()**: Get options

*Usage:*

```r
ml_model$opt(arg, ...)
```

*Arguments:*

arg  name of option to get value of
... additional arguments to lower level functions

**Method clone()**: The objects of this class are cloneable with this method.

*Usage:*

```r
ml_model$clone(deep = FALSE)
```

*Arguments:*

deep  Whether to make a deep clone.

**Author(s)**

Klaus Kähler Holst
Examples

data(iris)
rf <- function(formula, ...)
ml_model$new(formula, info="grf::probability_forest",
estimate=function(x,y,...) grf::probability_forest(X=x, Y=y,...),
predict=function(object, newdata)
  predict(object, newdata)$predictions,...)

args <- expand.list(num.trees=c(100,200), mtry=1:3,
  formula=c(Species ~ ., Species ~ Sepal.Length + Sepal.Width))
models <- lapply(args, function(par) do.call(rf, par))

x <- models[[1]]$clone()
x$estimate(iris)
predict(x, newdata=head(iris))

# Reduce Ex. timing
a <- targeted::cv(models, data=iris)
cbind(coef(a), attr(args, "table"))

ff <- ml_model$new(estimate=function(y,x) lm.fit(x=x, y=y),
  predict=function(object, newdata) newdata%*%object$coefficients)
## tmp <- ff$estimate(y, x=x)
## ff$predict(x)

---

NB  
Naive Bayes

Description

Naive Bayes Classifier

Usage

NB(
  formula,
  data,
  weights = NULL,
  kernel = FALSE,
  laplace.smooth = 0,
  prior = NULL,
  ...
)

Arguments

formula  Formula with syntax: response ~ predictors | weights
data frame
weights optional frequency weights
kernel If TRUE a kernel estimator is used for numeric predictors (otherwise a gaussian model is used)
laplace.smooth Laplace smoothing
prior optional prior probabilities (default estimated from data)
... additional arguments to lower level functions

Value
An object of class ‘NB’ is returned. See NB-class for more details about this class and its generic functions.

Author(s)
Klaus K. Holst

Examples

data(iris)
m2 <- NB(Species ~ Sepal.Width + Petal.Length, data=iris)
pr2 <- predict(m2, newdata=iris)
**S3 generics**

The following S3 generic functions are available for an object of class NB:

- `predict`: Predict class probabilities for new features data.
- `print`: Basic print method.

**See Also**

- `NB`, `NB2`

**Examples**

```r
See example(NB) for examples
```

---

**nondom**

Find non-dominated points of a set

**Usage**

```r
nondom(x, ...)
```

**Arguments**

- `x`: matrix
- `...`: additional arguments to lower level functions

**Details**

A point \( x \) dominates \( y \) if it is never worse and at least in one case strictly better. Formally, let \( f_i \) denote the \( i \)th coordinate of the condition (objective) function, then for all \( i: f_i(x) \leq f_i(y) \) and there exists \( j: f_j(x) < f_j(y) \).

Based on the algorithm of Kung et al. 1975.

**Value**

- `matrix`

**Author(s)**

- Klaus Kähler Holst
Examples

\[
\begin{array}{l}
\text{rbind(} \\
\quad \text{c(1.0, 0.5),} \\
\quad \text{c(0.0, 1.0),} \\
\quad \text{c(1.0, 0.0),} \\
\quad \text{c(0.5, 1.0),} \\
\quad \text{c(1.0, 1.0),} \\
\quad \text{c(0.8, 0.8)) |> nondom()} \\
\end{array}
\]

Description
Pooled Adjacent Violators Algorithm

Usage

\[
\text{pava(y, x = numeric(0), weights = numeric(0))}
\]

Arguments

- \text{y} \quad \text{response variable}
- \text{x} \quad \text{(optional) predictor vector (otherwise y is assumed to be a priori sorted according to relevant predictor)}
- \text{weights} \quad \text{weights (optional) weights}

Value
List with index (idx) of jump points and values (value) at each jump point.

