Text Plots

Jan Wijffels

Abstract

The textplot R package allows one to visualise complex relations in texts. This is done by providing functionalities for displaying text co-occurrence networks, text correlation networks, dependency relationships as well as text clustering. In this vignette, some example visualisations of these are shown.

Keywords: Text, network, co-occurrence, correlation, text clustering, dependency parsing, visualisation.

1. General

1.1. Overview

The package allows you to visualise

- Text frequencies
- Text correlations
- Text cooccurrences
- Text clusters
- Text embeddings
- Dependency parsing results

Source code repository

The source code of the package is on github at https://github.com/bnosac/textplot. The R package is distributed under the GPL-2 license.
2. Example visualisations

2.1. Dependency Parser

Example 1

This example visualises the result of a text annotation which provides parts of speech tags and dependency relationships.

```r
library(textplot)
library(udpipe)
library(ggraph)
library(ggplot2)
library(igraph)
x <- udpipe("His speech about marshmallows in New York is utter bullshit", "english")
plt <- textplot_dependencyparser(x, size = 4)
plt
```

Dependency Parser

tokenisation, parts of speech tagging & dependency relations
Example 2

The following visualisation displays the dependency parser results on some larger sentence. Note that this function works only on 1 sentence.

```r
x <- udpipe("UDPipe provides tokenization, tagging, lemmatization and
dependency parsing of raw text", "english")
plt <- textplot_dependencyparser(x, size = 4)
plt
```

Dependency Parser

tokenisation, parts of speech tagging & dependency relations
2.2. Biterm Topic Model plots

Example 1

This example shows plotting a biterm topic model which was pretrained and put in the package as an example.

```r
library(BTM)
library(ggplot2)
library(ggraph)
library(ggforce)
library(concaveman)
library(igraph)
data(example_btm, package = 'textplot')
model <- example_btm
plt <- plot(model, title = "BTM model", top_n = 5)
plt
```

BTM model
Example 2

This example shows building a biterm topic model on nouns, adjectives and proper nouns occurring in the neighbourhood of one another and next plotting this model.

```r
library(data.table)
library(udpipe)
## Annotate text with parts of speech tags
data("brussels_reviews", package = "udpipe")
anno <- subset(brussels_reviews, language %in% c("nl"))
anno <- data.frame(doc_id = anno$id, text = anno$feedback, stringsAsFactors = FALSE)
anno <- udpipe(anno, "dutch", trace = 10)
## Get cooccurrences of nouns / adjectives and proper nouns
biterms <- as.data.table(anno)
biterms <- biterms[, cooccurrence(x = lemma,
                                 relevant = upos %in% c("NOUN", "PROPN", "ADJ"),
                                 skipgram = 2),]
```
by = list(doc_id)]

library(BTM)
library(ggplot2)
library(ggraph)
library(ggforce)
library(concaveman)
library(igraph)

Build the BTM model
set.seed(123456)
x <- subset(anno, upos %in% c("NOUN", "PROPN", "ADJ"))
x <- x[, c("doc_id", "lemma")]
model <- BTM(x, k = 5, beta = 0.01, iter = 2000, background = TRUE,
 biterms = biterms, trace = 100)
plt <- plot(model)
plt

Biterm topic model
2.3. Biterm relationships

Example showing objects of verbs and adjectives modifying nouns

The below example shows the objects of verbs as well as which adjectives modify nouns. These are displayed as 2 clusters. We start from the annotation of the AirBnB data shown in the previous section 2.2.2.

```r
library(BTM)
library(ggplot2)
library(ggraph)
library(ggforce)
library(concaveman)
library(igraph)
library(data.table)
library(udpipe)

x <- merge(anno, anno,
  by.x = c("doc_id", "paragraph_id", "sentence_id", "head_token_id"),
  by.y = c("doc_id", "paragraph_id", "sentence_id", "token_id"),
  all.x = TRUE, all.y = FALSE, suffixes = c("", "_parent"), sort = FALSE)

x <- subset(x, dep_rel %in% c("obj", "amod"))
x$topic <- factor(x$dep_rel)
topiclabels <- levels(x$topic)
x$topic <- as.integer(x$topic)

## Construct biterms/terminology inputs to the plot
biterms <- data.frame(term1 = x$lemma, term2 = x$lemma_parent,
  topic = x$topic, stringsAsFactors = FALSE)

terminology <- document_term_frequencies(x, document = "topic",
  term = c("lemma", "lemma_parent"))

terminology <- document_term_frequencies_statistics(terminology)

terminology <- terminology[, head(.SD, 50), by = list(topic = doc_id)]

terminology <- data.frame(topic = terminology$topic,
  token = terminology$term,
  probability = 1, stringsAsFactors = FALSE)

plt <- textplot_bitermclusters(terminology, biterms,
  labels = topiclabels,
  title = "Objects of verbs and adjectives-nouns",
  subtitle = "Top 50 by group")

plt
```
2.4. Bar plots

