Package ‘tbm’

March 7, 2021

Title Transformation Boosting Machines

Version 0.3-4

Date 2021-03-03

Description Boosting the likelihood of conditional and shift transformation models as introduced in doi[10.1007/s11222-019-09870-4].

Depends mlt (>= 1.0-6), mboost (>= 2.8-2)

Imports variables, basefun, sandwich, coneproj, methods

Suggests TH.data (>= 1.0-9), tram (>= 0.2-3), survival, partykit, lattice, latticeExtra, knitr, colorspace, gamlss.data, trtf

VignetteBuilder knitr

URL http://ctm.R-forge.R-project.org

License GPL-2

NeedsCompilation no

Author Torsten Hothorn [aut, cre] (<https://orcid.org/0000-0001-8301-0471>)

Maintainer Torsten Hothorn <Torsten.Hothorn@R-project.org>

Repository CRAN

Date/Publication 2021-03-07 00:00:02 UTC

R topics documented:

ctmboost ... 2
stmboost .. 3

Index 5
ctmboost
Likelihood Boosting for Conditional Transformation Models

Description

Employs maximisation of the likelihood for estimation of conditional transformation models

Usage

ctmboost(model, formula, data = list(), weights = NULL,
method = quote(mboost::mboost), ...)

Arguments

model an object of class mlt as returned by mlt[mlt].
formula a model formula describing how the parameters of model depend on explanatory
variables, see mboost.
data an optional data frame of observations.
weights an optional vector of weights.
method a call to mboost, gamboost, or blackboost.
... additional arguments to method.

Details

The parameters of model depend on explanatory variables in a possibly structured additive way (see
Hothorn, 2020). The number of boosting iterations is a hyperparameter which needs careful tuning.

Value

An object of class ctmboost with predict and logLik methods.

References

152.

Examples

```r
if (require("TH.data") && require("tram")) {
  data("bodyfat", package = "TH.data")

  ### estimate unconditional model
  m_mlt <- BoxCox(DEXfat ~ 1, data = bodyfat, prob = c(.1, .99))
  ### get corresponding in-sample log-likelihood
  logLik(m_mlt)
```
estimate conditional transformation model

```r
bm <- ctmboost(m_mlt, formula = DEXfat ~ ., data = bodyfat,
               method = quote(mboost::mboost))
```

in-sample log-likelihood (NEEDS TUNING OF mstop!)

```r
logLik(bm)
```

evaluate conditional densities for two observations

```r
predict(bm, newdata = bodyfat[1:2,], type = "density")
```

stmboost

Likelihood Boosting for Shift Transformation Models

Description

Employs maximisation of the likelihood for estimation of shift transformation models

Usage

```r
stmboost(model, formula, data = list(), weights = NULL,
          method = quote(mboost::mboost), mltargs = list(), ...)
```

Arguments

- `model` an object of class `mlt` as returned by `mlt[mlt].`
- `formula` a model formula describing how the parameters of `model` depend on explanatory variables, see `mboost.`
- `data` an optional data frame of observations.
- `weights` an optional vector of weights.
- `method` a call to `mboost, gamboost,` or `blackboost.`
- `mltargs` a list with arguments to be passed to `mlt.`
- `...` additional arguments to `method.`

Details

The parameters of `model` depend on explanatory variables in a possibly structured additive way (see Hothorn, 2020). The number of boosting iterations is a hyperparameter which needs careful tuning.

Value

An object of class `stmboost` with `predict` and `logLik` methods.

References

Examples

```r
if (require("TH.data") && require("tram")) {
  data("bodyfat", package = "TH.data")

  ### estimate unconditional model
  m_mlt <- BoxCox(DEXfat ~ 1, data = bodyfat, prob = c(.1, .99))
  ### get corresponding in-sample log-likelihood
  logLik(m_mlt)

  ### estimate conditional transformation model
  bm <- stmboost(m_mlt, formula = DEXfat ~ ., data = bodyfat,
                 method = quote(mboost::mboost))
  ### in-sample log-likelihood (NEEDS TUNING OF mstop!)
  logLik(bm)

  ### evaluate conditional densities for two observations
  predict(bm, newdata = bodyfat[1:2,], type = "density")
}
```
Index

* models
 ctmboost, 2
 stmboost, 3
* nonlinear
 ctmboost, 2
* nonlinear
 stmboost, 3

blackboost, 2, 3
ctmboost, 2
gamboost, 2, 3
mboost, 2, 3
mlt, 2, 3
stmboost, 3