Package ‘text2vec’

April 21, 2022

Type Package
Version 0.6.1
Title Modern Text Mining Framework for R
License GPL (>= 2) | file LICENSE
Description Fast and memory-friendly tools for text vectorization, topic modeling (LDA, LSA), word embeddings (GloVe), similarities. This package provides a source-agnostic streaming API, which allows researchers to perform analysis of collections of documents which are larger than available RAM. All core functions are parallelized to benefit from multicore machines.

Maintainer Dmitriy Selivanov <selivanov.dmitriy@gmail.com>
Encoding UTF-8
SystemRequirements C++11
Depends R (>= 3.6.0), methods
Imports Matrix (>= 1.1), Rcpp (>= 1.0.3), R6 (>= 2.3.0), data.table(>= 1.9.6), rsparse (>= 0.3.3.4), stringi (>= 1.1.5), mlapi (>= 0.1.0), lgr (>= 0.2), digest (>= 0.6.8)
LinkingTo Rcpp, digest (>= 0.6.8)
Suggests magrittr, udpipe (>= 0.6), glmnet, testthat, covr, knitr, markdown, proxy
URL http://text2vec.org
BugReports https://github.com/dselivanov/text2vec/issues
VignetteBuilder knitr
LazyData true
RoxygenNote 7.1.1
NeedsCompilation yes
Author Dmitriy Selivanov [aut, cre, cph],
 Manuel Bickel [aut, cph] (Coherence measures for topic models),
 Qing Wang [aut, cph] (Author of the WaprLDA C++ code)
Repository CRAN
Date/Publication 2022-04-21 15:50:02 UTC
as.lda_c

Converts document-term matrix sparse matrix to 'lda_c' format

Description

Converts 'dgCMatrix' (or coercible to 'dgCMatrix') to 'lda_c' format

Usage

as.lda_c(X)

Arguments

X Document-Term matrix
Description

Creates BNS (bi-normal separation) model. Defined as: Q(true positive rate) - Q(false positive rate), where Q is a quantile function of normal distribution.

Usage

R6Class object.

Details

Bi-Normal Separation

Fields

bns_stat data.table with computed BNS statistic. Useful for feature selection.

Usage

For usage details see Methods, Arguments and Examples sections.

bns = BNS$new(treshold = 0.0005)
bns$fit_transform(x, y)
bns$transform(x)

Methods

$new(treshold = 0.0005) Creates bns model
$fit_transform(x, y) fit model to an input sparse matrix (preferably in "dgCMatrix" format) and then transforms it.
$transform(x) transform new data x using bns from train data

Arguments

bns A BNS object
x An input document term matrix. Preferably in dgCMatrix format
y Binary target variable coercible to logical.
treshold Clipping treshold to avoid infinities in quantile function.
Examples

```r
data("movie_review")
N = 1000
it = itoken(head(movie_review$review, N), preprocessor = tolower, tokenizer = word_tokenizer)
vocab = create_vocabulary(it)
dtm = create_dtm(it, vocab_vectorizer(vocab))
model_bns = BNS$new()
dtm_bns = model_bns$fit_transform(dtm, head(movie_review$sentiment, N))
```

check_analogy_accuracy

Checks accuracy of word embeddings on the analogy task

Description

This function checks how well the GloVe word embeddings do on the analogy task. For full examples see GloVe.

Usage

```r
check_analogy_accuracy(questions_list, m_word_vectors)
```

Arguments

- `questions_list` list of questions. Each element of questions_list is a integer matrix with four columns. It represents a set of questions related to a particular category. Each element of matrix is an index of a row in m_word_vectors. See output of ```prepare_analogy_questions``` for details.
- `m_word_vectors` word vectors numeric matrix. Each row should represent a word.

See Also

```r
prepare_analogy_questions, GloVe
```

coherence

Coherence metrics for topic models

Description

Given a topic model with topics represented as ordered term lists, the coherence may be used to assess the quality of individual topics. This function is an implementation of several of the numerous possible metrics for such kind of assessments. Coherence calculation is sensitive to the content of the reference tcm that is used for evaluation and that may be created with different parameter settings. Please refer to the details section (or reference section) for information on typical combinations of metric and type of tcm. For more general information on measuring coherence a starting point is given in the reference section.
coherence

Usage

coherence(x, tcm, metrics = c("mean_logratio", "mean_pmi", "mean_npmi", "mean_difference", "mean_npmi_cosim", "mean_npmi_cosim2"), smooth = 1e-12, n_doc_tcm = -1)

Arguments

x A character matrix with the top terms per topic (each column represents one topic), e.g., as created by get_top_words(). Terms of x have to be ranked per topic starting with rank 1 in row 1.

tcm The term co-occurrence matrix, e.g. a Matrix::sparseMatrix or base::matrix, serving as the reference to calculate coherence metrics. Please note that a memory efficient version of the tcm is assumed as input with all entries in the lower triangle (excluding diagonal) set to zero (see, e.g., create_tcm). Please also note that some efforts during any pre-processing steps might be skipped since the tcm is internally reduced to the top word space, i.e., all unique terms of x.

metrics Character vector specifying the metrics to be calculated. Currently the following metrics are implemented: c("mean_logratio","mean_pmi","mean_npmi","mean_difference","mean_npmi_cosim","mean_npmi_cosim2"). Please refer to the details section for more information on the metrics.

smooth Numeric smoothing constant to avoid logarithm of zero. By default, set to 1e-12.

n_doc_tcm The integer number of documents or text windows that was used to create the tcm. n_doc_tcm is used to calculate term probabilities from term counts as required for several metrics.

Details

The currently implemented coherence metrics are described below including a description of the content type of the tcm that showed good performance in combination with a specific metric.

For details on how to create tcm see the example section.

For details on performance of metrics see the resources in the reference section that served for definition of standard settings for individual metrics.

Note that depending on the use case, still, different settings than the standard settings for creation of tcm may be reasonable.

Note that for all currently implemented metrics the tcm is reduced to the top word space on basis of the terms in x.

Considering the use case of finding the optimum number of topics among several models with different metrics, calculating the mean score over all topics and normalizing this mean coherence scores from different metrics might be considered for direct comparison.

Each metric usually opts for a different optimum number of topics. From initial experience it may be assumed that logratio, pmi and nmpi usually opt for smaller numbers, whereas the other metrics rather tend to propose higher numbers.

Implemented metrics:

- "mean_logratio"
 The logarithmic ratio is calculated as
 \[\log(\text{smooth} + \text{tcm}[x,y]) - \log(\text{tcm}[y,y]), \]
where x and y are term index pairs from a "preceding" term index combination.
Given the indices c(1,2,3), combinations are list(c(2,1),c(3,1),c(3,2)).

The tcm should represent the boolean term co-occurrence (internally the actual counts are used) in the original documents and, therefore, is an intrinsic metric in the standard use case.

