Package ‘tensorr’

January 21, 2019

Title Sparse Tensors in R
Version 0.1.1
Description Provides methods to manipulate and store sparse tensors. Tensors are multidimensional generalizations of matrices (two dimensional) and vectors (one dimensional).
Depends R (>= 3.3.0)
License GPL-3
Encoding UTF-8
LazyData true
URL https://github.com/zamorarr/tensorr
BugReports https://github.com/zamorarr/tensorr/issues
Imports assertive.base, assertive.properties, assertive.types, Matrix, methods, purrr
Suggests covr, knitr, rmarkdown, testthat
RoxygenNote 6.1.1
VignetteBuilder knitr
NeedsCompilation no
Author Robert Zamora [aut, cre]
Maintainer Robert Zamora <zamora.rr@gmail.com>
Repository CRAN
Date/Publication 2019-01-21 05:30:03 UTC

R topics documented:

as_dtensor ... 2
as_sptensor ... 3
dim,dtensor-method 3
dimnames,dtensor-method 4
dtensor .. 5
as_dtensor

Convert objects to dense tensors

Description

Convert objects to dense tensors

Usage

as_dtensor(x, ...)

S4 method for signature 'sptensor'
as_dtensor(x)

S4 method for signature 'array'
as_dtensor(x)
as_sptensor

Arguments

- `x` object
- `...` extra params

as_sptensor *Convert objects to sparse tensors*

Description

Convert objects to sparse tensors

Usage

```r
as_sptensor(x, 
## S4 method for signature 'sptensor'
as_sptensor(x)
## S4 method for signature 'dtensor'
as_sptensor(x)
## S4 method for signature 'data.frame'
as_sptensor(x, valcol = NULL, dims = NULL)
```

Arguments

- `x` object
- `...` extra params
- `valcol` column to use for the tensor values. all other columns are treated as indices
- `dims` dimensions of tensor. If not provided, the maximum value for each of the indices is used.

dim,dtensor-method *Dimensions of a tensor*

Description

Dimensions of a tensor

Usage

```r
## S4 method for signature 'dtensor'
dim(x)
## S4 method for signature 'sptensor'
dim(x)
```
Arguments

x tensor

dimnames.dtensor-method

Dimension names of a tensor

Description

Dimension names of a tensor

Usage

```r
## S4 method for signature 'dtensor'
dimnames(x)

## S4 replacement method for signature 'dtensor,list'
dimnames(x) <- value

## S4 replacement method for signature 'dtensor,NULL'
dimnames(x) <- value

## S4 replacement method for signature 'dtensor,ANY'
dimnames(x) <- value

## S4 method for signature 'sptensor'
dimnames(x)

## S4 replacement method for signature 'sptensor,list'
dimnames(x) <- value

## S4 replacement method for signature 'sptensor,NULL'
dimnames(x) <- value

## S4 replacement method for signature 'sptensor,ANY'
dimnames(x) <- value
```

Arguments

- **x**: tensor
- **value**: replacement value. Must be a list of length equal to the number of dimensions in the tensor
dtensor

Description

Construct a `dtensor` from a multi-dimensional array.

Usage

```r
dtensor(x)
```

```r
## S4 method for signature 'array'
dtensor(x)
```

```r
## S4 method for signature 'numeric'
dtensor(x)
```

Arguments

- `x` n-dimensional R array

See Also

`dtensor-class` for class documentation.

Examples

```r
# A 2x2x2 dense tensor
arr <- array(data = c(1,0,0,0,1,0,0,0), dim = c(2,2,2))
X <- dtensor(arr)
```

dtensor-class

Description

An S4 class for a dense tensor.

