Package ‘tcgaViz’

April 4, 2023

Title Visualization Tool for the Cancer Genome Atlas Program (TCGA)

Version 1.0.2

Description Differential analysis of tumor tissue immune cell type abundance based on RNA-seq gene-level expression from The Cancer Genome Atlas (TCGA; <https://pancanatlas.xenahubs.net>) database.

License GPL-3

Depends R (>= 2.10)

Imports config, data.table, dplyr, DT, ggplot2, ggpubr, golem, grDevices, magrittr, methods, plotly, readr, reshape2, rlang, rstatix, scales, shiny, shinyFeedback, shinyjs, stats, stringr, tidyr, tidyselect, utils

Suggests covr, knitr, rmarkdown, spelling, testthat

VignetteBuilder knitr

Encoding UTF-8

Language en-US

LazyData false

RoxygenNote 7.2.3

NeedsCompilation no

Author Etienne Camenen [aut, cre], Gilles Marodon [aut], Nicolas Aubert [aut]

Maintainer Etienne Camenen <etienne.camenen@gmail.com>

Repository CRAN

Date/Publication 2023-04-04 15:40:02 UTC

R topics documented:

calculate_pvalue .. 2
convert2biodata .. 3
convert_biodata .. 4
Description

Displays stars for each cell type corresponding to the significance level of two mean comparison tests between expression levels (high or low) with multiple correction.

Usage

```r
calculate_pvalue(
  x,
  method_test = "wilcox_test",
  method_adjust = "BH",
  p_threshold = 0.05
)
```

Arguments

- `x`: object from `convert2biodata()` for a dataframe containing columns named `high` (logical), `cell_type` (factor) and `value` (float).
- `method_test`: character for the choice of the statistical test among 't_test' or 'wilcox_test'.
- `method_adjust`: character for the choice of the multiple correction test among 'BH', 'bonferroni', 'BY', 'fdr', 'hochberg', 'holm', 'hommel', 'none'
- `p_threshold`: float for the significativity threshold of the P-value.

Value

`rstatix_test` object for a table with cell types in the row and P-values, corrections and other statistics in the column.

Examples

```r
data(tcga)
(df <- convert2biodata(
  algorithm = "Cibersort_ABS",
  disease = "breast invasive carcinoma",
  tissue = "Primary Tumor",
  gene_x = "ICOS"
))

calculate_pvalue(df)
```
convert2biodata

Merges gene and cell datasets with the same TCGA sample identifiers, splits samples according to the expression levels of a selected gene into two categories (below or above average) and formats into a 3-column data frame: gene expression levels, cell types, and gene expression values.

Usage

convert2biodata(algorithm, disease, tissue, gene_x, stat = "mean", path = ".")

Arguments

- **algorithm**: character for the algorithm used to estimate the distribution of cell type abundance among: 'Cibersort', 'Cibersort_ABS', 'EPIC', 'MCP_counter', 'Quan-tiseq', 'Timer', 'Xcell', 'Xcell (2)' and 'Xcell64'.
- **disease**: character for the type of TCGA cancer (see the list in extdata/disease_names.csv).
- **tissue**: character for the type of TCGA tissue among: 'Additional - New Primary', 'Additional Metastatic', 'Metastatic', 'Primary Blood Derived Cancer - Peripheral Blood', 'Primary Tumor', 'Recurrent Tumor', 'Solid Tissue Normal'
- **gene_x**: character for the gene selected in the differential analysis (see the list in ext-data/gene_names.csv).
- **stat**: character for the statistic to be chosen among "mean", "median" or "quantile".
- **path**: character for the path name of the tcga dataset.

Value

data frame with the following columns:

- **high** (logical): the expression levels of a selected gene, TRUE for below or FALSE for above average.
- **cells** (factor): cell types.
- **value** (float): the abundance estimation of the cell types.
Examples

```r
data(tcga)
(convert2biodata(
    algorithm = "Cibersort_ABS",
    disease = "breast invasive carcinoma",
    tissue = "Primary Tumor",
    gene_x = "ICOS"
))
```

convert_biodata Format biological data

Description

Merges gene and cell datasets with the same TCGA sample identifiers, splits samples according to the expression levels of a selected gene into two categories (below or above average) and formats into a 3-column data frame: gene expression levels, cell types, and gene expression values.

