Package ‘tfaddons’

October 14, 2022

Type Package

Title Interface to 'TensorFlow SIG Addons'

Version 0.10.0

Maintainer Turgut Abdullayev <turqut.a.314@gmail.com>

Description 'TensorFlow SIG Addons' <https://www.tensorflow.org/addons> is a repository of community contributions that conform to well-established API patterns, but implement new functionality not available in core 'TensorFlow'. 'TensorFlow' natively supports a large number of operators, layers, metrics, losses, optimizers, and more. However, in a fast moving field like Machine Learning, there are many interesting new developments that cannot be integrated into core 'TensorFlow' (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

License Apache License 2.0

URL https://github.com/henry090/tfaddons

BugReports https://github.com/henry090/tfaddons/issues

SystemRequirements TensorFlow >= 2.0 (https://www.tensorflow.org/)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Imports reticulate, tensorflow, rstudioapi, keras, purrr

Suggests knitr, rmarkdown, testthat, dplyr

VignetteBuilder knitr

NeedsCompilation no

Author Turgut Abdullayev [aut, cre]

Repository CRAN

Date/Publication 2020-06-02 08:50:04 UTC
R topics documented:

activation_gelu ... 5
activation_hardshrink ... 6
activation_lisht ... 7
activation_mish ... 7
activation_rrelu ... 8
activation_softshrink .. 9
activation_sparsemax .. 10
activation_tanhshrink .. 10
attention_bahdanau .. 11
attention_bahdanau_monotonic 12
attention_luong ... 13
attention_luong_monotonic .. 15
attention_monotonic .. 16
attention_wrapper ... 17
attention_wrapper_state ... 19
callback_average_model_checkpoint 20
callback_time_stopping .. 21
callback_tqdm_progress_bar .. 22
crf_binary_score ... 23
crf_decode ... 24
crf_decode_backward .. 24
crf_decode_forward .. 25
crf_forward .. 25
crf_log_likelihood .. 26
crf_log_norm ... 27
crf_multitag_sequence_score 27
crf_sequence_score .. 28
crf_unary_score ... 29
decoder ... 29
decoder_base ... 30
decoder_basic ... 30
decoder_basic_output ... 31
decoder_beam_search .. 31
decoder_beam_search_output 32
decoder_beam_search_state ... 33
decoder_final_beam_search_output 34
decode_dynamic .. 34
extend_with_decoupled_weight_decay 35
gather_tree ... 36
gather_tree_from_array .. 37
hardmax ... 38
img_adjust_hsv_in_yiq ... 38
img_angles_to_projective_transforms 39
img_blend ... 40
img_compose_transforms ... 40
img_connected_components ... 41
<table>
<thead>
<tr>
<th>Topics Documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>img_cutout</td>
</tr>
<tr>
<td>img_dense_image_warp</td>
</tr>
<tr>
<td>img_equalize</td>
</tr>
<tr>
<td>img_euclidean_dist_transform</td>
</tr>
<tr>
<td>img_flat_transforms_to_matrices</td>
</tr>
<tr>
<td>img_from_4D</td>
</tr>
<tr>
<td>img_get_ndims</td>
</tr>
<tr>
<td>img_interpolate_bilinear</td>
</tr>
<tr>
<td>img_interpolate_spline</td>
</tr>
<tr>
<td>img_matrices_to_flat_transforms</td>
</tr>
<tr>
<td>img_mean_filter2d</td>
</tr>
<tr>
<td>img_median_filter2d</td>
</tr>
<tr>
<td>img_random_cutout</td>
</tr>
<tr>
<td>img_random_hsv_in_yiq</td>
</tr>
<tr>
<td>img_resampler</td>
</tr>
<tr>
<td>img_rotate</td>
</tr>
<tr>
<td>img_sharpness</td>
</tr>
<tr>
<td>img_shear_x</td>
</tr>
<tr>
<td>img_shear_y</td>
</tr>
<tr>
<td>img_sparse_image_warp</td>
</tr>
<tr>
<td>img_to_4D</td>
</tr>
<tr>
<td>img_transform</td>
</tr>
<tr>
<td>img_translate</td>
</tr>
<tr>
<td>img_translate_xy</td>
</tr>
<tr>
<td>img_translations_to_projective_transforms</td>
</tr>
<tr>
<td>img_unwrap</td>
</tr>
<tr>
<td>img_wrap</td>
</tr>
<tr>
<td>install_tfaddons</td>
</tr>
<tr>
<td>layer_activation_gelu</td>
</tr>
<tr>
<td>layer_correlation_cost</td>
</tr>
<tr>
<td>layer_filter_response_normalization</td>
</tr>
<tr>
<td>layer_group_normalization</td>
</tr>
<tr>
<td>layer_instance_normalization</td>
</tr>
<tr>
<td>layer_maxout</td>
</tr>
<tr>
<td>layer_multi_head_attention</td>
</tr>
<tr>
<td>layer_nas_cell</td>
</tr>
<tr>
<td>layer_poincare_normalize</td>
</tr>
<tr>
<td>layer_poincare_normalization</td>
</tr>
<tr>
<td>layer_sparsemax</td>
</tr>
<tr>
<td>layer_weight_normalization</td>
</tr>
<tr>
<td>lookahead_mechanism</td>
</tr>
<tr>
<td>loss_contrastive</td>
</tr>
<tr>
<td>loss_giou</td>
</tr>
<tr>
<td>loss_hamming</td>
</tr>
<tr>
<td>loss_lifted_struct</td>
</tr>
<tr>
<td>loss_npairs</td>
</tr>
<tr>
<td>loss_npairs_multilabel</td>
</tr>
<tr>
<td>loss_pinball</td>
</tr>
</tbody>
</table>
topics documented:

- loss_sequence .. 85
- loss_sigmoid_focal_crossentropy 86
- loss_sparsemax ... 87
- loss_triplet_hard 88
- loss_triplet_semihard 89
- metrics_f1score ... 90
- metric_cohen_kappa 91
- metric_fbeta_score 92
- metric_hamming_distance 93
- metric_mcc ... 94
- metric_multilabel_confusion_matrix 95
- metric_rsquare ... 96
- optimizer_conditional_gradient 97
- optimizer_decay_adamw 98
- optimizer_decay_sgd 99
- optimizer_lamb ... 101
- optimizer_lazy_adam 103
- optimizer_moving_average 104
- optimizer_novograd 105
- optimizer_radam .. 107
- optimizer_swa .. 108
- optimizer_yogi .. 110
- parse_time .. 111
- register_all .. 112
- register_custom_kernels 113
- register_keras_objects 113
- safe_cumprod ... 114
- sampler .. 114
- sampler_custom .. 115
- sampler_greedy_embedding 115
- sampler_inference 116
- sampler_sample_embedding 117
- sampler_scheduled_embedding_training 118
- sampler_scheduled_output_training 118
- sampler_training 118
- sample_bernoulli 120
- sample_categorical 120
- sample_categorical 120
- sample_categorical 120
- skip_gram_sample 121
- skip_gram_sample_with_text_vocab 123
- tfaddons_version 126
- tile_batch .. 126
- viterbi_decode ... 127

Index 128
Description

Gaussian Error Linear Unit.

Usage

activation_gelu(x, approximate = TRUE)

Arguments

x A ‘Tensor’. Must be one of the following types: ‘float16’, ‘float32’, ‘float64’.

approximate bool, whether to enable approximation. Returns: A ‘Tensor’. Has the same type as ‘x’.

Details

Computes gaussian error linear: ‘0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))’ or ‘x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2)))’, where P(X) ~ N(0, 1), depending on whether approximation is enabled. See [Gaussian Error Linear Units (GELUs)](https://arxiv.org/abs/1606.08415) and [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805).

Value

A ‘Tensor’. Has the same type as ‘x’.

Computes gaussian error linear

‘0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))’ or ‘x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2)))’, where P(X) ~ N(0, 1), depending on whether approximation is enabled.

Examples

```r
## Not run:
library(keras)
library(tfaddons)
model = keras_model_sequential() %>%
  layer_conv_2d(filters = 10, kernel_size = c(3,3), input_shape = c(28,28,1),
               activation = activation_gelu)
## End(Not run)
```
activation_hardshrink
Hardshrink

Description

Hard shrink function.

Usage

activation_hardshrink(x, lower = -0.5, upper = 0.5)

Arguments

- **x**: A ‘Tensor’. Must be one of the following types: ‘float16’, ‘float32’, ‘float64’.
- **lower**: ‘float’, lower bound for setting values to zeros.
- **upper**: ‘float’, upper bound for setting values to zeros. Returns: A ‘Tensor’. Has the same type as ‘x’.

Details

Computes hard shrink function: ‘x if x < lower or x > upper else 0’.

Value

A ‘Tensor’. Has the same type as ‘x’.

Computes hard shrink function

‘x if x < lower or x > upper else 0’.

Examples

```r
## Not run:
library(keras)
library(tfaddons)
model = keras_model_sequential() %>%
    layer_conv_2d(filters = 10, kernel_size = c(3,3), input_shape = c(28,28,1),
                  activation = activation_hardshrink)

## End(Not run)
```
activation_lisht

Description

LiSHT: Non-Parameteric Linearly Scaled Hyperbolic Tangent Activation Function.

Usage

activation_lisht(x)

Arguments

x

A `Tensor`. Must be one of the following types: ‘float16’, ‘float32’, ‘float64’.

Details

Computes linearly scaled hyperbolic tangent (LiSHT): ‘x * tanh(x)’ See [LiSHT: Non-Parameteric Linearly Scaled Hyperbolic Tangent Activation Function for Neural Networks](https://arxiv.org/abs/1901.05894).

Value

A `Tensor`. Has the same type as ‘x’.

Examples

```r
## Not run:
library(keras)
library(tfaddons)
model = keras_model_sequential() %>%
  layer_conv_2d(filters = 10, kernel_size = c(3,3),input_shape = c(28,28,1),
                activation = activation_lisht)
## End(Not run)
```

activation_mish

Description

Mish: A Self Regularized Non-Monotonic Neural Activation Function.

Usage

activation_mish(x)

Examples

```r
## Not run:
library(keras)
library(tfaddons)
model = keras_model_sequential() %>%
  layer_conv_2d(filters = 10, kernel_size = c(3,3),input_shape = c(28,28,1),
                activation = activation_lisht)
## End(Not run)
```
Arguments

- **x**
 A ‘Tensor’. Must be one of the following types: ‘float16’, ‘float32’, ‘float64’.
 Returns: A ‘Tensor’. Has the same type as ‘x’.

Details

Computes mish activation: \(x * \tanh(\text{softplus}(x)) \) See [Mish: A Self Regularized Non-Monotonic Neural Activation Function](https://arxiv.org/abs/1908.08681).

Value

A ‘Tensor’. Has the same type as ‘x’.

Description

relu function.

Usage

```r
activation_relu(
  x,
  lower = 0.125,
  upper = 0.333333333333333,
  training = NULL,
  seed = NULL
)
```

Arguments

- **x**
 A ‘Tensor’. Must be one of the following types: ‘float16’, ‘float32’, ‘float64’.
- **lower**
 ‘float’, lower bound for random alpha.
- **upper**
 ‘float’, upper bound for random alpha.
- **training**
 ‘bool’, indicating whether the ‘call’ is meant for training or inference.
- **seed**
 ‘int’, this sets the operation-level seed. Returns:

Details

Computes rrelu function: \('x \text{ if } x > 0 \text{ else } \text{random}(\text{lower, upper}) * x' \) or \('x \text{ if } x > 0 \text{ else } x * (\text{lower} + \text{upper}) / 2' \) depending on whether training is enabled. See [Empirical Evaluation of Rectified Activations in Convolutional Network](https://arxiv.org/abs/1505.00853).

Value

A ‘Tensor’. Has the same type as ‘x’.
Computes rrelu function

'x if x > 0 else random(lower, upper) * x' or 'x if x > 0 else x * (lower + upper) / 2' depending on whether training is enabled.

Description

Soft shrink function.

Usage

activation_softshrink(x, lower = -0.5, upper = 0.5)

Arguments

- x: A 'Tensor'. Must be one of the following types: 'float16', 'float32', 'float64'.
- lower: 'float', lower bound for setting values to zeros.
- upper: 'float', upper bound for setting values to zeros. Returns: A 'Tensor'. Has the same type as 'x'.

Details

Computes soft shrink function: 'x - lower if x < lower, x - upper if x > upper else 0'.

Value

A 'Tensor'. Has the same type as 'x'.

Computes soft shrink function

'x - lower if x < lower, x - upper if x > upper else 0'.
activation_sparsemax Sparsemax

Description
Sparsemax activation function [1].

Usage
activation_sparsemax(logits, axis = -1L)

Arguments
- logits: Input tensor.
- axis: Integer, axis along which the sparsemax operation is applied.

Details
For each batch i and class j we have \(\text{sparsemax}[i, j] = \max(\text{logits}[i, j] - \tau(\text{logits}[i, :]), 0)\)

Value
Tensor, output of sparsemax transformation. Has the same type and shape as ‘logits’. Raises: ValueError: In case ‘dim(logits) == 1’.

Raises
ValueError: In case ‘dim(logits) == 1’.

activation_tanhshrink Tanhshrink

Description
Applies the element-wise function: \(x - \tanh(x)\)

Usage
activation_tanhshrink(x)

Arguments
- x: A ‘Tensor’. Must be one of the following types: ‘float16’, ‘float32’, ‘float64’.

Value
A ‘Tensor’. Has the same type as ‘features’.
Description

Implements Bahdanau-style (additive) attention

Usage

```python
attention_bahdanau(
    object,
    units,
    memory = NULL,
    memory_sequence_length = NULL,
    normalize = FALSE,
    probability_fn = "softmax",
    kernel_initializer = "glorot_uniform",
    dtype = NULL,
    name = "BahdanauAttention",
    ...
)
```

Arguments

- **object**: Model or layer object
- **units**: The depth of the query mechanism.
- **memory**: The memory to query; usually the output of an RNN encoder. This tensor should be shaped [batch_size, max_time, ...].
- **memory_sequence_length**: (optional): Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths.
- **normalize**: boolean. Whether to normalize the energy term.
- **probability_fn**: (optional) string, the name of function to convert the attention score to probabilities. The default is softmax which is tf.nn.softmax. Other options is hardmax, which is hardmax() within this module. Any other value will result into validation error. Default to use softmax.
- **kernel_initializer**: (optional), the name of the initializer for the attention kernel.
- **dtype**: The data type for the query and memory layers of the attention mechanism.
- **name**: Name to use when creating ops.
- **...**: A list that contains other common arguments for layer creation.
Details

Value

None

Description

Monotonic attention mechanism with Bahadanau-style energy function.

Usage

attention_bahdanau_monotonic(
 object,
 units,
 memory = NULL,
 memory_sequence_length = NULL,
 normalize = FALSE,
 sigmoid_noise = 0,
 sigmoid_noise_seed = NULL,
 score_bias_init = 0,
 mode = "parallel",
 kernel_initializer = "glorot_uniform",
 dtype = NULL,
 name = "BahdanauMonotonicAttention",
 ...
)

Arguments

object Model or layer object
units The depth of the query mechanism.
memory The memory to query; usually the output of an RNN encoder. This tensor should be shaped [batch_size, max_time, ...].
memory_sequence_length
(optional): Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths.

normalize
Python boolean. Whether to normalize the energy term.

sigmoid_noise
Standard deviation of pre-sigmoid noise. See the docstring for `_monotonic_probability_fn` for more information.

sigmoid_noise_seed
(optional) Random seed for pre-sigmoid noise.

score_bias_init
Initial value for score bias scalar. It’s recommended to initialize this to a negative value when the length of the memory is large.

mode
How to compute the attention distribution. Must be one of ‘recursive’, ‘parallel’, or ‘hard’. See the docstring for tfa.seq2seq.monotonic_attention for more information.

kernel_initializer
(optional), the name of the initializer for the attention kernel.

dtype
The data type for the query and memory layers of the attention mechanism.

name
Name to use when creating ops.

... A list that contains other common arguments for layer creation.

Details
This type of attention enforces a monotonic constraint on the attention distributions; that is once the model attends to a given point in the memory it can’t attend to any prior points at subsequence output timesteps. It achieves this by using the `_monotonic_probability_fn` instead of softmax to construct its attention distributions. Since the attention scores are passed through a sigmoid, a learnable scalar bias parameter is applied after the score function and before the sigmoid. Otherwise, it is equivalent to BahdanauAttention. This approach is proposed in

Value
None

attention_luong Implements Luong-style (multiplicative) attention scoring.