Author(s)
Klaus K. Holst

Examples

\[
\begin{array}{l}
\text{x <- runif(5e3, -5, 5)} \\
\text{pr <- lava::expit(-1 + x)} \\
\text{y <- rbinom(length(pr), 1, pr)} \\
\text{pv <- pava(y, x)} \\
\text{plot(pr ~ x, cex=0.3)} \\
\text{with(pv, lines(sort(x)[index], value, col="red", type="s"))}
\end{array}
\]
**predict.density**

*Prediction for kernel density estimates*

**Description**

Kernel density estimator predictions

**Usage**

```r
S3 method for class 'density'
predict(object, xnew, ...)
```

**Arguments**

- **object**
  - density object
- **xnew**
  - New data on which to make predictions for
- **...**
  - additional arguments to lower level functions

**Author(s)**

Klaus K. Holst

**predict.NB**

*Predictions for Naive Bayes Classifier*

**Description**

Naive Bayes Classifier predictions

**Usage**

```r
S3 method for class 'NB'
predict(object, newdata, expectation = NULL, threshold = c(0.001, 0.001), ...)
```

**Arguments**

- **object**
  - density object
- **newdata**
  - new data on which to make predictions
- **expectation**
  - Variable to calculate conditional expectation wrt probabilities from NB classifier
- **threshold**
  - Threshold parameters. First element defines the threshold on the probabilities and the second element the value to set those truncated probabilities to.
- **...**
  - Additional arguments to lower level functions

**Author(s)**

Klaus K. Holst
Description

Estimation of the Average Treatment Effect among Responders

Usage

RATE(
  response,  
  post.treatment,  
  treatment,  
  data,  
  family = gaussian(),  
  M = 5,  
  pr.treatment,  
  treatment.level,  
  SL.args.response = list(family = gaussian(), SL.library = c("SL.mean", "SL.glm")),  
  SL.args.post.treatment = list(family = binomial(), SL.library = c("SL.mean", "SL.glm")),  
  preprocess = NULL,  
  efficient = TRUE,  
  ...  
)

Arguments

response  
Response formula (e.g, Y~D*A)

post.treatment  
Post treatment marker formula (e.g., D~W)

treatment  
Treatment formula (e.g, A~1)

data  
data.frame

family  
Exponential family for response (default gaussian)

M  
Number of folds in cross-fitting (M=1 is no cross-fitting)

pr.treatment  
(optional) Randomization probability of treatment.

treatment.level  
Treatment level in binary treatment (default 1)

SL.args.response  
Arguments to SuperLearner for the response model

SL.args.post.treatment  
Arguments to SuperLearner for the post treatment indicator

preprocess  
(optional) Data preprocessing function

efficient  
If TRUE, the estimate will be efficient. If FALSE, the estimate will be a simple plug-in estimate.

...  
Additional arguments to lower level functions
**Value**

estimate object

**Author(s)**

Andreas Nordland, Klaus K. Holst

---

**Description**

Estimation of the Average Treatment Effect among Responders for Survival Outcomes

**Usage**

```
RATE.surv(
 response,
 post.treatment,
 treatment,
 censoring,
 tau,
 data,
 M = 5,
 pr.treatment,
 call.response,
 args.response = list(),
 SL.args.post.treatment = list(family = binomial(), SL.library = c("SL.mean", "SL.glm")),
 call.censoring,
 args.censoring = list(),
 preprocess = NULL,
 ...
)
```

**Arguments**

- **response**: Response formula (e.g., `Surv(time, event) ~ D + W`).
- **post.treatment**: Post treatment marker formula (e.g., `D ~ W`).
- **treatment**: Treatment formula (e.g., `A ~ 1`).
- **censoring**: Censoring formula (e.g., `Surv(time, event == 0) ~ D + A + W`).
- **tau**: Time-point of interest, see Details.
- **data**: data.frame.
- **M**: Number of folds in cross-fitting (M=1 is no cross-fitting).
- **pr.treatment**: (optional) Randomization probability of treatment.
call.response  Model call for the response model (e.g. "mets::phreg").
args.response  Additional arguments to the response model.
SL.args.post.treatment
  Additional arguments to SuperLearner for the post treatment indicator model.
call.censoring  Similar to call.response.
args.censoring  Similar to args.response.
preprocess  (optional) Data pre-processing function.
  Additional arguments to lower level data pre-processing functions.

Details

Estimation of
\[ \frac{P(T \leq \tau \mid A = 1) - P(T \leq \tau \mid A = 0)}{E[D \mid A = 1]} \]
under right censoring based on plug-in estimates of \( P(T \leq \tau \mid A = a) \) and \( E[D \mid A = 1] \).
An efficient one-step estimator of \( P(T \leq \tau \mid A = a) \) is constructed using the efficient influence function
\[ I\{A = a\} \left( \frac{\Delta}{P_0(T \mid X)} I\{\tilde{T} \leq \tau\} + \int_0^\tau \frac{S_0(u \mid X) - S_0(\tau \mid X)}{S_0(u \mid X)S_0^*(u \mid X)} dM_0(u \mid X) \right) + \left( 1 - \frac{I\{A = a\}}{P(A = a)} \right) F_0(\tau \mid A = a, W) - P(T \leq \tau \mid A = a) \]
An efficient one-step estimator of \( E[D \mid A = 1] \) is constructed using the efficient influence function
\[ \frac{A}{P(A = 1)} (D - E[D \mid A = 1, W]) + E[D \mid A = 1, W] - E[D \mid A = 1]. \]

