Package ‘text2vec’

January 11, 2018

Type Package
Version 0.5.1
Date 2018-01-10
Title Modern Text Mining Framework for R
License GPL (>= 2) | file LICENSE
Description Fast and memory-friendly tools for text vectorization, topic modeling (LDA, LSA), word embeddings (GloVe), similarities. This package provides a source-agnostic streaming API, which allows researchers to perform analysis of collections of documents which are larger than available RAM. All core functions are parallelized to benefit from multicore machines.

Maintainer Dmitriy Selivanov <selivanov.dmitriy@gmail.com>

Encoding UTF-8

SystemRequirements GNU make, C++11

Depends R (>= 3.2.0), methods
Imports Matrix (>= 1.1), Rcpp (>= 0.11), RcppParallel (>= 4.3.14),
digest (>= 0.6.8), foreach(>= 1.4.3), data.table(>= 1.9.6),
irlba (>= 2.2.1), R6 (>= 2.1.2), futile.logger (>= 1.4.3),
stringi (>= 1.1.5), mlapi (>= 0.1.0)

LinkingTo Rcpp, RcppParallel, digest, sparsepp (>= 0.2.0)

Suggests doParallel, testthat, covr, knitr, rmarkdown, glmnet,
parallel, tokenizers, magrittr

URL http://text2vec.org

BugReports https://github.com/dselivanov/text2vec/issues

VignetteBuilder knitr

LazyData true

RoxygenNote 6.0.1

NeedsCompilation yes

Author Dmitriy Selivanov [aut, cre, cph],
Qing Wang [aut, cph] (Author of the WaprLDA C++ code)

Repository CRAN

Date/Publication 2018-01-11 21:57:23 UTC
R topics documented:

as.lda_c ... 2
BNS ... 3
check_analogy_accuracy .. 4
Collocations ... 4
create_dtm .. 7
create_tcm .. 8
create_vocabulary .. 10
distances .. 12
GlobalVectors ... 13
glove ... 15
ifiles ... 16
itoken ... 17
LatentDirichletAllocation 19
LatentSemanticAnalysis .. 21
movie_review .. 22
normalize ... 23
perplexity ... 23
prepare_analogy_questions 24
prune_vocabulary .. 25
RelaxedWordMoversDistance 25
similarities .. 27
split_into ... 28
text2vec ... 28
TfIdf ... 29
tokenizers .. 30
vectorizers .. 31

Index 33

as.lda_c

Converts document-term matrix sparse matrix to 'lda_c' format

Description

Converts 'dgCMatrix' (or coercible to 'dgCMatrix') to 'lda_c' format

Usage

```r
as.lda_c(X)
```

Arguments

| X | Document-Term matrix |
Description

Creates BNS (bi-normal separation) model. Defined as: \(Q(\text{true positive rate}) - Q(\text{false positive rate}) \), where \(Q \) is a quantile function of normal distribution.

Usage

BNS

Format

\texttt{R6Class} object.

Details

Bi-Normal Separation

Fields

bns_stat data.table with computed BNS statistic. Useful for feature selection.

Usage

For usage details see \textbf{Methods, Arguments and Examples} sections.

\begin{verbatim}
bns = BNS$new(thresh = 0.0005)
bns$fit_transform(x, y)
bns$transform(x)
\end{verbatim}

Methods

\$new(\text{threshold} = 0.0005) Creates bns model

\$fit_transform(x, y) fit model to an input sparse matrix (preferably in "dgCMatrix" format) and then transforms it.

\$transform(x) transform new data \(x \) using bns from train data

Arguments

\begin{itemize}
\item \texttt{bns} A BNS object
\item \texttt{x} An input document term matrix. Preferably in \texttt{dgCMatrix} format
\item \texttt{y} Binary target variable coercible to logical.
\item \texttt{thresh} Clipping threshold to avoid infinities in quantile function.
\end{itemize}
Examples

```r
data("movie_review")
N = 1000
it = itoken(head(movie_review$review, N), preprocessor = tolower, tokenizer = word_tokenizer)
vocab = create_vocabulary(it)
dtm = create_dtm(it, vocab_vectorizer(vocab))
model_bns = BNS$new()
dtm_bns = model_bns$fit_transform(dtm, head(movie_review$sentiment, N))
```

check_analogy_accuracy

Checks accuracy of word embeddings on the analogy task

Description

This function checks how well the GloVe word embeddings do on the analogy task. For full examples see glove.

Usage

```r
check_analogy_accuracy(questions_list, m_word_vectors)
```

Arguments

- `questions_list` list of questions. Each element of `questions_list` is a integer matrix with four columns. It represents a set of questions related to a particular category. Each element of matrix is an index of a row in `m_word_vectors`. See output of `prepare_analogy_questions` for details
- `m_word_vectors` word vectors numeric matrix. Each row should represent a word.

See Also

`prepare_analogy_questions`, `glove`

Collocations

Collocations model.

Description

Creates Collocations model which can be used for phrase extraction.

Usage

```r
Collocations
```
Collocations

Format

R6Class object.

Fields

collocation_stat data.table with collocations(phrases) statistics. Useful for filtering non-relevant phrases

Usage

For usage details see Methods, Arguments and Examples sections.

```r
model = Collocations$new(vocabulary = NULL, collocation_count_min = 50, pmi_min = 5, gensim_min = 0,
                          lfmd_min = -Inf, llr_min = 0, sep = "_")
model$partial_fit(it, ...)
model$fit(it, n_iter = 1, ...)
model$transform(it)
model$prune(pmi_min = 5, gensim_min = 0, lfmd_min = -Inf, llr_min = 0)
model$collocation_stat
```

Methods

$new(vocabulary = NULL, collocation_count_min = 50, sep = "_") Constructor for Collocations model. For description of arguments see Arguments section.

$fit(it, n_iter = 1, ...) fit Collocations model to input iterator it. Iterating over input iterator it n_iter times, so hierarchically can learn multi-word phrases. Invisibly returns collocation_stat.