Description
Implements Luong-style (multiplicative) attention scoring.
attention_luong

Usage

attention_luong(
 object,
 units,
 memory = NULL,
 memory_sequence_length = NULL,
 scale = FALSE,
 probability_fn = "softmax",
 dtype = NULL,
 name = "LuongAttention",
 ...
)

Arguments

object Model or layer object
units The depth of the attention mechanism.
memory The memory to query; usually the output of an RNN encoder. This tensor should be shaped [batch_size, max_time, ...].
memory_sequence_length Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths.
scale boolean. Whether to scale the energy term.
probability_fn (optional) string, the name of function to convert the attention score to probabilities. The default is softmax which is tf.nn.softmax. Other options is hardmax, which is hardmax() within this module. Any other value will result into validation error. Default to use softmax.
dtype The data type for the memory layer of the attention mechanism.
name Name to use when creating ops.
... A list that contains other common arguments for layer creation.

Details

This attention has two forms. The first is standard Luong attention, as described in: Minh-Thang Luong, Hieu Pham, Christopher D. Manning. Effective Approaches to Attention-based Neural Machine Translation. EMNLP 2015. The second is the scaled form inspired partly by the normalized form of Bahdanau attention. To enable the second form, construct the object with parameter ‘scale=TRUE’.

Value

None
attention_luong_monotonic

Monotonic attention mechanism with Luong-style energy function.

Description

Monotonic attention mechanism with Luong-style energy function.

Usage

attention_luong_monotonic(
 object,
 units,
 memory = NULL,
 memory_sequence_length = NULL,
 scale = FALSE,
 sigmoid_noise = 0,
 sigmoid_noise_seed = NULL,
 score_bias_init = 0,
 mode = "parallel",
 dtype = NULL,
 name = "LuongMonotonicAttention",
 ...
)

Arguments

object Model or layer object
units The depth of the query mechanism.
memory The memory to query; usually the output of an RNN encoder. This tensor should be shaped [batch_size, max_time, ...].
memory_sequence_length
 (optional): Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths.
scale boolean. Whether to scale the energy term.
sigmoid_noise Standard deviation of pre-sigmoid noise. See the docstring for ‘_monotonic_probability_fn’ for more information.
sigmoid_noise_seed
 (optional) Random seed for pre-sigmoid noise.
score_bias_init
 Initial value for score bias scalar. It’s recommended to initialize this to a negative value when the length of the memory is large.
mode How to compute the attention distribution. Must be one of 'recursive', 'parallel', or 'hard'. See the docstring for tfa.seq2seq.monotonic_attention for more information.
Details

This type of attention enforces a monotonic constraint on the attention distributions; that is once the model attends to a given point in the memory it can’t attend to any prior points at subsequence output timesteps. It achieves this by using the _monotonic_probability_fn instead of softmax to construct its attention distributions. Otherwise, it is equivalent to LuongAttention. This approach is proposed in [Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck, "Online and Linear-Time Attention by Enforcing Monotonic Alignments." ICML 2017.](https://arxiv.org/abs/1704.00784)

Value

None

Description

Compute monotonic attention distribution from choosing probabilities.

Usage

```
attention_monotonic(p_choose_i, previous_attention, mode)
```

Arguments

- `p_choose_i` Probability of choosing input sequence/memory element i. Should be of shape `(batch_size, input_sequence_length)`, and should all be in the range [0, 1].
- `previous_attention` The attention distribution from the previous output timestep. Should be of shape `(batch_size, input_sequence_length)`. For the first output timestep, `previous_attention[n]` should be `[1, 0, 0, ..., 0]` for all n in `[0, ..., batch_size - 1]`.
- `mode` How to compute the attention distribution. Must be one of 'recursive', 'parallel', or 'hard'. 'recursive' uses tf\$scan to recursively compute the distribution. This is slowest but is exact, general, and does not suffer from numerical instabilities. 'parallel' uses parallelized cumulative-sum and cumulative-product operations to compute a closed-form solution to the recurrence relation defining the attention distribution. This makes it more efficient than 'recursive', but it requires numerical checks which make the distribution non-exact. This can be a problem in particular when `input_sequence_length` is long and/or `p_choose_i` has entries very close to 0 or 1. * 'hard' requires that the probabilities in `p_choose_i` are all either 0 or 1, and subsequently uses a more efficient and exact solution.
Details

Monotonic attention implies that the input sequence is processed in an explicitly left-to-right manner when generating the output sequence. In addition, once an input sequence element is attended to at a given output timestep, elements occurring before it cannot be attended to at subsequent output timesteps. This function generates attention distributions according to these assumptions. For more information, see ‘Online and Linear-Time Attention by Enforcing Monotonic Alignments’.

Value

A tensor of shape (batch_size, input_sequence_length) representing the attention distributions for each sequence in the batch.

Raises

ValueError: mode is not one of 'recursive', 'parallel', 'hard'.

Description

Attention Wrapper

Usage

attention_wrapper(
 object,
 cell,
 attention_mechanism,
 attention_layer_size = NULL,
 alignment_history = FALSE,
 cell_input_fn = NULL,
 output_attention = TRUE,
 initial_cell_state = NULL,
 name = NULL,
 attention_layer = NULL,
 attention_fn = NULL,
 ...
)

Arguments

object Model or layer object

cell An instance of RNNCell.

attention_mechanism A list of AttentionMechanism instances or a single instance.
attention_layer_size
A list of Python integers or a single Python integer, the depth of the attention (output) layer(s). If ‘NULL’ (default), use the context as attention at each time step. Otherwise, feed the context and cell output into the attention layer to generate attention at each time step. If attention_mechanism is a list, attention_layer_size must be a list of the same length. If attention_layer is set, this must be ‘NULL’. If attention_fn is set, it must guaranteed that the outputs of ‘attention_fn’ also meet the above requirements.

alignment_history
Python boolean, whether to store alignment history from all time steps in the final output state (currently stored as a time major TensorArray on which you must call stack()).

cell_input_fn
(optional) A callable. The default is: lambda inputs, attention: tf$concat(list(inputs, attention), -1).

output_attention
Python bool. If True (default), the output at each time step is the attention value. This is the behavior of Luong-style attention mechanisms. If FALSE, the output at each time step is the output of cell. This is the behavior of Bhadanau-style attention mechanisms. In both cases, the attention tensor is propagated to the next time step via the state and is used there. This flag only controls whether the attention mechanism is propagated up to the next cell in an RNN stack or to the top RNN output.

initial_cell_state
The initial state value to use for the cell when the user calls get_initial_state(). Note that if this value is provided now, and the user uses a batch_size argument of get_initial_state which does not match the batch size of initial_cell_state, proper behavior is not guaranteed.

name
Name to use when creating ops.

attention_layer
A list of tf$keras$layers$Layer instances or a single tf$keras$layers$Layer instance taking the context and cell output as inputs to generate attention at each time step. If ‘NULL’ (default), use the context as attention at each time step. If attention_mechanism is a list, attention_layer must be a list of the same length. If attention_layers_size is set, this must be ‘NULL’.

attention_fn
An optional callable function that allows users to provide their own customized attention function, which takes input (attention_mechanism, cell_output, attention_state, attention_layer) and outputs (attention, alignments, next_attention_state). If provided, the attention_layer_size should be the size of the outputs of attention_fn.

... Other keyword arguments to pass

Value
None
Note

If you are using the 'decoder_beam_search' with a cell wrapped in 'AttentionWrapper', then you
must ensure that: - The encoder output has been tiled to 'beam_width' via 'tile_batch' (NOT
'tf$tile'). - The 'batch_size' argument passed to the 'get_initial_state' method of this wrapper
is equal to 'true_batch_size * beam_width'. - The initial state created with 'get_initial_state' above
contains a 'cell_state' value containing properly tiled final state from the encoder.

attention_wrapper_state

Attention Wrapper State

Description

'namedlist' storing the state of a 'attention_wrapper'.

Usage

attention_wrapper_state(
 object,
 cell_state,
 attention,
 alignments,
 alignment_history,
 attention_state
)

Arguments

object Model or layer object
cell_state The state of the wrapped RNNCell at the previous time step.
attention The attention emitted at the previous time step.
alignments A single or tuple of Tensor(s) containing the alignments emitted at the previous
time step for each attention mechanism.
alignment_history (if enabled) a single or tuple of TensorArray(s) containing alignment matrices
from all time steps for each attention mechanism. Call stack() on each to convert
to a Tensor.
attention_state A single or tuple of nested objects containing attention mechanism state for each
attention mechanism. The objects may contain Tensors or TensorArrays.

Value

None
callback_average_model_checkpoint

Description

Save the model after every epoch.

Usage

```r
callback_average_model_checkpoint(
  filepath,
  update_weights,
  monitor = "val_loss",
  verbose = 0,
  save_best_only = FALSE,
  save_weights_only = FALSE,
  mode = "auto",
  save_freq = "epoch",
  ...
)
```

Arguments

- `filepath` string, path to save the model file.
- `update_weights` bool, whetheer to update weights or not.
- `monitor` quantity to monitor.
- `verbose` verbosity mode, 0 or 1.
- `save_best_only` if ‘save_best_only=TRUE’, the latest best model according to the quantity monitored will not be overwritten. If ‘filepath’ doesn’t contain formatting options like ‘epoch’ then ‘filepath’ will be overwritten by each new better model.
- `save_weights_only` if TRUE, then only the model’s weights will be saved (‘model$save_weights(filepath)’), else the full model is saved (‘model$save(filepath)’).
- `mode` one of auto, min, max. If ‘save_best_only=TRUE’, the decision to overwrite the current save file is made based on either the maximization or the minimization of the monitored quantity. For ‘val_acc’, this should be ‘max’, for ‘val_loss’ this should be ‘min’, etc. In ‘auto’ mode, the direction is automatically inferred from the name of the monitored quantity.
- `save_freq` ‘epoch’ or integer. When using ‘epoch’, the callback saves the model after each epoch. When using integer, the callback saves the model at end of a batch at which this many samples have been seen since last saving. Note that if the saving isn’t aligned to epochs, the monitored metric may potentially be less reliable (it could reflect as little as 1 batch, since the metrics get reset every epoch). Defaults to ‘epoch’.
- `...` Additional arguments for backwards compatibility. Possible key is ‘period‘.
callback_time_stopping

Details

The callback that should be used with optimizers that extend AverageWrapper, i.e., MovingAverage and StochasticAverage optimizers. It saves and, optionally, assigns the averaged weights.

Value

None

For example

if ‘filepath’ is ‘weights.epoch:02d-val_loss:.2f.hdf5’: then the model checkpoints will be saved with the epoch number and the validation loss in the filename.

Description

Time Stopping

Usage

callback_time_stopping(seconds = 86400, verbose = 0)

Arguments

seconds maximum amount of time before stopping. Defaults to 86400 (1 day).
verbose verbosity mode. Defaults to 0.

Details

Stop training when a specified amount of time has passed.

Value

None

Examples

```r
## Not run:
model %>% fit(
x_train, y_train,
batch_size = 128,
ePOCHS = 4,
validation_split = 0.2,
verbose = 0,
```
callbacks = callback_time_stopping(seconds = 6, verbose = 1)
)

End(Not run)

callback_tqdm_progress_bar

TQDM Progress Bar

Description

TQDM Progress Bar

Usage

```
callback_tqdm_progress_bar(
    metrics_separator = " - ",
    overall_bar_format = NULL,
    epoch_bar_format = "{n_fmt}/{total_fmt}{bar} ETA: {remaining}s - {desc}"
    update_per_second = 10,
    leave_epoch_progress = TRUE,
    leave_overall_progress = TRUE,
    show_epoch_progress = TRUE,
    show_overall_progress = TRUE
)
```

Arguments

- `metrics_separator` *(string)* Custom separator between metrics. Defaults to ’ - ’
- `overall_bar_format` *(string format)* Custom bar format for overall (outer) progress bar, see https://github.com/tqdm/tqdm#parameters for more detail. By default: ’l_barbar n_fmt/total_fmt ETA: remainings, rate_fmt_postfix’
- `epoch_bar_format` *(string format)* Custom bar format for epoch (inner) progress bar, see https://github.com/tqdm/tqdm#parameters for more detail
- `update_per_second` *(int)* Maximum number of updates in the epochs bar per second, this is to prevent small batches from slowing down training. Defaults to 10.
- `leave_epoch_progress` *(bool)* TRUE to leave epoch progress bars
- `leave_overall_progress` *(bool)* TRUE to leave overall progress bar
show_epoch_progress

(bool) FALSE to hide epoch progress bars

show_overall_progress

(bool) FALSE to hide overall progress bar

Details

TQDM Progress Bar for TensorFlow Keras.

Value

None

Examples

```r
## Not run:
model %>% fit(
x_train, y_train,
batch_size = 128,
epochs = 4,
validation_split = 0.2,
verbose = 0,
callbacks = callback_tqdm_progress_bar()
)

## End(Not run)
```

crf_binary_score

CRF binary score

Description

Computes the binary scores of tag sequences.

Usage

```r
crf_binary_score(tag_indices, sequence_lengths, transition_params)
```

Arguments

- **tag_indices**

- **sequence_lengths**
 A [batch_size] vector of true sequence lengths.

- **transition_params**
crf_decode
Description
Decode the highest scoring sequence of tags.

Usage
```
crf_decode(potentials, transition_params, sequence_length)
```

Arguments

Value
- `best_score`: A `[batch_size]` vector, containing the score of `decode_tags`.

crf_decode_backward
Description
Computes backward decoding in a linear-chain CRF.

Usage
```
crf_decode_backward(inputs, state)
```

Arguments

Value
crf_decode_forward

Description
Computes forward decoding in a linear-chain CRF.

Usage
```
crf_decode_forward(inputs, state, transition_params, sequence_lengths)
```

Arguments
- **inputs**: A [batch_size, num_tags] matrix of unary potentials.
- **state**: A [batch_size, num_tags] matrix containing the previous step’s score values.
- **sequence_lengths**: A [batch_size] vector of true sequence lengths.

Value
- **new_state**: A [batch_size, num_tags] matrix of new score values.

crf_forward

Description
Computes the alpha values in a linear-chain CRF.

Usage
```
crf_forward(inputs, state, transition_params, sequence_lengths)
```

Arguments
- **inputs**: A [batch_size, num_tags] matrix of unary potentials.
- **state**: A [batch_size, num_tags] matrix containing the previous alpha values.
- **transition_params**: A [num_tags, num_tags] matrix of binary potentials. This matrix is expanded into a [1, num_tags, num_tags] in preparation for the broadcast summation occurring within the cell.
- **sequence_lengths**: A [batch_size] vector of true sequence lengths.
crf_log_likelihood

Details

Value

- **new_alphas**: A `[batch_size, num_tags]` matrix containing the new alpha values.

crf_log_likelihood CRF log likelihood

Description

Computes the log-likelihood of tag sequences in a CRF.

Usage

```
crf_log_likelihood(
    inputs,  
    tag_indices,  
    sequence_lengths,  
    transition_params = NULL
)
```

Arguments

- **inputs**: A `[batch_size, max_seq_len, num_tags]` tensor of unary potentials to use as input to the CRF layer.
- **tag_indices**: A `[batch_size, max_seq_len]` matrix of tag indices for which we compute the log-likelihood.
- **sequence_lengths**: A `[batch_size]` vector of true sequence lengths.
- **transition_params**: A `[num_tags, num_tags]` transition matrix, if available.

Value

- **log_likelihood**: A `[batch_size]` Tensor containing the log-likelihood of each example, given the sequence of tag indices.
- **transition_params**: A `[num_tags, num_tags]` transition matrix. This is either provided by the caller or created in this function.
crf_log_norm
CRF log norm

Description
Computes the normalization for a CRF.

Usage
```
crf_log_norm(inputs, sequence_lengths, transition_params)
```

Arguments
- **inputs**: A `[batch_size, max_seq_len, num_tags]` tensor of unary potentials to use as input to the CRF layer.
- **sequence_lengths**: A `[batch_size]` vector of true sequence lengths.

Value
```
log_norm: A [batch_size] vector of normalizers for a CRF.
```

crf_multitag_sequence_score
CRF multitag sequence score

Description
Computes the unnormalized score of all tag sequences matching

Usage
```
crf_multitag_sequence_score(
    inputs,
    tag_bitmap,
    sequence_lengths,
    transition_params
)
```
crf_sequence_score

Arguments

- **inputs**
 A [batch_size, max_seq_len, num_tags] tensor of unary potentials to use as input to the CRF layer.

- **tag_bitmap**
 A [batch_size, max_seq_len, num_tags] boolean tensor representing all active tags at each index for which to calculate the unnormalized score.

- **sequence_lengths**
 A [batch_size] vector of true sequence lengths.

- **transition_params**

Details

tag_bitmap. tag_bitmap enables more than one tag to be considered correct at each time step. This is useful when an observed output at a given time step is consistent with more than one tag, and thus the log likelihood of that observation must take into account all possible consistent tags. Using one-hot vectors in tag_bitmap gives results identical to crf_sequence_score.