Usage

```r
convert_biodata(
    genes,
    cells,
    select = colnames(genes)[3],
    stat = "mean",
    disease = NULL,
    tissue = NULL
)
```

Arguments

genes data frame whose first two columns contain identifiers and the others float values.
cells data frame whose first two columns contain identifiers and the others float values.
select character for a column name in genes.
stat character for the statistic to be chosen among "mean", "median" or "quantile".
disease character for the type of TCGA cancer (see the list in extdata/disease_names.csv).
tissue character for the type of TCGA tissue among: 'Additional - New Primary', 'Additional Metastatic', 'Metastatic', 'Primary Blood Derived Cancer - Peripheral Blood', 'Primary Tumor', 'Recurrent Tumor', 'Solid Tissue Normal'

details

disease and tissue arguments should be displayed in the title of `plot.biodata()` only if the genes argument does not already have them in its attributes.
Value
data frame with the following columns:

- high (logical): the expression levels of a selected gene, TRUE for below or FALSE for above average.
- cells (factor): cell types.
- value (float): the abundance estimation of the cell types.

Examples
data(tcg)
(df_formatted <- convert_biodata(tcg$genes, tcg$cells$Cibersort, "ICOS"))

plot.biodata Distribution plot

Description
Distribution plot of cell subtypes according to the expression level (high or low) of a selected gene.

Usage
S3 method for class 'biodata'
plot(
x,
type = "violin",
dots = FALSE,
title = NULL,
xlab = NULL,
ylab = NULL,
stats = NULL,
draw = TRUE,
axis.text.x = element_text(size = 10),
axis.text.y = element_text(size = 8),
cex.lab = 12,
cex.main = 16,
col = (scales::hue_pal()(length(unique(x$cell_type)))),
axis.title.x = element_text(size = cex.lab, face = "bold.italic", vjust = -0.5),
axis.title.y = element_text(size = cex.lab, face = "bold.italic", vjust = -0.5),
plot.title = element_text(size = cex.main, face = "bold", vjust = 1, hjust = 0.5),
plot.margin = unit(c(0, 0, 0, -0.5), "cm"),
...)
Arguments

x object from `convert2biodata()` for a dataframe containing columns named high (logical), cell_type (factor) and value (float).

type character for the type of plot to be chosen among "violin" or "boxplot".

dots boolean to add all points to the graph.

title character for the title of the plot.

xlab character for the name of the X axis label.

ylab character for the name of the Y axis label.

stats object from `calculate_pvalue()`.

draw boolean to plot the graph.

axis.text.x tick labels along axes (`element_text()`). Specify all axis tick labels (axis.text), tick labels by plane (using axis.text.x or axis.text.y), or individually for each axis (using axis.text.x.bottom, axis.text.x.top, axis.text.x.left, axis.text.x.right). axis.text.*.* inherits from axis.text.* which inherits from axis.text, which in turn inherits from text

axis.text.y tick labels along axes (`element_text()`). Specify all axis tick labels (axis.text), tick labels by plane (using axis.text.x or axis.text.y), or individually for each axis (using axis.text.x.bottom, axis.text.x.top, axis.text.y.left, axis.text.y.right). axis.text.*.* inherits from axis.text.* which inherits from axis.text, which in turn inherits from text

cex.lab numerical value giving the amount by which x and y plotting labels should be magnified relative to the default.

cex.main numerical value giving the amount by which main plotting title should be magnified relative to the default.

col character for the specification for the default plotting color. See section 'Color Specification' in `graphics::par()`.

axis.title.x labels of axes (`element_text()`). Specify all axes' labels (axis.title), labels by plane (using axis.title.x or axis.title.y), or individually for each axis (using axis.title.x.bottom, axis.title.x.top, axis.title.x.left, axis.title.x.right). axis.title.*.* inherits from axis.title.* which inherits from axis.title, which in turn inherits from text

axis.title.y labels of axes (`element_text()`). Specify all axes' labels (axis.title), labels by plane (using axis.title.x or axis.title.y), or individually for each axis (using axis.title.x.bottom, axis.title.x.top, axis.title.y.left, axis.title.y.right). axis.title.*.* inherits from axis.title.* which inherits from axis.title, which in turn inherits from text

plot.title plot title (text appearance) (`element_text()`, inherits from title) left-aligned by default

plot.margin margin around entire plot (unit with the sizes of the top, right, bottom, and left margins)

... arguments to pass to `ggplot2::theme()`.
run_app

Run the Shiny Application

Description

Runs a Shiny application. This function normally does not return; interrupt R to stop the application (usually by pressing Ctrl+C or Esc).