This metric is similar to the UMass metric, however, with a smaller smoothing constant by default and using the mean for aggregation instead of the sum.

• "mean_pmi"
The pointwise mutual information is calculated as
log2((tcm[x,y]/n_doc_tcm) + smooth) -log2(tcm[x,x]/n_doc_tcm) -log2(tcm[y,y]/n_doc_tcm),
where x and y are term index pairs from an arbitrary term index combination that subsets the lower or upper triangle of tcm, e.g. "preceding".

The tcm should represent term co-occurrences within a boolean sliding window of size 10 (internally probabilities are used) in an external reference corpus and, therefore, is an extrinsic metric in the standard use case.

This metric is similar to the UCI metric, however, with a smaller smoothing constant by default and using the mean for aggregation instead of the sum.

• "mean_npmi"
Similar (in terms of all parameter settings, etc.) to "mean_pmi" metric but using the normalized pmi instead, which is calculated as
(log2((tcm[x,y]/n_doc_tcm) + smooth) -log2(tcm[x,x]/n_doc_tcm) -log2(tcm[y,y]/n_doc_tcm))
/ -log2((tcm[x,y]/n_doc_tcm) + smooth).

This metric may perform better than the simpler pmi metric.

• "mean_difference"
The difference is calculated as
tcm[x,y]/tcm[x,x] - (tcm[y,y]/n_tcm_windows),
where x and y are term index pairs from a "preceding" term index combination.
Given the indices c(1,2,3), combinations are list(c(1,2),c(1,3),c(2,3)).

The tcm should represent the boolean term co-occurrence (internally probabilities are used) in the original documents and, therefore, is an intrinsic metric in the standard use case.

• "mean_npmi_cosim"
First, the npmi of an individual top word with each of the top words is calculated as in "mean_npmi".
This result in a vector of npmi values for each top word.
On this basis, the cosine similarity between each pair of vectors is calculated.

The tcm should represent term co-occurrences within a boolean sliding window of size 5 (internally probabilities are used) in an external reference corpus and, therefore, is an extrinsic metric in the standard use case.

• "mean_npmi_cosim2"
First, a vector of npmi values for each top word is calculated as in "mean_npmi_cosim".
On this basis, the cosine similarity between each vector and the sum of all vectors is calculated (instead of the similarity between each pair).

The tcm should represent term co-occurrences within a boolean sliding window of size 110 (internally probabilities are used) in an external reference corpus and, therefore, is an extrinsic metric in the standard use case.

Value

A numeric matrix with the coherence scores of the specified metrics per topic.

References

Below mentioned paper is the main theoretical basis for this code.
Currently only a selection of metrics stated in this paper is included in this R implementation.
Authors: Roeder, Michael; Both, Andreas; Hinneburg, Alexander (2015)
Title: Exploring the Space of Topic Coherence Measures.
In: Xueqi Cheng, Hang Li, Evgeniy Gabrilovich und Jie Tang (Eds.):
Proceedings of the Eighth ACM International Conference on Web Search and Data Mining - WSDM '15.
the Eighth ACM International Conference. Shanghai, China, 02.02.2015 - 06.02.2015.
New York, USA: ACM Press, p. 399-408.
https://dl.acm.org/citation.cfm?id=2685324
This paper has been implemented by above listed authors as the Java program "palmetto".
See https://github.com/dice-group/Palmetto or http://aksw.org/Projects/Palmetto.html.

Examples

```r
library(data.table)
library(text2vec)
library(Matrix)
data("movie_review")
N = 500
tokens = word_tokenizer(tolower(movie_review$review[1:N]))
it = itoken(tokens, progressbar = FALSE)
v = create_vocabulary(it)
v = prune_vocabulary(v, term_count_min = 5, doc_proportion_max = 0.2)
dtm = create_dtm(it, vocab_vectorizer(v))

n_topics = 10
lda_model = LDA$new(n_topics)
fitted = lda_model$fit_transform(dtm, n_iter = 20)
tw = lda_model$get_top_words(n = 10, lambda = 1)

# for demonstration purposes create intrinsic TCM from original documents
# scores might not make sense for metrics that are designed for extrinsic TCM

tcm = crossprod(sign(dtm))

# check coherence
```
logger = lgr::get_logger('text2vec')
logger$set_threshold('debug')
res = coherence(tw, tcm, n_doc_tcm = N)
res

example how to create TCM for extrinsic measures from an external corpus
external_reference_corpus = tolower(movie_review$review[501:1000])
tokens_ext = word_tokenizer(external_reference_corpus)
iterator_ext = itoken(tokens_ext, progressbar = FALSE)
v_ext = create_vocabulary(iterator_ext)
for reasons of efficiency vocabulary may be reduced to the terms matched in the original corpus
v_ext = v_ext[v_ext$term %in% v$term,]
external vocabulary may be pruned depending on the use case
v_ext = prune_vocabulary(v_ext, term_count_min = 5, doc_proportion_max = 0.2)
vectorizer_ext = vocab_vectorizer(v_ext)

for demonstration purposes a boolean co-occurrence within sliding window of size 10 is used
10 represents sentence co-occurrence, a size of 110 would, e.g., be paragraph co-occurrence
window_size = 5

tcm_ext = create_tcm(iterator_ext, vectorizer_ext
,skip_grams_window = window_size
,weights = rep(1, window_size)
,binary_cooccurence = TRUE
)
#add marginal probabilities in diagonal (by default only upper triangle of tcm is created)
diag(tcm_ext) = attributes(tcm_ext)$word_count

get number of sliding windows that serve as virtual documents, i.e. n_doc_tcm argument
n_skip_gram_windows = sum(sapply(tokens, function(x) {length(x)})))
Collocations

Usage

For usage details see Methods, Arguments and Examples sections.

model = Collocations$new(vocabulary = NULL, collocation_count_min = 50, pmi_min = 5, gensim_min = 0,
lfmd_min = -Inf, llr_min = 0, sep = "_")

model$partial_fit(it, ...)
model$fit(it, n_iter = 1, ...)
model$transform(it)
model$prune(pmi_min = 5, gensim_min = 0, lfmd_min = -Inf, llr_min = 0)
model$collocation_stat

Methods

$new(vocabulary = NULL, collocation_count_min = 50, sep = "_") Constructor for Collocations model. For description of arguments see Arguments section.

$fit(it, n_iter = 1, ...) fit Collocations model to input iterator it. Iterating over input iterator it n_iter times, so hierarchically can learn multi-word phrases. Invisibly returns collocation_stat.

$partial_fit(it, ...) iterates once over data and learns collocations. Invisibly returns collocation_stat. Workhorse for $fit()

$transform(it) transforms input iterator using learned collocations model. Result of the transformation is new itoken or itoken_parallel iterator which will produce tokens with phrases collapsed into single token.