Value

- **sequence_scores**: A [batch_size] vector of unnormalized sequence scores.

crf_sequence_score

CRF sequence score

Description

Computes the unnormalized score for a tag sequence.

Usage

```python
crf_sequence_score(inputs, tag_indices, sequence_lengths, transition_params)
```

Arguments

- **inputs**
 A [batch_size, max_seq_len, num_tags] tensor of unary potentials to use as input to the CRF layer.

- **tag_indices**
 A [batch_size, max_seq_len] matrix of tag indices for which we compute the unnormalized score.

- **sequence_lengths**
 A [batch_size] vector of true sequence lengths.

- **transition_params**
 A [num_tags, num_tags] transition matrix. Returns:

Value

- **sequence_scores**: A [batch_size] vector of unnormalized sequence scores.
crf_unary_score

CRF unary score

Description
Computes the unary scores of tag sequences.

Usage
crf_unary_score(tag_indices, sequence_lengths, inputs)

Arguments
sequence_lengths A [batch_size] vector of true sequence lengths.
inputs A [batch_size, max_seq_len, num_tags] tensor of unary potentials.

Value

decoder

An RNN Decoder abstract interface object.

Description
An RNN Decoder abstract interface object.

Usage
decoder(...)

Arguments
... arguments to pass

Details
- inputs: (structure of) tensors and TensorArrays that is passed as input to the RNNCell composing the decoder, at each time step.
- state: (structure of) tensors and TensorArrays that is passed to the RNNCell instance as the state.
- finished: boolean tensor telling whether each sequence in the batch is finished.
- training: boolean whether it should behave in training mode or in inference mode.
- outputs: Instance of BasicDecoderOutput. Result of the decoding, at each time step.

Value
None
decoder_base

Base Decoder

Description

An RNN Decoder that is based on a Keras layer.

Usage

```r
decoder_base(object, cell, sampler, output_layer = NULL, ...)
```

Arguments

- `object`: Model or layer object
- `cell`: An RNNCell instance.
- `sampler`: A Sampler instance.
- `output_layer`: (Optional) An instance of `tf$layers$Layer`, i.e., `tf$layers$Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling.
- `...`: Other keyword arguments for layer creation.

Value

None

decoder_basic

Basic Decoder

Description

Basic Decoder

Usage

```r
decoder_basic(object, cell, sampler, output_layer = NULL, ...)
```

Arguments

- `object`: Model or layer object
- `cell`: An RNNCell instance.
- `sampler`: A Sampler instance.
- `output_layer`: (Optional) An instance of `tf$layers$Layer`, i.e., `tf$layers$Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling.
- `...`: Other keyword arguments for layer creation.

Value

None
decoder_basic_output
Basic decoder output

Description

Basic decoder output

Usage

decoder_basic_output(rnn_output, sample_id)

Arguments

- **rnn_output**: the output of RNN cell
- **sample_id**: the 'id' of the sample

Value

None

decoder_beam_search
BeamSearch sampling decoder

Description

BeamSearch sampling decoder

Usage

decoder_beam_search(
 object,
 cell,
 beam_width,
 embedding_fn = NULL,
 output_layer = NULL,
 length_penalty_weight = 0,
 coverage_penalty_weight = 0,
 reorder_tensor_arrays = TRUE,
 ...
)

Arguments

- **object**: Model or layer object
- **cell**: An RNNCell instance.
- **beam_width**: Integer, the number of beams.
- **embedding_fn**: A callable that takes a vector tensor of ids (argmax ids).
- **output_layer**: (Optional) An instance of tf.keras.layers.Layer, i.e., tf.keras.layers.Dense. Optional layer to apply to the RNN output prior to storing the result or sampling.
- **length_penalty_weight**: Float weight to penalize length. Disabled with 0.0.
- **coverage_penalty_weight**: Float weight to penalize the coverage of source sentence. Disabled with 0.0.
- **reorder_tensor_arrays**: If ‘TRUE’, TensorArrays’ elements within the cell state will be reordered according to the beam search path. If the TensorArray can be reordered, the stacked form will be returned. Otherwise, the TensorArray will be returned as is. Set this flag to False if the cell state contains TensorArrays that are not amenable to reordering.

Value

None

Note

If you are using the ‘BeamSearchDecoder’ with a cell wrapped in ‘AttentionWrapper’, then you must ensure that: - The encoder output has been tiled to ‘beam_width’ via ‘tile_batch()’ (NOT ‘tf.tile’). - The ‘batch_size’ argument passed to the ‘get_initial_state’ method of this wrapper is equal to ‘true_batch_size * beam_width’. - The initial state created with ‘get_initial_state’ above contains a ‘cell_state’ value containing properly tiled final state from the encoder.

decoder_beam_search_output

Beam Search Decoder Output

description

Beam Search Decoder Output

Usage

decoder_beam_search_output(scores, predicted_ids, parent_ids)
decoder_beam_search_state

Arguments

- **scores**: calculate the scores for each beam.
- **predicted_ids**: The final prediction. A tensor of shape `[batch_size, T, beam_width]` (or `[T, batch_size, beam_width]` if `output_time_major` is `TRUE`). Beams are ordered from best to worst.
- **parent_ids**: The parent ids of shape `[max_time, batch_size, beam_width]`.

Value

None

decoder_beam_search_state

Beam Search Decoder State

Description

Beam Search Decoder State

Usage

```python
decoder_beam_search_state(
    cell_state,
    log_probs,
    finished,
    lengths,
    accumulated_attention_probs
)
```

Arguments

- **cell_state**: cell_state
- **log_probs**: log_probs
- **finished**: finished
- **lengths**: lengths
- **accumulated_attention_probs**: accumulated_attention_probs

Value

None
decoder_final_beam_search_output

Final Beam Search Decoder Output

Description

Final outputs returned by the beam search after all decoding is finished.

Usage

```python
decoder_final_beam_search_output(predicted_ids, beam_search_decoder_output)
```

Arguments

- `predicted_ids`: The final prediction. A tensor of shape `[batch_size, T, beam_width]` (or `[T, batch_size, beam_width]` if `output_time_major` is `TRUE`). Beams are ordered from best to worst.
- `beam_search_decoder_output`: An instance of `BeamSearchDecoderOutput` that describes the state of the beam search.

Value

None

decode_dynamic

Dynamic decode

Description

Perform dynamic decoding with `decoder`.

Usage

```python
decode_dynamic(
    decoder,
    output_time_major = FALSE,
    impute_finished = FALSE,
    maximum_iterations = NULL,
    parallel_iterations = 32L,
    swap_memory = FALSE,
    training = NULL,
    scope = NULL,
    ...
)
```

Arguments

decoder A ‘Decoder’ instance.
output_time_major boolean. Default: ‘FALSE’ (batch major). If ‘TRUE’, outputs are returned as time major tensors (this mode is faster). Otherwise, outputs are returned as batch major tensors (this adds extra time to the computation).
impute_finished boolean. If ‘TRUE’, then states for batch entries which are marked as finished get copied through and the corresponding outputs get zeroed out. This causes some slowdown at each time step, but ensures that the final state and outputs have the correct values and that backprop ignores time steps that were marked as finished.
maximum_iterations ‘int32’ scalar, maximum allowed number of decoding steps. Default is ‘NULL’ (decode until the decoder is fully done).
parallel_iterations Argument passed to ‘tf$while_loop’.
swap_memory Argument passed to ‘tf$while_loop’.
training boolean. Indicates whether the layer should behave in training mode or in inference mode. Only relevant when ‘dropout’ or ‘recurrent_dropout’ is used.
scope Optional variable scope to use.
... A list, other keyword arguments for dynamic_decode. It might contain arguments for ‘BaseDecoder’ to initialize, which takes all tensor inputs during ‘call()’.

Details

Calls ‘initialize()’ once and ‘step()’ repeatedly on the Decoder object.

Value

‘(final_outputs, final_state, final_sequence_lengths)’.

Raises

TypeError: if ‘decoder’ is not an instance of ‘Decoder’. ValueError: if ‘maximum_iterations’ is provided but is not a scalar.

Description

Factory function returning an optimizer class with decoupled weight decay

extend_with_decoupled_weight_decay

Factory function returning an optimizer class with decoupled weight decay
Usage

extend_with_decoupled_weight_decay(base_optimizer)

Arguments

base_optimizer An optimizer class that inherits from tf$optimizers$Optimizer.

Details

The API of the new optimizer class slightly differs from the API of the base optimizer:
- The first argument to the constructor is the weight decay rate.
- minimize and apply_gradients accept the optional keyword argument decay_var_list, which specifies the variables that should be decayed. If NULLs, all variables that are optimized are decayed.

Value

A new optimizer class that inherits from DecoupledWeightDecayExtension and base_optimizer.

Note

Note: this extension decays weights BEFORE applying the update based on the gradient, i.e. this extension only has the desired behaviour for optimizers which do not depend on the value of 'var' in the update step! Note: when applying a decay to the learning rate, be sure to manually apply the decay to the 'weight_decay' as well.

Examples

Not run:

MyAdamW is a new class
MyAdamW = extend_with_decoupled_weight_decay(tf$keras$optimizers$Adam)
Create a MyAdamW object
optimizer = MyAdamW(weight_decay = 0.001, learning_rate = 0.001)
update var1, var2 but only decay var1
optimizer$minimize(loss, var_list = list(var1, var2), decay_variables = list(var1))

End(Not run)

gather_tree Gather tree

Description

Gather tree
gather_tree_from_array

Usage

gather_tree(step_ids, parent_ids, max_sequence_lengths, end_token)

Arguments

- **step_ids**: requires the step id
- **parent_ids**: The parent ids of shape `[max_time, batch_size, beam_width]`.
- **max_sequence_lengths**: get max_sequence_length across all beams for each batch.
- **end_token**: `int32` scalar, the token that marks end of decoding.

Value

None

Gather tree from array

Description

Calculates the full beams for `TensorArray`'s.

Usage

gather_tree_from_array(t, parent_ids, sequence_length)

Arguments

- **t**: A stacked `TensorArray` of size `max_time` that contains `Tensor`'s of shape `[batch_size, beam_width, s]` or `[batch_size * beam_width, s]` where `s` is the depth shape.
- **parent_ids**: The parent ids of shape `[max_time, batch_size, beam_width]`.
- **sequence_length**: The sequence length of shape `[batch_size, beam_width]`.

Value

A `Tensor` which is a stacked `TensorArray` of the same size and type as `t` and where beams are sorted in each `Tensor` according to `parent_ids`.
hardmax
Hardmax

Description
Returns batched one-hot vectors.

Usage
`hardmax(logits, name = NULL)`

Arguments
- **logits**
A batch tensor of logit values.
- **name**
Name to use when creating ops.

Details
The depth index containing the ‘1’ is that of the maximum logit value.

Value
A batched one-hot tensor.

img_adjust_hsv_in_yiq
Adjust hsv in yiq

Description
Adjust hue, saturation, value of an RGB image in YIQ color space.

Usage
```r  
img_adjust_hsv_in_yiq(image,  
delta_hue = 0,  
scale_saturation = 1,  
scale_value = 1,  
name = NULL  
)`
```
Arguments

- **image**: RGB image or images. Size of the last dimension must be 3.
- **delta_hue**: float, the hue rotation amount, in radians.
- **scale_saturation**: float, factor to multiply the saturation by.
- **scale_value**: float, factor to multiply the value by.
- **name**: A name for this operation (optional).

Details

This is a convenience method that converts an RGB image to float representation, converts it to YIQ, rotates the color around the Y channel by `delta_hue` in radians, scales the chrominance channels (I, Q) by `scale_saturation`, scales all channels (Y, I, Q) by `scale_value`, converts back to RGB, and then back to the original data type. ‘image’ is an RGB image. The image hue is adjusted by converting the image to YIQ, rotating around the luminance channel (Y) by ‘delta_hue’ in radians, multiplying the chrominance channels (I, Q) by ‘scale_saturation’, and multiplying all channels (Y, I, Q) by ‘scale_value’. The image is then converted back to RGB.

Value

Adjusted image(s), same shape and dtype as ‘image’.

img_angles_to_projective_transforms

Angles to projective transforms

Description

Returns projective transform(s) for the given angle(s).

Usage

```python
img_angles_to_projective_transforms(
    angles,
    image_height,
    image_width,
    name = NULL
)
```

Arguments

- **angles**: A scalar angle to rotate all images by, or (for batches of images) a vector with an angle to rotate each image in the batch. The rank must be statically known (the shape is not ‘TensorShape(NULL)’).
- **image_height**: Height of the image(s) to be transformed.
- **image_width**: Width of the image(s) to be transformed.
- **name**: name of the op.
Value

A tensor of shape (num_images, 8). Projective transforms which can be given to ‘transform’ op.

img_blend
Blend

Description

Blend image1 and image2 using 'factor'.

Usage

```python
img_blend(image1, image2, factor)
```

Arguments

- **image1**
 An image Tensor of shape (num_rows, num_columns, num_channels) (HWC),
 or (num_rows, num_columns) (HW), or (num_channels, num_rows, num_columns).

- **image2**
 An image Tensor of shape (num_rows, num_columns, num_channels) (HWC),
 or (num_rows, num_columns) (HW), or (num_channels, num_rows, num_columns).

- **factor**
 A floating point value or Tensor of type tf.float32 above 0.0.

Details

Factor can be above 0.0. A value of 0.0 means only image1 is used. A value of 1.0 means only image2 is used. A value between 0.0 and 1.0 means we linearly interpolate the pixel values between the two images. A value greater than 1.0 "extrapolates" the difference between the two pixel values, and we clip the results to values between 0 and 255.

Value

A blended image Tensor of tf$float32$.

img-compose-transforms

Compose transforms

Description

Composes the transforms tensors.

Usage

```python
img-compose-transforms(transforms, name = NULL)
```
Arguments

transforms List of image projective transforms to be composed. Each transform is length 8 (single transform) or shape \((N, 8)\) (batched transforms). The shapes of all inputs must be equal, and at least one input must be given.

name The name for the op.

Value

A composed transform tensor. When passed to ‘transform’ op, equivalent to applying each of the given transforms to the image in order.

img_connected_components

Connected components

Description

Labels the connected components in a batch of images.

Usage

\[
\text{img_connected_components}(\text{images}, \text{name} = \text{NULL})
\]

Arguments

images A 2D \((H, W)\) or 3D \((N, H, W)\) Tensor of image (integer, floating point and boolean types are supported).

name The name of the op.

Details

A component is a set of pixels in a single input image, which are all adjacent and all have the same non-zero value. The components using a squared connectivity of one (all equal entries are joined with their neighbors above, below, left, and right). Components across all images have consecutive ids 1 through \(n\). Components are labeled according to the first pixel of the component appearing in row-major order (lexicographic order by image_index_in_batch, row, col). Zero entries all have an output id of 0. This op is equivalent with ‘scipy.ndimage.measurements.label’ on a 2D array with the default structuring element (which is the connectivity used here).

Value

Components with the same shape as ‘images’. entries that evaluate to FALSE (e.g. 0/0.0f, FALSE) in ‘images’ have value 0, and all other entries map to a component id > 0.

Raises

TypeError: if ‘images’ is not 2D or 3D.
Description

Usage

```python
img_cutout(
    images,
    mask_size,
    offset = list(0, 0),
    constant_values = 0,
    data_format = "channels_last"
)
```

Arguments

- **images**: A tensor of shape (batch_size, height, width, channels) (NHWC), (batch_size, channels, height, width)(NCHW).
- **mask_size**: Specifies how big the zero mask that will be generated is that is applied to the images. The mask will be of size (mask_height x mask_width). Note: mask_size should be divisible by 2.
- **offset**: A list of (height, width) or (batch_size, 2)
- **constant_values**: What pixel value to fill in the images in the area that has the cutout mask applied to it.
- **data_format**: A string, one of 'channels_last' (default) or 'channels_first'. The ordering of the dimensions in the inputs. 'channels_last' corresponds to inputs with shape '(batch_size, ..., channels)' while 'channels_first' corresponds to inputs with shape '(batch_size, channels, ...)'.

Details

This operation applies a (mask_height x mask_width) mask of zeros to a location within 'img' specified by the offset. The pixel values filled in will be of the value 'replace'. The located where the mask will be applied is randomly chosen uniformly over the whole images.

Value

An image Tensor.

Raises

InvalidArgumentError: if mask_size can’t be divisible by 2.
img_dense_image_warp
Dense image warp

Description

Image warping using per-pixel flow vectors.

Usage

```
img_dense_image_warp(image, flow, name = NULL)
```

Arguments

- **image**: 4-D float Tensor with shape [batch, height, width, channels].
- **flow**: A 4-D float Tensor with shape [batch, height, width, 2].
- **name**: A name for the operation (optional).