Usage

```r
run_app(
  onStart = NULL,
  options = list(),
  enableBookmarking = NULL,
  uiPattern = "/",
  ...
)
```

Value

No return value, called for side effects

Examples

```r
library("ggplot2")
data(tcga)
(df <- convert2biodata(
  algorithm = "Cibersort_ABS",
  disease = "breast invasive carcinoma",
  tissue = "Primary Tumor",
  gene_x = "ICOS"
))

plot(df)
stats <- calculate_pvalue(df)
plot(
  df,
  stats = stats,
  type = "boxplot",
  dots = TRUE,
  xlab = "Expression level of the 'ICOS' gene by cell type",
  ylab = "Percent of relative abundance\n(from the Cibersort_ABS algorithm)",
  title = "Differential analysis of tumor tissue immune cell type abundance
based on RNASeq gene-level expression from The Cancer Genome Atlas (TCGA) database",
  axis.text.y = element_text(size = 8, hjust = 0.5),
  plot.title = element_text(face = "bold", hjust = 0.5)
)
```
Arguments

onStart A function that will be called before the app is actually run. This is only needed for shinyAppObj, since in the shinyAppDir case, a global.R file can be used for this purpose.

options Named options that should be passed to the runApp call (these can be any of the following: "port", "launch.browser", "host", "quiet", "display.mode" and "test.mode"). You can also specify width and height parameters which provide a hint to the embedding environment about the ideal height/width for the app.

enableBookmarking Can be one of "url", "server", or "disable". The default value, NULL, will respect the setting from any previous calls to enableBookmarking(). See enableBookmarking() for more information on bookmarking your app.

uiPattern A regular expression that will be applied to each GET request to determine whether the ui should be used to handle the request. Note that the entire request path must match the regular expression in order for the match to be considered successful.

... arguments to pass to golem_opts. See ?golem::get_golem_options for more details.

Details

For more information about this function, please take a look at https://CRAN.R-project.org/package=golem/vignettes/c_deploy.html.

Value

An object that represents the app.

Examples

```r
if (interactive()) {
  # Start app in the current working directory
  runApp()

  # Start app in a subdirectory called myapp
  runApp("myapp")
}
```

tcga **Biological data**

Description

A list of biological data: RNASEq data, phenotypic metadata and cell abundance.
Usage

data(tcga)

Details

- **genes**: RNASeq from The Cancer Genome Atlas (TCGA) database.
- **phenotypes**: Metadata from the TCGA database containing sample ID, sample type ID, sample type and primary disease.
- **cells**: Abundance estimates of cell types

Note

Subset of thirty samples of invasive breast carcinoma data from primary tumor tissue. The cell type data are from a subset generated by the Cibersort_ABS algorithm (https://cibersortx.stanford.edu). For the complete dataset, please use:

```r
path <- system.file("extdata", package = "tcgaViz")
load(file.path(path, "tcga.rda"))
```

Source

- **dataset**: gene expression RNAseq - Batch effects normalized mRNA data
- **hub**: https://pancanatlas.xenahubs.net
- **cohort**: TCGA Pan-Cancer (PANCAN)
- **dataset ID**: EB++AdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.xena
- **download**: https://tcga-pancan-atlas-hub.s3.us-east-1.amazonaws.com/download/EB%2B%2BAjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.xena.gz (full metadata)
- **samples**: 11060
- **version**: 2016-12-29
- **type of data**: gene expression RNAseq
- **unit**: log2(norm_value+1)
- **raw data**: https://www.synapse.org/#!Synapse:syn4976369.3
- **input data format**: ROWs (identifiers) x COLUMNS (samples) (i.e. genomicMatrix)

Examples

```r
data(tcga)
(df <- convert2biodata(
    algorithm = "Cibersort_ABS",
    disease = "breast invasive carcinoma",
    tissue = "Primary Tumor",
    gene_x = "ICOS"
))
(stats <- calculate_pvalue(df))
plot(df, stats = stats)
```
Index

* datasets
tcga, 8

calculate_pvalue, 2
calculate_pvalue(), 6
convert2biodata, 3
convert2biodata(), 2, 6
convert_biodata, 4
element_text(), 6
enableBookmarking(), 8

ggplot2::theme(), 6
graphics::par(), 6

plot.biodata, 5
plot.biodata(), 4

run_app, 7
tcga, 8