Package ‘textplot’

May 23, 2020

Type Package
Title Text Plots
Version 0.1.2
Maintainer Jan Wijffels <jwijffels@bnosac.be>
Description Visualise complex relations in texts. This is done by providing functionalities for displaying text co-occurrence networks, text correlation networks, dependency relationships as well as text clustering.
Feel free to join the effort of providing interesting text visualisations.
License GPL-2
URL https://github.com/bnosac/textplot
LazyData true
Imports utils, methods, lattice, stats, Matrix, graphics, data.table
 (>= 1.9.6)
Suggests upipe, BTM, igraph, graph, Rgraphviz, qgraph, glasso, ggplot2, ggraph, ggforce, concaveman
RoxygenNote 7.1.0
NeedsCompilation no
Author Jan Wijffels [aut, cre, cph],
BNOSAC [cph],
Sacha Epskamp [ctb, cph] (code in R/matrix_reduction.R adapted from the qgraph package version 1.4.0 which is GPL-2 licensed),
Ingo Feinerer and Kurt Hornik [ctb, cph] (partial code in R/textplot_corlines.R adapted from the tm package version 0.4 which is GPL-2 licensed)
Repository CRAN
Date/Publication 2020-05-23 16:50:02 UTC

R topics documented:

 example_btm ... 2
example_btm

Example Biterm Topic Model

Description

The object is a BTM topic model created with the BTM package. It was created on a subset of all CRAN packages, namely package which are part of the NaturalLanguageProcessing and Machine-Learning task views.
Timepoint of creation was 2020-04-10.

Examples

```r
library(BTM)
data(example_btm)
example_btm
str(example_btm)
```

element_udpipe

Example annotation of text using udpipe

Description

The object is a data.frame of the annotation of the text: "UDPipe provides tokenization, tagging, lemmatization and dependency parsing of raw text"

Examples

```r
data(example_udpipe)
str(example_udpipe)
```
plot.BTM

Plot function for a BTM object

Description

Plot biterms as a clustered graph. The graph is constructed by assigning each word to a topic and within a topic of words biterm frequencies are shown.

Usage

```r
## S3 method for class 'BTM'
plot(
  x,
  biterms = terms(x, type = "biterms")$biterms,
  top_n = 7,
  which,
  labels = seq_len(x$K),
  title = "Biterm topic model",
  subtitle = list(),
  ...
)
```

Arguments

- `x` an object of class `BTM` with a bitem model
- `biterms` a data.frame with columns `term1`, `term2`, `topic` with all biterms and the topic these were assigned to. Defaults to the biterms used to construct the model.
- `top_n` integer indicating to limit to displaying the `top_n` terms for each topic. Defaults to 7.
- `which` integer vector indicating to display only these topics. See the examples.
- `labels` a character vector of names. Should be of the same length as the number of topics in the data.
- `title` character string with the title to use in the plot
- `subtitle` character string with the subtitle to use in the plot
- `...` not used

Value

an object of class `ggplot`

See Also

`BTM`, `textplot_bitemclusters.default`
Examples

```r
library(igraph)
library(BTM)
library(ggraph)
data(example_btm, package = 'textplot')

model <- example_btm

plot(model, title = "BTM model", top_n = 3)
plot(model, title = "BTM model", top_n = 3, labels = 1:model$K)
plot(model, title = "BTM model", which = 7:15)
plot(model, title = "BTM model", subtitle = "First 5 topics", which = 1:5, top_n = 10)
plot(model, title = "Biterm topic model", subtitle = "First 8 topics", which = 1:8, top_n = 7)

plot(model, title = "Biterm topic model", subtitle = "some topics", top_n = 7, which = c(3, 4, 5, 6, 7, 9, 12, 16, 20), labels = topiclabels)

library(BTM)
library(data.table)
library(udpipe)
## Annotate text with parts of speech tags
data("brussels_reviews", package = "udpipe")
anno <- subset(brussels_reviews, language %in% "nl")
anno <- data.frame(doc_id = anno$id, text = anno$feedback, stringsAsFactors = FALSE)
anno <- udpipe(anno, "dutch", trace = 10)
## Get cooccurrences of nouns / adjectives and proper nouns
biterms <- as.data.table(anno)
biterms <- biterms[, cooccurrence(x = lemma, relevant = upos %in% c("NOUN", "PROP", "ADJ"), skipgram = 2), by = list(doc_id)]
## Build the BTM model
set.seed(123456)
x <- subset(anno, upos %in% c("NOUN", "PROP", "ADJ"))
x <- x[, c("doc_id", "lemma")]
model <- BTM(x, k = 5, beta = 0.01, iter = 2000, background = TRUE, biterms = biterms, trace = 100)
plot(model)
```
textplot_bar

Barplot of a frequency table using lattice

Description

Barplot of a frequency table using lattice

Usage

textplot_bar(x, ...)