Details

Apply a non-linear warp to the image, where the warp is specified by a dense flow field of offset vectors that define the correspondences of pixel values in the output image back to locations in the source image. Specifically, the pixel value at output[b, j, i, c] is images[b, j - flow[b, j, i, 0], i - flow[b, j, i, 1], c]. The locations specified by this formula do not necessarily map to an int index. Therefore, the pixel value is obtained by bilinear interpolation of the 4 nearest pixels around (b, j - flow[b, j, i, 0], i - flow[b, j, i, 1]). For locations outside of the image, we use the nearest pixel values at the image boundary.

Value

A 4-D float ‘Tensor’ with shape ‘[batch, height, width, channels]’ and same type as input image.

Raises

ValueError: if height < 2 or width < 2 or the inputs have the wrong number of dimensions.

Note

Note that image and flow can be of type tf$half, tf$float32, or tf$float64, and do not necessarily have to be the same type.

Examples

```r
## Not run:
flow_shape = list(1L, as.integer(input_img$shape[[2]]), as.integer(input_img$shape[[3]]), 2L)
init_flows = tf$random$normal(flow_shape) * 2.0
dense_img_warp = img_dense_image_warp(input_img, init_flows)
dense_img_warp = tf$squeeze(dense_img_warp, 0)
```
Description

Equalize image(s)

Usage

```r
img_equalize(image, data_format = "channels_last", name = NULL)
```

Arguments

- **image**: A tensor of shape (num_images, num_rows, num_columns, num_channels) (NHWC), or (num_images, num_channels, num_rows, num_columns) (NCHW), or (num_rows, num_columns, num_channels) (HWC), or (num_channels, num_rows, num_columns) (CHW), or (num_rows, num_columns) (HW). The rank must be statically known (the shape is not TensorShape(None)).
- **data_format**: Either `channels_first` or `channels_last`
- **name**: The name of the op. Returns: Image(s) with the same type and shape as ‘images’, equalized.

Value

Image(s) with the same type and shape as ‘images’, equalized.

Examples

```r
## Not run:
img_equalize(img)

## End(Not run)
```
Description

Applies euclidean distance transform(s) to the image(s).

Usage

```r
img_euclidean_dist_transform(images, dtype = tf$float32, name = NULL)
```

Arguments

- `images`: A tensor of shape (num_images, num_rows, num_columns, 1) (NHWC), or (num_rows, num_columns, 1) (HWC) or (num_rows, num_columns) (HW).
- `dtype`: DType of the output tensor.
- `name`: The name of the op.

Value

Image(s) with the type `dtype` and same shape as `images`, with the transform applied. If a tensor of all ones is given as input, the output tensor will be filled with the max value of the `dtype`.

Raises

- `TypeError`: If `image` is not tf.uint8, or `dtype` is not floating point.
- `ValueError`: If `image` more than one channel, or `image` is not of rank between 2 and 4.

Examples

```r
## Not run:
img_path = tf$keras$utils$get_file('tensorflow.png','https://tensorflow.org/images/tf_logo.png')
img_raw = tf$io$read_file(img_path)
img = tf$io$decode_png(img_raw)
img = tf$image$convert_image_dtype(img, tf$float32)
img = tf$image$resize(img, c(500L,500L))
bw_img = 1.0 - tf$image$rgb_to_grayscale(img)
gray = tf$image$convert_image_dtype(bw_img,tf$uint8)
gray = tf$expand_dims(gray, 0L)
eucid = img_euclidean_dist_transform(gray)
eucid = tf$squeeze(eucid, c(0,-1))
## End(Not run)
```
img_flat_transforms_to_matrices

Flat transforms to matrices

Description

Converts projective transforms to affine matrices.

Usage

```r
img_flat_transforms_to_matrices(transforms, name = NULL)
```

Arguments

- `transforms` Vector of length 8, or batches of transforms with shape `(N, 8)`.
- `name` The name for the op.

Details

Note that the output matrices map output coordinates to input coordinates. For the forward transformation matrix, call `tf$linalg$inv` on the result.

Value

3D tensor of matrices with shape `(N, 3, 3)`. The output matrices map the *output coordinates* (in homogeneous coordinates) of each transform to the corresponding *input coordinates*.

Raises

ValueError: If `transforms` have an invalid shape.

img_from_4D

From 4D image

Description

Convert back to an image with `ndims` rank.

Usage

```r
img_from_4D(image, ndims)
```

Arguments

- `image` 4D tensor.
- `ndims` The original rank of the image.
Value

‘ndims’-D tensor with the same type.

img_get_ndims

Get ndims

Description

Print dimensions

Usage

```
img_get_ndims(image)
```

Arguments

- **image**
 dimensions of the image

img_interpolate_bilinear

Interpolate bilinear

Description

Similar to Matlab’s interp2 function.

Usage

```
img_interpolate_bilinear(grid, query_points, indexing = "ij", name = NULL)
```

Arguments

- **grid**
 a 4-D float Tensor of shape [batch, height, width, channels].
- **query_points**
 a 3-D float Tensor of N points with shape [batch, N, 2].
- **indexing**
 whether the query points are specified as row and column (ij), or Cartesian coordinates (xy).
- **name**
 a name for the operation (optional).

Details

Finds values for query points on a grid using bilinear interpolation.
Value

values: a 3-D ‘Tensor’ with shape ‘[batch, N, channels]’

Raises

ValueError: if the indexing mode is invalid, or if the shape of the inputs invalid.

img_interpolate_spline

Interpolate spline

Description

Interpolate signal using polyharmonic interpolation.

Usage

```python
img_interpolate_spline(
    train_points,
    train_values,
    query_points,
    order,
    regularization_weight = 0,
    name = "interpolate_spline"
)
```

Arguments

- **train_points** ‘[batch_size, n, d]’ float ‘Tensor’ of n d-dimensional locations. These do not need to be regularly-spaced.
- **train_values** ‘[batch_size, n, k]’ float ‘Tensor’ of n c-dimensional values evaluated at train_points.
- **query_points** ‘[batch_size, m, d]’ ‘Tensor’ of m d-dimensional locations where we will output the interpolant’s values.
- **order** order of the interpolation. Common values are 1 for ‘\(\phi(r) = r\)’, 2 for ‘\(\phi(r) = r^2 \log(r)\)’ (thin-plate spline), or 3 for ‘\(\phi(r) = r^3\)’.
- **regularization_weight** weight placed on the regularization term. This will depend substantially on the problem, and it should always be tuned. For many problems, it is reasonable to use no regularization. If using a non-zero value, we recommend a small value like 0.001.
- **name** name prefix for ops created by this function
Details

The interpolant has the form $f(x) = \sum_{i=1}^{n} w_i \phi(||x - c_i||) + v^T x + b$. This is a sum of two terms: (1) a weighted sum of radial basis function (RBF) terms, with the centers (c_1, \ldots, c_n), and (2) a linear term with a bias. The (c_i) vectors are ‘training’ points. In the code, b is absorbed into v by appending 1 as a final dimension to x. The coefficients w and v are estimated such that the interpolant exactly fits the value of the function at the (c_i) points, the vector w is orthogonal to each (c_i), and the vector w sums to 0. With these constraints, the coefficients can be obtained by solving a linear system. (ϕ) is an RBF, parametrized by an interpolation order. Using order=2 produces the well-known thin-plate spline. We also provide the option to perform regularized interpolation. Here, the interpolant is selected to trade off between the squared loss on the training data and a certain measure of its curvature ([details](https://en.wikipedia.org/wiki/Polyharmonic_spline)). Using a regularization weight greater than zero has the effect that the interpolant will no longer exactly fit the training data. However, it may be less vulnerable to overfitting, particularly for high-order interpolation. Note the interpolation procedure is differentiable with respect to all inputs besides the order parameter. We support dynamically-shaped inputs, where batch_size, n, and m are NULL at graph construction time. However, d and k must be known.

Value

`[b, m, k]` float ‘Tensor’ of query values. We use `train_points` and `train_values` to perform polyharmonic interpolation. The query values are the values of the interpolant evaluated at the locations specified in `query_points`.

This is a sum of two terms

(1) a weighted sum of radial basis function: (RBF) terms, with the centers (c_1, \ldots, c_n), and (2) a linear term with a bias. The (c_i) vectors are ‘training’ points. In the code, b is absorbed into v by appending 1 as a final dimension to x. The coefficients w and v are estimated such that the interpolant exactly fits the value of the function at the (c_i) points, the vector w is orthogonal to each (c_i), and the vector w sums to 0. With these constraints, the coefficients can be obtained by solving a linear system.

img_matrices_to_flat_transforms

Matrices to flat transforms

Description

Converts affine matrices to projective transforms.

Usage

`img_matrices_to_flat_transforms(transform_matrices, name = NULL)`
Arguments

- **transform_matrices**: One or more affine transformation matrices, for the reverse transformation in homogeneous coordinates. Shape `c(3, 3)` or `c(N, 3, 3)`.
- **name**: The name for the op.

Details

Note that we expect matrices that map output coordinates to input coordinates. To convert forward transformation matrices, call `tf$linalg$inv` on the matrices and use the result here.

Value

2D tensor of flat transforms with shape `(N, 8)`, which may be passed into `transform` op.

Raises

ValueError: If `transform_matrices` have an invalid shape.

img_mean_filter2d

Mean filter2d

Description

Perform mean filtering on image(s).

Usage

```r
img_mean_filter2d(
  image,
  filter_shape = list(3, 3),
  padding = "REFLECT",
  constant_values = 0,
  name = NULL
)
```

Arguments

- **image**: Either a 2-D Tensor of shape [height, width], a 3-D Tensor of shape [height, width, channels], or a 4-D Tensor of shape [batch_size, height, width, channels].
- **filter_shape**: An integer or tuple/list of 2 integers, specifying the height and width of the 2-D mean filter. Can be a single integer to specify the same value for all spatial dimensions.
- **padding**: A string, one of "REFLECT", "CONSTANT", or "SYMMETRIC". The type of padding algorithm to use, which is compatible with mode argument in tf.pad. For more details, please refer to https://www.tensorflow.org/api_docs/python/tf/pad.
img_median_filter2d

constant_values
A scalar, the pad value to use in "CONSTANT" padding mode.

name
A name for this operation (optional).

Value
3-D or 4-D ‘Tensor’ of the same dtype as input.

Raises
ValueError: If ‘image’ is not 2, 3 or 4-dimensional, if ‘padding’ is other than "REFLECT", "CONSTANT" or "SYMMETRIC", or if ‘filter_shape’ is invalid.

Description
Perform median filtering on image(s).

Usage
```python
ing_median_filter2d(
    image,
    filter_shape = list(3, 3),
    padding = "REFLECT",
    constant_values = 0,
    name = NULL
)
```

Arguments
- **image**: Either a 2-D Tensor of shape [height, width], a 3-D Tensor of shape [height, width, channels], or a 4-D Tensor of shape [batch_size, height, width, channels].
- **filter_shape**: An integer or tuple/list of 2 integers, specifying the height and width of the 2-D median filter. Can be a single integer to specify the same value for all spatial dimensions.
- **padding**: A string, one of "REFLECT", "CONSTANT", or "SYMMETRIC". The type of padding algorithm to use, which is compatible with mode argument in tf.pad. For more details, please refer to https://www.tensorflow.org/api_docs/python/tf/pad.
- **constant_values**: A scalar, the pad value to use in "CONSTANT" padding mode.
- **name**: A name for this operation (optional)

Value
3-D or 4-D ‘Tensor’ of the same dtype as input.
Raises

ValueError: If "image" is not 2, 3 or 4-dimensional, if "padding" is other than "REFLECT", "CONSTANT" or "SYMMETRIC", or if "filter_shape" is invalid.

Description

Usage

```python
img_random_cutout(
    images,
    mask_size,
    constant_values = 0,
    seed = NULL,
    data_format = "channels_last"
)
```

Arguments

- **images**: A tensor of shape (batch_size, height, width, channels) (NHWC), (batch_size, channels, height, width)(NCHW).
- **mask_size**: Specifies how big the zero mask that will be generated is that is applied to the images. The mask will be of size (mask_height x mask_width). Note: mask_size should be divisible by 2.
- **constant_values**: What pixel value to fill in the images in the area that has the cutout mask applied to it.
- **seed**: An integer. Used in combination with 'tf$random$set_seed' to create a reproducible sequence of tensors across multiple calls.
- **data_format**: A string, one of 'channels_last' (default) or 'channels_first'. The ordering of the dimensions in the inputs. 'channels_last' corresponds to inputs with shape '(batch_size, ..., channels)' while 'channels_first' corresponds to inputs with shape '(batch_size, channels, ...)'.

Details

This operation applies a (mask_height x mask_width) mask of zeros to a random location within 'img'. The pixel values filled in will be of the value 'replace'. The located where the mask will be applied is randomly chosen uniformly over the whole images.

Value

An image Tensor.
Raises

InvalidArgumentError: if mask_size can’t be divisible by 2.

Description

Adjust hue, saturation, value of an RGB image randomly in YIQ color

Usage

```python
img_random_hsv_in_yiq(
    image,
    max_delta_hue = 0,
    lower_saturation = 1,
    upper_saturation = 1,
    lower_value = 1,
    upper_value = 1,
    seed = NULL,
    name = NULL
)
```

Arguments

- **image**: RGB image or images. Size of the last dimension must be 3.
- **max_delta_hue**: float. Maximum value for the random delta_hue. Passing 0 disables adjusting hue.
- **lower_saturation**: float. Lower bound for the random scale_saturation.
- **upper_saturation**: float. Upper bound for the random scale_saturation.
- **lower_value**: float. Lower bound for the random scale_value.
- **upper_value**: float. Upper bound for the random scale_value.
- **seed**: An operation-specific seed. It will be used in conjunction with the graph-level seed to determine the real seeds that will be used in this operation. Please see the documentation of set_random_seed for its interaction with the graph-level random seed.
- **name**: A name for this operation (optional).

Details

Equivalent to ‘adjust_yiq_hsv()’ but uses a ‘delta_h’ randomly picked in the interval ‘[-max_delta_hue, max_delta_hue]’, a ‘scale_saturation’ randomly picked in the interval ‘[lower_saturation, upper_saturation]’, and a ‘scale_value’ randomly picked in the interval ‘[lower_saturation, upper_saturation]’.
Value

3-D float tensor of shape `[height, width, channels]`.

Raises

ValueError: if `max_delta`, `lower_saturation`, `upper_saturation`, `lower_value`, or `upper_value` is invalid.

Examples

```r
## Not run:
delta = 0.5
delta = 0.5
lower_saturation = 0.1
upper_saturation = 0.9
lower_value = 0.2
upper_value = 0.8
rand_hsvinyiq = img_random_hsv_in_yiq(img, delta, lower_saturation, upper_saturation, lower_value, upper_value)
)
## End(Not run)
```

img_resampler
Resampler

Description

Resamples input data at user defined coordinates.

Usage

```r
img_resampler(data, warp, name = NULL)
```

Arguments

- `data`
 Tensor of shape `[batch_size, data_height, data_width, data_num_channels]` containing 2D data that will be resampled.

- `warp`
 Tensor of minimum rank 2 containing the coordinates at which resampling will be performed. Since only bilinear interpolation is currently supported, the last dimension of the warp tensor must be 2, representing the `(x, y)` coordinate where `x` is the index for width and `y` is the index for height.

- `name`
 Optional name of the op.
Details
The resampler currently only supports bilinear interpolation of 2D data.

Value
Tensor of resampled values from 'data'. The output tensor shape is determined by the shape of the warp tensor. For example, if 'data' is of shape '[batch_size, data_height, data_width, data_num_channels]' and warp of shape '[batch_size, dim_0, ..., dim_n, 2]' the output will be of shape '[batch_size, dim_0, ..., dim_n, data_num_channels]'.

Raises
ImportError: if the wrapper generated during compilation is not present when the function is called.

img_rotate
Rotate

Description
Rotate image(s) counterclockwise by the passed angle(s) in radians.

Usage
```python
img_rotate(images, angles, interpolation = "NEAREST", name = NULL)
```

Arguments
- **images**
 A tensor of shape (num_images, num_rows, num_columns, num_channels) (NHWC), (num_rows, num_columns, num_channels) (HWC), or (num_rows, num_columns) (HW).
- **angles**
 A scalar angle to rotate all images by, or (if images has rank 4) a vector of length num_images, with an angle for each image in the batch.
- **interpolation**
 Interpolation mode. Supported values: "NEAREST", "BILINEAR".
- **name**
 The name of the op.

Value
Image(s) with the same type and shape as 'images', rotated by the given angle(s). Empty space due to the rotation will be filled with zeros.

Raises
TypeError: If ‘image’ is an invalid type.
img_sharpness

Sharpness

Description

Change sharpness of image(s)

Usage

```python
img_sharpness(image, factor)
```

Arguments

- `image` - an image
- `factor` - A floating point value or Tensor above 0.0.