$prune(pmi_min = 5, gensim_min = 0, lfmd_min = -Inf, llr_min = 0) filter out non-relevant phrases with low score. User can do it directly by modifying collocation_stat object.

Arguments

model A Collocation model object

n_iter number of iteration over data

pmi_min, gensim_min, lfmd_min, llr_min minimal scores of the corresponding statistics in order to collapse tokens into collocation:

• pointwise mutual information
• "gensim" scores - https://radimrehurek.com/gensim/models/phrases.html adapted from word2vec paper
• log-frequency biased mutual dependency
• Dunning’s logarithm of the ratio between the likelihoods of the hypotheses of dependence and independence

it An input itoken or itoken_parallel iterator

vocabulary text2vec_vocabulary - if provided will look for collocations consisted of only from vocabulary
Examples

library(text2vec)
data("movie_review")

preprocessor = function(x) {
gsub("[^[:alnum:\s]\"]", replacement = " ", tolower(x))
}
sample_ind = 1:100
tokens = word_tokenizer(preprocessor(movie_review$review[sample_ind]))
it = itoken(tokens, ids = movie_review$id[sample_ind])
system.time(v <- create_vocabulary(it))
v = prune_vocabulary(v, term_count_min = 5)

model = Collocations$new(collocation_count_min = 5, pmi_min = 5)
model$fit(it, n_iter = 2)
model$collocation_stat

it2 = model$transform(it)
v2 = create_vocabulary(it2)
v2 = prune_vocabulary(v2, term_count_min = 5)

setdiff(v2$term, v$term)

[1] "main_character" "jeroen_krabb" "boogey_man" "in_order"
[5] "couldnt" "much_more" "my_favorite" "worst_film"
[9] "have_seen" "characters_are" "i_mean" "better_than"
[13] "dont_care" "more_than" "look_at" "they_re"
[17] "each_other" "must_be" "sexual_scenes" "have_been"
[21] "there_are_some" "you_re" "would_have" "i_loved"
[25] "special_effects" "hit_man" "those_who" "people_who"
[29] "i_am" "there_are" "could_have_been" "we_re"
[33] "so_bad" "should_be" "at_least" "can_t"
[37] "i_thought" "isnt" "i_ve" "if_you"
[41] "didnt" "doesnt" "i_m" "don_t"

and same way we can create document-term matrix which contains
words and phrases!
dtm = create_dtm(it2, vocab_vectorizer(v2))
check that dtm contains phrases
which(colnames(dtm) == "jeroen_krabb")

combine_vocabularies

Combine multiple vocabularies into one

Description

Combines multiple vocabularies into one
create_dtm

Document-term matrix construction

Description

This is a high-level function for creating a document-term matrix.

Usage

```r
create_dtm(it, vectorizer, type = c("dgCMatrix", "dgTMatrix", "RsparseMatrix"), ...)
```

```r
## S3 method for class 'itoken'
create_dtm(it, vectorizer, type = c("dgCMatrix", "dgTMatrix", "RsparseMatrix"), ...)
```

```r
## S3 method for class 'itoken_parallel'
create_dtm(it, vectorizer, type = c("dgCMatrix", "dgTMatrix", "RsparseMatrix"), ...)
```

create_vocabulary

Usage

```r
combine_vocabularies(..., combine_stopwords = function(x)
unique(unlist(lapply(x, attr, which = "stopwords"), use.names = FALSE)),
combine_ngram = function(x) attr(x[[1]], "ngram"),
combine_sep_ngram = function(x) attr(x[[1]], "sep_ngram"))
```

Arguments

- `...` vocabulary objects created with `create_vocabulary`.
- `combine_stopwords` function to combine stopwords from input vocabularies. By default we take a union of all stopwords.
- `combine_ngram` function to combine lower and upper boundary for n-grams from input vocabularies. Usually these values should be the same, so we take this parameter from first vocabulary.
- `combine_sep_ngram` function to combine stopwords from input vocabularies. Usually these values should be the same, so we take this parameter from first vocabulary.

Value

`text2vec_vocabulary` see details in `create_vocabulary`.

create_dtm

Document-term matrix construction

Description

This is a high-level function for creating a document-term matrix.

Usage

```r
create_dtm(it, vectorizer, type = c("dgCMatrix", "dgTMatrix", "RsparseMatrix"), ...)
```

```r
## S3 method for class 'itoken'
create_dtm(it, vectorizer, type = c("dgCMatrix", "dgTMatrix", "RsparseMatrix"), ...)
```

```r
## S3 method for class 'itoken_parallel'
create_dtm(it, vectorizer, type = c("dgCMatrix", "dgTMatrix", "RsparseMatrix"), ...)
```
Arguments

- **it**
 itoken iterator or list of itoken iterators.
- **vectorizer**
 Function vectorizer function; see vectorizers.
- **type**
 Character, one of c("dgCMatrix","dgTMatrix").
- **...**
 Placeholder for additional arguments (not used at the moment). over it.

Details

If a parallel backend is registered and first argument is a list of itoken iterators, function will construct the DTM in multiple threads. User should keep in mind that he or she should split the data itself and provide a list of *itoken* iterators. Each element of it will be handled in separate thread and combined at the end of processing.

Value

A document-term matrix

See Also

itoken vectorizers

Examples

```r
## Not run:
data("movie_review")
N = 1000
it = itoken(movie_review$review[1:N], preprocess_function = tolower,
    tokenizer = word_tokenizer)
v = create_vocabulary(it)
# remove very common and uncommon words
pruned_vocab = prune_vocabulary(v, term_count_min = 10,
    doc_proportion_max = 0.5, doc_proportion_min = 0.001)
vectorizer = vocab_vectorizer(v)
it = itoken(movie_review$review[1:N], preprocess_function = tolower,
    tokenizer = word_tokenizer)
dtm = create_dtm(it, vectorizer)
# get tf-idf matrix from bag-of-words matrix
dtm_tfidf = transformer_tfidf(dtm)

## Example of parallel mode
it = token_parallel(movie_review$review[1:N], tolower, word_tokenizer, movie_review$id[1:N])
vectorizer = hash_vectorizer()
dtm = create_dtm(it, vectorizer, type = 'dgTMatrix')

## End(Not run)
```
create_tcm

Term-co-occurrence matrix construction

Description

This is a function for constructing a term-co-occurrence matrix (TCM). TCM matrix usually used with GloVe word embedding model.

Usage

create_tcm(it, vectorizer, skip_grams_window = 5L,
 skip_grams_window_context = c("symmetric", "right", "left"),
 weights = 1/seq_len(skip_grams_window), binary_cooccurrence = FALSE,
 ...)

S3 method for class 'itoken'
create_tcm(it, vectorizer, skip_grams_window = 5L,
 skip_grams_window_context = c("symmetric", "right", "left"),
 weights = 1/seq_len(skip_grams_window), binary_cooccurrence = FALSE,
 ...)