Default S3 method:
textplot_bar(
 x,
 panel = "Effect",
 total = sum(x),
 top = 40,
 col.panel = "lightgrey",
 col.line = "lightblue",
 lwd = 3,
 cextext = 0.5,
 addpct = FALSE,
 cexpct = 0.75,
 textpos = 3,
 pctpos = 1,
 v = NULL,
 col.abline = "red",
 ...
)

Arguments

x a table to plot or a data.frame with the first column the label and the second column the frequency

... other arguments passed on to lattice::dotplot

panel character string what to put into the panel

total integer with the total. Defaults to sum(x). Is used to plot the table counts as a percentage. In which case this is divided by the total.

top integer indicating to plot only the first 'top' table elements. Defaults to 40.

col.panel color of the panel. Defaults to lightgrey.

col.line color of the line. Passed on to the col argument in lattice::panel.lines

lwd width of the line. Passed on to the lwd argument in lattice::panel.lines

cextext numeric with the cex of the text with the counts plotted. Passed on to lattice::panel.text.
addpct logical indicating to add the percent with lattice::panel.text

cexpct numeric with the cex of the text plotted when using addpct. Passed on to lattice::panel.text.

textpos passed on to the pos argument of panel.text to indicate where to put the text of the frequencies

pctpos passed on to the pos argument of panel.text to indicate where to put the text of the percentages

v passed on to lattice::panel.abline to draw a vertical line

col.abline passed on to lattice::panel.abline to draw a vertical line

Value

the result of a call to lattice::dotplot

Examples

data(brussels_listings, package = 'udpipe')
x <- table(brussels_listings$neighbourhood)
x <- sort(x)
textplot_bar(x,
 panel = "Locations", col.panel = "darkgrey", xlab = "Listings",
 cextext = 0.75, addpct = TRUE, cexpct = 0.5)

x <- sample(LETTERS, 1000, replace = TRUE)
textplot_bar(sort(table(x)), panel = "Frequencies", xlab = "Frequency",
 cextext = 0.75, main = "Freq stats")
textplot_bar(sort(table(x)), panel = "Frequencies", addpct = TRUE, top = 15)

x can also be a data.frame where the first column
is the label and the second column the frequency
##
x <- data.frame(l = LETTERS, amount = rnorm(26))
textplot_bar(x)
textplot_bar(x, v = 0)
textplot_bitermclusters

Usage

 textplot_bitermclusters(x, ...)

 ## Default S3 method:
 textplot_bitermclusters(
 x,
 biterms,
 which,
 labels = seq_len(length(table(biterms$topic))),
 title = "Biterm topic model",
 subtitle = list(),
 ...
)

Arguments

 x a list of data.frames, each containing the columns token and probability corresponding to how good a token is emitted by a topic. The list index is assumed to be the topic number
 ... not used
 biterms a data.frame with columns term1, term2, topic with all biterms and the topic these were assigned to
 which integer vector indicating to display only these topics. See the examples.
 labels a character vector of names. Should be of the same length as the number of topics in the data.
 title character string with the title to use in the plot
 subtitle character string with the subtitle to use in the plot

Value

 an object of class ggplot

Examples

library(igraph)
library(ggraph)
library(concaveman)
library(BTM)
data(example_btm, package = 'textplot')
group_terms <- terms(example_btm, top_n = 3)
group_biterms <- example_btm$biterms$biterms

textplot_bitermclusters(x = group_terms, biterms = group_biterms)
textplot_bitermclusters(x = group_terms, biterms = group_biterms,
 title = "BTM model", subtitle = "Topics 7-15",
 which = 7:15, labels = seq_len(example_btm$K))
```r
group_terms <- terms(example_btm, top_n = 10)
textplot_bitermclusters(x = group_terms, biterms = group_biterms,
  title = "BTM model", subtitle = "Topics 1-5",
  which = 1:5, labels = seq_len(example_btm$K))

group_terms <- terms(example_btm, top_n = 7)
topiclabels <- c("Garbage",
  "Data Mining", "Gradient descent", "API's",
  "Random Forests", "Stat models", "Text Mining / NLP",
  "GLM / GAM / Bayesian", "Machine learning", "Variable selection",
  "Regularisation techniques", "Optimisation", "Fuzzy logic",
  "Classification/Regression trees", "Text frequencies",
  "Neural / Deep learning", "Variable selection",
  "Text file handling", "Text matching", "Topic modelling")
textplot_bitermclusters(x = group_terms, biterms = group_biterms,
  title = "Biterm topic model", subtitle = "some topics",
  which = c(3, 4, 5, 6, 7, 9, 12, 16, 20),
  labels = topiclabels)
```

textplot_cooccurrence
Plot term cooccurrences as a network

Description

Plot term cooccurrences in a graph structure

Usage

```r
textplot_cooccurrence(x, ...)
```

Default S3 method:
```r
textplot_cooccurrence(
  x,
  terms,
  top_n = 50,
  title = "Term cooccurrences",
  subtitle = list(),
  vertex_color = "darkgreen",
  edge_color = "grey",
  base_family = "",
  ...
)
```