Value

Image(s) with the same type and shape as ‘images’, sharper.

img_shear_x

Shear x-axis

Description

Perform shear operation on an image (x-axis)

Usage

```python
img_shear_x(image, level, replace)
```

Arguments

- `image` - A 3D image Tensor.
- `level` - A float denoting shear element along y-axis
- `replace` - A one or three value 1D tensor to fill empty pixels.

Value

Transformed image along X or Y axis, with space outside image filled with replace.
img_shear_y
Shear y-axis

Description
Perform shear operation on an image (y-axis)

Usage
```
img_shear_y(image, level, replace)
```

Arguments
- **image**: A 3D image Tensor.
- **level**: A float denoting shear element along x-axis
- **replace**: A one or three value 1D tensor to fill empty pixels.

Value
Transformed image along X or Y axis, with space outside image filled with replace.

img_sparse_image_warp
Sparse image warp

Description
Image warping using correspondences between sparse control points.

Usage
```
img_sparse_image_warp(
    image,
    source_control_point_locations,
    dest_control_point_locations,
    interpolation_order = 2,
    regularization_weight = 0,
    num_boundary_points = 0,
    name = "sparse_image_warp"
)
```
Arguments

- **image** `[batch, height, width, channels]` float ‘Tensor’
- **source_control_point_locations** `[batch, num_control_points, 2]` float ‘Tensor’
- **dest_control_point_locations** `[batch, num_control_points, 2]` float ‘Tensor’
- **interpolation_order** polynomial order used by the spline interpolation
- **regularization_weight** weight on smoothness regularizer in interpolation
- **num_boundary_points** How many zero-flow boundary points to include at each image edge. Usage:
 - num_boundary_points=0: don’t add zero-flow points
 - num_boundary_points=1: 4 corners of the image
 - num_boundary_points=2: 4 corners and one in the middle of each edge (8 points total)
 - num_boundary_points=n: 4 corners and n-1 along each edge
- **name** A name for the operation (optional).

Details

Apply a non-linear warp to the image, where the warp is specified by the source and destination locations of a (potentially small) number of control points. First, we use a polyharmonic spline (‘tf$contrib$image$interpolate_spline’) to interpolate the displacements between the corresponding control points to a dense flow field. Then, we warp the image using this dense flow field (‘tf$contrib$image$dense_image_warp’). Let t index our control points. For regularization_weight=0, we have: warped_image[b, dest_control_point_locations[b, t, 0], dest_control_point_locations[b, t, 1], :] = image[b, source_control_point_locations[b, t, 0], source_control_point_locations[b, t, 1], :]. For regularization_weight > 0, this condition is met approximately, since regularized interpolation trades off smoothness of the interpolant vs. reconstruction of the interpolant at the control points. See ‘tf$contrib$image$interpolate_spline’ for further documentation of the interpolation_order and regularization_weight arguments.

Value

- **warped_image** `[batch, height, width, channels]` float ‘Tensor’ with same type as input image.
- **flow_field** `[batch, height, width, 2]` float ‘Tensor’ containing the dense flow field produced by the interpolation.

img_to_4D

To 4D image

Description

Convert 2/3/4D image to 4D image.
Usage

```r
img_to_4D(image)
```  
Arguments

image 2/3/4D tensor.

Value

4D tensor with the same type.

Examples

```r
## Not run:
img_to_4D(img)
## End(Not run)
```

Description

Applies the given transform(s) to the image(s).

Usage

```r
img_transform(
  images,
  transforms,
  interpolation = "NEAREST",
  output_shape = NULL,
  name = NULL
)
```

Arguments

images A tensor of shape (num_images, num_rows, num_columns, num_channels) (NHWC), (num_rows, num_columns, num_channels) (HWC), or (num_rows, num_columns) (HW).

transforms Projective transform matrix/matrices. A vector of length 8 or tensor of size N x 8. If one row of transforms is [a0, a1, a2, b0, b1, b2, c0, c1], then it maps the output point (x, y) to a transformed input point (x’, y’) = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k), where k = c0 x + c1 y + 1. The transforms are inverted compared to the transform mapping input points to output points. Note that gradients are not backpropagated into transformation parameters.
interpolation Interpolation mode. Supported values: "NEAREST", "BILINEAR".
output_shape Output dimension after the transform, [height, width]. If NULL, output is the same size as input image.
name The name of the op.

Value

Image(s) with the same type and shape as ‘images’, with the given transform(s) applied. Transformed coordinates outside of the input image will be filled with zeros.

Raises

TypeError: If ‘image’ is an invalid type. ValueError: If output shape is not 1-D int32 Tensor.

Examples

```r
## Not run:
transform = img_transform(img, c(1.0, 1.0, -250, 0.0, 1.0, 0.0, 0.0, 0.0))
## End(Not run)
```

Description

Translate image(s) by the passed vectors(s).

Usage

`img_translate(images, translations, interpolation = "NEAREST", name = NULL)`

Arguments

- `images`: A tensor of shape (num_images, num_rows, num_columns, num_channels) (NHWC), (num_rows, num_columns, num_channels) (HWC), or (num_rows, num_columns) (HW). The rank must be statically known (the shape is not TensorShape(None)).
- `translations`: A vector representing [dx, dy] or (if images has rank 4) a matrix of length num_images, with a [dx, dy] vector for each image in the batch.
- `interpolation`: Interpolation mode. Supported values: "NEAREST", "BILINEAR".
- `name`: The name of the op.
Value

Image(s) with the same type and shape as ‘images’, translated by the given vector(s). Empty space due to the translation will be filled with zeros.

Raises

TypeError: If ‘images’ is an invalid type.

Description

Translates image in X or Y dimension.

Usage

```
img_translate_xy(image, translate_to, replace)
```

Arguments

- `image`: A 3D image Tensor.
- `translate_to`: A 1D tensor to translate [x, y]
- `replace`: A one or three value 1D tensor to fill empty pixels.

Value

Translated image along X or Y axis, with space outside image filled with replace. Raises: ValueError: if axis is neither 0 nor 1.

Raises

ValueError: if axis is neither 0 nor 1.
img_translations_to_projective_transforms
Translations to projective transforms

Description
Returns projective transform(s) for the given translation(s).

Usage
```r
img_translations_to_projective_transforms(translations, name = NULL)
```

Arguments
- `translations` A 2-element list representing [dx, dy] or a matrix of 2-element lists representing [dx, dy] to translate for each image (for a batch of images). The rank must be statically known (the shape is not ‘TensorShape(NULL)’).
- `name` The name of the op.

Value
A tensor of shape c(num_images, 8) projective transforms which can be given to ‘img_transform’.

img_unwrap
Uwrap

Description
Unwraps an image produced by wrap.

Usage
```r
img_unwrap(image, replace)
```

Arguments
- `image` image
- `replace` a one or three value 1D tensor to fill empty pixels.

Details
Where there is a 0 in the last channel for every spatial position, the rest of the three channels in that spatial dimension are grayed (set to 128). Operations like translate and shear on a wrapped Tensor will leave 0s in empty locations. Some transformations look at the intensity of values to do preprocessing, and we want these empty pixels to assume the ‘average’ value, rather than pure black.
Value

a 3D image Tensor with 3 channels.

Description

wrap an image array

Usage

`img_wrap(image)`

Arguments

- `image`: a 3D Image Tensor with 4 channels.

Value

'`image`' with an extra channel set to all 1s.

install_tfaddons

Install TensorFlow SIG Addons

Description

This function is used to install the `TensorFlow SIG Addons` python module

Usage

`install_tfaddons(version = NULL, ..., restart_session = TRUE)`

Arguments

- `version`: for specific version of `TensorFlow SIG Addons`, e.g. "0.10.0"
- `...`: other arguments passed to [reticulate::py_install()].
- `restart_session`: Restart R session after installing (note this will only occur within RStudio).

Value

a python module `tensorflow_addons`
layer_activation_gelu \textit{Gaussian Error Linear Unit}

\textbf{Description}

Gaussian Error Linear Unit

\textbf{Usage}

\texttt{layer_activation_gelu(object, approximate = TRUE, ...)}

\textbf{Arguments}

\begin{itemize}
\item \texttt{object} \\ Model or layer object
\item \texttt{approximate} \\ (bool) Whether to apply approximation
\item ... \\ additional parameters to pass
\end{itemize}

\textbf{Details}

A smoother version of ReLU generally used in the BERT or BERT architecture based models.
Original paper: https://arxiv.org/abs/1606.08415

\textbf{Value}

A tensor

\textbf{Note}

Input shape: Arbitrary. Use the keyword argument 'input_shape' (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model.

Output shape: Same shape as the input.

layer_correlation_cost \textit{Correlation Cost Layer.}

\textbf{Description}

Correlation Cost Layer.
Usage

layer_correlation_cost(
 object,
 kernel_size,
 max_displacement,
 stride_1,
 stride_2,
 pad,
 data_format,
 ...
)

Arguments

- **object**: Model or layer object
- **kernel_size**: An integer specifying the height and width of the patch used to compute the per-patch costs.
- **max_displacement**: An integer specifying the maximum search radius for each position.
- **stride_1**: An integer specifying the stride length in the input.
- **stride_2**: An integer specifying the stride length in the patch.
- **pad**: An integer specifying the paddings in height and width.
- **data_format**: Specifies the data format. Possible values are: "channels_last" float [batch, height, width, channels] "channels_first" float [batch, channels, height, width] Defaults to "channels_last".
- ... additional parameters to pass

Details

This layer implements the correlation operation from FlowNet Learning Optical Flow with Convolutional Networks (Fischer et al.): https://arxiv.org/abs/1504.06

Value

A tensor

layer_filter_response_normalization

FilterResponseNormalization

Description

Filter response normalization layer.
Usage

layer_filter_response_normalization(
 object,
 epsilon = 1e-06,
 axis = c(1, 2),
 beta_initializer = "zeros",
 gamma_initializer = "ones",
 beta_regularizer = NULL,
 gamma_regularizer = NULL,
 beta_constraint = NULL,
 gamma_constraint = NULL,
 learned_epsilon = FALSE,
 learned_epsilon_constraint = NULL,
 name = NULL
)

Arguments

object Model or layer object
epsilon Small positive float value added to variance to avoid dividing by zero.
axis List of axes that should be normalized. This should represent the spatial dimensions.
beta_initializer Initializer for the beta weight.
gamma_initializer Initializer for the gamma weight.
beta_regularizer Optional regularizer for the beta weight.
gamma_regularizer Optional regularizer for the gamma weight.
beta_constraint Optional constraint for the beta weight.
gamma_constraint Optional constraint for the gamma weight.
learned_epsilon (bool) Whether to add another learnable epsilon parameter or not.
learned_epsilon_constraint
name Optional name for the layer

Details

Filter Response Normalization (FRN), a normalization method that enables models trained with per-channel normalization to achieve high accuracy. It performs better than all other normalization techniques for small batches and is par with Batch Normalization for bigger batch sizes.
Value

A tensor

Note

Input shape Arbitrary. Use the keyword argument ‘input_shape’ (list of integers, does not include the samples axis) when using this layer as the first layer in a model. This layer, as of now, works on a 4-D tensor where the tensor should have the shape [N X H X W X C] TODO: Add support for NCHW data format and FC layers. Output shape Same shape as input. References - [Filter Response Normalization Layer: Eliminating Batch Dependence in the training of Deep Neural Networks] (https://arxiv.org/abs/1911.09737)

layer_group_normalization

Group normalization layer

Description

Group normalization layer

Usage

```r
layer_group_normalization(
  object,
  groups = 2,
  axis = -1,
  epsilon = 0.001,
  center = TRUE,
  scale = TRUE,
  beta_initializer = "zeros",
  gamma_initializer = "ones",
  beta_regularizer = NULL,
  gamma_regularizer = NULL,
  beta_constraint = NULL,
  gamma_constraint = NULL,
  ...
)
```

Arguments

- **object**: Model or layer object
- **groups**: Integer, the number of groups for Group Normalization. Can be in the range [1, N] where N is the input dimension. The input dimension must be divisible by the number of groups.
- **axis**: Integer, the axis that should be normalized.
- **epsilon**: Small float added to variance to avoid dividing by zero.
center
If TRUE, add offset of beta to normalized tensor. If False, beta is ignored.
scale
If TRUE, multiply by gamma. If False, gamma is not used.
beta_initializer
Initializer for the beta weight.
gamma_initializer
Initializer for the gamma weight.
beta_regularizer
Optional regularizer for the beta weight.
gamma_regularizer
Optional regularizer for the gamma weight.
beta_constraint
Optional constraint for the beta weight.
gamma_constraint
Optional constraint for the gamma weight.
... additional parameters to pass

Details
Group Normalization divides the channels into groups and computes within each group the mean and variance for normalization. Empirically, its accuracy is more stable than batch norm in a wide range of small batch sizes, if learning rate is adjusted linearly with batch sizes. Relation to Layer Normalization: If the number of groups is set to 1, then this operation becomes identical to Layer Normalization. Relation to Instance Normalization: If the number of groups is set to the input dimension (number of groups is equal to number of channels), then this operation becomes identical to Instance Normalization.

Value
A tensor

layer_instance_normalization
Instance normalization layer

Description
Instance normalization layer

Usage
layer_instance_normalization(
 object,
 groups = 2,
 axis = -1,
 epsilon = 0.001,
center = TRUE,
scale = TRUE,
beta_initializer = "zeros",
gamma_initializer = "ones",
beta_regularizer = NULL,
gamma_regularizer = NULL,
beta_constraint = NULL,
gamma_constraint = NULL,
...}
)

Arguments

object Model or layer object
groups Integer, the number of groups for Group Normalization. Can be in the range \([1, N]\) where \(N\) is the input dimension. The input dimension must be divisible by the number of groups.
axis Integer, the axis that should be normalized.
epsilon Small float added to variance to avoid dividing by zero.
center If TRUE, add offset of ‘beta’ to normalized tensor. If FALSE, ‘beta’ is ignored.
scale If TRUE, multiply by ‘gamma’. If FALSE, ‘gamma’ is not used.
beta_initializer Initializer for the beta weight.
gamma_initializer Initializer for the gamma weight.
beta_regularizer Optional regularizer for the beta weight.
gamma_regularizer Optional regularizer for the gamma weight.
beta_constraint Optional constraint for the beta weight.
gamma_constraint Optional constraint for the gamma weight.
...

Details

Instance Normalization is an specific case of ‘Group Normalization’ since it normalizes all features of one channel. The Groupsize is equal to the channel size. Empirically, its accuracy is more stable than batch norm in a wide range of small batch sizes, if learning rate is adjusted linearly with batch sizes.

Value

A tensor
References

`layer_maxout` *Maxout layer*

Description

Maxout layer

Usage

`layer_maxout(object, num_units, axis = -1, ...)`

Arguments

- `object`: Model or layer object
- `num_units`: Specifies how many features will remain after maxout in the axis dimension (usually channel). This must be a factor of number of features.
- `axis`: The dimension where max pooling will be performed. Default is the last dimension.
- `...`: additional parameters to pass

Details

"Maxout Networks" Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, Yoshua Bengio. https://arxiv.org/abs/1302.4389 Usually the operation is performed in the filter/channel dimension. This can also be used after Dense layers to reduce number of features.

Value

A tensor

`layer_multi_head_attention` *Keras-based multi head attention layer*

Description

MultiHead Attention layer.
Usage

```python
layer_multi_head_attention(
    object,
    head_size,
    num_heads,
    output_size = NULL,
    dropout = 0,
    use_projection_bias = TRUE,
    return_attn_coef = FALSE,
    kernel_initializer = "glorot_uniform",
    kernel_regularizer = NULL,
    kernel_constraint = NULL,
    bias_initializer = "zeros",
    bias_regularizer = NULL,
    bias_constraint = NULL,
    ...)
```

Arguments

- **object**
 Model or layer object

- **head_size**
 int, dimensionality of the ‘query’, ‘key’ and ‘value’ tensors after the linear transformation.

- **num_heads**
 int, number of attention heads.

- **output_size**
 int, dimensionality of the output space, if ‘NULL’ then the input dimension of ‘value’ or ‘key’ will be used, default ‘NULL’.

- **dropout**
 float, ‘rate’ parameter for the dropout layer that is applied to attention after softmax, default ‘0’.

- **use_projection_bias**
 bool, whether to use a bias term after the linear output projection.

- **return_attn_coef**
 bool, if ‘TRUE’, return the attention coefficients as an additional output argument.

- **kernel_initializer**
 initializer, initializer for the kernel weights.

- **kernel_regularizer**
 regularizer, regularizer for the kernel weights.

- **kernel_constraint**
 constraint, constraint for the kernel weights.

- **bias_initializer**
 initializer, initializer for the bias weights.

- **bias_regularizer**
 regularizer, regularizer for the bias weights.

- **bias_constraint**
 constraint, constraint for the bias weights.