S3 method for class 'itoken_parallel'
create_tcm(it, vectorizer,
 skip_grams_window = 5L, skip_grams_window_context = c("symmetric", "right", "left"),
 weights = 1/seq_len(skip_grams_window),
 binary_cooccurrence = FALSE, ...)

Arguments

- **it** list of iterators over tokens from `itoken`. Each element is a list of tokens, that is, tokenized and normalized strings.
- **vectorizer** function vectorizer function. See vectorizers.
- **skip_grams_window** integer window for term-co-occurrence matrix construction. `skip_grams_window` should be > 0 if you plan to use vectorizer in `create_tcm` function. Value of 0L means to not construct the TCM.
- **skip_grams_window_context** one of c("symmetric","right","left") - which context words to use when count co-occurrence statistics.
- **weights** weights for context/distant words during co-occurrence statistics calculation. By default we are setting `weight = 1 / distance_from_current_word`. Should have length equal to `skip_grams_window`.
- **binary_cooccurrence** FALSE by default. If set to TRUE then function only counts first appearence of the context word and remaining occurrence are ignored. Useful when creating TCM for evaluation of coherence of topic models. "symmetric" by default - take into account `skip_grams_window` left and right.
create_vocabulary

... placeholder for additional arguments (not used at the moment). it.

Details

If a parallel backend is registered, it will construct the TCM in multiple threads. The user should keep in mind that he/she should split data and provide a list of itoken iterators. Each element of it will be handled in a separate thread combined at the end of processing.

Value

dgTMatrix TCM matrix

See Also

itoken create_dtm

Examples

```r
## Not run:
data("movie_review")

# single thread
tokens = word_tokenizer(tolower(movie_review$review))
it = itoken(tokens)
v = create_vocabulary(jobs)
vectorizer = vocab_vectorizer(v)
tcm = create_tcm(itoken(tokens), vectorizer, skip_grams_window = 3L)

# parallel version

# set to number of cores on your machine
it = token_parallel(movie_review$review[1:N], tolower, word_tokenizer, movie_review$id[1:N])
v = create_vocabulary(jobs)
vectorizer = vocab_vectorizer(v)
dtm = create_dtm(it, vectorizer, type = "dgTMatrix")
tcm = create_tcm(jobs, vectorizer, skip_grams_window = 3L, skip_grams_window_context = "symmetric")

## End(Not run)
```

create_vocabulary

Create a vocabulary of unique terms

Description

This function collects unique terms and corresponding statistics. See the below for details.
Usage

```r
create_vocabulary(it, ngram = c(ngram_min = 1L, ngram_max = 1L),
    stopwords = character(0), sep_ngram = "_", window_size = 0L, ...)
```

```r
vocabulary(it, ngram = c(ngram_min = 1L, ngram_max = 1L),
    stopwords = character(0), sep_ngram = "_", window_size = 0L, ...)
```

```r
## S3 method for class 'character'
create_vocabulary(it, ngram = c(ngram_min = 1L,
    ngram_max = 1L), stopwords = character(0), sep_ngram = "_",
    window_size = 0L, ...)
```

```r
## S3 method for class 'itoken'
create_vocabulary(it, ngram = c(ngram_min = 1L,
    ngram_max = 1L), stopwords = character(0), sep_ngram = "_",
    window_size = 0L, ...)
```

```r
## S3 method for class 'itoken_parallel'
create_vocabulary(it, ngram = c(ngram_min = 1L,
    ngram_max = 1L), stopwords = character(0), sep_ngram = "_",
    window_size = 0L, ...)
```

Arguments

- **it**: iterator over a list of character vectors, which are the documents from which the user wants to construct a vocabulary. See `itoken`. Alternatively, a character vector of user-defined vocabulary terms (which will be used "as is").

- **ngram**: integer vector. The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that ngram_min <= n <= ngram_max will be used.

- **stopwords**: character vector of stopwords to filter out. **NOTE** that stopwords will be used "as is". This means that if preprocessing function in `itoken` does some text modification (like stemming), then this preprocessing need to be applied to stopwords before passing them here. See https://github.com/dselivanov/text2vec/issues/228 for example.

- **sep_ngram**: character a character string to concatenate words in ngrams

- **window_size**: integer (0 by default). If window_size > 0 then vocabulary will be created from pseudo-documents which are obtained by virtually splitting each documents into chunks of the length window_size by going with sliding window through them. This is useful for creating special statistics which are used for coherence estimation in topic models.

- **...**: placeholder for additional arguments (not used at the moment).

Value

text2vec_vocabulary object, which is actually a data.frame with following columns:
term character vector of unique terms

term_count integer vector of term counts across all documents

doc_count integer vector of document counts that contain corresponding term

Also it contains metainformation in attributes: ngram: integer vector, the lower and upper boundary of the range of n-gram-values. document_count: integer number of documents vocabulary was built. stopwords: character vector of stopwords sep_ngram: character separator for ngrams

Methods (by class)

• character: creates text2vec_vocabulary from predefined character vector. Terms will be inserted as is, without any checks (ngrams number, ngram delimiters, etc.).

• itoken: collects unique terms and corresponding statistics from object.

• itoken_parallel: collects unique terms and corresponding statistics from iterator.

Examples

data("movie_review")

x = movie_review[['review'}}[1:100]

it = itoken(x, tolower, word_tokenizer, n_chunks = 10)

text2vec_vocabulary(it)

pruned_vocab = prune_vocabulary(vocab, term_count_min = 10, doc_proportion_max = 0.8, doc_proportion_min = 0.001, vocab_term_max = 20000)

distances

Pairwise Distance Matrix Computation

Description

dist2 calculates pairwise distances/similarities between the rows of two data matrices. Note that some methods work only on sparse matrices and others work only on dense matrices.

pdist2 calculates "parallel" distances between the rows of two data matrices.

Usage

dist2(x, y = NULL, method = c("cosine", "euclidean", "jaccard"), norm = c("l2", "l1", "none"))

pdist2(x, y, method = c("cosine", "euclidean", "jaccard"), norm = c("l2", "l1", "none"))
Arguments

\(x\) first matrix.

\(y\) second matrix. For dist2 \(y = \text{NULL}\) set by default. This means that we will assume \(y = x\) and calculate distances/similarities between all rows of the \(x\).

\(\text{method}\) usually character or instance of tet2vec_distance class. The distances/similarity measure to be used. One of \(\text{c("cosine","euclidean","jaccard")}\) or \(\text{RWMD}\). \(\text{RWMD}\) works only on bag-of-words matrices. In case of "cosine" distance max distance will be \(1 - (-1) = 2\)

\(\text{norm}\) character = \(\text{c("l2","l1","none")}\) - how to scale input matrices. If they already scaled - use "none"

Details

Computes the distance matrix computed by using the specified method. Similar to dist function, but works with two matrices.

pdist2 takes two matrices and return a single vector, giving the ‘parallel’ distances of the vectors.