$partial_fit(it, ...) iterates once over data and learns collocations. Invisibly returns collocation_stat. Workhorse for $fit()

$transform(it) transforms input iterator using learned collocations model. Result of the transformation is new itoken or itoken_parallel iterator which will produce tokens with phrases collapsed into single token.

$prune(pmi_min = 5, gensim_min = 0, lfmd_min = -Inf, llr_min = 0) filter out non-relevant phrases with low score. User can do it directly by modifying collocation_stat object.

Arguments

- `model` A Collocation model object
- `n_iter` number of iteration over data
- `pmi_min, gensim_min, lfmd_min, llr_min` minimal scores of the corresponding statistics in order to collapse tokens into collocation:
 - pointwise mutual information
 - "gensim" scores - https://radimrehurek.com/gensim/models/phrases.html adapted from word2vec paper
 - log-frequency biased mutual dependency
 - Dunning’s logarithm of the ratio between the likelihoods of the hypotheses of dependence and independence

it An input itoken or itoken_parallel iterator

vocabulary text2vec_vocabulary - if provided will look for collocations consisted of only from vocabulary

Examples

```r
library(text2vec)
data("movie_review")

preprocessor = function(x) {
  gsub("[^[:alnum:]]\s", replacement = " ", tolower(x))
}
sample_ind = 1:100
tokens = word_tokenizer(preprocessor(movie_review$review[sample_ind]))
it = itoken(tokens, ids = movie_review$id[sample_ind])

system.time(v <- create_vocabulary(it))
v = prune_vocabulary(v, term_count_min = 5)

model = Collocations$new(collocation_count_min = 5, pmi_min = 5)
model$fit(it, n_iter = 2)
model$collocation_stat

it2 = model$transform(it)
v2 = create_vocabulary(it2)

# check what phrases model has learned
setdiff(v2$term, v$term)

# [1] "main_character" "jeroen_krabb" "boogey_man" "in_order"
# [5] "couldn_t" "much_more" "my_favorite" "worst_film"
# [9] "have_seen" "characters_are" "i_mean" "better_than"
# [13] "don_t_care" "more_than" "look_at" "they_re"
# [17] "each_other" "must_be" "sexual_scenes" "have_been"
# [21] "there_are_some" "you_re" "would_have" "i_loved"
# [25] "special_effects" "hit_man" "those_who" "people_who"
# [29] "i_am" "there_are" "could_have_been" "we_re"
# [33] "so_bad" "should_be" "at_least" "can_t"
# [37] "i_thought" "isn_t" "i_ve" "if_you"
# [41] "didn_t" "doesn_t" "i_m" "don_t"

# and same way we can create document-term matrix which contains
# words and phrases!
dtm = create_dtm(it2, vocab_vectorizer(v2))

# check that dtm contains phrases
which(colnames(dtm) == "jeroen_krabb")
```
create_dtm

Document-term matrix construction

Description

This is a high-level function for creating a document-term matrix.

Usage

```r
create_dtm(it, vectorizer, type = c("dgCMatrix", "dgTMatrix"), ...)
```

```
## S3 method for class 'itoken'
create_dtm(it, vectorizer, type = c("dgCMatrix", "dgTMatrix"), ...)

## S3 method for class 'list'
create_dtm(it, vectorizer, type = c("dgCMatrix", "dgTMatrix"), ...)

## S3 method for class 'itoken_parallel'
create_dtm(it, vectorizer, type = c("dgCMatrix", "dgTMatrix"), ...)
```

Arguments

- `it`
 - *itoken* iterator or list of *itoken* iterators.
- `vectorizer`
 - function vectorizer function; see `vectorizers`.
- `type`
 - character, one of `c("dgCMatrix", "dgTMatrix")`.
- `...`
 - arguments to the `foreach` function which is used to iterate over it.

Details

If a parallel backend is registered and first argument is a list of *itoken*, iterators, function will construct the DTM in multiple threads. User should keep in mind that he or she should split the data itself and provide a list of *itoken* iterators. Each element of it will be handled in separate thread and combined at the end of processing.

Value

A document-term matrix

See Also

- *itoken vectorizers*
create_tcm

Term-co-occurrence matrix construction

Description

This is a function for constructing a term-co-occurrence matrix (TCM). TCM matrix usually used with GloVe word embedding model.

Usage

create_tcm(it, vectorizer, skip_grams_window = 5L,
 skip_grams_window_context = c("symmetric", "right", "left"),
 weights = 1/seq_len(skip_grams_window), ...)

S3 method for class 'itoken'
create_tcm(it, vectorizer, skip_grams_window = 5L,
 skip_grams_window_context = c("symmetric", "right", "left"),
 weights = 1/seq_len(skip_grams_window), ...)

S3 method for class 'itoken_parallel'
create_tcm(it, vectorizer, skip_grams_window = 5L,
create_tcm

```r
skip_grams_window_context = c("symmetric", "right", "left"),
weights = 1/seq_len(skip_grams_window), ...
```

Arguments

- `it` list of iterators over tokens from `itoken`. Each element is a list of tokens, that is, tokenized and normalized strings.
- `vectorizer` function vectorizer function. See `vectorizers`.
- `skip_grams_window` integer window for term-co-occurrence matrix construction. `skip_grams_window` should be > 0 if you plan to use `vectorizer` in `create_tcm` function. Value of 0L means to not construct the TCM.
- `skip_grams_window_context` one of c("symmetric", "right", "left") - which context words to use when count co-occurrence statistics.
- `weights` weights for context/distant words during co-occurrence statistics calculation. By default we are setting weight = 1 / distance_from_current_word. Should have length equal to `skip_grams_window`. "symmetric" by default - take into account `skip_grams_window` left and right.
- `...` arguments to `foreach` function which is used to iterate over `it`.

Details

If a parallel backend is registered, it will construct the TCM in multiple threads. The user should keep in mind that he/she should split data and provide a list of `itoken` iterators. Each element of `it` will be handled in a separate thread combined at the end of processing.

