Package ‘terminaldigits’

May 13, 2022

Title Tests of Uniformity and Independence for Terminal Digits
Version 0.1.0

Description Implements simulated tests for the hypothesis that terminal digits are uniformly distributed (chi-squared goodness-of-fit) and the hypothesis that terminal digits are independent from preceding digits (several tests of independence for r x c contingency tables). Also, for a number of distributions, implements Monte Carlo simulations for type I errors and power for the test of independence.

License MIT + file LICENSE
Depends R (>= 2.10)
Imports discretefit, Rcpp
Suggests dplyr, gt, ggplot2, knitr, rmarkdown, testthat (>= 3.0.0)
LinkingTo Rcpp

R topics documented:

decoy ... 2
td_independence .. 2
td_simulate ... 4
td_tests .. 6
td_uniformity ... 7

Index 9
decoy

3,320 observations from a decoy experiment

Description
A data frame containing 3,320 observations (with NA’s) from the third round of a decoy experiment involving hand-washing purportedly carried out in a number of factories in China.

Usage
decoy

Format
A data frame with 3320 rows and 3 variables:

- subject
- workroom: The room for which the sanitizer weight is recorded.
- value: The weight in grams for the sanitizer.

Details
This series of experiments was published in an article in Psychological Science in 2018. Subsequently, Frank Yu, Leif Nelson, and Uri Simonsohn argued that the data for the experiments could not be trusted, and Simonsohn developed number-bunching in relation to his analysis of the data. The article was eventually retracted. This data frame consists of the data contained in the tab named "Study3-sanitizer usage(grams)".

Source
https://osf.io/wqp7y

td_independence

Test of independence of terminal digits

Description
The td_independence function tests the independence of terminal digits from preceding digits by constructing a contingency table of counts where rows constitute unique preceding digits and columns constitute unique terminal digits. A test of independence for a contingency tables is then implemented via Monte Carlo simulation.
Usage

```r
td_independence(
  x,
  decimals,
  reps = 10000,
  test = "Chisq",
  tolerance = 64 * .Machine$double.eps
)
```

Arguments

- `x` a numeric vector
- `decimals` an integer specifying the number of decimals. This can be zero if the terminal digit is not a decimal.
- `reps` a positive integer specifying the number of Monte Carlo simulations. The default is set to 10,000 which may be appropriate for exploratory analysis. A higher number of simulation should be selected for more precise results.
- `test` a string specifying the test of independence. The default is Pearson’s chi-squared statistic ("Chisq"). Also available is the log-likelihood ratio statistic ("G2"), the Freeman-Tukey statistic ("FT"), and the Root-mean-square statistic ("RMS").
- `tolerance` sets an upper bound for rounding errors when evaluating whether a statistic for a simulation is greater than or equal to the statistic for the observed data. The default is identical to the tolerance set for simulations in the `chisq.test` function from the `stats` package in R.

Details

Monte Carlo simulations are implemented for contingency tables with fixed margins using algorithm ASA 144 (Agresti, Wackerly, and Boyett, 1979; Boyett 1979).

Value

A list with class "htest" containing the following components:

- `statistic` the value of the test statistic
- `p_value` the simulated p-value for the test
- `method` a character string describing the test
- `data.name` a character string give the name of the data

References

Examples

```r
td_independence(decoy$weight, decimals = 2, reps = 2000)
```
significance a number between 0 and 1 defining the level for statistical significance. The default is set to 0.05.

reps an integer specifying the number of Monte Carlo simulations to implement under the null for each draw. The default is set to 500 but this is only appropriate for initial exploration.

simulations an integer specifying the number of Monte Carlo simulations to perform, i.e. the number of draws from the specified distribution to be tested. The default is set to 300 but this is only appropriate for initial exploration.

tolerance sets an upper bound for rounding errors when evaluating whether a statistic for a simulation is greater than or equal to the statistic for the observed data. The default is identical to the tolerance set for simulations in the chisq.test function from the stats package in R.

Details
Monte Carlo simulations for the null hypothesis are implemented for contingency tables with fixed margins using algorithm ASA 144 (Agresti, Wackerly, and Boyett, 1979; Boyett 1979).