Arguments

- `x`
 a data.frame with columns term1, term2 and cooc indicating how many times 2 terms are occurring together

- `...`
 other parameters passed on to `ggraph::geom_node_text`
textplot_correlation_glasso

terms a character vector with terms to only plot. Prevails compared to using top_n
top_n integer indicating to show only the top n occurrences as in head(x, n = top_n)
title character string with the title to use in the plot
subtitle character string with the subtitle to use in the plot
vertex_color character with the color of the label of each node. Defaults to darkgreen.
edge_color character with the color of the edges between the nodes. Defaults to grey.
base_family character passed on to theme_void setting the base font family

Value
an object of class ggplot

Examples
library(udpipe)
library(igraph)
library(ggraph)
data(brussels_reviews_anno, package = "udpipe")
x <- subset(brussels_reviews_anno, xpos %in% "JJ" & language %in% "fr")
x <- cooccurrence(x, group = "doc_id", term = "lemma")

textplot_cooccurrence(x, top_n = 25, subtitle = "showing only top 25")
textplot_cooccurrence(x, top_n = 25, title = "Adjectives",
vertex_color = "orange", edge_color = "black",
fontface = "bold")

textplot_correlation_glasso

Plot sparse term correlations as a graph structure

Description
Plot sparse term correlations as a graph structure. Uses the glasso procedure (glasso::glassopath)
to reduce the correlation matrix to retain only the relevant correlations and next visualises these
sparse correlations.

Usage
textplot_correlation_glasso(x, ...)

Default S3 method:
textplot_correlation_glasso(
 x,
 n = 1000,
 exclude_zero = TRUE,
 label.cex = 1,
 node.width = 0.5,
 ...
)
Arguments

x a correlation matrix
...

further arguments passed on to qgraph::qgraph, except layout which is set to 'spring', labels (taken from the colnames of x), and borders which is set to FALSE.

n sample size used in computing the sparse correlation matrix. Defaults to 1000.

exclude_zero logical indicating to exclude zero-correlations from the graph

label.cex passed on to qgraph::qgraph

node.width passed on to qgraph::qgraph

Value

an object of class ggplot

Examples

library(udpipe)
data(brussels_reviews_anno, package = 'udpipe')
x <- subset(brussels_reviews_anno, xpos %in% "NN" & language %in% "fr" & !is.na(lemma))
x <- document_term_frequencies(x, document = "doc_id", term = "lemma")

dtm <- document_term_matrix(x)
dtm <- dtm_remove_lowfreq(dtm, maxterms = 60)

m <- dtm_cor(dtm)
textplot_correlation_glasso(m, exclude_zero = TRUE)
textplot_correlation_glasso(m, exclude_zero = FALSE)

textplot_correlation_lines

Document/Term Correlation Plot

Description

Plots the highest occurring correlations among terms.
This is done by plotting the terms into nodes and the correlations between the terms as lines between the nodes. Lines of the edges are proportional to the correlation height. This uses the plot function for graphNEL objects (using the Rgraphviz package)

Usage

textplot_correlation_lines(x, ...)

Default S3 method:
textplot_correlation_lines(
textplot_correlation_lines

x,
terms = colnames(x),
threshold = 0.05,
top_n,
attrs = textplot_correlation_lines_attrs(),
terms_highlight,
label = FALSE,
cex.label = 1,
col.highlight = "red",
lwd = 1,
...
)

Arguments

x a document-term matrix of class dgCMatrix
...
other arguments passed on to plot

terms a character vector with terms present in the columns of x indicating terms to
focus on

threshold a threshold to show only correlations between the terms with absolute values
above this threshold. Defaults to 0.05.

top_n an integer indicating to show only the top top_n correlations. This can be set
to plot only the top correlations. E.g. set it to 20 to show only the top 20
correlations with the highest absolute value.

attrs a list of attributes with graph visualisation elements passed on to the plot func-
tion of an object of class graphNEL. Defaults to textplot_correlation_lines_attrs.

terms_highlight a vector of character terms to highlight or a vector of numeric values in the 0-1
range indicating how much (in percentage) to increase the node font size. See
the examples.

label logical indicating to draw the label with the correlation size between the nodes

cex.label cex of the label of the correlation size

col.highlight color to use for highlighted terms specified in terms_highlight. Defaults to
red.

lwd numeric value - graphical parameter used to increase the edge thickness which
indicates the correlation strength. Defaults to 1.