Value

dgTMatrix TCM matrix

See Also

`itoken create_dtm`

Examples

```r
## Not run:
data("movie_review")

# single thread

tokens = word_tokenizer(tolower(movie_review$review))

it = itoken(tokens)
v = create_vocabulary(jobs)
vectorizer = vocab_vectorizer(v)
tcm = create_tcm(itoken(tokens), vectorizer, skip_grams_window = 3L)

# parallel version
```
create_vocabulary

Creates a vocabulary of unique terms

Description

This function collects unique terms and corresponding statistics. See the below for details.

Usage

create_vocabulary(it, ngram = c(ngram_min = 1L, ngram_max = 1L),
 stopwords = character(0), sep_ngram = "\""

vocabulary(it, ngram = c(ngram_min = 1L, ngram_max = 1L),
 stopwords = character(0), sep_ngram = "\""

S3 method for class 'character'
create_vocabulary(it, ngram = c(ngram_min = 1L, ngram_max = 1L), stopwords = character(0), sep_ngram = "\"

S3 method for class 'itoken'
create_vocabulary(it, ngram = c(ngram_min = 1L, ngram_max = 1L), stopwords = character(0), sep_ngram = "\"

S3 method for class 'list'
create_vocabulary(it, ngram = c(ngram_min = 1L, ngram_max = 1L), stopwords = character(0), sep_ngram = "\"", ...)

S3 method for class 'itoken_parallel'
create_vocabulary(it, ngram = c(ngram_min = 1L, ngram_max = 1L), stopwords = character(0), sep_ngram = "\", ...)

Arguments

it iterator over a list of character vectors, which are the documents from which the user wants to construct a vocabulary. See itoken. Alternatively, a character vector of user-defined vocabulary terms (which will be used "as is").
create_vocabulary

ngram integer vector. The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that ngram_min <= n <= ngram_max will be used.

stopwords character vector of stopwords to filter out. NOTE that stopwords will be used "as is". This means that if preprocessing function in itoken does some text modification (like stemming), then this preprocessing need to be applied to stopwords before passing them here. See https://github.com/dselivanov/textRvec/issues/228 for example.

sep_ngram character a character string to concatenate words in ngrams

... additional arguments to foreach function.

Value
text2vec_vocabulary object, which is actually a data.frame with following columns:

term character vector of unique terms
term_count integer vector of term counts across all documents
doc_count integer vector of document counts that contain corresponding term

Also it contains metainformation in attributes: ngram: integer vector, the lower and upper boundary of the range of n-gram-values. document_count: integer number of documents vocabulary was built. stopwords: character vector of stopwords sep_ngram: character separator for ngrams

Methods (by class)

• character: creates text2vec_vocabulary from predefined character vector. Terms will be inserted as is, without any checks (ngrams number, ngram delimiters, etc.).
• itoken: collects unique terms and corresponding statistics from object.
• list: collects unique terms and corresponding statistics from list of itoken iterators. If parallel backend is registered, it will build vocabulary in parallel using foreach.
• itoken_parallel: collects unique terms and corresponding statistics from iterator. If parallel backend is registered, it will build vocabulary in parallel using foreach.

Examples
data("movie_review")
txt = movie_review[['review']][1:100]
itr = itoken(txt, tolower, word_tokenizer, n_chunks = 10)
vocab = create_vocabulary(itr)
pruned_vocab = prune_vocabulary(vocab, term_count_min = 10, doc_proportion_max = 0.8,
doc_proportion_min = 0.001, vocab_term_max = 20000)
Pairwise Distance Matrix Computation

Description

dist2 calculates pairwise distances/similarities between the rows of two data matrices. **Note** that some methods work only on sparse matrices and others work only on dense matrices.

pdist2 calculates "parallel" distances between the rows of two data matrices.

Usage

dist2(x, y = NULL, method = c("cosine", "euclidean", "jaccard"), norm = c("l2", "l1", "none"))

pdist2(x, y, method = c("cosine", "euclidean", "jaccard"), norm = c("l2", "l1", "none"))

Arguments

- **x** first matrix.
- **y** second matrix. For dist2 y = NULL set by default. This means that we will assume y = x and calculate distances/similarities between all rows of the x.
- **method** usually character or instance of tet2vec_distance class. The distances/similarity measure to be used. One of c("cosine", "euclidean", "jaccard") or RWMD. RWMD works only on bag-of-words matrices. **In case of "cosine" distance max distance will be 1 - (-1) = 2**
- **norm** character = c("l2", "l1", "none") - how to scale input matrices. If they already scaled - use "none"

Details

Computes the distance matrix computed by using the specified method. Similar to dist function, but works with two matrices.

pdist2 takes two matrices and return a single vector, giving the ‘parallel’ distances of the vectors.

Value

dist2 returns matrix of distances/similarities between each row of matrix x and each row of matrix y.

pdist2 returns vector of "parallel" distances between rows of x and y.
GlobalVectors

Creates Global Vectors word-embeddings model.

Description

Class for GloVe word-embeddings model. It can be trained via fully can asynchronous and parallel AdaGrad with \$fit_transform() method.

Usage

GloVe

Format

R6Class object.

Fields

components represents context word vectors
n_dump_every integer = 0 by default. Defines frequency of dumping word vectors. For example user can ask to dump word vectors each 5 iteration.
shuffle logical = FALSE by default. Defines shuffling before each SGD iteration. Generally shuffling is a good idea for stochastic-gradient descent, but from my experience in this particular case it does not improve convergence.
grain_size integer = 1e5L by default. This is the grain_size for RcppParallel::parallelReduce. For details, see [http://rcppcore.github.io/RcppParallel/#grain_size](http://rcppcore.github.io/RcppParallel/#grain-size). We don't recommend to change this parameter.

Usage

For usage details see Methods, Arguments and Examples sections.

glove = GlobalVectors\$new(word_vectors_size, vocabulary, x_max, learning_rate = 0.15, alpha = 0.75, lambda = 0, shuffle = FALSE, initial = NULL)
glove$fit_transform(x, n_iter = 10L, convergence_tol = -1, n_check_convergence = 1L, n_threads = RcppParallel::defaultNumThreads(), ...)
glove$components
glove$dump()

Methods

\texttt{new}(word_vectors_size, vocabulary, x_max, learning_rate = 0.15, alpha = 0.75, lambda = 0, shuffle = FALSE)
Constructor for Global vectors model. For description of arguments see Arguments section.