Slots

- `x` n dimensional array
dtensor-extract

Extract values from a dense tensor

Description

Extract values from a dense tensor

Usage

```r
## S4 method for signature 'dtensor,missing,missing,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'dtensor,numeric,missing,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'dtensor,missing,numeric,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'dtensor,numeric,numeric,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'dtensor,numeric,missing,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'dtensor,missing,numeric,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'dtensor,list,missing,ANY'
x[i, j, ..., drop = FALSE]
```

Arguments

- `x`: dtensor object
- `i`: numeric index, vector, list, or matrix
- `j`: numeric index
- `...`: additional numeric indices
- `drop`: whether to drop dimensions

dtensor-replace

Replace values from a dense tensor

Description

Replace values from a dense tensor
Usage

```r
## S4 replacement method for signature 'dtensor,ANY,ANY,ANY'
x[i, j, ...] <- value

## S4 replacement method for signature 'dtensor,ANY,missing,ANY'
x[i, j, ...] <- value

## S4 replacement method for signature 'dtensor,matrix,missing,ANY'
x[i, j, ...] <- value

## S4 replacement method for signature 'dtensor,list,missing,ANY'
x[i, j, ...] <- value
```

Arguments

- `x`: dtensor object
- `i`: numeric index, vector, list, or matrix
- `j`: numeric index
- `...`: additional numeric indices
- `value`: replacement value(s)

fill_missing_indices
Fill NULL indices with a range from 1:dim

Description

Fill NULL indices with a range from 1:dim

Usage

```r
fill_missing_indices(index, dim)
```

Arguments

- `index`: a numeric value or NULL
- `dim`: size of dimension
innerprod

Calculate the inner product of a pair of tensors

Description

Calculate the inner product of a pair of tensors

Usage

innerprod(x, y)

```r
## S4 method for signature 'dtensor,dtensor'
innerprod(x, y)

## S4 method for signature 'sptensor,sptensor'
innerprod(x, y)
```

Arguments

- **x, y** tensors

is_dtensor

Test if the object is a tensor

Description

Test if the object is a tensor

Usage

is_dtensor(x)

is_sptensor(x)

is_tensor(x)

Arguments

- **x** object

Functions

- is_dtensor: dense tensor
- is_sptensor: sparse tensor
length.tensor-method

Length of a tensor

Description

The total number of values in a tensor. Equal to the product of the dimensions.

Usage

```r
## S4 method for signature 'tensor'
length(x)
```

Arguments

- `x`: tensor

norm

Calculate the Frobenius norm of a tensor

Description

Calculate the Frobenius norm of a tensor

Usage

```r
norm(x)
```

```r
## S4 method for signature 'dtensor'
norm(x)
```

```r
## S4 method for signature 'sptensor'
norm(x)
```

Arguments

- `x`: tensor
nzsubs

Subscripts of non-zero values in a tensor

Description

Subscripts of non-zero values in a tensor

Usage

nzsubs(x)

S4 method for signature 'dtensor'
nzsubs(x)

S4 method for signature 'sptensor'
nzsubs(x)

Arguments

x tensor

nzvals

Non-zero values in a tensor

Description

Non-zero values in a tensor

Usage

nzvals(x)

S4 method for signature 'dtensor'
nzvals(x)

S4 method for signature 'sptensor'
nzvals(x)

Arguments

x tensor
outerprod

Calculate the outer product of a pair of tensors

Description

Calculate the outer product of a pair of tensors

Usage

```
outerprod(x, y)
```

```
ttt(x, y)
```

```r
## S4 method for signature 'dtensor,dtensor'
outerprod(x, y)
```

```r
## S4 method for signature 'dtensor,tensor'
outerprod(x, y)
```

```r
## S4 method for signature 'tensor,dtensor'
outerprod(x, y)
```

```r
## S4 method for signature 'tensor,tensor'
ttt(x, y)
```

```r
## S4 method for signature 'sptensor,sptensor'
outerprod(x, y)
```

Arguments

- `x, y` tensors

refold

Refold an unfolded tensor

Description

Refold an unfolded tensor

Usage

```
refold(x)
```

```r
## S4 method for signature 'unfolded_dtensor'
refold(x)
```
refold(x)

Arguments

x an unfolded tensor

Description

Construct an `sptensor` from a matrix of subscripts for non-zero values, a vector of non-zero values, and the numeric dimensions of the tensor.