Value

estimate object

Author(s)

Andreas Nordland, Klaus K. Holst

riskreg  Risk regression

Description

Risk regression with binary exposure and nuisance model for the odds-product.
Let \( A \) be the binary exposure, \( V \) the set of covariates, and \( Y \) the binary response variable, and define
\[ p_0(v) = P(Y = 1 \mid A = a, V = v), a \in \{0, 1\}. \]
The target parameter is either the relative risk
\[ RR(v) = \frac{p_1(v)}{p_0(v)}. \]
or the *risk difference*  
\[ \text{RD}(v) = p_1(v) - p_0(v) \]

We assume a target parameter model given by either  
\[ \log\{RR(v)\} = \alpha^t v \]

or
\[ \text{arctanh}\{\text{RD}(v)\} = \alpha^t v \]

and similarly a working linear *nuisance model* for the *odds-product*
\[ \phi(v) = \log \left( \frac{p_0(v)p_1(v)}{(1-p_0(v))(1-p_1(v))} \right) = \beta^t v \]

A *propensity model* for \( E(A = 1|V) \) is also fitted using a logistic regression working model
\[ \log\{E(A = 1 | V = v)\} = \gamma^t v. \]

If both the odds-product model and the propensity model are correct the estimator is efficient. Further, the estimator is consistent in the union model, i.e., the estimator is double-robust in the sense that only one of the two models needs to be correctly specified to get a consistent estimate.

**Usage**

```
riskreg(
 formula,
 nuisance = ~1,
 propensity = ~1,
 target = ~1,
 data,
 weights,
 type = "rr",
 optimal = TRUE,
 std.err = TRUE,
 start = NULL,
 mle = FALSE,
 ...
)
```

**Arguments**
- `formula` formula (see details below)
- `nuisance` nuisance model (formula)
- `propensity` propensity model (formula)
- `target` (optional) target model (formula)
- `data` data.frame
- `weights` optional weights
type  type of association measure (rd og rr)
optimal If TRUE optimal weights are calculated
std.err If TRUE standard errors are calculated
start optional starting values
mle Semi-parametric (double-robust) estimate or MLE (TRUE gives MLE)
... additional arguments to unconstrained optimization routine (nlminb)

Details

The 'formula' argument should be given as response ~ exposure | target-formula | nuisance-formula or response ~ exposure | target | nuisance | propensity

E.g., riskreg(y ~ a | 1 | x+z | x+z, data=...)

Alternatively, the model can specified using the target, nuisance and propensity arguments: riskreg(y ~ a, target=~1, nuisance=~x+z, ...)

The riskreg_fit function can be used with matrix inputs rather than formulas.

Value

An object of class 'riskreg.targeted' is returned. See targeted-class for more details about this class and its generic functions.

Author(s)

Klaus K. Holst

References


Examples

m <- lvm(a[-2] ~ x,
    z ~ 1,
    lp.target[1] ~ 1,
    lp.nuisance[-1] ~ 2*x)
distribution(m,-a) <- binomial.lvm("logit")
m <- binomial.rr(m, "y","a","lp.target","lp.nuisance")
d <- sim(m,5e2,seed=1)

I <- model.matrix(~1, d)
X <- model.matrix(~1+x, d)
with(d, riskreg_mle(y, a, I, X, type="rr"))

with(d, riskreg_fit(y, a, nuisance=X, propensity=I, type="rr"))

riskreg(y ~ a | 1, nuisance=~x , data=d, type="rr")
## Model with same design matrix for nuisance and propensity model:
with(d, riskreg_fit(y, a, nuisance=X, type="rr"))

## a <- riskreg(y ~ a, target=~z, nuisance=~x, propensity=~x, data=d, type="rr")
a <- riskreg(y ~ a | z, nuisance=~x, propensity=~x, data=d, type="rr")
a
predict(a, d[1:5,])

riskreg(y ~ a, nuisance=~x, data=d, type="rr", mle=TRUE)