$\texttt{fit_transform}$(x, n_iter = 10L, convergence_tol = -1, n_check_convergence = 1L, n_threads = RcppParallel::)
fit Glove model to input matrix x

\texttt{dump}()
get model internals - word vectors and biases for main and context words

$\texttt{get_history}$()
get history of SGD costs and word vectors (if n_dump_every > 0)
Arguments

glove A GloVe object

x An input term co-occurrence matrix. Preferably in dgTMatrix format

n_iter integer number of SGD iterations

word_vectors_size desired dimension for word vectors

vocabulary character vector or instance of text2vec_vocabulary class. Each word should correspond to dimension of co-occurrence matrix.

x_max integer maximum number of co-occurrences to use in the weighting function. see the GloVe paper for details: http://nlp.stanford.edu/pubs/glove.pdf

learning_rate numeric learning rate for SGD. I do not recommend that you modify this parameter, since AdaGrad will quickly adjust it to optimal

convergence_tol numeric = -1 defines early stopping strategy. We stop fitting when one of two following conditions will be satisfied: (a) we have used all iterations, or (b) cost_previous_iter / cost_current_iter < convergence_tol. By default perform all iterations.

alpha numeric = 0.75 the alpha in weighting function formula : f(x) = 1if x > x_max; else(x/x_max)^alpha

lambda numeric = 0.0 L1 regularization coefficient. 0 = vanilla GloVe, corresponds to original paper and implementation. lambda >0 corresponds to text2vec new feature and different SGD algorithm. From our experience small lambda (like lambda = 1e-5) usually produces better results that vanilla GloVe on small corpuses

initial NULL - word vectors and word biases will be initialized randomly. Or named list which contains w_i, w_j, b_i, b_j values - initial word vectors and biases. This is useful for fine-tuning. For example one can pretrain model on large corpus (such as wikipedia dump) and then fine tune on smaller task-specific dataset

See Also

http://nlp.stanford.edu/projects/glove/

Examples

```r
## Not run:
temp = tempfile()
download.file('http://mattmahoney.net/dc/text8.zip', temp)
text8 = readLines(unz(temp, "text8"))
it = itoken(text8)
vocabulary = create_vocabulary(it)
vocabulary = prune_vocabulary(vocabulary, term_count_min = 5)
v_vect = vocab_vectorizer(vocabulary)
tcm = create_tcm(it, v_vect, skip_grams_window = 5L)
glove_model = GloVe$new(word_vectors_size = 50,
                      vocabulary = vocabulary, x_max = 10, learning_rate = .25)
# fit model and get word vectors
word_vectors_main = glove_model$fit_transform(tcm, n_iter = 10)
word_vectors_context = glove_model$components
word_vectors = word_vectors_main + t(word_vectors_context)

## End(Not run)
```
Description

DEPRECATED. This function trains a GloVe word-embeddings model via fully asynchronous and parallel AdaGrad.

Usage

glove(tcm, vocabulary_size = nrow(tcm), word_vectors_size, x_max, num_iters, shuffle_seed = NA_integer_, learning_rate = 0.05, convergence_threshold = -1, grain_size = 100000L, alpha = 0.75, ...)

Arguments

tcm
an object which represents a term-co-occurrence matrix, which is used in training. At the moment only dgTMatrix or objects coercible to a dgTMatrix are supported. In future releases we will add support for out-of-core learning and streaming a TCM from disk.

vocabulary_size
number of words in in the term-co-occurrence matrix

word_vectors_size
desired dimension for word vectors

x_max
maximum number of co-occurrences to use in the weighting function. See the GloVe paper for details: http://nlp.stanford.edu/pubs/glove.pdf.

num_iters
number of AdaGrad epochs

shuffle_seed
integer seed. Use NA_integer_ to turn shuffling off. A seed defines shuffling before each SGD iteration. Parameter only controls shuffling before each SGD iteration. Result still will be unpredictable (because of Hogwild style async SGD)! Generally shuffling is a good idea for stochastic-gradient descent, but from my experience in this particular case it does not improve convergence. By default there is no shuffling. Please report if you find that shuffling improves your score.

learning_rate
learning rate for SGD. I do not recommend that you modify this parameter, since AdaGrad will quickly adjust it to optimal.

convergence_threshold
defines early stopping strategy. We stop fitting when one of two following conditions will be satisfied: (a) we have used all iterations, or (b) cost_previous_iter / cost_current_iter < convergence_threshold.

grain_size
I do not recommend adjusting this parameter. This is the grain_size for RcppParallel::parallelReduce. For details, see http://rcppcore.github.io/RcppParallel/#grain-size.

alpha
the alpha in weighting function formula: \(f(x) = 1 if x > x_{max}; else (x/x_{max})^\alpha \)pha

... arguments passed to other methods (not used at the moment).
Creates iterator over text files from the disk

Description

The result of this function usually used in an `itoken` function.

Usage

```r
ifiles(file_paths, reader = readLines)
idir(path, reader = readLines)
ifiles_parallel(file_paths, reader = readLines,
               n_chunks = foreach::getDoParWorkers())
```

Arguments

- `file_paths`: character paths of input files
- `reader`: function which will perform reading of text files from disk, which should take a path as its first argument. `reader()` function should return named character vector: `elements of vector = documents, names of the elements = document ids which will be used in DTM construction`. If user doesn’t provide named character vector, document ids will be generated as `file_name + line_number` (assuming that each line is a document).
- `path`: character path of directory. All files in the directory will be read.
- `n_chunks`: integer, defines in how many chunks files will be processed. For example if you have 32 files, and `n_chunks = 8`, then for each 4 files will be created a job (for example document-term matrix construction). In case some parallel backend registered, each job will be evaluated in a separated thread (process) in parallel. So each such group of files will be processed in parallel and at the end all 8 results from will be combined.