... additional parameters to pass
Details

Defines the MultiHead Attention operation as defined in [Attention Is All You Need](https://arxiv.org/abs/1706.03762) which takes in a 'query', 'key' and 'value' tensors returns the dot-product attention between them.

Value

A tensor

Examples

```r
## Not run:

mha = layer_multi_head_attention(head_size=128, num_heads=128)
query = tf$random$uniform(list(32L, 20L, 200L)) # (batch_size, query_elements, query_depth)
key = tf$random$uniform(list(32L, 15L, 300L)) # (batch_size, key_elements, key_depth)
value = tf$random$uniform(list(32L, 15L, 400L)) # (batch_size, key_elements, value_depth)
attention = mha(list(query, key, value)) # (batch_size, query_elements, value_depth)

# If 'value' is not given then internally 'value = key' will be used:

mha = layer_multi_head_attention(head_size=128, num_heads=128)
query = tf$random$uniform(list(32L, 20L, 200L)) # (batch_size, query_elements, query_depth)
key = tf$random$uniform(list(32L, 15L, 300L)) # (batch_size, key_elements, key_depth)
attention = mha(list(query, key)) # (batch_size, query_elements, value_depth)

## End(Not run)
```

layer_nas_cell
Neural Architecture Search (NAS) recurrent network cell.

Description

Neural Architecture Search (NAS) recurrent network cell.

Usage

```r
layer_nas_cell(
  object,
  units,
  projection = NULL,
  use_bias = FALSE,
  kernel_initializer = "glorot_uniform",
  recurrent_initializer = "glorot_uniform",
  projection_initializer = "glorot_uniform",
  bias_initializer = "zeros",
  ...
)
```
Arguments

- **object**: Model or layer object
- **units**: int, The number of units in the NAS cell.
- **projection**: (optional) int, The output dimensionality for the projection matrices. If None, no projection is performed.
- **use_bias**: (optional) bool, If ‘TRUE’ then use biases within the cell. This is ‘FALSE’ by default.
- **kernel_initializer**: Initializer for kernel weight.
- **recurrent_initializer**: Initializer for recurrent kernel weight.
- **projection_initializer**: Initializer for projection weight, used when projection is not ‘NULL’.
- **bias_initializer**: Initializer for bias, used when ‘use_bias’ is ‘TRUE’.
- **...**: Additional keyword arguments.

Details

This implements the recurrent cell from the paper: https://arxiv.org/abs/1611.01578 Barret Zoph and Quoc V. Le. ”Neural Architecture Search with Reinforcement Learning“ Proc. ICLR 2017. The class uses an optional projection layer.

Value

A tensor

Description

LSTM cell with layer normalization and recurrent dropout.

Usage

```python
def layer_norm_lstm_cell(
    object,
    units,
    activation = "tanh",
    recurrent_activation = "sigmoid",
    use_bias = TRUE,
    kernel_initializer = "glorot_uniform",
    recurrent_initializer = "orthogonal",
    bias_initializer = "zeros",
```
layer_norm_lstm_cell

```r
unitForgetBias = TRUE,
kernelRegularizer = NULL,
recurrentRegularizer = NULL,
biasRegularizer = NULL,
kernelConstraint = NULL,
recurrentConstraint = NULL,
biasConstraint = NULL,
dropout = 0,
recurrentDropout = 0,
normGammaInitializer = "ones",
normBetaInitializer = "zeros",
normEpsilon = 0.001,
```

Arguments

- **object**: Model or layer object
- **units**: Positive integer, dimensionality of the output space.
- **activation**: Activation function to use. Default: hyperbolic tangent (‘tanh’). If you pass ‘NULL’, no activation is applied (ie. “linear” activation: ‘a(x) = x’).
- **recurrent_activation**: Activation function to use for the recurrent step. Default: sigmoid (‘sigmoid’). If you pass ‘NULL’, no activation is applied (ie. “linear” activation: ‘a(x) = x’).
- **use_bias**: Boolean, whether the layer uses a bias vector.
- **kernel_initializer**: Initializer for the ‘kernel’ weights matrix, used for the linear transformation of the inputs.
- **recurrent_initializer**: Initializer for the ‘recurrent_kernel’ weights matrix, used for the linear transformation of the recurrent state.
- **bias_initializer**: Initializer for the bias vector.
- **unitForgetBias**: Boolean. If True, add 1 to the bias of the forget gate at initialization. Setting it to true will also force ‘bias_initializer="zeros"’. This is recommended in [Jozefowicz et al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
- **kernel_regularizer**: Regularizer function applied to the ‘kernel’ weights matrix.
- **recurrent_regularizer**: Regularizer function applied to the ‘recurrent_kernel’ weights matrix.
- **bias_regularizer**: Regularizer function applied to the bias vector.
- **kernel_constraint**: Constraint function applied to the ‘kernel’ weights matrix.
- **recurrent_constraint**: Constraint function applied to the ‘recurrent_kernel’ weights matrix.
bias_constraint
Constraint function applied to the bias vector.
dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs.
recurrent_dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state.
norm_gamma_initializer
Initializer for the layer normalization gain initial value.
norm_beta_initializer
Initializer for the layer normalization shift initial value.
norm_epsilon
Float, the epsilon value for normalization layers.
...List, the other keyword arguments for layer creation.

Details
This class adds layer normalization and recurrent dropout to a LSTM unit. Layer normalization implementation is based on: https://arxiv.org/abs/1607.06450. "Layer Normalization" Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton and is applied before the internal nonlinearities. Recurrent dropout is based on: https://arxiv.org/abs/1603.05118 "Recurrent Dropout without Memory Loss" Stanislau Semeniuta, Aliaksei Severyn, Erhardt Barth.

Value
A tensor

layer_poincare_normalize
Project into the Poincare ball with norm <= 1.0 - epsilon

Description
Project into the Poincare ball with norm <= 1.0 - epsilon

Usage
layer_poincare_normalize(object, axis = 1, epsilon = 1e-05, ...)

Arguments
object Model or layer object
axis Axis along which to normalize. A scalar or a vector of integers.
epsilon A small deviation from the edge of the unit sphere for numerical stability.
... additional parameters to pass
Details

For a 1-D tensor with axis = 0, computes

Value

A tensor

layer_sparsemax
Sparsemax activation function

Description

Sparsemax activation function

Usage

layer_sparsemax(object, axis = -1, ...)

Arguments

- **object**: Model or layer object
- **axis**: Integer, axis along which the sparsemax normalization is applied.
- **...**: additional parameters to pass

Details

The output shape is the same as the input shape. https://arxiv.org/abs/1602.02068

Value

A tensor

Examples

```r
## Not run:
model = keras_model_sequential() %>%
  layer_conv_2d(filters = 10, kernel_size = c(3,3),input_shape = c(28,28,1),
  activation = activation_gelu) %>%
  layer_sparsemax()
## End(Not run)
```
layer_weight_normalization

Description

Weight Normalization layer

Usage

layer_weight_normalization(object, layer, data_init = TRUE, ...)

Arguments

- object: Model or layer object
- layer: a layer instance.
- data_init: If ‘TRUE’ use data dependent variable initialization
- ... additional parameters to pass

Details

Value

A tensor

Examples

```r
## Not run:

model <- keras_model_sequential() %>%
layer_weight_normalization(
  layer_conv_2d(filters = 2, kernel_size = 2, activation = 'relu'),
  input_shape = c(32L, 32L, 3L))
model

## End(Not run)```
lookahead_mechanism  Lookahead mechanism

Description

Lookahead mechanism

Usage

lookahead_mechanism(
    optimizer,
    sync_period = 6,
    slow_step_size = 0.5,
    name = "Lookahead",
    clipnorm = NULL,
    clipvalue = NULL,
    decay = NULL,
    lr = NULL
)

Arguments

optimizer  The original optimizer that will be used to compute and apply the gradients.
sync_period  An integer. The synchronization period of lookahead. Enable lookahead mechanism by setting it with a positive value.
slow_step_size  A floating point value. The ratio for updating the slow weights.
name  Optional name for the operations created when applying gradients. Defaults to "Lookahead".
clipnorm  is clip gradients by norm.
clipvalue  is clip gradients by value.
decay  is included for backward compatibility to allow time inverse decay of learning rate.
lr  is included for backward compatibility, recommended to use learning_rate instead.

Details

The mechanism is proposed by Michael R. Zhang et.al in the paper [Lookahead Optimizer: k steps forward, 1 step back](https://arxiv.org/abs/1907.08610v1). The optimizer iteratively updates two sets of weights: the search directions for weights are chosen by the inner optimizer, while the "slow weights" are updated each k steps based on the directions of the "fast weights" and the two sets of weights are synchronized. This method improves the learning stability and lowers the variance of its inner optimizer.
loss_contrastive

Value

Optimizer for use with ‘keras::compile()’

Examples

```r
Not run:

opt = tf$keras$optimizers$SGD(learning_rate)
opt = lookahead_mechanism(opt)

End(Not run)
```

---

loss_contrastive  Contrastive loss

Description

Computes the contrastive loss between 'y_true' and 'y_pred'.

Usage

```r
loss_contrastive(
 margin = 1,
 reduction = tf$keras$losses$Reduction$SUM_OVER_BATCH_SIZE,
 name = "contrasitive_loss"
)
```

Arguments

- `margin` Float, margin term in the loss definition. Default value is 1.0.
- `reduction` (Optional) Type of `tf$keras$losses$Reduction` to apply. Default value is `SUM_OVER_BATCH_SIZE`.
- `name` (Optional) name for the loss.

Details

This loss encourages the embedding to be close to each other for the samples of the same label and the embedding to be far apart at least by the margin constant for the samples of different labels. The euclidean distances 'y_pred' between two embedding matrices 'a' and 'b' with shape [batch_size, hidden_size] can be computed as follows: ```python
# y_pred = \sqrt{\sum_i (a[:, i] - b[:, i])^2} y_pred = tf$linalg.norm(a - b, axis=1)
```


Value

contrastive_loss: 1-D float 'Tensor' with shape [batch_size].
Examples

```r
## Not run:
keras_model_sequential() %>%
  layer_dense(4, input_shape = c(784)) %>%
  compile(
    optimizer = 'sgd',
    loss=loss_contrastive(),
    metrics='accuracy'
  )

## End(Not run)
```

loss_giou
Implements the GIoU loss function.

Description

GIoU loss was first introduced in the [Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression](https://giou.stanford.edu/GIoU.pdf). GIoU is an enhancement for models which use IoU in object detection.

Usage

```r
loss_giou(
  mode = "giou",
  reduction = tf$keras$losses$Reduction$AUTO,
  name = "giou_loss"
)
```

Arguments

- **mode**: one of ["giou", "iou"], decided to calculate GIoU or IoU loss.
- **reduction**: (Optional) Type of tf$keras$losses$Reduction to apply. Default value is SUM_OVER_BATCH_SIZE.
- **name**: A name for the operation (optional).

Value

GIoU loss float ‘Tensor’.
loss_hamming

Hamming loss

Description
Computes hamming loss.

Usage

```r
loss_hamming(
    mode,
    name = "hamming_loss",
    threshold = NULL,
    dtype = tf$float32,
    ...
)
```

Arguments

- **mode**: multi-class or multi-label
- **name**: (optional) String name of the metric instance.
- **threshold**: Elements of ‘y_pred’ greater than threshold are converted to be 1, and the rest 0. If threshold is None, the argmax is converted to 1, and the rest 0.
- **dtype**: (optional) Data type of the metric result. Defaults to ‘tf$float32’.
- **...**: additional arguments that are passed on to function ‘fn’.

Details

Hamming loss is the fraction of wrong labels to the total number of labels. In multi-class classification, hamming loss is calculated as the hamming distance between ‘actual’ and ‘predictions’. In multi-label classification, hamming loss penalizes only the individual labels.

Value

hamming loss: float

Examples

```r
## Not run:
# multi-class hamming loss
hl = loss_hamming(mode='multiclass', threshold=0.6)
actuals = tf$constant(list(as.integer(c(1, 0, 0, 0)),as.integer(c(0, 0, 1, 0)),
                          as.integer(c(0, 0, 0, 1)),as.integer(c(0, 1, 0, 0))),
                      dtype=tf$float32)
predictions = tf$constant(list(c(0.8, 0.1, 0.1, 0),
                                c(0.2, 0, 0.8, 0),
```
loss_lifted_struct

Lifted structured loss

Description
Computes the lifted structured loss.

Usage

```
loss_lifted_struct(margin = 1, name = NULL, ...)
```

Arguments

- **margin**: Float, margin term in the loss definition.
- **name**: Optional name for the op.
- **...**: additional parameters to pass

Details
The loss encourages the positive distances (between a pair of embeddings with the same labels) to be smaller than any negative distances (between a pair of embeddings with different labels) in the mini-batch in a way that is differentiable with respect to the embedding vectors. See: https://arxiv.org/abs/1511.06452

Value

```
lifted_loss: tf$float32 scalar.
```
loss_npairs

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computes the npairs loss between ‘y_true’ and ‘y_pred’.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>loss_npairs(name = "npairs_loss")</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
</tr>
</thead>
</table>
| Npairs loss expects paired data where a pair is composed of samples from the same labels and each pairs in the minibatch have different labels. The loss takes each row of the pair-wise similarity matrix, ‘y_pred’, as logits and the remapped multi-class labels, ‘y_true’, as labels. The similarity matrix ‘y_pred’ between two embedding matrices ‘a’ and ‘b’ with shape '[batch_size, hidden_size]' can be computed as follows:
```
# y_pred = a * b^T y_pred = tf$matmul(a, b, transpose_a=FALSE, transpose_b=TRUE) 
```

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>npairs_loss: float scalar.</td>
</tr>
</tbody>
</table>

loss_npairs_multilabel

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computes the npairs loss between multilabel data ‘y_true’ and ‘y_pred’.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>loss_npairs_multilabel(name = "npairs_multilabel_loss")</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
</tr>
</tbody>
</table>
Details

Npairs loss expects paired data where a pair is composed of samples from the same labels and each pair in the minibatch have different labels. The loss takes each row of the pair-wise similarity matrix, ‘y_pred’, as logits and the remapped multi-class labels, ‘y_true’, as labels. To deal with multilabel inputs, the count of label intersection is computed as follows: ‘\[L_{i,j} = \sum_{i \cap j} \]’. Each row of the count based label matrix is further normalized so that each row sums to one. ‘y_true’ should be a binary indicator for classes. That is, if ‘y_true[i, j] = 1’, then ‘i’th sample is in ‘j’th class; if ‘y_true[i, j] = 0’, then ‘i’th sample is not in ‘j’th class. The similarity matrix ‘y_pred’ between two embedding matrices ‘a’ and ‘b’ with shape ‘[batch_size, hidden_size]’ can be computed as follows: ‘\[# y_{pred} = a \cdot b^T y_{pred} = tf.matmul(a, b, transpose_a=False, transpose_b=True) \]’

Value

npairs_multilabel_loss: float scalar.

See

<table>
<thead>
<tr>
<th>loss_pinball</th>
<th>Pinball loss</th>
</tr>
</thead>
</table>

Description

Computes the pinball loss between ‘y_true’ and ‘y_pred’.

Usage

```python
loss_pinball(
    tau = 0.5,
    reduction = tf.keras.losses.Reduction.AUTO,
    name = "pinball_loss"
)
```

Arguments

tau (Optional) Float in [0, 1] or a tensor taking values in [0, 1] and shape = [d0,..., dn]. It defines the slope of the pinball loss. In the context of quantile regression, the value of tau determines the conditional quantile level. When tau = 0.5, this amounts to 11 regression, an estimator of the conditional median (0.5 quantile).

reduction (Optional) Type of tf.keras.losses.Reduction to apply to loss. Default value is AUTO. AUTO indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to SUM_OVER_BATCH_SIZE. When used with tf.distribute.Strategy, outside of built-in training loops such as tf$keras compile and fit, using AUTO or SUM_OVER_BATCH_SIZE will raise an error. Please see https://www.tensorflow.org/alpha/tutorials/distribute/training_loops for more details on this.
loss_sequence

name Optional name for the op.