Value
A list containing the following components:

method method employed

distribution the distribution

Chisq proportion of p-values less than or equal to defined significance level for Pearson’s chi-squared test of independence

G2 proportion of p-values less than or equal to defined significance level for log-likelihood ratio test of independence

FT proportion of p-values less than or equal to defined significance level for Freeman-Tukey test of independence

RMS proportion of p-values less than or equal to defined significance level for root-mean-squared test of independence

O proportion of p-values less than or equal to defined significance level for occupancy test of independence

AF proportion of p-values less than or equal to defined significance level for average frequency test of independence

References

Examples

```r
td_simulate(distribution = "normal",
            n = 50,
            parameter_1 = 100,
            parameter_2 = 1,
            decimals = 1,
            reps = 100,
            simulations = 100)
```

td_tests
Tests of independence and uniformity for terminal digits in a data frame

Description

The function `td_tests()` is a wrapper which applies the functions `td_independence()` and `td_uniformity` to a data frame. When a group is specified, tests are conducted separately for each group. P-values and p-values adjusted by the false discovery rate (Benjamini and Hochberg, 1995) are reported.

Usage

```r
td_tests(
  data,
  variable,
  decimals,
  group = NULL,
  reps = 10000,
  test = "Chisq",
  tolerance = 64 * .Machine$double.eps
)
```

Arguments

- **data**
 A data frame
- **variable**
 A numeric variable. Tests for terminal digits are performed on this variable.
- **decimals**
 an integer specifying the number of decimals. This can be zero if the terminal digit is not a decimal.
- **group**
 A variable used to group the primary variable such that p-values are calculated separately for each group. The default is set to NULL in which case p-values are simply calculated for the whole data set.
- **reps**
 an integer specifying the number of Monte Carlo simulations. The default is set to 10,000.
- **test**
 a string specifying the test of independence. The default is Pearson’s chi-squared statistic ("Chisq"). Also available is the log-likelihood ratio statistic ("G2"), the Freeman-Tukey statistic ("FT"), and the Root-mean-square statistic ("RMS").
tolerance sets an upper bound for rounding errors when evaluating whether a statistic for a simulation is greater than or equal to the statistic for the observed data. The default is identical to the tolerance set for simulations in the chisq.test function from the stats package in R.

Value
A data frame containing the following components:

- statistic: the value of the test statistic
- p_value_independence: the simulated p-value for the test of independence
- P_value_uniformity: the simulated p-value for the test of uniformity (chi-squared GOF)
- p_value_independence_fdr: the simulated p-value for the test of independence adjusted via the false discovery rate (if the group variable is specified)
- P_value_uniformity: the simulated p-value for the test of uniformity (chi-squared GOF) adjusted via the false discovery rate (if the group variable is specified)

References

Examples

td_tests(decoy, weight, decimals = 2, group = subject, reps = 1000)

td_uniformity

Test of uniformity of terminal digits

Description
The td_uniformity function tests the uniformity of terminal digits via Pearson’s chi-squared test of goodness-of-fit. Rather than relying on the asymptotic approximation to the chi-squared distribution, td_uniformity uses the chisq_gof function from the discretefit package to simulate the distribution under the null.

Usage
td_uniformity(x, decimals, reps = 10000, tolerance = 64 * .Machine$double.eps)
Arguments

- **x**: a numeric vector
- **decimals**: an integer specifying the number of decimals. This can be zero if the terminal digit is not a decimal.
- **reps**: a positive integer specifying the number of Monte Carlo simulations. The default is set to 10,000.
- **tolerance**: sets an upper bound for rounding errors when evaluating whether a statistic for a simulation is greater than or equal to the statistic for the observed data. The default is identical to the tolerance set for simulations in the `chisq.test` function from the `stats` package in R.

Value

A list containing the following components:

- **statistic**: the value of the test statistic
- **p_value**: the simulated p-value for the test
- **method**: a character string describing the test
- **data.name**: a character string giving the name of the data

Examples

```r
td_uniformity(decoy$weight, decimals = 2, reps = 2000)
```
Index

* datasets
 decoy, 2

decoy, 2

td_independence, 2
td_simulate, 4
td_tests, 6
td_uniformity, 7