See Also

`itoken`

Examples

```r
## Not run:
current_dir_files = list.files(path = ".", full.names = TRUE)
files_iterator = ifiles(current_dir_files)
parallel_files_iterator = ifiles_parallel(current_dir_files, n_chunks = 4)
it = itoken_parallel(parallel_files_iterator)
dtm = create_dtm(it, hash_vectorizer(2**16), type = 'dgTMatrix')

## End(Not run)
dir_files_iterator = idir(path = ".")
```
itoken

Iterators (and parallel iterators) over input objects

Description

This family of function creates iterators over input objects in order to create vocabularies, or DTM and TCM matrices. Iterators usually used in following functions: create_vocabulary, create_dtm, vectorizers, create_tcm. See them for details.

Usage

itoken(iterable, ...)

S3 method for class 'list'
itoken(iterable, n_chunks = 10, progressbar = interactive(),
 ids = NULL, ...)

S3 method for class 'character'
itoken(iterable, preprocessor = identity,
 tokenizer = space_tokenizer, n_chunks = 10, progressbar = interactive(),
 ids = NULL, ...)

S3 method for class 'iterator'
itoken(iterable, preprocessor = identity,
 tokenizer = space_tokenizer, n_chunks = 1L, progressbar = interactive(),
 ...)

itoken_parallel(iterable, ...)

S3 method for class 'character'
itoken_parallel(iterable, preprocessor = identity,
 tokenizer = space_tokenizer, n_chunks = foreach::getDoParWorkers(),
 ids = NULL, ...)

S3 method for class 'ifiles_parallel'
itoken_parallel(iterable, preprocessor = identity,
 tokenizer = space_tokenizer, n_chunks = 1L, ...)

S3 method for class 'list'
itoken_parallel(iterable,
 n_chunks = foreach::getDoParWorkers(), ids = NULL, ...)

Arguments

iterable an object from which to generate an iterator
...

arguments passed to other methods
n_chunks

integer, the number of pieces that object should be divided into. Then each chunk is processed independently (and in case itoken_parallel in parallel if some parallel backend is registered). Usually there is tradeoff: larger number of chunks means lower memory footprint, but slower (if preprocessor, tokenizer functions are efficiently vectorized). And small number of chunks means larger memory footprint but faster execution (again if user supplied preprocessor, tokenizer functions are efficiently vectorized).

progressbar

logical indicates whether to show progress bar.

ids

vector of document ids. If ids is not provided, names(iterableI will be used. If names(iterableI == NULL, incremental ids will be assigned.

preprocessor

function which takes chunk of character vectors and does all pre-processing. Usually preprocessor should return a character vector of preprocessed/cleaned documents. See "Details" section.

tokenizer

function which takes a character vector from preprocessor, split it into tokens and returns a list of character vectors. If you need to perform stemming - call stemmer inside tokenizer. See examples section.

Details

S3 methods for creating an itoken iterator from list of tokens

• list: all elements of the input list should be character vectors containing tokens
• character: raw text source: the user must provide a tokenizer function
• ifiles: from files, a user must provide a function to read in the file (to ifiles) and a function to tokenize it (to itoken)
• idir: from a directory, the user must provide a function to read in the files (to idir) and a function to tokenize it (to itoken)
• ifiles_parallel: from files in parallel

See Also

itfiles, idir, create_vocabulary, create_dtm, vectorizers, create_tcm

Examples

data("movie_review")
txt = movie_review$review[1:100]
ids = movie_review$id[1:100]
it = itoken(txt, tolower, word_tokenizer, n_chunks = 10)
it = itoken(txt, tolower, word_tokenizer, n_chunks = 10, ids = ids)
Example of stemming tokenizer
stem_tokenizer=function(x) {
lapply(word_tokenizer(x), SnowballC::wordStem, language="en")
}
#---
PARALLEL iterators
#---
library(text2vec)
LatentDirichletAllocation

Description

Creates Latent Dirichlet Allocation model. At the moment only 'WarpLDA' is implemented. WarpLDA, an LDA sampler which achieves both the best \(O(1)\) time complexity per token and the best \(O(K)\) scope of random access. Our empirical results in a wide range of testing conditions demonstrate that WarpLDA is consistently 5-15x faster than the state-of-the-art Metropolis-Hastings based LightLDA, and is comparable or faster than the sparsity aware F+LDA.

Usage

LatentDirichletAllocation

LDA

LatentDirichletAllocationDistributed

Format

R6Class object.

Fields

topic_word_distribution distribution of words for each topic. Available after model fitting with model$fit_transform() method.

components unnormalized word counts for each topic-word entry. Available after model fitting with model$fit_transform() method.

Usage

For usage details see Methods, Arguments and Examples sections.

\begin{verbatim}
lda = LDA$new(n_topics = 10L, doc_topic_prior = 50 / n_topics, topic_word_prior = 1 / n_topics)
lda$fit_transform(x, n_iter = 1000, convergence_tol = 1e-3, n_check_convergence = 10, progressbar = interactive())
lda$transform(x, n_iter = 1000, convergence_tol = 1e-3, n_check_convergence = 5, progressbar = FALSE)
lda$get_top_words(n = 10, topic_number = 1L:private$n_topics, lambda = 1)
\end{verbatim}
Methods

$new(n_topics, \text{doc_topic_prior} = 50 / n_topics, \# \text{alpha} \text{topic_word_prior} = 1 / n_topics, \# \text{beta} \text{method} = \text{Bwarplda})$

Constructor for LDA model. For description of arguments see Arguments section.

$\text{fit_transform}(x, n_iter, \text{convergence_tol} = -1, n_check_convergence = 0, \text{progressbar} = \text{interactive})$

fit LDA model to input matrix x and transforms input documents to topic space. Result is a matrix where each row represents corresponding document. Values in a row form distribution over topics.

$\text{transform}(x, n_iter, \text{convergence_tol} = -1, n_check_convergence = 0, \text{progressbar} = \text{FALSE})$

transforms new documents into topic space. Result is a matrix where each row is a distribution of a documents over latent topic space.