Value

dist2 returns matrix of distances/similarities between each row of matrix \(x\) and each row of matrix \(y\).

pdist2 returns vector of "parallel" distances between rows of \(x\) and \(y\).

GloVe

\text{re-export \text{rsparse::GloVe}}

Description

\text{re-export rsparse::GloVe}

Usage

\text{GlobalVectors}

Format

An object of class \text{R6ClassGenerator} of length 24.
ifiles

Creates iterator over text files from the disk

Description

The result of this function usually used in an itoken function.

Usage

ifiles(file_paths, reader = readLines)

idir(path, reader = readLines)

ifiles_parallel(file_paths, reader = readLines, ...)

Arguments

file_paths character
paths of input files

reader function
which will perform reading of text files from disk, which should take a path as its first argument. reader() function should return named character vector: elements of vector = documents, names of the elements = document ids which will be used in DTM construction. If user doesn’t provide named character vector, document ids will be generated as file_name + line_number (assuming that each line is a document).

path character
path of directory. All files in the directory will be read.

... other arguments (not used at the moment)

See Also

itoken

Examples

Not run:
current_dir_files = list.files(path = ".", full.names = TRUE)
files_iterator = ifiles(current_dir_files)
parallel_files_iterator = ifiles_parallel(current_dir_files, n_chunks = 4)
it = itoken_parallel(parallel_files_iterator)
dtm = create_dtm(it, hash_vectorizer(2**16), type = 'dgTMatrix')

End(Not run)
dir_files_iterator = idir(path = ".")
It is known that token

token

Iterators (and parallel iterators) over input objects

Description

This family of function creates iterators over input objects in order to create vocabularies, or DTM and TCM matrices. Iterators usually used in following functions: `create_vocabularies`, `create_dtm`, `vectorizers`, `create_tcm`. See them for details.

Usage

```r
itoken(iterable, ...)  
```  
```r  
## S3 method for class 'character'
itoken(iterable, preprocessor = identity,
   tokenizer = space_tokenizer, n_chunks = 10,
   progressbar = interactive(), ids = NULL, ...)
```  
```r
## S3 method for class 'list'
itoken(iterable, n_chunks = 10,
   progressbar = interactive(), ids = names(iterable), ...)
```  
```r  
## S3 method for class 'iterator'
itoken(iterable, preprocessor = identity,
   tokenizer = space_tokenizer, progressbar = interactive(), ...)
```  
```r
itoken_parallel(iterable, ...)
```  
```r  
## S3 method for class 'character'
itoken_parallel(iterable, preprocessor = identity,
   tokenizer = space_tokenizer, n_chunks = 10, ids = NULL, ...)
```  
```r
## S3 method for class 'iterator'
itoken_parallel(iterable, preprocessor = identity,
   tokenizer = space_tokenizer, n_chunks = 1L, ...)
```  
```r  
## S3 method for class 'list'
itoken_parallel(iterable, n_chunks = 10, ids = NULL, ...)
```  
Arguments

- **iterable**
 - an object from which to generate an iterator
- **...**
 - arguments passed to other methods
- **preprocessor**
 - function which takes chunk of character vectors and does all pre-processing. Usually preprocessor should return a character vector of preprocessed/cleaned documents. See "Details" section.
tokenizer function which takes a character vector from preprocessor, split it into tokens and returns a list of character vectors. If you need to perform stemming - call stemmer inside tokenizer. See examples section.

n_chunks integer, the number of pieces that object should be divided into. Then each chunk is processed independently (and in case itoken_parallel in parallel if some parallel backend is registered). Usually there is tradeoff: larger number of chunks means lower memory footprint, but slower (if preprocessor, tokenizer functions are efficiently vectorized). And small number of chunks means larger memory footprint but faster execution (again if user supplied preprocessor, tokenizer functions are efficiently vectorized).

progressbar logical indicates whether to show progress bar.

ids vector of document ids. If ids is not provided, names(iterable) will be used. If names(iterable) == NULL, incremental ids will be assigned.

Details

S3 methods for creating an itoken iterator from list of tokens

- list: all elements of the input list should be character vectors containing tokens
- character: raw text source: the user must provide a tokenizer function
- ifiles: from files, a user must provide a function to read in the file (to ifiles) and a function to tokenize it (to itoken)
- idir: from a directory, the user must provide a function to read in the files (to idir) and a function to tokenize it (to itoken)
- ifiles_parallel: from files in parallel

See Also

ifiles, idir, create_vocabulary, create_dtm, vectorizers, create_tcm

Examples

data("movie_review")

txt = movie_review$review[1:100]
ids = movie_review$id[1:100]
it = itoken(txt, tolower, word_tokenizer, n_chunks = 10)
it = itoken(txt, tolower, word_tokenizer, n_chunks = 10, ids = ids)
Example of stemming tokenizer
stem_tokenizer =function(x) {
lapply(word_tokenizer(x), SnowballC::wordStem, language="en")
}

it = itoken_parallel(movie_review$review[1:100], n_chunks = 4)
system.time(dtm <- create_dtm(it, hash_vectorizer(2**16), type = 'dgTMatrix'))
jsPCA_robust

(numerically robust) Dimension reduction via Jensen-Shannon Divergence & Principal Components

Description

This function is largely a copy of the respective function in https://github.com/cpsievert/LDAvis/blob/master/R/createJSON.R, however, with a fix to avoid log(0) proposed by Maren-Eckhoff in https://github.com/cpsievert/LDAvis/issues/56

Usage

jsPCA_robust(phi)

Arguments

phi matrix, with each row containing the distribution over terms for a topic, with as many rows as there are topics in the model, and as many columns as there are terms in the vocabulary.

LatentDirichletAllocation

Creates Latent Dirichlet Allocation model.

Description

Creates Latent Dirichlet Allocation model. At the moment only 'WarpLDA' is implemented. WarpLDA, an LDA sampler which achieves both the best O(1) time complexity per token and the best O(K) scope of random access. Our empirical results in a wide range of testing conditions demonstrate that WarpLDA is consistently 5-15x faster than the state-of-the-art Metropolis-Hastings based LightLDA, and is comparable or faster than the sparsity aware F+LDA.

Usage

LatentDirichletAllocation

LDA

Format

R6Class object.