Usage

sptensor(subs, vals, dims)

S4 method for signature 'matrix,ANY,numeric'
sptensor(subs, vals, dims)

S4 method for signature 'matrix,missing,numeric'
sptensor(subs, vals, dims)

S4 method for signature 'list,ANY,numeric'
sptensor(subs, vals, dims)

Arguments

subs matrix with length(dims) rows and length(vals) cols. Each row in the matrix corresponds to a different tensor dimension. Each column in the matrix represents a vector of subscripts pointing to a non-zero value in the tensor.

vals values of non-zero entries. The subscripts for the first value are the first column of the subs matrix, the subscripts for the second value are in the second column of the subs matrix, etc...

dims sizes of each dimension

See Also

`sptensor-class` for class documentation.
Examples

A 2x2x2 sparse tensor
subs <- matrix(c(1,1,1,1,1,1,2, c(3,2))
vals <- c(10,20)
dims <- c(2,2,2)
X <- sptensor(subs, vals, dims)

sptensor-class An S4 class for a sparse tensor

Description

Stores the tensor in co-ordinate (COO) format. Non-zero entries are stored by their subscripts (i1,i2,i3,...,in) the subs matrix and their vals in the vals vector.

Slots

subs matrix with length(dims) rows and length(vals) cols.
vals values of non-zero entries.
dims sizes of each dimension

squeeze Remove tensor dimensions of size 1

Description

Remove tensor dimensions of size 1

Usage

squeeze(x, todrop = NULL)

Arguments

x sptensor
todrop specific dimensions to drop. If NULL, will drop all dimensions of size 1
Description

tensorr provides methods to manipulate and store sparse tensors. Tensors are multi-dimensional generalizations of matrices (two dimensional) and vectors (one dimensional).

Details

It has three main goals:

- Provide an efficient format to store sparse tensors in R.
- Provide standard tensor operations such as multiplication and unfolding.
- Provide standard tensor decomposition techniques such as CP and Tucker.

References

Many of the dense and sparse implementation ideas were adapted from

For a review on tensors, see

Description

Calculates the n-mode product of a tensor and a matrix. Given a tensor X with dimensions $I_1, I_2, ..., I_n, I_n + 1, ..., I_N$ and a matrix U with dimensions J, I_n, the resulting tensor after multiplication will have dimension $I_1, I_2, ..., J, I_n + 1, ..., I_N$.
Usage

\text{ttv}(x, u, \text{mode})

\text{## S4 method for signature 'dtensor,Matrix,numeric'
}\text{ttv}(x, u, \text{mode})

\text{## S4 method for signature 'dtensor,\text{numeric},\text{numeric}'
}\text{ttv}(x, u, \text{mode})

\text{## S4 method for signature 'sptensor,Matrix,numeric'
}\text{ttv}(x, u, \text{mode})

\text{## S4 method for signature 'sptensor,\text{numeric},\text{numeric}'
}\text{ttv}(x, u, \text{mode})

Arguments

\begin{itemize}
 \item \text{x} \quad \text{tensor}
 \item \text{u} \quad \text{matrix}
 \item \text{mode} \quad \text{mode along tensor to perform multiplication}
\end{itemize}

References

Description

Calculates the n-mode product of a tensor and a vector Given a tensor \(X \) with dimensions \(I_1, I_2, \ldots, I_n, I_{n+1}, \ldots, I_N \) and a vector \(v \) with dimensions \(J, 1 \), the resulting tensor after multiplication will have dimension \(I_1, I_2, \ldots, I_{n-1}, I_{n+1}, \ldots, I_N \). Note that the dimension corresponding to the mode has been dropped.

Usage

\text{ttv}(x, v, \text{mode})

\text{## S4 method for signature 'dtensor,\text{numeric},\text{numeric}'
}\text{ttv}(x, v, \text{mode})

\text{## S4 method for signature 'sptensor,\text{numeric},\text{numeric}'
}\text{ttv}(x, v, \text{mode})

\text{## S4 method for signature 'sptensor,\text{sparseVector},\text{numeric}'
}\text{ttv}(x, v, \text{mode})
Arguments

x tensor
v vector
mode mode along tensor to perform multiplication

References

unfold
Unfold (matricize) a tensor along a mode

Description

Unfold (matricize) a tensor along a mode

Usage

unfold(x, mode)

S4 method for signature 'dtensor,numeric'
unfold(x, mode)

S4 method for signature 'sptensor,numeric'
unfold(x, mode)

Arguments

x tensor
mode dimension to unfold along

unfolded_dtensor
Construct an unfolded dense tensor

Description

Construct an unfolded_dtensor from a dense matrix, mode, and dimensions of original tensor.