---

### riskreg_cens

**Binary regression models with right censored outcomes**

#### Description

Binary regression models with right censored outcomes

#### Usage

```r
riskreg_cens(
 response,
 censoring,
 treatment = NULL,
 prediction = NULL,
 data,
 newdata,
 tau,
 type = "risk",
 M = 1,
 call.response = "phreg",
 args.response = list(),
 call.censoring = "phreg",
 args.censoring = list(),
 preprocess = NULL,
 efficient = TRUE,
 control = list(),
 ...
)
```

#### Arguments

- **response**: Response formula (e.g., `Surv(time, event) ~ D + W`).
- **censoring**: Censoring formula (e.g., `Surv(time, event == 0) ~ D + A + W)`.
- **treatment**: Optional treatment model (ml_model)
- **prediction**: Optional prediction model (ml_model)
- **data**: data.frame.
scoring

newdata: Optional data frame. In this case the uncentered influence function evaluated in 'newdata' is returned with nuisance parameters obtained from 'data'.

tau: Time-point of interest, see Details.

type: "risk", "treatment", "rmst", "brier"

M: Number of folds in cross-fitting (M=1 is no cross-fitting).

call.response: Model call for the response model (e.g. "mets::phreg").

args.response: Additional arguments to the response model.

call.censoring: Similar to call.response.

args.censoring: Similar to args.response.

preprocess: (optional) Data pre-processing function.

efficient: If FALSE an IPCW estimator is returned

control: See details

... Additional arguments to lower level data pre-processing functions.

Details

The one-step estimator depends on the calculation of an integral wrt. the martingale process corresponding to the counting process \( N(t) = I(C>\min(T,\tau)) \). This can be decomposed into an integral wrt the counting process, \( dN_c(t) \) and the compensator \( d\Lambda_c(t) \) where the latter term can be computational intensive to calculate. Rather than calculating this integral in all observed time points, we can make a coarser evaluation which can be controlled by setting control=(sample=N). With N=0 the (computational intensive) standard evaluation is used.

Value

estimate object

Author(s)

Klaus K. Holst, Andreas Nordland

scoring Predictive model scoring

Description

Predictive model scoring
scoring

Usage

scoring(
  response,
  ...,  
  type = "quantitative",
  levels = NULL,
  metrics = NULL,
  weights = NULL,
  names = NULL,
  messages = 1
)

Arguments

response
  Observed response

...  
  model predictions (continuous predictions or class probabilities (matrices))

type
  continuous or categorical response (the latter is automatically chosen if response
  is a factor, otherwise a continuous response is assumed)

levels  
  (optional) unique levels in response variable

metrics
  which metrics to report

weights
  optional frequency weights

names
  optional names of models coments (given as ..., alternatively these can be named
  arguments)

messages
  controls amount of messages/warnings (0: none)

Value

Numeric matrix of dimension m x p, where m is the number of different models and p is the number
of model metrics

Examples

data(iris)
set.seed(1)
dat <- csplit(iris,2)
g1 <- NB(Species ~ Sepal.Width + Petal.Length, data=dat[[1]])
g2 <- NB(Species ~ Sepal.Width, data=dat[[1]])
pr1 <- predict(g1, newdata=dat[[2]], wide=TRUE)
pr2 <- predict(g2, newdata=dat[[2]], wide=TRUE)
table(colnames(pr1)[apply(pr1,1,which.max)], dat[[2]]$Species)
table(colnames(pr2)[apply(pr2,1,which.max)], dat[[2]]$Species)
score(dat[[2]]$Species, pr1=pr1, pr2=pr2)
## quantitative response:
score(response=1:10, prediction=rnorm(1:10))
SL

SuperLearner wrapper for ml_model

Description

SuperLearner wrapper for ml_model

Usage

SL(
  formula = ~.,
  ...,
  SL.library = c("SL.mean", "SL.glm"),
  binomial = FALSE,
  data = NULL
)

Arguments

  formula          Model design
  ...              Additional arguments for SuperLearner::SuperLearner
  SL.library       character vector of prediction algorithms
  binomial         boolean specifying binomial or gaussian family (default FALSE)
  data             Optional data.frame

Value

  ml_model object

Author(s)

  Klaus Kähler Holst

softmax

Softmax transformation

Description

  Softmax transformation

Usage

  softmax(x, log = FALSE, ref = TRUE, ...)
solve_ode

Arguments

- **x**: Input matrix (e.g., linear predictors of multinomial logistic model)
- **log**: Return on log-scale (default FALSE)
- **ref**: Add reference level (add 0 column to x)
- ... Additional arguments to lower level functions

Value

Numeric matrix of dimension n x p, where n = nrow(x) and p = ncol(x) + (ref==TRUE)

---

**solve_ode**

* Solve ODE

Description

Solve ODE with Runge-Kutta method (RK4)

Usage

```r
solve_ode(ode_ptr, input, init, par = 0)
```

Arguments

- **ode_ptr**: pointer (externalptr) to C++ function or an R function
- **input**: Input matrix. 1st column specifies the time points
- **init**: Initial conditions
- **par**: Parameters defining the ODE (parsed to ode_ptr)

Details

The external point should be created with the function targeted::specify_ode.