Fields

topic_word_distribution distribution of words for each topic. Available after model fitting with model$fit_transform() method.

components unnormalized word counts for each topic-word entry. Available after model fitting with model$fit_transform() method.
Usage

For usage details see Methods, Arguments and Examples sections.

```r
lda = LDA$new(n_topics = 10L, doc_topic_prior = 50 / n_topics, topic_word_prior = 1 / n_topics)
lda$fit_transform(x, n_iter = 1000, convergence_tol = 1e-3, n_check_convergence = 10, progressbar = interactive())
lda$transform(x, n_iter = 1000, convergence_tol = 1e-3, n_check_convergence = 5, progressbar = FALSE)
lda$get_top_words(n = 10, topic_number = 1L:private$n_topics, lambda = 1)
```

Methods

```r
$new(n_topics, doc_topic_prior = 50 / n_topics, # alpha topic_word_prior = 1 / n_topics, # beta method = "WarpLDA")
Constructor for LDA model. For description of arguments see Arguments section.

$fit_transform(x, n_iter, convergence_tol = -1, n_check_convergence = 0, progressbar = interactive())
fit LDA model to input matrix x and transforms input documents to topic space. Result is a matrix where each row represents corresponding document. Values in a row form distribution over topics.

$transform(x, n_iter, convergence_tol = -1, n_check_convergence = 0, progressbar = FALSE)
transforms new documents into topic space. Result is a matrix where each row is a distribution of a documents over latent topic space.

$get_top_words(n = 10, topic_number = 1L:private$n_topics, lambda = 1)
returns "top words" for a given topic (or several topics). Words for each topic can be sorted by probability of chance to observe word in a given topic (lambda = 1) and by "relevance" which also takes into account frequency of word in corpus (lambda < 1). From our experience in most cases setting 0.2 < lambda < 0.4 works well. See http://nlp.stanford.edu/events/illvi2014/papers/sievert-illvi2014.pdf for details.

$plot(lambda.step = 0.1, reorder.topics = FALSE, ...) plot LDA model using https://cran.r-project.org/package=LDAvis package. ... will be passed to LDAvis::createJSON and LDAvis::serVis functions
```

Arguments

```r
lda  A LDA object
x    An input document-term matrix (should have column names = terms). CSR RsparseMatrix used internally, other formats will be tried to convert to CSR via as() function call.
n_topics  integer desired number of latent topics. Also knows as K
doc_topic_prior  numeric prior for document-topic multinomial distribution. Also knows as alpha
topic_word_prior  numeric prior for topic-word multinomial distribution. Also knows as eta
n_iter  integer number of sampling iterations while fitting model
n_iter_inference  integer number iterations used when sampling from converged model for inference. In other words number of samples from distribution after burn-in.
n_check_convergence  defines how often calculate score to check convergence
convergence_tol  numeric = -1 defines early stopping strategy. We stop fitting when one of two following conditions will be satisfied: (a) we have used all iterations, or (b) score_previous_check / score_current < 1 + convergence_tol
```
Examples

```r
library(text2vec)
data("movie_review")
N = 500
tokens = word_tokenizer(tolower(movie_review$review[1:N]))
it = itoken(tokens, ids = movie_review$id[1:N])
v = create_vocabulary(it)
v = prune_vocabulary(v, term_count_min = 5, doc_proportion_max = 0.2)
dtm = create_dtm(it, vocab_vectorizer(v))
lda_model = LDA$new(n_topics = 10)
doc_topic_distr = lda_model$fit_transform(dtm, n_iter = 20)
# run LDAvis visualisation if needed (make sure LDAvis package installed)
# lda_model$plot()
```

```
LatentSemanticAnalysis

Latent Semantic Analysis model

Description


Usage

LatentSemanticAnalysis

LSA

Format

R6Class object.

Usage

For usage details see **Methods, Arguments and Examples** sections.

```r
lsa = LatentSemanticAnalysis$new(n_topics)
lsa$fit_transform(x, ...)
lsa$transform(x, ...)
lsa$components
```

Methods

`$new(n_topics)` create LSA model with `n_topics` latent topics

`$fit_transform(x, ...)` fit model to an input sparse matrix (preferably in dgCMatrix format) and then transform `x` to latent space

`$transform(x, ...)` transform new data `x` to latent space
Arguments

- **lsa** A LSA object.
- **x** An input document-term matrix. Preferably in dgCMatrix format
- **n_topics** integer desired number of latent topics.
- ... Arguments to internal functions. Notably useful for fit_transform() - these arguments will be passed to rsparse::soft_svd

Examples

```r
data("movie_review")
N = 100
tokens = word_tokenizer(tolower(movie_review$review[1:N]))
dtm = create_dtm(itoken(tokens), hash_vectorizer(2**10))
n_topics = 5
lsa_1 = LatentSemanticAnalysis$new(n_topics)
d1 = lsa_1$fit_transform(dtm)
the same, but wrapped with S3 methods
d2 = fit_transform(dtm, lsa_1)
```

**Description**

The labeled dataset consists of 5000 IMDB movie reviews, specially selected for sentiment analysis. The sentiment of the reviews is binary, meaning an IMDB rating < 5 results in a sentiment score of 0, and a rating >=7 has a sentiment score of 1. No individual movie has more than 30 reviews. Important note: we removed non ASCII symbols from the original dataset to satisfy CRAN policy.

**Usage**

```r
data("movie_review")
```

**Format**

A data frame with 5000 rows and 3 variables:

- **id** Unique ID of each review
- **sentiment** Sentiment of the review; 1 for positive reviews and 0 for negative reviews
- **review** Text of the review (UTF-8)

**Source**

normalize

Matrix normalization

Description
normalize matrix rows using given norm

Usage
normalize(m, norm = c("l1", "l2", "none"))

Arguments
m matrix (sparse or dense).

norm character the method used to normalize term vectors

Value
normalized matrix

See Also
create_dtm

perplexity
Perplexity of a topic model

Description
Given document-term matrix, topic-word distribution, document-topic distribution calculates per-
plexity

Usage
perplexity(X, topic_word_distribution, doc_topic_distribution)

Arguments
X sparse document-term matrix which contains terms counts. Internally Matrix::RsparseMatrix
is used. If !inherits(X,'RsparseMatrix') function will try to coerce X to
RsparseMatrix via as() call.

topic_word_distribution dense matrix for topic-word distribution. Number of rows = n_topics, number
of columns = vocabulary_size. Sum of elements in each row should be equal
to 1 - each row is a distribution of words over topic.
prepare_analogy_questions

Prepares list of analogy questions

Description

This function prepares a list of questions from a questions-words.txt format. For full examples see GloVe.

Usage

prepare_analogy_questions(questions_file_path, vocab_terms)

Arguments

questions_file_path  character path to questions file.

vocab_terms  character words which we have in the vocabulary and word embeddings matrix.

See Also

check_analogy_accuracy, GloVe

doc_topic_distribution

dense matrix for document-topic distribution. Number of rows = n_documents, number of columns = n_topics. Sum of elements in each row should be equal to 1 - each row is a distribution of topics over document.

Examples

library(text2vec)
data("movie_review")
n_iter = 10
train_ind = 1:200
ids = movie_review$id[train_ind]
txt = tolower(movie_review[['review']][train_ind])
names(txt) = ids
tokens = word_tokenizer(txt)
it = itoken(tokens, progressbar = FALSE, ids = ids)
vocab = create_vocabulary(it)
vocab = prune_vocabulary(vocab, term_count_min = 5, doc_proportion_min = 0.02)
dtm = create_dtm(it, vectorizer = vocab_vectorizer(vocab))
n_topic = 10
model = LDA$new(n_topic, doc_topic_prior = 0.1, topic_word_prior = 0.01)
doc_topic_distr =
  model$fit_transform(dtm, n_iter = n_iter, n_check_convergence = 1,
  convergence_tol = -1, progressbar = FALSE)
topic_word_distr_10 = model$topic_word_distribution
perplexity(dtm, topic_word_distr_10, doc_topic_distr)
prune_vocabulary

**Prune vocabulary**

**Description**

This function filters the input vocabulary and throws out very frequent and very infrequent terms. See examples in for the `vocabulary` function. The parameter `vocab_term_max` can also be used to limit the absolute size of the vocabulary to only the most frequently used terms.

**Usage**