$get_top_words(n = 10, \text{topic_number} = 1L:\text{private}$\
$\text{n_topics}, \lambda = 1)$ returns "top words" for a given topic (or several topics). Words for each topic can be sorted by probability of chance to observe word in a given topic ($\lambda = 1$) and by "relevance" which also takes into account frequency of word in corpus ($\lambda < 1$). From our experience in most cases setting $0.2 < \lambda < 0.4$ works well. See http://nlp.stanford.edu/events/illvi2014/papers/sievert-illvi2014.pdf for details.

$\text{plot}(\lambda = 0.1, \text{reorder_topics} = \text{FALSE}, \ldots)$ plot LDA model using https://cran.r-project.org/package=LDAvis package. ... will be passed to LDAvis::createJSON and LDAvis::serverVis functions

Arguments

- ld... A LDA object
- x: An input document-term matrix (should have column names = terms). CSR RsparseMatrix used internally, other formats will be tried to convert to CSR via as() function call.
- n_topics: integer desired number of latent topics. Also knows as K
- doc_topic_prior: numeric prior for document-topic multinomial distribution. Also knows as alpha
- topic_word_prior: numeric prior for topic-word multinomial distribution. Also knows as eta
- n_iter: integer number of sampling iterations
- n_check_convergence: defines how often calculate score to check convergence
- convergence_tol: numeric = -1 defines early stopping strategy. We stop fitting when one of two following conditions will be satisfied: (a) we have used all iterations, or (b) score_previous_check / score_current

Examples

library(text2vec)
data("movie_review")
N = 500
tokens = word_tokenizer(tolower(movie_review\$review[1:N]))
it = itoken(tokens, ids = movie_review\$id[1:N])
v = create_vocabulary(it)
v = prune_vocabulary(v, \text{term_count_min} = 5, \text{doc_proportion_max} = 0.2)
dtm = create_dtm(it, vocab_vectorizer(v))
lda_model = LDA_new(n_topics = 10)
doc_topic_distr = lda_model\$fit_transform(dtm, n_iter = 20)
run LDAvis visualisation if needed (make sure LDAvis package installed)
lda_model\$plot()
LatentSemanticAnalysis

Latent Semantic Analysis model

Description

Usage

LatentSemanticAnalysis

LSA

Format

R6Class object.

Usage

For usage details see Methods, Arguments and Examples sections.

```r
lsa = LatentSemanticAnalysis$new(n_topics, method = c("randomized", "irlba"))
lsa$fit_transform(x, ...)
lsa$transform(x, ...)
lsa$components
```

Methods

$\textit{new}(n\textunderscore\text{topics})$ create LSA model with \textit{n_topics} latent topics

$\textit{fit_transform}(x, \ldots)$ fit model to an input sparse matrix (preferably in \texttt{dgCMatrix} format) and then transform \(x\) to latent space

$\textit{transform}(x, \ldots)$ transform new data \(x\) to latent space

Arguments

\texttt{lsa} A LSA object.

\texttt{x} An input document-term matrix. Preferably in \texttt{dgCMatrix} format

\texttt{n_topics} integer desired number of latent topics.

\texttt{method} character, one of \texttt{c("randomized", "irlba")}. Defines underlying SVD algorithm. For very large data "randomized" usually works faster and more accurate.

... Arguments to internal functions. Notably useful for \texttt{fit_transform()} - these arguments will be passed to \texttt{irlba} or \texttt{svdr} functions which are used as backend for SVD.
Examples

```r
data("movie_review")
N = 100
tokens = word_tokenizer(tolower(movie_review$review[1:N]))
dtm = create_dtm(itoken(tokens), hash_vectorizer())
n_topics = 10
lsa_1 = LatentSemanticAnalysis$new(n_topics)
d1 = lsa_1$fit_transform(dtm)
# the same, but wrapped with S3 methods
d2 = fit_transform(dtm, lsa_1)
```

Description

The labeled dataset consists of 5000 IMDB movie reviews, specially selected for sentiment analysis. The sentiment of the reviews is binary, meaning an IMDB rating < 5 results in a sentiment score of 0, and a rating >=7 has a sentiment score of 1. No individual movie has more than 30 reviews. Important note: we removed non ASCII symbols from the original dataset to satisfy CRAN policy.

Usage

```r
data("movie_review")
```

Format

A data frame with 5000 rows and 3 variables:

- `id` Unique ID of each review
- `sentiment` Sentiment of the review; 1 for positive reviews and 0 for negative reviews
- `review` Text of the review (UTF-8)

Source

normalize

Matrix normalization

Description

normalize matrix rows using given norm

Usage

```r
normalize(m, norm = c("l1", "l2", "none"))
```

Arguments

- `m` matrix (sparse or dense).
- `norm` character the method used to normalize term vectors

Value

normalized matrix

See Also

`create_dtm`

perplexity

Perplexity of a topic model

Description

Given document-term matrix, topic-word distribution, document-topic distribution calculates perplexity

Usage

```r
perplexity(X, topic_word_distribution, doc_topic_distribution)
```

Arguments

- `X` sparse document-term matrix which contains terms counts. Internally Matrix::RsparseMatrix is used. If `class(X) != 'RsparseMatrix'` function will try to coerce X to RsparseMatrix via `as()` call.
- `topic_word_distribution` dense matrix for topic-word distribution. Number of rows = `n_topics`, number of columns = `vocabulary_size`. Sum of elements in each row should be equal to 1 - each row is a distribution of words over topic.
prepare_analogy_questions

Description

This function prepares a list of questions from a questions-words.txt format. For full examples see GloVe.

Usage

prepare_analogy_questions(questions_file_path, vocab_terms)

Arguments

- **questions_file_path** character path to questions file.
- **vocab_terms** character words which we have in the vocabulary and word embeddings matrix.

See Also

check_analogy_accuracy, GloVe

```
prepare_analogy_questions

Prepares list of analogy questions
```

doc_topic_distribution
dense matrix for document-topic distribution. Number of rows = n_documents,
number of columns = n_topics. Sum of elements in each row should be equal
to 1 - each row is a distribution of topics over document.