Usage

unfolded_dtensor(mat, mode, tensor_dims)

S4 method for signature 'Matrix,numeric,numeric'
unfolded_dtensor(mat, mode, tensor_dims)
Arguments

- **mat**: dense matrix representing unfolded tensor
- **mode**: dimension to unfold tensor along
- **tensor_dims**: original dimensions of tensor (useful for re-folding)

See Also

- `unfolded_dtensor-class` for class documentation.

Description

An unfolded ("matricized") tensor along a specified dimension. Can be easily refolded back into a tensor with command `refold`.

Slots

- **mat**: sparse matrix representing unfolded tensor
- **mode**: dimension along which tensor was unfolded
- **tensor_dims**: dimensions of original tensor

Description

Construct an unfolded sparse tensor from a sparse matrix, mode, and dimensions of original tensor.

Usage

```
unfolded_sptensor(mat, mode, tensor_dims)
```

S4 method for signature 'Matrix,numeric,numeric'

```
unfolded_sptensor(mat, mode, tensor_dims)
```

Arguments

- **mat**: sparse matrix representing unfolded tensor
- **mode**: dimension to unfold tensor along
- **tensor_dims**: original dimensions of tensor (useful for re-folding)
An S4 class for an unfolded sparse tensor

Description

An unfolded ("matricized") tensor along a specified dimension. Can be easily refolded back into a tensor with command `refold`.

Slots

- `mat` sparse matrix representing unfolded tensor
- `mode` dimension along which tensor was unfolded
- `tensor_dims` dimensions of original tensor

Extract values from a sparse tensor

Description

There are multiple ways to provide indices for a sparse tensor. For example, if you have a three-dimensional tensor you can provide indices separated by a comma or a numeric vector of linear indices:

- `c(x[1,1,1], x[1,1,2])`
- `x[c(1, 5)]`

However for tensors with high dimensions this can be cumbersome to write. Therefore the `tensor` class also allows you to extract values with indices in matrix or list form, which are more suited for non-interactive coding.

- `x[matrix(c(1,1,1,1,2), nrow = 3)]`
- `x[list(c(1,1), c(1,2))]`
Usage

```r
## S4 method for signature 'sptensor,character,missing,ANY'
x[i, j, ..., drop = FALSE]
## S4 method for signature 'sptensor,missing,character,ANY'
x[i, j, ..., drop = FALSE]
## S4 method for signature 'sptensor,character,character,ANY'
x[i, j, ..., drop = FALSE]
## S4 method for signature 'sptensor,missing,missing,ANY'
x[i, j, ..., drop = FALSE]
## S4 method for signature 'sptensor,numeric,missing,ANY'
x[i, j, ..., drop = FALSE]
## S4 method for signature 'sptensor,missing,numeric,ANY'
x[i, j, ..., drop = FALSE]
## S4 method for signature 'sptensor,numeric,numeric,ANY'
x[i, j, ..., drop = FALSE]
## S4 method for signature 'sptensor,list,missing,ANY'
x[i, j, ..., drop = FALSE]
## S4 method for signature 'sptensor,numeric,ANY'
x[i, j, ..., drop = FALSE]
```

Arguments

- `x`: sptensor object
- `i`: numeric index, vector, list, or matrix
- `j`: numeric index
- `...`: additional numeric indices
- `drop`: whether to drop dimensions

Description

Replace values from a sparse tensor
Usage

```r
## S4 replacement method for signature 'sptensor,character,missing,ANY'
x[i, j, ...] <- value

## S4 replacement method for signature 'sptensor,missing,character,ANY'
x[i, j, ...] <- value

## S4 replacement method for signature 'sptensor,character,character,ANY'
x[i, j, ...] <- value

## S4 replacement method for signature 'sptensor,missing,missing,ANY'
x[i, j, ...] <- value

## S4 replacement method for signature 'sptensor,numeric,missing,ANY'
x[i, j, ...] <- value

## S4 replacement method for signature 'sptensor,missing,numeric,ANY'
x[i, j, ...] <- value

## S4 replacement method for signature 'sptensor,numeric,numeric,ANY'
x[i, j, ...] <- value

## S4 replacement method for signature 'sptensor,list,missing,ANY'
x[i, j, ...] <- value

## S4 replacement method for signature 'sptensor,matrix,missing,ANY'
x[i, j, ...] <- value
```