Value

Matrix with solution

Author(s)

Klaus Kähler Holst

See Also

specify_ode

Examples

```r
example(specify_ode)
```
specify_ode

Specify Ordinary Differential Equation (ODE)

Description
Define compiled code for ordinary differential equation.

Usage
specify_ode(code, fname = NULL, pname = c("dy", "x", "y", "p"))

Arguments
- **code**: string with the body of the function definition (see details)
- **fname**: Optional name of the exported C++ function
- **pname**: Vector of variable names (results, inputs, states, parameters)

Details
The model (code) should be specified as the body of of C++ function. The following variables are defined by default (see the argument pname):

- **dy**: Vector with derivatives, i.e. the rhs of the ODE (the result).
- **x**: Vector with the first element being the time, and the following elements additional exogenous input variables,
- **y**: Vector with the dependent variable
- **p**: Parameter vector

\[
y'(t) = f_p(x(t), y(t)) \quad \text{All variables are treated as Armadillo (http://arma.sourceforge.net/) vectors/matrices.}
\]

As an example consider the **Lorenz Equations**

\[
\frac{dx}{dt} = \sigma(y - x)
\]

\[
\frac{dy}{dt} = \sigma(y - x) - y\frac{dz}{dt}
\]

\[
\frac{dz}{dt} = xy - \beta z
\]

We can specify this model as

```
ode <- '\ny(0) = p(0)*(y(1)-y(0)); dy(1) = y(0)*(p(1)-y(2));
dy(2) = y(0)*y(1)+p(2)*y(2);' dy <- specify_ode(node)
```

As an example of model with exogenous inputs consider the following ODE:

\[
y'(t) = \beta_0 + \beta_1 y(t) + \beta_2 y(t)x(t) + \beta_3 x(t)\cdot t
\]

This could be specified as

```
mod <- 'double t = x(0); dy = p(0) + p(1)*y + p(2)*x(1)*y + p(3)*x(1)*t;' dy <- specify_ode(mod)##'
```

Value
pointer (externalptr) to C++ function

Author(s)
Klaus Kähler Holst
See Also

solve_ode

targeted-class targeted class object

Description

The functions `riskreg` and `ate` returns an object of the type `targeted`. An object of class `targeted` is a list with at least the following components:

- **estimate** An estimate object with the target parameter estimates (see `estimate.default`)
- **opt** Object returned from the applied optimization routine
- **npar** number of parameters of the model (target and nuisance)
- **type** String describing the model

Value

objects of the S3 class `targeted`

S3 generics

The following S3 generic functions are available for an object of class `targeted`:

- **coef** Extract target coefficients of the estimated model.
- **vcov** Extract the variance-covariance matrix of the target parameters.
- **IC** Extract the estimated influence function.
- **print** Print estimates of the target parameters.
- **summary** Extract information on both target parameters and estimated nuisance model.

See Also

`riskreg`, `ate`

Examples

```r
See example(riskreg) for examples
```
Index

aipw, 2
aipw, 2
alean, 3
ate, 5, 37
ate.targeted(targeted-class), 37
calibrate, 9
calibrate (calibration), 7
calibration, 7, 9
calibration-class, 8
cate, 9
cate_link, 11
cross_validated
cross_validated-class, 12
cross_validated-class, 12
crr, 13
cv, 12, 13, 15
design, 16
estimate.default, 12, 37
expand.list, 17
isoreg (pava), 24
isoregw (pava), 24
ML, 17
ml_model, 18
NB, 21, 22, 23
NB-class, 22
NB2, 23
NB2 (NB), 21
nondom, 23
pava, 24
predict.density, 25
predict.NB, 25
RATE, 26
RATE.surv, 27
riskreg, 28, 37
riskreg.targeted(targeted-class), 37
riskreg_cens, 31
riskreg_fit (riskreg), 28
riskreg_mle (riskreg), 28
scoring, 32
SL, 34
softmax, 34
solve_ode, 35
specify_ode, 36
targeted-class, 37