```r
prune_vocabulary(vocabulary, term_count_min = 1L, term_count_max = Inf,
 doc_proportion_min = 0, doc_proportion_max = 1, doc_count_min = 1L,
 doc_count_max = Inf, vocab_term_max = Inf)
```

**Arguments**

- **vocabulary**: a vocabulary from the `vocabulary` function.
- **term_count_min**: minimum number of occurrences over all documents.
- **term_count_max**: maximum number of occurrences over all documents.
- **doc_proportion_min**: minimum proportion of documents which should contain term.
- **doc_proportion_max**: maximum proportion of documents which should contain term.
- **doc_count_min**: term will be kept number of documents contain this term is larger than this value.
- **doc_count_max**: term will be kept number of documents contain this term is smaller than this value.
- **vocab_term_max**: maximum number of terms in vocabulary.

**See Also**

- `vocabulary`

---

RelaxedWordMoversDistance

*Creates Relaxed Word Movers Distance (RWMD) model*
RelaxedWordMoversDistance

Description

RWMD model can be used to query the "relaxed word movers distance" from a document to a collection of documents. RWMD tries to measure distance between query document and collection of documents by calculating how hard it is to transform words from query document into words from each document in collection. For more detail see following article: http://mkusner.github.io/publications/WMD.pdf. However in contrast to the article above we calculate "easiness" of the conversion of one word into another by using cosine similarity (but not a euclidean distance). Also here in text2vec we've implemented efficient RWMD using the tricks from the Linear-Complexity Relaxed Word Mover’s Distance with GPU Acceleration article.

Usage

```
RelaxedWordMoversDistance
```

Format

```
R6Class object.
```

Usage

For usage details see Methods, Arguments and Examples sections.

```
rwmd = RelaxedWordMoversDistance$new(x, embeddings)
rwmd$sim2(x)
```

Methods

```
$new(x, embeddings) Constructor for RWMD model. x - docuent-term matrix which represents collection of documents against which you want to perform queries. embeddings - matrix of word embeddings which will be used to calculate similarities between words (each row represents a word vector).
$sim(x) calculates similarity from a collection of documents to collection query documents x. x here is a document-term matrix which represents the set of query documents.
$dist(x) calculates distance from a collection of documents to collection query documents x x here is a document-term matrix which represents the set of query documents.
```

Examples

```
Not run:
library(text2vec)
library(rsparse)
data("movie_review")
tokens = word_tokenizer(tolower(movie_review$review))
v = create_vocabulary(itoken(tokens))
v = prune_vocabulary(v, term_count_min = 5, doc_proportion_max = 0.5)
it = itoken(tokens)
vectorizer = vocab_vectorizer(v)
```
```
dtm = create_dtm(it, vectorizer)
tcm = create_tcm(it, vectorizer, skip_grams_window = 5)
glove_model = GloVe$new(rank = 50, x_max = 10)
wv = glove_model$fit_transform(tcm, n_iter = 5)
get average of main and context vectors as proposed in GloVe paper
wv = wv + t(glove_model$components)
rwmd_model = RelaxedWordMoversDistance$new(dtm, wv)
rwms = rwmd_model$sim2(dtm[1:10,])
head(sort(rwms[,], decreasing = T))
```

```text
similarities

Pairwise Similarity Matrix Computation

Description

sim2 calculates pairwise similarities between the rows of two data matrices. **Note** that some methods work only on sparse matrices and others work only on dense matrices.

psim2 calculates "parallel" similarities between the rows of two data matrices.

Usage

```r
sim2(x, y = NULL, method = c("cosine", "jaccard"), norm = c("l2", "none"))
```

```r
psim2(x, y, method = c("cosine", "jaccard"), norm = c("l2", "none"))
```

Arguments

- `x` : first matrix.
- `y` : second matrix. For sim2 `y = NULL` set by default. This means that we will assume `y = x` and calculate similarities between all rows of the `x`.
- `method` : character, the similarity measure to be used. One of c("cosine", "jaccard").
- `norm` : character = c("l2", "none") - how to scale input matrices. If they already scaled - use "none"

Details

Computes the similarity matrix using given method.

psim2 takes two matrices and return a single vector, giving the 'parallel' similarities of the vectors.

Value

sim2 returns matrix of similarities between each row of matrix `x` and each row of matrix `y`.

psim2 returns vector of "parallel" similarities between rows of `x` and `y`.
```
**split_into**  
*Split a vector for parallel processing*

**Description**

This function splits a vector into \( n \) parts of roughly equal size. These splits can be used for parallel processing. In general, \( n \) should be equal to the number of jobs you want to run, which should be the number of cores you want to use.

**Usage**