Arguments

- **x**: sptensor object
- **i**: numeric index, vector, list, or matrix
- **j**: numeric index
- **...**: additional numeric indices
- **value**: replacement value(s)
Index

[., dtensor, list, missing, ANY-method
 (dtensor-extract), 6
[., dtensor, list, missing-method
 (dtensor-extract), 6
[., dtensor, matrix, missing, ANY-method
 (dtensor-extract), 6
[., dtensor, matrix, missing-method
 (dtensor-extract), 6
[., dtensor, missing, missing, ANY-method
 (dtensor-extract), 6
[., dtensor, missing, missing-method
 (dtensor-extract), 6
[., dtensor, missing, numeric, ANY-method
 (dtensor-extract), 6
[., dtensor, missing, numeric-method
 (dtensor-extract), 6
[., sptensor, character, character, ANY-method
 (dtensor-extract), 6
[., sptensor, character, missing, ANY-method,
 18
[., sptensor, character, missing, ANY-method
 ([., sptensor, character, missing, ANY-method),
 18
[., sptensor, missing, character, ANY-method
 ([., sptensor, character, missing, ANY-method),
 18
[., sptensor, missing, missing, ANY-method
 ([., sptensor, character, missing, ANY-method),
 18
[., sptensor, missing, missing-method
 ([., sptensor, character, missing, ANY-method),
 18
[., sptensor, missing, numeric, ANY-method
 ([., sptensor, character, missing, ANY-method),
 18
[., sptensor, missing, numeric-method
 ([., sptensor, character, missing, ANY-method),
 18
[., sptensor, numeric, missing, ANY-method
 ([., sptensor, character, missing, ANY-method),
 18
[., sptensor, numeric, missing-method
 ([., sptensor, character, missing, ANY-method),
 18
[., sptensor, numeric, numeric, ANY-method
 ([., sptensor, character, missing, ANY-method),
 18
[., sptensor, numeric, numeric-method
 ([., sptensor, character, missing, ANY-method),
 18
[., sptensor, list, missing, ANY-method
 ([., sptensor, character, missing, ANY-method),
 18
[., sptensor, list, missing-method
 ([., sptensor, character, missing, ANY-method),
 18
[., sptensor, matrix, missing, ANY-method
 ([., sptensor, character, missing, ANY-method),
 18
[., sptensor, matrix, missing-method
 ([., sptensor, character, missing, ANY-method),
 18
<-, dtensor, list, missing, ANY-method
 (dtensor-replace), 6
<-, dtensor, list, missing, ANY-method
 (dtensor-replace), 6
<-, dtensor, matrix, missing, ANY-method
 (dtensor-replace), 6
<-, dtensor, matrix, missing-method
 (dtensor-replace), 6
<-, sptensor, character, character, ANY-method
 (<-, sptensor, character, missing, ANY-method), 19
<-, sptensor, list, missing, ANY-method
 (<-, sptensor, character, missing, ANY-method), 19
<-, sptensor, list, missing-method
 (<-, sptensor, character, missing, ANY-method), 19
<-, sptensor, matrix, missing, ANY-method
 (<-, sptensor, character, missing, ANY-method), 19
<-, sptensor, matrix, missing-method
 (<-, sptensor, character, missing, ANY-method), 19
<-, sptensor, missing, character, ANY-method
 (<-, sptensor, character, missing, ANY-method), 19
<-, sptensor, missing, missing, ANY-method
 (<-, sptensor, character, missing, ANY-method), 19
<-, sptensor, missing, missing-method
 (<-, sptensor, character, missing, ANY-method), 19
<-, sptensor, numeric, ANY-method
 (<-, sptensor, character, missing, ANY-method), 19
<-, sptensor, numeric, missing, ANY-method
 (<-, sptensor, character, missing, ANY-method), 19
<-, sptensor, numeric, numeric, ANY-method
 (<-, sptensor, character, missing, ANY-method), 19
<-, sptensor, numeric, numeric-method
 (<-, sptensor, character, missing, ANY-method), 19
as_dtensor, 2
as_dtensor, array-method (as_dtensor), 2
as_dtensor, sptensor-method
 (as_dtensor), 2
as_sptensor, 3
as_sptensor, data.frame-method
 (as_sptensor), 3
as_sptensor, dtensor-method
 (as_sptensor), 3
as_sptensor, sptensor-method
 (as_sptensor), 3
as_sptensor, character, missing, ANY-method
 (dimnames, dtensor-method), 4
dim (dim, dtensor-method), 3
dim, dtensor-method
 3
dimnames (dimnames, dtensor-method), 4
dimnames, dtensor-method
 4
dimnames<-, dtensor, ANY-method
 4
dimnames<-, dtensor, NULL-method
 4
dimnames<-, dtensor, list-method
 4
dimnames<-, dtensor, ANY-method
 4
dimnames<-, sptensor, ANY-method
 4
dimnames<-, sptensor, list-method
 4
dimnames<-, sptensor, NULL-method
 4
dimnames<-, sptensor, dtensor-method
 4
dimnames<-, sptensor, NULL-method
 4
dimnames<-, sptensor, dtensor-method
 4
INDEX