Example showing frequency of adjectives

The plot below shows a simple barplot which works on the output of table.

```r
library(udpipe)
data("brussels_reviews_anno", package = "udpipe")
x <- subset(brussels_reviews_anno, xpos %in% "JJ")
x <- sort(table(x$lemma))
plt <- textplot_bar(x, top = 20,
                   panel = "Adjectives", xlab = "Frequency",
                   col.panel = "lightblue", cextext = 0.75,
                   addpct = TRUE, cexpct = 0.5)
plt
```

![Bar plot showing frequency of adjectives](image_url)
2.5. Correlation of texts

Top correlations above a certain threshold

Text correlations are interesting to see, but as there are many, the below function allows one to visualise a subset of these, the ones with the highest correlations above a certain threshold.

```r
library(graph)
library(Rgraphviz)
library(udpipe)
dtm <- subset(anno, upos %in% "ADJ")
dtm <- document_term_frequencies(dtm, document = "doc_id", term = "lemma")
dtm <- document_term_matrix(dtm)
dtm <- dtm_remove_lowfreq(dtm, minfreq = 5)
textplot_correlation_lines(dtm, top_n = 25, threshold = 0.01, lwd = 5, label = TRUE)
```
Correlations which are non-zero after fitting a glasso model

If you have text correlations, you can also fit a glasso model on it. This puts non-relevant correlations to zero, allowing one to plot the correlations in a straightforward way.

```r
library(glasso)
library(qgraph)
library(udpipe)
dtm <- subset(anno, upos %in% "NOUN")
dtm <- document_term_frequencies(dtm, document = "doc_id", term = "token")
dtm <- document_term_matrix(dtm)
dtm <- dtm_remove_lowfreq(dtm, minfreq = 20)
dtm <- dtm_remove_tfidf(dtm, top = 100)
term_correlations <- dtm_cor(dtm)
textplot_correlation_glasso(term_correlations, exclude_zero = TRUE)
```
2.6. Co-occurrence of texts

Example showing adjectives occurring in the same document

The following graph shows how frequently adjectives co-occur across all the documents.

```r
library(udpipe)
library(igraph)
library(ggraph)
library(ggplot2)
data(brussels_reviews_anno, package = 'udpipe')
x <- subset(brussels_reviews_anno, xpos %in% "JJ" & language %in% "fr")
x <- cooccurrence(x, group = "doc_id", term = "lemma")

plt <- textplot_cooccurrence(x,
                               title = "Adjective co-occurrences", top_n = 25)
plt
```

Adjective co-occurrences
Example showing objects of verbs / adjectives modifying nouns on our annotated dataset

The following graph shows a similar visualisation, but instead focussing on the frequency of objects of verbs and adjectives modifying a noun. For this, we start again from the annotation of the AirBnB data shown in the section 2.2.2.

```
library(udpipe)
library(igraph)
library(ggraph)
library(ggplot2)
library(data.table)

biterms <- merge(anno, anno,
                 by.x = c("doc_id", "paragraph_id", "sentence_id", "head_token_id"),
                 by.y = c("doc_id", "paragraph_id", "sentence_id", "token_id"),
                 all.x = TRUE, all.y = FALSE, suffixes = c("", "_parent"), sort = FALSE)
biterms <- setDT(biterms)
biterms <- subset(biterms, dep_rel %in% c("obj", "amod"))
biterms <- biterms[, list(cooc = .N), by = list(term1 = lemma, term2 = lemma_parent)]

plt <- textplot_cooccurrence(biterms,
                              title = "Objects of verbs + Adjectives-nouns",
                              top_n = 75,
                              vertex_color = "orange", edge_color = "black",
                              fontface = "bold")
plt
```

Objects of verbs + Adjectives−nouns
2.7. Text embeddings

Example showing clustered text embeddings

The following graph shows the embeddings of the top 7 words emitted by a sample of topics extracted with the Embedding Topic Modelling clustering algorithm (https://github.com/bnosac/ETM).