Value

invisibly the plot

Examples

Construct document/frequency/matrix
library(Rgraphviz)
library(udpipe)
```r
data(brussels_reviews_anno, package = 'udpipe')
exclude <- c(3237682L, 27210436L, 26820445L, 37658826L, 33661134L, 48756422L,
23455454L, 30461127L, 23292176L, 32850277L, 30566303L, 21595142L,
20441279L, 38097066L, 28651065L, 29011387L, 37316020L, 22135291L,
40169379L, 38627667L, 29470172L, 24971827L, 40478869L, 36825304L,
21597085L, 21427658L, 7890178L, 32322472L, 39874379L, 32581310L,
43865675L, 31586937L, 32454912L, 34861703L, 31403168L, 35997324L,
29002317L, 33546304L, 47677695L)
dtm <- brussels_reviews_anno
dtm <- subset(dtm, !doc_id %in% exclude)
dtm <- subset(dtm, xpos %in% c("NN") & language == "nl" & !is.na(lemma))
dtm <- document_term_frequencies(dtm, document = "doc_id", term = "lemma")
dtm <- document_term_matrix(dtm)
dtm <- dtm_remove_lowfreq(dtm, minfreq = 5)
dtm <- dtm_remove_tfidf(dtm, top = 500)
## Plot top 20 correlations, having at least a correlation of 0.01
textplot_correlation_lines(dtm, top_n = 25, threshold = 0.01)
## Plot top 20 correlations
textplot_correlation_lines(dtm, top_n = 25, label = TRUE, lwd = 5)
## Plot top 20 correlations and highlight some terms
textplot_correlation_lines(dtm, top_n = 25, label = TRUE, lwd = 5,
  terms_highlight = c("prijs", "privacy"),
  main = "Top correlations in topic xyz")
## Plot top 20 correlations and highlight + increase some terms
textplot_correlation_lines(dtm, top_n = 25, label = TRUE, lwd = 5,
  terms_highlight = c(prijs = 0.8, privacy = 0.1),
  col_highlight = "red")
## Plot correlations between specific terms
w <- dtm_colsums(dtm)
w <- head(sort(w, decreasing = TRUE), 100)
textplot_correlation_lines(dtm, terms = names(w), top_n = 20, label = TRUE)
attrs <- textplot_correlation_lines_attrs()
aattrs$node$shape <- "rectangle"
aattrs$edge$color <- "steelblue"
textplot_correlation_lines(dtm, top_n = 20, label = TRUE,
aattrs = attrs)
```

Description

Document/Term Correlation Plot graphical attributes
textplot_dependencyparser

Usage

textplot_correlation_lines_attrs(fontsize = 25)

Arguments

fontsize size of the font. Defaults to 25

Value

a list with graph visualisation elements used by textplot_correlation_lines

Examples

textplot_correlation_lines_attrs()

textplot_dependencyparser

plot output of a dependency parser

Description

Plot output of a dependency parser. This plot takes one sentence and shows for the sentence, the words, the parts of speech tag and the dependency relationship between the words.

Usage

textplot_dependencyparser(x, ...)

Default S3 method:
textplot_dependencyparser(
x,
 title = "Dependency Parser",
 subtitle = "tokenisation, parts of speech tagging & dependency relations",
 vertex_color = "darkgreen",
 edge_color = "red",
 size = 3,
 base_family = "",
 ...
)

Arguments

x a data.frame as returned by a call to udpipe containing 1 sentence

... not used yet

title character string with the title to use in the plot

subtitle character string with the title to use in the plot
textplot-dependencyparser

vertex_color character with the color of the label of each node. Defaults to darkgreen.
edge_color character with the color of the edges between the nodes. Defaults to red.
size size of the labels in the plot. Defaults to 3.
base_family character passed on to theme_void setting the base font family

Value
an object of class ggplot

See Also
udpipe

Examples
library(ggraph)
library(udpipe)
x <- udpipe("The economy is weak but the outlook is bright", "english")
textplot-dependencyparser(x)

x <- udpipe("His speech about marshmallows in New York is utter bullshit", "english")
textplot-dependencyparser(x, size = 4)

x <- udpipe("UDPipe provides tokenization, tagging, lemmatization and dependency parsing of raw text", "english")
textplot-dependencyparser(x, size = 4)

data("example_udpipe", package = "textplot")
textplot-dependencyparser(example_udpipe, size = 4)
Index

BTM, 3
example_btm, 2
example_udpipe, 2
plot.BTM, 3

textplot_bar, 5
textplot_bitermclusters, 6
textplot_bitermclusters.default, 3
textplot_cooccurrence, 8
textplot_correlation_glasso, 9
textplot_correlation_lines, 10, 13
textplot_correlation_lines_attrs, 11, 12
textplot_dependencyparser, 13

udpipe, 13, 14