Details

'\text{loss} = \max(\tau \times (y_{\text{true}} - y_{\text{pred}}), (\tau - 1) \times (y_{\text{true}} - y_{\text{pred}}))' In the context of regression this, loss yields an estimator of the tau conditional quantile. See: https://en.wikipedia.org/wiki/Quantile_regression

Usage:

```python
loss = pinball_loss([0., 0., 1., 1.], [1., 1., 1., 0.], tau=1) # loss = \max(0.1 \times (y_{\text{true}} - y_{\text{pred}}), (0.1 - 1) \times (y_{\text{true}} - y_{\text{pred}})) \# = (0.9 + 0.9 + 0 + 0.1) / 4
print('Loss: ', loss.numpy()) #
Loss: 0.475```

Value

pinball_loss: 1-D float ‘Tensor’ with shape [batch_size].

Usage

```python
loss = pinball_loss([0., 0., 1., 1.], [1., 1., 1., 0.], tau=1)```

References

Examples

```r
## Not run:
keras_model_sequential() %>%
  layer_dense(4, input_shape = c(784)) %>%
  compile(
    optimizer = 'sgd',
    loss = loss_pinball(),
    metrics = 'accuracy'
  )
## End(Not run)
```
loss_sigmoid_focal_crossentropy

Sigmoid focal crossentropy loss

Description
Sigmoid focal crossentropy loss

Usage

```r
loss_sigmoid_focal_crossentropy(
  from_logits = FALSE,
  alpha = 0.25,
  gamma = 2,
  reduction = tf$keras$losses$Reduction$NONE,
  name = "sigmoid_focal_crossentropy"
)
```

Arguments

- `from_logits` If logits are provided then convert the predictions into probabilities
- `alpha` balancing factor.
- `gamma` modulating factor.
- `reduction` (Optional) Type of tf$keras$losses$Reduction to apply. Default value is SUM_OVER_BATCH_SIZE.
- `name` (Optional) name for the loss.

Value

Weighted loss float ‘Tensor’. If ‘reduction’ is ‘NONE’, this has the same shape as ‘y_true’; otherwise, it is scalar.

Examples

```r
## Not run:
keras_model_sequential() %>%
  layer_dense(4, input_shape = c(784)) %>%
  compile(
    optimizer = 'sgd',
```

loss_sparsemax

```r
loss=sigmoid_focal_crossentropy(),
metrics='accuracy'
```

```r
## End(Not run)
```

loss_sparsemax

Sparsemax loss

Description
Sparsemax loss function [1].

Usage

```r
loss_sparsemax(
  from_logits = TRUE,
  reduction = tf$keras$losses$Reduction$SUM_OVER_BATCH_SIZE,
  name = "sparsemax_loss"
)
```

Arguments

- `from_logits`: Whether `y_pred` is expected to be a logits tensor. Default is True, meaning `y_pred` is the logits.
- `reduction`: (Optional) Type of `tf$keras$losses$Reduction` to apply to loss. Default value is `SUM_OVER_BATCH_SIZE`.
- `name`: Optional name for the op.

Details
Computes the generalized multi-label classification loss for the sparsemax function. The implementation is a reformulation of the original loss function such that it uses the sparsemax probability output instead of the internal au variable. However, the output is identical to the original loss function. [1]: https://arxiv.org/abs/1602.02068

Value

A ‘Tensor’. Has the same type as ‘logits’.
loss_triplet_hard

Description

Computes the triplet loss with hard negative and hard positive mining.

Usage

```r
loss_triplet_hard(margin = 1, soft = FALSE, name = NULL, ...)
```

Arguments

- `margin`
 Float, margin term in the loss definition. Default value is 1.0.
- `soft`
 Boolean, if set, use the soft margin version. Default value is False.
- `name`
 Optional name for the op.
- `...`
 Additional arguments to pass

Value

`triplet_loss`: float scalar with dtype of `y_pred`.

Examples

```r
## Not run:
model = keras_model_sequential() %>%
  layer_conv_2d(filters = 64, kernel_size = 2, padding='same', input_shape=c(28,28,1)) %>%
  layer_max_pooling_2d(pool_size=2) %>%
  layer_flatten() %>%
  layer_dense(256, activation=NULL) %>%
  layer_lambda(f = function(x) tf$math$l2_normalize(x, axis = 1L))

model %>% compile(
  optimizer = optimizer_lazy_adam(),
  # apply triplet semihard loss
  loss = loss_triplet_hard())
## End(Not run)
```
loss_triplet_semihard
Triplet semihard loss

Description

Computes the triplet loss with semi-hard negative mining.

Usage

```r
loss_triplet_semihard(margin = 1, name = NULL, ...)
```

Arguments

- `margin`
 Float, margin term in the loss definition. Default value is 1.0.
- `name`
 Optional name for the op.
- `...`
 additional arguments to pass

Value

`triplet_loss`: float scalar with dtype of `y_pred`.

Examples

```r
## Not run:
model = keras_model_sequential() %>%
  layer_conv_2d(filters = 64, kernel_size = 2, padding='same', input_shape=c(28,28,1)) %>%
  layer_max_pooling_2d(pool_size=2) %>%
  layer_flatten() %>%
  layer_dense(256, activation= NULL) %>%
  layer_lambda(f = function(x) tf$math$l2_normalize(x, axis = 1L))

model %>% compile(
  optimizer = optimizer_lazy_adam(),
  # apply triplet semihard loss
  loss = loss_triplet_semihard())
## End(Not run)
```
Description

Computes F-1 Score.

Usage

```r
metrics_f1score(
  num_classes,
  average = NULL,
  threshold = NULL,
  name = "f1_score",
  dtype = tf$float32
)
```

Arguments

- `num_classes`: Number of unique classes in the dataset.
- `average`: Type of averaging to be performed on data. Acceptable values are NULL, micro, macro and weighted. Default value is NULL. - None: Scores for each class are returned - micro: True positivies, false positives and false negatives are computed globally. - macro: True positivies, false positives and false negatives are computed for each class and their unweighted mean is returned. - weighted: Metrics are computed for each class and returns the mean weighted by the number of true instances in each class.
- `threshold`: Elements of y_pred above threshold are considered to be 1, and the rest 0. If threshold is NULL, the argmax is converted to 1, and the rest 0.
- `name`: (optional) String name of the metric instance.
- `dtype`: (optional) Data type of the metric result. Defaults to ‘tf$float32’.

Details

It is the harmonic mean of precision and recall. Output range is [0, 1]. Works for both multi-class and multi-label classification. F-1 = 2 * (precision * recall) / (precision + recall)

Value

F-1 Score: float

Raises

ValueError: If the ‘average‘ has values other than [NULL, micro, macro, weighted].
Examples

```r
## Not run:
model = keras_model_sequential() %>%
  layer_dense(units = 10, input_shape = ncol(iris) - 1, activation = activation_lisht) %>%
  layer_dense(units = 3)

model %>% compile(loss = 'categorical_crossentropy',
                   optimizer = optimizer_radam(),
                   metrics = metrics_f1score(3))

## End(Not run)
```

metric_cohen_kappa

Computes Kappa score between two raters

Description

Computes Kappa score between two raters

Usage

```r
metric_cohen_kappa(
  num_classes,
  name = "cohen_kappa",
  weightage = NULL,
  sparse_labels = FALSE,
  regression = FALSE,
  dtype = NULL
)
```

Arguments

- `num_classes`: Number of unique classes in your dataset.
- `name`: (optional) String name of the metric instance
- `weightage`: (optional) Weighting to be considered for calculating kappa statistics. A valid value is one of [None, 'linear', 'quadratic']. Defaults to 'NULL'
- `sparse_labels`: (bool) Valid only for multi-class scenario. If True, ground truth labels are expected to be integers and not one-hot encoded
- `regression`: (bool) If set, that means the problem is being treated as a regression problem where you are regressing the predictions. **Note:** If you are regressing for the values, the output layer should contain a single unit.
- `dtype`: (optional) Data type of the metric result. Defaults to 'NULL'
Details

The score lies in the range [-1, 1]. A score of -1 represents complete disagreement between two raters whereas a score of 1 represents complete agreement between the two raters. A score of 0 means agreement by chance.

Value

Input tensor or list of input tensors.

Examples

```r
## Not run:
model = keras_model_sequential() %>%
  layer_dense(units = 10, input_shape = ncol(iris) - 1, activation = activation_lisht) %>%
  layer_dense(units = 3)

model %>% compile(loss = 'categorical_crossentropy',
                  optimizer = optimizer_radam(),
                  metrics = metric_cohen_kappa(3))

## End(Not run)
```

metric_fbeta

FBetaScore

Description

Computes F-Beta score.

Usage

```r
metric_fbeta(
  num_classes,
  average = NULL,
  beta = 1,
  threshold = NULL,
  name = "fbeta_score",
  dtype = tf$float32,
  ...
)
```
Arguments

- `num_classes`: Number of unique classes in the dataset.
- `average`: Type of averaging to be performed on data. Acceptable values are None, micro, macro and weighted. Default value is NULL. - None: Scores for each class are returned - micro: True positives, false positives and false negatives are computed globally. - macro: True positives, false positives and - false negatives are computed for each class and their unweighted mean is returned. - weighted: Metrics are computed for each class and returns the mean weighted by the number of true instances in each class.
- `beta`: Determines the weight of precision and recall in harmonic mean. Determines the weight given to the precision and recall. Default value is 1.
- `threshold`: Elements of `y_pred` greater than threshold are converted to be 1, and the rest 0. If threshold is None, the argmax is converted to 1, and the rest 0.
- `name`: (optional) String name of the metric instance.
- `dtype`: (optional) Data type of the metric result. Defaults to 'tf.float32'.
- ...: additional parameters to pass

Details

It is the weighted harmonic mean of precision and recall. Output range is [0, 1]. Works for both multi-class and multi-label classification. F-Beta = (1 + beta^2) * (prec * recall) / ((beta^2 * prec) + recall)

Value

F-Beta Score: float

Raises

ValueError: If the ‘average’ has values other than [NULL, micro, macro, weighted].

metric_hamming_distance

Hamming distance

Description

Computes hamming distance.

Usage

```python
metric_hamming_distance(actuals, predictions)
```
Arguments

- `actuals`: actual value
- `predictions`: predicted value

Details

Hamming distance is for comparing two binary strings. It is the number of bit positions in which two bits are different.

Value

- `hamming_distance`: float

Examples

```r
## Not run:
actuals = tf$constant(as.integer(c(1, 1, 0, 0, 1, 0, 1, 0, 0, 1)), dtype=tf$int32)
predictions = tf$constant(as.integer(c(1, 0, 0, 0, 1, 0, 0, 1, 0, 1)),dtype=tf$int32)
result = metric_hamming_distance(actuals, predictions)
paste('Hamming distance: ', result$numpy())

## End(Not run)
```

metric_mcc

MatthewsCorrelationCoefficient

Description

Computes the Matthews Correlation Coefficient.

Usage

```r
metric_mcc(
  num_classes = NULL,
  name = "MatthewsCorrelationCoefficient",
  dtype = tf$float32
)
```

Arguments

- `num_classes`: Number of unique classes in the dataset.
- `name`: (Optional) String name of the metric instance.
- `dtype`: (Optional) Data type of the metric result. Defaults to `tf$float32`.
Details

The statistic is also known as the phi coefficient. The Matthews correlation coefficient (MCC) is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The correlation coefficient value of MCC is between -1 and +1. A coefficient of 1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient.

\[MCC = \frac{(TP \times TN) - (FP \times FN)}{(TP + FP)(TP + FN)(TN + FP)(TN + FN)^{1/2}} \]

Usage:

Value

Matthews correlation coefficient: float

Examples

```r
## Not run:
actuals = tf$constant(list(1, 1, 1, 0), dtype=tf$float32)
preds = tf$constant(list(1, 0, 1, 1), dtype=tf$float32)
# Matthews correlation coefficient
mcc = metric_mcc(num_classes=1)
mcc$update_state(actuals, preds)
paste('Matthews correlation coefficient is:', mcc$result()$numpy())
# Matthews correlation coefficient is : -0.33333334
## End(Not run)
```

Description

Computes Multi-label confusion matrix.

Usage

```r
metric_multilabel_confusion_matrix(
    num_classes,
    name = "Multilabel_confusion_matrix",
    dtype = tf$int32
)
```
Arguments

- **num_classes**: Number of unique classes in the dataset.
- **name**: (Optional) String name of the metric instance.
- **dtype**: (Optional) Data type of the metric result. Defaults to `tf$int32`.

Details

Class-wise confusion matrix is computed for the evaluation of classification. If multi-class input is provided, it will be treated as multilabel data. Consider classification problem with two classes (i.e. `num_classes=2`). Resultant matrix ‘M’ will be in the shape of `(num_classes, 2, 2)`. Every class ‘i’ has a dedicated 2x2 matrix that contains:
- true negatives for class i in M(0,0) - false positives for class i in M(0,1) - false negatives for class i in M(1,0) - true positives for class i in M(1,1)

```python
# multilabel confusion matrix
y_true = tf$constant(list(as.integer(c(1, 0, 1)),
                        as.integer(c(0, 1, 0))),
                        dtype=tf$int32)
y_pred = tf$constant(list(as.integer(c(1, 0, 0)),
                        as.integer(c(0, 1, 1))),
                        dtype=tf$int32)
output = metric_multilabel_confusion_matrix(num_classes=3)
output$update_state(y_true, y_pred)
paste('Confusion matrix:', output$result())
```

Value

MultiLabelConfusionMatrix: float

metric_rsquare

RSquare This is also called as coefficient of determination. It tells how close are data to the fitted regression line. Highest score can be 1.0 and it indicates that the predictors perfectly accounts for variation in the target. Score 0.0 indicates that the predictors do not account for variation in the target. It can also be negative if the model is worse.

Description

RSquare

This is also called as coefficient of determination. It tells how close are data to the fitted regression line. Highest score can be 1.0 and it indicates that the predictors perfectly accounts for variation in the target. Score 0.0 indicates that the predictors do not account for variation in the target. It can also be negative if the model is worse.
Usage

```r
metric_rsquare(
  name = "r_square",
  dtype = tf$float32,
  ...,
  multioutput = "uniform_average"
)
```

Arguments

- `name` (Optional) String name of the metric instance.
- `dtype` (Optional) Data type of the metric result. Defaults to `tf$float32`.
- `...` additional arguments to pass
- `multioutput` one of the following: "raw_values", "uniform_average", "variance_weighted"

Value

- r squared score: float

Examples

```r
## Not run:
actuals = tf$constant(c(1, 4, 3), dtype=tf$float32)
preds = tf$constant(c(2, 4, 4), dtype=tf$float32)
result = metric_rsquare()
result$update_state(actuals, preds)
paste('R^2 score is: ', r1$result()$numpy()) # 0.57142866
## End(Not run)
```

optimizer_conditional_gradient

Conditional Gradient

Description

Conditional Gradient

Usage

```r
optimizer_conditional_gradient(
  learning_rate,
  lambda_,
  epsilon = 1e-07,
)```
optimizer_decay_adamw

use_locking = FALSE,
name = "ConditionalGradient",
clipnorm = NULL,
clipvalue = NULL,
decay = NULL,
lr = NULL
)

Arguments

- **learning_rate**: A Tensor or a floating point value, or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule. The learning rate.
- **lambda_**: A Tensor or a floating point value. The constraint.
- **epsilon**: A Tensor or a floating point value. A small constant for numerical stability when handling the case of norm of gradient to be zero.
- **use_locking**: If True, use locks for update operations.
- **name**: Optional name prefix for the operations created when applying gradients. Defaults to 'ConditionalGradient'.
- **clipnorm**: is clip gradients by norm.
- **clipvalue**: is clip gradients by value.
- **decay**: is included for backward compatibility to allow time inverse decay of learning rate.
- **lr**: is included for backward compatibility, recommended to use learning_rate instead.

Value

Optimizer for use with ‘keras::compile()’

optimizer_decay_adamw  
Optimizer that implements the Adam algorithm with weight decay

Description


It computes the update step of tf.keras.optimizers.Adam and additionally decays the variable. Note that this is different from adding L2 regularization on the variables to the loss: it regularizes variables with large gradients more than L2 regularization would, which was shown to yield better training loss and generalization error in the paper above.
Usage

optimizer_decay_adamw(
  weight_decay,
  learning_rate = 0.001,
  beta_1 = 0.9,
  beta_2 = 0.999,
  epsilon = 1e-07,
  amsgrad = FALSE,
  name = "AdamW",
  clipnorm = NULL,
  clipvalue = NULL,
  decay = NULL,
  lr = NULL
)

Arguments

weight_decay A Tensor or a floating point value. The weight decay.
learning_rate A Tensor or a floating point value. The learning rate.
beta_1 A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates.
beta_2 A float value or a constant float tensor. The exponential decay rate for the 2nd moment estimates.
epsilon A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper.
amsgrad boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond".
name Optional name for the operations created when applying
clipnorm is clip gradients by norm.
clipvalue is clip gradients by value.
decay is included for backward compatibility to allow time inverse decay of learning rate.
lr is included for backward compatibility, recommended to use learning_rate instead.

Value

Optimizer for use with ‘keras::compile()’

Examples

## Not run:

step = tf$Variable(0L, trainable = FALSE)
optimizer_decay_sgdw

Optimizer that implements the Momentum algorithm with weight_decay

Description

This is an implementation of the SGDW optimizer described in "Decoupled Weight Decay Regularization" by Loshchilov & Hutter (https://arxiv.org/abs/1711.05101) ([pdf](https://arxiv.org/pdf/1711.05101.pdf)). It computes the update step of tf.keras.optimizers.SGD and additionally decays the variable. Note that this is different from adding L2 regularization on the variables to the loss. Decoupling the weight decay from other hyperparameters (in particular the learning rate) simplifies hyperparameter search. For further information see the documentation of the SGD Optimizer.

Usage