The embeddings are mapped onto a 2-dimensional space using UMAP.

```r
library(uwot)
set.seed(1234)

## Put embeddings in lower-dimensional space (2D)
data(example_embedding, package = "textplot")
embed.2d <- umap(example_embedding,
                 n_components = 2, metric = "cosine", n_neighbors = 15,
                 fast_sgd = TRUE, n_threads = 2, verbose = FALSE)
embed.2d <- data.frame(term = rownames(example_embedding),
                        x = embed.2d[, 1], y = embed.2d[, 2],
                        stringsAsFactors = FALSE)

head(embed.2d, n = 5)

## Get a dataset with words assigned to each cluster with a certain probability weight
data(example_embedding_clusters, package = "textplot")
terminology <- merge(example_embedding_clusters, embed.2d, by = "term", sort = FALSE)
terminology <- subset(terminology, rank <= 7 & cluster %in% c(1, 3, 4, 10, 15, 19, 17))
head(terminology, n = 10)
```

<table>
<thead>
<tr>
<th>#</th>
<th>term</th>
<th>cluster</th>
<th>rank</th>
<th>weight</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>zelfstandigen</td>
<td>1</td>
<td>1</td>
<td>1.0000000</td>
<td>-3.5737852</td>
<td>-0.02526104</td>
</tr>
<tr>
<td>5</td>
<td>opdeling</td>
<td>1</td>
<td>2</td>
<td>0.5390060</td>
<td>-1.3242774</td>
<td>0.34010050</td>
</tr>
<tr>
<td>13</td>
<td>werkloosheid</td>
<td>1</td>
<td>3</td>
<td>0.4511878</td>
<td>-3.4415866</td>
<td>0.30597683</td>
</tr>
<tr>
<td>16</td>
<td>ocmw</td>
<td>1</td>
<td>4</td>
<td>0.3379358</td>
<td>-3.0154742</td>
<td>-0.05155750</td>
</tr>
<tr>
<td>19</td>
<td>zelfstandige</td>
<td>1</td>
<td>5</td>
<td>0.2172686</td>
<td>-3.5813214</td>
<td>0.14552403</td>
</tr>
<tr>
<td>21</td>
<td>kmo</td>
<td>1</td>
<td>6</td>
<td>0.2013531</td>
<td>-3.4336926</td>
<td>-0.55680906</td>
</tr>
<tr>
<td>23</td>
<td>overbruggingsrecht</td>
<td>1</td>
<td>7</td>
<td>0.1851361</td>
<td>-3.4736411</td>
<td>0.09951524</td>
</tr>
<tr>
<td>54</td>
<td>vzw</td>
<td>4</td>
<td>4</td>
<td>0.3867166</td>
<td>-2.5194281</td>
<td>-1.49744832</td>
</tr>
<tr>
<td>68</td>
<td>pod</td>
<td>4</td>
<td>3</td>
<td>0.4328151</td>
<td>-0.9974908</td>
<td>-1.85980665</td>
</tr>
<tr>
<td>211</td>
<td>btw</td>
<td>4</td>
<td>1</td>
<td>1.0000000</td>
<td>-2.8951601</td>
<td>-1.81876432</td>
</tr>
</tbody>
</table>
Plot the relevant embeddings

```r
library(ggplot2)
library(ggrepel)
library(ggalt)

plt <- textplot_embedding_2d(terminology, encircle = TRUE, points = TRUE,
title = "Embedding Topic Model clusters",
subtitle = "embedded in 2D using UMAP")

plt
```

Affiliation:

BNOSAC - Open Analytical Helpers

E-mail: jwijffels@bnosac.be

URL: http://www.bnosac.be