```r
split_into(vec, n)
```

**Arguments**

- **vec**: input vector
- **n**: integer desired number of chunks

**Value**

list with \( n \) elements, each of roughly equal length

**text2vec**

**Description**

Fast vectorization, topic modeling, distances and GloVe word embeddings in R.

**Details**

To learn more about text2vec visit project website: [http://text2vec.org](http://text2vec.org) Or start with the vignettes: `browseVignettes(package = "text2vec")`
TfIdf

Description

Creates TfIdf(Latent semantic analysis) model. "smooth" IDF (default) is defined as follows:
\[
idf = \log(1 + (\text{# documents in the corpus}) / (\text{# documents where the term appears}))
\]

"non-smooth" IDF is defined as follows:
\[
idf = \log((\text{# documents in the corpus}) / (\text{# documents where the term appears}))
\]

Usage

TfIdf

Format

R6Class object.

Details

Term Frequency Inverse Document Frequency

Usage

For usage details see Methods, Arguments and Examples sections.

\[
tfidf = \text{TfIdf}\$\text{new}(\text{smooth_idf = TRUE, norm = c("l1", "l2", "none"), sublinear_tf = FALSE})
\]

Methods

$\text{new}(\text{smooth_idf = TRUE, norm = c("l1", "l2", "none"), sublinear_tf = FALSE}) \text{ Creates } \text{tf-idf model}

$\text{fit_transform}(\text{x}) \text{ fit model to an input sparse matrix (preferably in "dgCMatrix" format) and then transforms it.}

$\text{transform}(\text{x}) \text{ transform new data } \text{x} \text{ using tf-idf from train data}

Arguments

\[
\text{tfidf} \text{ A } \text{TfIdf} \text{ object}
\]

\[
\text{x} \text{ An input term-co-occurrence matrix. Preferably in dgCMatrix format}
\]

\[
\text{smooth_idf} \text{ TRUE smooth IDF weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once.}
\]

\[
\text{norm} \text{ c("l1", "l2", "none") Type of normalization to apply to term vectors. "l1" by default, i.e., scale by the number of words in the document.}
\]

\[
\text{sublinear_tf} \text{ FALSE Apply sublinear term-frequency scaling, i.e., replace the term frequency with 1 + log(TF)}
\]
Examples

data("movie_review")
N = 100
tokens = word_tokenizer(tolower(movie_review$review[1:N]))
dtm = create_dtm(itoken(tokens), hash_vectorizer())
model_tfidf = Tfidf$new()
dtm_tfidf = model_tfidf$fit_transform(dtm)

Description

Few simple tokenization functions. For more comprehensive list see tokenizers package: https://cran.r-project.org/package=tokenizers. Also check stringi::stri_split_*.

Usage

word_tokenizer(strings, ...)
char_tokenizer(strings, ...)
space_tokenizer(strings, sep = " ", xptr = FALSE, ...)
postag_lemma_tokenizer(strings, udpipe_model, tagger = "default",
tokenizer = "tokenizer", pos_keep = character(0),
pos_remove = c("PUNCT", "DET", "ADP", "SYM", "PART", "SCONJ", "Cconj", 
"AUX", "X", "INTJ"))

Arguments

strings character vector
... other parameters (usually not used - see source code for details).
sep character, nchar(sep) = 1 - split strings by this character.
xptr logical tokenize at C++ level - could speed-up by 15-50%.
udpipe_model - udpipe model, can be loaded with ?udpipe::udpipe_load_model
tagger "default" - tagger parameter as per ?udpipe::udpipe_annotate docs.
tokenizer "tokenizer" - tokenizer parameter as per ?udpipe::udpipe_annotate docs.
pos_keep character(0) specifies which tokens to keep. character(0) means to keep all of them
pos_remove c("PUNCT", "DET", "ADP", "SYM", "PART", "SCONJ", "Cconj", "AUX", "X", "INTJ") - which tokens to remove. character(0) is equal to not remove any.

Value

list of character vectors. Each element of list contains vector of tokens.
Examples

doc = c("first second", "bla, bla, blaaa")
# split by words
word_tokenizer(doc)
#faster, but far less general - perform split by a fixed single whitespace symbol.
space_tokenizer(doc, " ")

vectorizers

Vocabulary and hash vectorizers

Description

This function creates an object (closure) which defines on how to transform list of tokens into vector space - i.e. how to map words to indices. It supposed to be used only as argument to create_dtm, create_tcm, create_vocabulary.

Usage

vocab_vectorizer(vocabulary)
hash_vectorizer(hash_size = 2^18, ngram = c(1L, 1L),
signed_hash = FALSE)

Arguments

vocabulary text2vec_vocabulary object, see create_vocabulary.
hash_size integer The number of of hash-buckets for the feature hashing trick. The number must be greater than 0, and preferably it will be a power of 2.
ngram integer vector. The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that ngram_min <= n <= ngram_max will be used.
signed_hash logical, indicating whether to use a signed hash-function to reduce collisions when hashing.

Value

A vectorizer object (closure).

See Also

create_dtm create_tcm create_vocabulary
Examples

data("movie_review")
N = 100
vectorizer = hash_vectorizer(2 ^ 18, c(1L, 2L))
it = itoken(movie_review$review[1:N], preprocess_function = tolower,
    tokenizer = word_tokenizer, n_chunks = 10)
hash_dtm = create_dtm(it, vectorizer)

it = itoken(movie_review$review[1:N], preprocess_function = tolower,
    tokenizer = word_tokenizer, n_chunks = 10)
v = create_vocabulary(it, c(1L, 1L) )
vectorizer = vocab_vectorizer(v)

it = itoken(movie_review$review[1:N], preprocess_function = tolower,
    tokenizer = word_tokenizer, n_chunks = 10)
dtm = create_dtm(it, vectorizer)
Index

* datasets
  BNS, 3
  Collocations, 8
  GloVe, 17
  LatentDirichletAllocation, 21
  LatentSemanticAnalysis, 23
  movie_review, 24
  RelaxedWordMoversDistance, 27
  TfIdf, 31

as.lda_c, 2

BNS, 3

char_tokenizer (tokenizers), 32
check_analogy_accuracy, 4, 26
coherence, 4
Collocations, 8
combine_vocabularies, 10
create_dtm, 11, 14, 19, 20, 25, 33
create_tcm, 13, 13, 19, 20, 33
create_vocabulary, 11, 14, 19, 20, 33
dist, 17
dist2 (distances), 16
distances, 16

GlobalVectors (GloVe), 17
GloVe, 14, 17, 26

hash_vectorizer (vectorizers), 33

idir, 20
idir (ifiles), 18
ifiles, 18, 20
ifiles_parallel (ifiles), 18
itoken, 12–15, 18, 19, 20
itoken_parallel (itoken), 19

jsPCA_robust, 21
LatentDirichletAllocation, 21

LatentSemanticAnalysis, 23
LDA (LatentDirichletAllocation), 21
LSA (LatentSemanticAnalysis), 23

movie_review, 24

normalize, 25

pdist2 (distances), 16

perplexity, 25

postag_lemma_tokenizer (tokenizers), 32
prepare_analogy_questions, 4, 26
prune_vocabulary, 27

psim2 (similarities), 29

R6Class, 3, 8, 21, 23, 28, 31

RelaxedWordMoversDistance, 27

RWMD, 17

RWMD (RelaxedWordMoversDistance), 27

sim2 (similarities), 29

similarities, 29

space_tokenizer (tokenizers), 32

split_into, 30

text2vec, 30

TfIdf, 31
tokenizers, 32

vectorizers, 12, 13, 19, 20, 33

vocab_vectorizer (vectorizers), 33

vocabulary, 27

vocabulary (create_vocabulary), 14

word_tokenizer (tokenizers), 32

35