Examples

```
library(text2vec)
data("movie_review")
n_iter = 10
train_ind = 1:200
ids = movie_review$id[train_ind]
txt = tolower(movie_review[['review']][train_ind])
names(txt) = ids
tokens = word_tokenizer(txt)
it = itoken(tokens, progressbar = FALSE, ids = ids)
vocab = create_vocabulary(it)
vocab = prune_vocabulary(vocab, term_count_min = 5, doc_proportion_min = 0.02)
dtm = create_dtm(it, vectorizer = vocab_vectorizer(vocab))
n_topic = 10
model = LDA$new(n_topic, doc_topic_prior = 0.1, topic_word_prior = 0.01)
doc_topic_distr =
  model$fit_transform(dtm, n_iter = n_iter, n_check_convergence = 1,
  convergence_tol = -1, progressbar = FALSE)
topic_word_distr_10 = model$topic_word_distribution
perplexity(dtm, topic_word_distr_10, doc_topic_distr)
```
prune_vocabulary

Description

This function filters the input vocabulary and throws out very frequent and very infrequent terms. See examples in for the `vocabulary` function. The parameter `vocab_term_max` can also be used to limit the absolute size of the vocabulary to only the most frequently used terms.

Usage

```r
prune_vocabulary(vocabulary, term_count_min = 1L, term_count_max = Inf, 
                  doc_proportion_min = 0, doc_proportion_max = 1, doc_count_min = 1L, 
                  doc_count_max = Inf, vocab_term_max = Inf)
```

Arguments

- `vocabulary`: a vocabulary from the `vocabulary` function.
- `term_count_min`: minimum number of occurrences over all documents.
- `term_count_max`: maximum number of occurrences over all documents.
- `doc_proportion_min`: minimum proportion of documents which should contain term.
- `doc_proportion_max`: maximum proportion of documents which should contain term.
- `doc_count_min`: term will be kept number of documents contain this term is larger than this value.
- `doc_count_max`: term will be kept number of documents contain this term is smaller than this value.
- `vocab_term_max`: maximum number of terms in vocabulary.

See Also

- `vocabulary`

RelaxedWordMoversDistance

creates model which can be used for calculation of “relaxed word movers distance”.

Description

Relaxed word movers distance tries to measure distance between documents by calculating how hard is to transform words from first document into words from second document and vice versa. For more detail see original article: http://mkusner.github.io/publications/WMD.pdf.
Usage

```
RelaxedWordMoversDistance
```

Format

```
R6Class object.
```

Fields

```
progressbar logical = TRUE whether to display progressbar
```

Usage

For usage details see Methods, Arguments and Examples sections.

```
rwmd = RelaxedWordMoversDistance$new(wvL method = c("cosine", "euclidean"), normalize = TRUE, progressbar = FALSE)
```

Methods

```
$new(wvL method = c("cosine", "euclidean")) Constructor for RWMD model For description of arguments see Arguments section
$dist2(xL y) Computes distance between each row of sparse matrix x and each row of sparse matrix y
$pdist2(xL y) Computes "parallel" distance between rows of sparse matrix x and corresponding rows of the sparse matrix y
```

Arguments

```
  rwmd  RWMD object
  x  x sparse document term matrix
  y  y = NULL sparse document term matrix. If y = NULL (as by default), we will assume y = x
  wv  word vectors. Numeric matrix which contains word embeddings. Rows - words, columns - corresponding vectors. Rows should have word names.
  method  name of the distance for measuring similarity between two word vectors. In original paper authors use "euclidean", however we use "cosine" by default (better from our experience). This means distance = 1 - cosine_angle_between_wv
```

Examples

```
## Not run:
data("movie_review")
tokens = word_tokenizer(tolower(movie_review$review))
v = create_vocabulary(itoken(tokens))
v = prune_vocabulary(v, term_count_min = 5, doc_proportion_max = 0.5)
```
it = itoken(tokens)
vectorizer = vocab_vectorizer(v)
dtm = create_dtm(it, vectorizer)
tcm = create_tcm(it, vectorizer, skip_grams_window = 5)
glove_model = GloVe$new(word_vectors_size = 50, vocabulary = v, x_max = 10)
wv = glove_model$fit_transform(tcm, n_iter = 10)
get average of main and context vectors as proposed in GloVe paper
wv = wv + t(glove_model$components)
rwmd_model = RWMD$new(wv)
rwmd_dist = dist2(dtm[1:100,], dtm[1:10,], method = rwmd_model, norm = 'none')
head(rwmd_dist)

End(Not run)

Similarities

Pairwise Similarity Matrix Computation

Description

sim2 calculates pairwise similarities between the rows of two data matrices. **Note** that some methods work only on sparse matrices and others work only on dense matrices.

psim2 calculates "parallel" similarities between the rows of two data matrices.

Usage

```r
sim2(x, y = NULL, method = c("cosine", "jaccard"), norm = c("l2", "none"))
```

```r
psim2(x, y, method = c("cosine", "jaccard"), norm = c("l2", "none"))
```

Arguments

- `x` first matrix.
- `y` second matrix. For `sim2 y = NULL` set by default. This means that we will assume `y = x` and calculate similarities between all rows of the `x`.
- `method` character, the similarity measure to be used. One of `c("cosine", "jaccard")`.
- `norm` character = `c("l2", "none")` - how to scale input matrices. If they already scaled - use "none"

Details

Computes the similarity matrix using given method.

psim2 takes two matrices and return a single vector, giving the 'parallel' similarities of the vectors.

Value

- `sim2` returns matrix of similarities between each row of matrix `x` and each row of matrix `y`.
- `psim2` returns vector of "parallel" similarities between rows of `x` and `y".
split_into

Split a vector for parallel processing

Description

This function splits a vector into \(n \) parts of roughly equal size. These splits can be used for parallel processing. In general, \(n \) should be equal to the number of jobs you want to run, which should be the number of cores you want to use.

Usage

\[
\text{split_into}(\text{vec}, n)
\]

Arguments

- \textbf{vec}
 input vector
- \textbf{n}
 integer desired number of chunks

Value

- list with \(n \) elements, each of roughly equal length

text2vec

text2vec

Description

Fast vectorization, topic modeling, distances and GloVe word embeddings in R.