dtensor, numeric-method (dtensor), 5
dtensor-class, 5
dtensor-extract, 6
dtensor-replace, 6

fill_missing_indices, 7

innerprod, 8
innerprod, dtensor, dtensor-method (innerprod), 8
innerprod, sptensor, sptensor-method (innerprod), 8
is_dtensor, 8
is_sptensor (is_dtensor), 8
is_tensor (is_dtensor), 8

length, tensor-method, 9

norm, 9
norm, dtensor-method (norm), 9
norm, sptensor-method (norm), 9

nzsubs, 10
nzsubs, dtensor-method (nzsubs), 10
nzsubs, sptensor-method (nzsubs), 10

nzvals, 10
nzvals, dtensor-method (nzvals), 10
nzvals, sptensor-method (nzvals), 10

outerprod, 11
outerprod, dtensor, dtensor-method (outerprod), 11
outerprod, dtensor, tensor-method (outerprod), 11
outerprod, sptensor, sptensor-method (outerprod), 11
outerprod, tensor, dtensor-method (outerprod), 11

refold, 11
refold, unfolded_dtensor-method (refold), 11
refold, unfolded_sptensor-method (refold), 11

sptensor, 12, 12
sptensor, list, ANY, numeric-method (sptensor), 12
sptensor, matrix, ANY, numeric-method (sptensor), 12
sptensor, matrix, missing, numeric-method (sptensor), 12
sptensor-class, 13
sptensor-extract
 ([, sptensor, character, missing, ANY-method), 18
sptensor-replace
 ([<-, sptensor, character, missing, ANY-method), 19

squeeze, 13
tensorr, 14
tensorr-package (tensorr), 14

ttm, 14

ttm, dtensor, Matrix, numeric, numeric-method (ttm), 14

ttm, dtensor, matrix, numeric, numeric-method (ttm), 14

ttm, dtensor, Matrix, numeric, numeric-method (ttm), 14

ttm, sptensor, sparseVector, numeric-method (ttv), 15

ttv, 15

ttv, dtensor, numeric, numeric, numeric-method (ttv), 15

ttv, dtensor, numeric, numeric, numeric-method (ttv), 15

ttv, sptensor, numeric, numeric, numeric-method (ttv), 15

ttv, sptensor, numeric, numeric, numeric-method (ttv), 15

ttv, sptensor, sparseVector, numeric-method (ttv), 15

unfold, 16
unfold, dtensor, numeric-method (unfold), 16

unfold, sptensor, numeric-method (unfold), 16
unfolded_dtensor, 16
unfolded_dtensor, Matrix, numeric, numeric-method
(unfolded_dtensor), 16
unfolded_dtensor-class, 17
unfolded_sptensor, 17, 17
unfolded_sptensor, Matrix, numeric, numeric-method
(unfolded_sptensor), 17
unfolded_sptensor, sparseMatrix, numeric, numeric-method
(unfolded_sptensor), 17
unfolded_sptensor-class, 18