Details

To learn more about text2vec visit project website: text2vec.org Or start with the vignettes: browseVignettes(package = "text2vec")
Description

Creates Tfidf (Latent semantic analysis) model. The IDF is defined as follows:
\[
\text{idf} = \log\left(\frac{C}{\text{documents where the term appears} + 1}\right)
\]

Usage

Tfidf

Format

`R6Class` object.

Details

Term Frequency Inverse Document Frequency

Usage

For usage details see Methods, Arguments and Examples sections.

```r

tfidf = Tfidf$new(smooth_idf = TRUE, norm = c('l1', 'l2', 'none'), sublinear_tf = FALSE)
tfidf$fit_transform(x)
tfidf$transform(x)
```

Methods

- `$new(smooth_idf = TRUE, norm = c('l1', 'l2', 'none'), sublinear_tf = FALSE)` Creates tf-idf model
- `$fit_transform(x)` fit model to an input sparse matrix (preferably in "dgCMatrix" format) and then transforms it.
- `$transform(x)` transform new data `x` using tf-idf from train data

Arguments

- `tfidf` A Tfidf object
- `x` An input term-co-occurence matrix. Preferably in dgCMatrix format
- `smooth_idf` TRUE smooth IDF weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. This prevents division by zero.
- `norm` c("l1", "l2", "none") Type of normalization to apply to term vectors. "l1" by default, i.e., scale by the number of words in the document.
- `sublinear_tf` FALSE Apply sublinear term-frequency scaling, i.e., replace the term frequency with \[
1 + \log(Tf)
\]
Examples

data("movie_review")
N = 100
tokens = word_tokenizer(tolower(movie_review$review[1:N]))
dtm = create_dtm(ito(token(tokens), hash_vectorizer())
model_tfidf = Tfidf$new()
dtm_tfidf = model_tfidf$fit_transform(dtm)

Description

Few simple tokenization functions. For more comprehensive list see tokenizers package: https://cran.r-project.org/package=tokenizers. Also check stringi::stri_split_*.

Usage

word_tokenizer(strings, ...)

char_tokenizer(strings, ...)

space_tokenizer(strings, sep = " ", xptr = FALSE, ...)

Arguments

strings character vector

... other parameters (usually not used - see source code for details).

sep character, nchar(sep) = 1 - split strings by this character.

xptr logical tokenize at C++ level - could speed-up by 15-50%.

Value

list of character vectors. Each element of list contains vector of tokens.

Examples

doc = c("first second", "bla, bla, blaa")
split by words
word_tokenizer(doc)
#faster, but far less general - perform split by a fixed single whitespace symbol.
space_tokenizer(doc, " ")
Description

This function creates an object (closure) which defines on how to transform list of tokens into vector space - i.e. how to map words to indices. It supposed to be used only as argument to create_dtm, create_tcm, create_vocabulary.

Usage

vocab_vectorizer(vocabulary)
hash_vectorizer(hash_size = 2^18, ngram = c(1L, 1L), signed_hash = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vocabulary</td>
<td>text2vec_vocabulary object, see create_vocabulary.</td>
</tr>
<tr>
<td>hash_size</td>
<td>integer The number of of hash-buckets for the feature hashing trick. The number must be greater than 0, and preferably it will be a power of 2.</td>
</tr>
<tr>
<td>ngram</td>
<td>integer vector. The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that ngram_min <= n <= ngram_max will be used.</td>
</tr>
<tr>
<td>signed_hash</td>
<td>logical, indicating whether to use a signed hash-function to reduce collisions when hashing.</td>
</tr>
</tbody>
</table>

Value

A vectorizer object (closure).

See Also

create_dtm create_tcm create_vocabulary

Examples

data("movie_review")
N = 100
vectorizer = hash_vectorizer(2^18, c(1L, 2L))
it = itoken(movie_review$review[1:N], preprocess_function = tolower,
 tokenizer = word_tokenizer, n_chunks = 10)
hash_dtm = create_dtm(it, vectorizer)

it = itoken(movie_review$review[1:N], preprocess_function = tolower,
 tokenizer = word_tokenizer, n_chunks = 10)
v = create_vocabulary(it, c(1L, 1L))

vectorizer = vocab_vectorizer(v)
it = itoken(movie_review$review[1:N], preprocess_function = tolower,
 tokenizer = word_tokenizer, n_chunks = 10)

dtm = create_dtm(it, vectorizer)
Index

+Topic datasets
 BNS, 3
 Collocations, 4
 GlobalVectors, 13
 LatentDirichletAllocation, 19
 LatentSemanticAnalysis, 21
 movie_review, 22
 RelaxedWordMoversDistance, 25
 TfIdf, 29

as.lda_c, 2

BNS, 3

collocations, 4
Collocations, 4
GlobalVectors, 13
LatentDirichletAllocation, 19
LatentSemanticAnalysis, 21
movie_review, 22
RelaxedWordMoversDistance, 25
TfIdf, 29

LatentDirichletAllocation, 19
LatentDirichletAllocationDistributed
(LatentDirichletAllocation), 19
LatentSemanticAnalysis, 21
LDA (LatentDirichletAllocation), 19
LSA (LatentSemanticAnalysis), 21
movie_review, 22
normalize, 23

pdist2 (distances), 12
perplexity, 23
prepare_analogy_questions, 4, 24
prune_vocabulary, 25
psim2 (similarities), 27

R6Class, 3, 5, 13, 19, 21, 26, 29
RelaxedWordMoversDistance, 25
RWMD, 12
RWMD (RelaxedWordMoversDistance), 25

sim2 (similarities), 27
similarities, 27
space_tokenizer (tokenizers), 30
split_into, 28
svdr, 21

text2vec, 28
text2vec-package (text2vec), 28
TfIdf, 29
tokenizers, 30

vectorizers, 7, 9, 17, 18, 31
vocab_vectorizer (vectorizers), 31
vocabulary, 25
vocabulary (create_vocabulary), 10

word_tokenizer (tokenizers), 30