```r
optimizer_decay_sgdw(
 weight_decay,
 learning_rate = 0.001,
 momentum = 0,
 nesterov = FALSE,
 name = "SGDW",
 clipnorm = NULL,
 clipvalue = NULL,
 decay = NULL,
 lr = NULL
)
```

Arguments

- `weight_decay`: weight decay rate.
- `learning_rate`: float hyperparameter $\geq 0$. Learning rate.
- `momentum`: float hyperparameter $\geq 0$ that accelerates SGD in the relevant direction and dampens oscillations.
- `nesterov`: boolean. Whether to apply Nesterov momentum.
- `name`: Optional name prefix for the operations created when applying gradients. Defaults to ‘SGD’.
- `clipnorm`: is clip gradients by norm.
Optimizer for use with `keras::compile()`

**Usage**

```r
optimizer_lamb(
 learning_rate = 0.001,
 beta_1 = 0.9,
 beta_2 = 0.999,
 epsilon = 1e-06,
 weight_decay_rate = 0,
 exclude_from_weight_decay = NULL,
 exclude_from_layer_adaptation = NULL,
 name = "LAMB",
 clipnorm = NULL,
 clipvalue = NULL,
 decay = NULL,
 lr = NULL
)
```

**Value**

Optimizer for use with `keras::compile()`

**Examples**

```r
Not run:
step = tf$Variable(0L, trainable = FALSE)
schedule = tf$optimizers$schedules$PiecewiseConstantDecay(list(c(10000, 15000)),
list(c(1e-0, 1e-1, 1e-2)))
lr = 1e-1 * schedule(step)
wd = lambda: 1e-4 * schedule(step)

End(Not run)
```
 optimizer_lamb

Arguments

learning_rate  A ‘Tensor’ or a floating point value, or a schedule that is a `tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.

beta_1  A ‘float’ value or a constant ‘float’ tensor. The exponential decay rate for the 1st moment estimates.

beta_2  A ‘float’ value or a constant ‘float’ tensor. The exponential decay rate for the 2nd moment estimates.

epsilon  A small constant for numerical stability.

weight_decay_rate  weight decay rate.

exclude_from_weight_decay  List of regex patterns of variables excluded from weight decay. Variables whose name contain a substring matching the pattern will be excluded.

exclude_from_layer_adaptation  List of regex patterns of variables excluded from layer adaptation. Variables whose name contain a substring matching the pattern will be excluded.

name  Optional name for the operations created when applying gradients. Defaults to "LAMB".

clipnorm  is clip gradients by norm.

clipvalue  is clip gradients by value.

decay  is included for backward compatibility to allow time inverse decay of learning rate.

lr  is included for backward compatibility, recommended to use learning_rate instead.

Value

Optimizer for use with `keras::compile()`

Examples

```r
Not run:
keras_model_sequential() %>%
 layer_dense(32, input_shape = c(784)) %>%
 compile(
 optimizer = optimizer_lamb(),
 loss = 'binary_crossentropy',
 metrics = 'accuracy'
)

End(Not run)
```
optimizer_lazy_adam

Lazy Adam

Description

Lazy Adam

Usage

```python
optimizer_lazy_adam(
 learning_rate = 0.001,
 beta_1 = 0.9,
 beta_2 = 0.999,
 epsilon = 1e-07,
 amsgrad = FALSE,
 name = "LazyAdam",
 clipnorm = NULL,
 clipvalue = NULL,
 decay = NULL,
 lr = NULL
)
```

Arguments

- **learning_rate**: A Tensor or a floating point value, or a schedule that is a `tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
- **beta_1**: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates.
- **beta_2**: A float value or a constant float tensor. The exponential decay rate for the 2nd moment estimates.
- **epsilon**: A small constant for numerical stability. This epsilon is "epsilon hat" in Adam: A Method for Stochastic Optimization. Kingma et al., 2014 (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper.
- **amsgrad**: boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond". Note that this argument is currently not supported and the argument can only be False.
- **name**: Optional name for the operations created when applying gradients. Defaults to "LazyAdam".
- **clipnorm**: is clip gradients by norm;
- **clipvalue**: is clip gradients by value,
- **decay**: is included for backward compatibility to allow time inverse decay of learning rate.
- **lr**: is included for backward compatibility, recommended to use learning_rate instead.
optimizer_moving_average

Value

Optimizer for use with ‘keras::compile()’

Examples

```r
Not run:
keras_model_sequential() %>%
 layer_dense(32, input_shape = c(784)) %>%
 compile(
 optimizer = optimizer_lazy_adam(),
 loss = 'binary_crossentropy',
 metrics = 'accuracy'
)

End(Not run)
```

optimizer_moving_average

Moving Average

Description

Moving Average

Usage

```r
optimizer_moving_average(
 optimizer,
 sequential_update = TRUE,
 average_decay = 0.99,
 num_updates = NULL,
 name = "MovingAverage",
 clipnorm = NULL,
 clipvalue = NULL,
 decay = NULL,
 lr = NULL
)
```

Arguments

- `optimizer` str or tf$keras$optimizers$Optimizer that will be used to compute and apply gradients.
- `sequential_update` Bool. If False, will compute the moving average at the same time as the model is updated, potentially doing benign data races. If True, will update the moving average after gradient updates.
average_decay float. Decay to use to maintain the moving averages of trained variables.

num_updates Optional count of the number of updates applied to variables.

name Optional name for the operations created when applying gradients. Defaults to "MovingAverage".

clipnorm is clip gradients by norm.

clipvalue is clip gradients by value.

decay is included for backward compatibility to allow time inverse decay of learning rate.

lr is included for backward compatibility, recommended to use learning_rate instead.

Details
Optimizer that computes a moving average of the variables. Empirically it has been found that using the moving average of the trained parameters of a deep network is better than using its trained parameters directly. This optimizer allows you to compute this moving average and swap the variables at save time so that any code outside of the training loop will use by default the average values instead of the original ones.

Value
Optimizer for use with 'keras::compile()'

Examples

```r
Not run:

opt = tf$keras$optimizers$SGD(learning_rate)
opt = moving_average(opt)

End(Not run)
```

Description
NovoGrad
Usage

```
optimizer_novograd(
 learning_rate = 0.001,
 beta_1 = 0.9,
 beta_2 = 0.999,
 epsilon = 1e-07,
 weight_decay = 0,
 grad_averaging = FALSE,
 amsgrad = FALSE,
 name = "NovoGrad",
 clipnorm = NULL,
 clipvalue = NULL,
 decay = NULL,
 lr = NULL
)
```

Arguments

- **learning_rate**: A ‘Tensor’ or a floating point value. or a schedule that is a ‘tf$keras$optimizers$schedules$LearningRateSchedule’
  The learning rate.
- **beta_1**: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates.
- **beta_2**: A float value or a constant float tensor. The exponential decay rate for the 2nd moment estimates.
- **epsilon**: A small constant for numerical stability.
- **weight_decay**: A floating point value. Weight decay for each param.
- **grad_averaging**: determines whether to use Adam style exponential moving averaging for the first order moments.
- **amsgrad**: boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond"
- **name**: Optional name for the operations created when applying gradients. Defaults to "NovoGrad".
- **clipnorm**: is clip gradients by norm.
- **clipvalue**: is clip gradients by value.
- **decay**: is included for backward compatibility to allow time inverse decay of learning rate.
- **lr**: is included for backward compatibility, recommended to use learning_rate instead.

Value

Optimizer for use with ‘keras::compile()’
optimizer_radam

Examples

```r
Not run:
keras_model_sequential() %>%
 layer_dense(32, input_shape = c(784)) %>%
 compile(
 optimizer = optimizer_novograd(),
 loss='binary_crossentropy',
 metrics='accuracy'
)

End(Not run)
```

---

**optimizer_radam**

Rectified Adam (a.k.a. RAdam)

### Description

Rectified Adam (a.k.a. RAdam)

### Usage

```r
optimizer_radam(
 learning_rate = 0.001,
 beta_1 = 0.9,
 beta_2 = 0.999,
 epsilon = 1e-07,
 weight_decay = 0,
 amsgrad = FALSE,
 sma_threshold = 5,
 total_steps = 0,
 warmup_proportion = 0.1,
 min_lr = 0,
 name = "RectifiedAdam",
 clipnorm = NULL,
 clipvalue = NULL,
 decay = NULL,
 lr = NULL
)
```

### Arguments

- **learning_rate**: A `Tensor` or a floating point value. or a schedule that is a `tf.keras.optimizers.schedules$LearningRateSchedule`
  The learning rate.
- **beta_1**: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates.
beta_2  
A float value or a constant float tensor. The exponential decay rate for the 2nd moment estimates.

epsilon  
A small constant for numerical stability.

weight_decay  
A floating point value. Weight decay for each param.

amsgrad  
boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond".

sma_threshold  
A float value. The threshold for simple mean average.

total_steps  
An integer. Total number of training steps. Enable warmup by setting a positive value.

warmup_proportion  
A floating point value. The proportion of increasing steps.

min_lr  
A floating point value. Minimum learning rate after warmup.

name  
Optional name for the operations created when applying gradients. Defaults to "RectifiedAdam".

clipnorm  
is clip gradients by norm.

clipvalue  
is clip gradients by value.

decay  
is included for backward compatibility to allow time inverse decay of learning rate.

lr  
is included for backward compatibility, recommended to use learning_rate instead.

Value

Optimizer for use with 'keras::compile()'

---

**optimizer_swa**  
*Stochastic Weight Averaging*

**Description**

Stochastic Weight Averaging

**Usage**

```r
optimizer_swa(
optimizer,
start_averaging = 0,
average_period = 10,
name = "SWA",
sequential_update = TRUE,
clipnorm = NULL,
clipvalue = NULL,
decay = NULL,
 lr = NULL
)
```
optimizer_swa

Arguments

**optimizer**
The original optimizer that will be used to compute and apply the gradients.

**start_averaging**
An integer. Threshold to start averaging using SWA. Averaging only occurs at start_averaging iters, must be >= 0. If start_averaging = m, the first snapshot will be taken after the mth application of gradients (where the first iteration is iteration 0).

**average_period**
An integer. The synchronization period of SWA. The averaging occurs every average_period steps. Averaging period needs to be >= 1.

**name**
Optional name for the operations created when applying gradients. Defaults to ‘SWA’.

**sequential_update**
Bool. If FALSE, will compute the moving average at the same time as the model is updated, potentially doing benign data races. If True, will update the moving average after gradient updates

**clipnorm**
is clip gradients by norm.

**clipvalue**
is clip gradients by value.

**decay**
is included for backward compatibility to allow time inverse decay of learning rate.

**lr**
is included for backward compatibility, recommended to use learning_rate instead.

Details

The Stochastic Weight Averaging mechanism was proposed by Pavel Izmailov et. al in the paper [Averaging Weights Leads to Wider Optima and Better Generalization](https://arxiv.org/abs/1803.05407). The optimizer implements averaging of multiple points along the trajectory of SGD. The optimizer expects an inner optimizer which will be used to apply the gradients to the variables and itself computes a running average of the variables every k steps (which generally corresponds to the end of a cycle when a cyclic learning rate is employed). We also allow the specification of the number of steps averaging should first happen after. Let’s say, we want averaging to happen every k steps after the first m steps. After step m we’d take a snapshot of the variables and then average the weights appropriately at step m + k, m + 2k and so on. The assign_average_vars function can be called at the end of training to obtain the averaged_weights from the optimizer.

Value

Optimizer for use with ‘keras::compile()’

Examples

```r
Not run:
opt = tf$keras$optimizers$SGD(learning_rate)
opt = optimizer_swa(opt, start_averaging=m, average_period=k)

End(Not run)
```
Yogi

Usage

```python
optimizer_yogi(
 learning_rate = 0.01,
 beta1 = 0.9,
 beta2 = 0.999,
 epsilon = 0.001,
 l1_regularization_strength = 0,
 l2_regularization_strength = 0,
 initial_accumulator_value = 1e-06,
 activation = "sign",
 name = "Yogi",
 clipnorm = NULL,
 clipvalue = NULL,
 decay = NULL,
 lr = NULL
)
```

Arguments

- **learning_rate**: A Tensor or a floating point value. The learning rate.
- **beta1**: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates.
- **beta2**: A float value or a constant float tensor. The exponential decay rate for the 2nd moment estimates.
- **epsilon**: A constant trading off adaptivity and noise.
- **l1_regularization_strength**: A float value, must be greater than or equal to zero.
- **l2_regularization_strength**: A float value, must be greater than or equal to zero.
- **initial_accumulator_value**: The starting value for accumulators. Only positive values are allowed.
- **activation**: Use hard sign or soft tanh to determine sign.
- **name**: Optional name for the operations created when applying gradients. Defaults to "Yogi".
- **clipnorm**: is clip gradients by norm.
- **clipvalue**: is clip gradients by value.
Parse an input string according to the provided format string into a Unix time, the number of seconds / milliseconds / microseconds / nanoseconds elapsed since January 1, 1970 UTC. Uses strftime()-like formatting options, with the same extensions as FormatTime(), but with the exceptions that characters as it can, so the matching data should always be terminated with a non-numeric. consumes exactly four characters, including any sign. Unspecified fields are taken from the default date and time of ... "1970-01-01 00:00:00.0 +0000" For example, parsing a string of "15:45" (Unix time that represents "1970-01-01 15:45:00.0 +0000". Note that ParseTime only heeds the fields year, month, day, hour, minute, (fractional) second, and UTC offset. Other fields, like weekday (ignored in the conversion. Date and time fields that are out-of-range will be treated as errors rather than normalizing them like `absl::CivilSecond` does. For example, it is an error to parse the date "Oct 32, 2013" because 32 is out of range. A leap second of ":60" is normalized to ":00" of the following minute with fractional seconds discarded. The following table shows how the given seconds and subseconds will be parsed: "59.x" -> 59.x // exact "60.x" -> 00.0 // normalized "00.x" -> 00.x // exact
register_all

Value

the number of seconds / milliseconds / microseconds / nanoseconds elapsed since January 1, 1970 UTC.

Raises

ValueError: If ‘output_unit’ is not a valid value, if parsing ‘time_string’ according to ‘time_format’ failed.

Description

Register TensorFlow Addons’ objects in TensorFlow global dictionaries.

Usage

register_all(keras_objects = TRUE, custom_kernels = TRUE)

Arguments

keras_objects boolean, ‘TRUE’ by default. If ‘TRUE’, register all Keras objects with ‘tf$keras$utils$register_keras_serializable(package="Addons")’. If set to FALSE, doesn’t register any Keras objects of Addons in TensorFlow.

custom_kernels boolean, ‘TRUE’ by default. If ‘TRUE’, loads all custom kernels of TensorFlow Addons with ‘tf.load_op_library("path/to/so/file.so")’. Loading the SO files registers them automatically. If ‘FALSE’ doesn’t load and register the shared objects files. Not that it might be useful to turn it off if your installation of Addons doesn’t work well with custom ops.

Details

When loading a Keras model that has a TF Addons’ function, it is needed for this function to be known by the Keras deserialization process. There are two ways to do this, either do ‘’’ tf$keras$models$load_model("my_model.tf", custom_objects=list("LAMB": tfaddons::optimizer_lamb) ) ‘’’ or you can do: ‘’’ python register_all() tf$keras$models$load_model("my_model.tf") ‘’’ If the model contains custom ops (compiled ops) of TensorFlow Addons, and the graph is loaded with ‘tf$saved_model$load’, then custom ops need to be registered before to avoid an error of the type: ‘’’ tensorflow.python.framework.errors_impl.NotFoundError: ‘’’ Op type not registered ‘...’ in binary running on ... Make sure the Op and Kernel are registered in the binary running in this process. ‘’’ In this case, the only way to make sure that the ops are registered is to call this function: ‘’’ register_all() tf$saved_model$load("my_model.tf") ‘’’ Note that you can call this function multiple times in the same process, it only has an effect the first time. Afterward, it’s just a no-op.

Value

None
register_custom_kernels

Register custom kernels

Description

Register custom kernels

Usage

register_custom_kernels(...)

Arguments

... parameters to pass

Value

None

register_keras_objects

Register keras objects

Description

Register keras objects

Usage

register_keras_objects(...)

Arguments

... parameters to pass

Value

None
**safe_cumprod**  
*Safe cumprod*

**Description**  
Computes cumprod of x in logspace using cumsum to avoid underflow.

**Usage**  
safe_cumprod(x, ...)

**Arguments**  
x  
Tensor to take the cumulative product of.  
...  
Passed on to cumsum; these are identical to those in cumprod

**Details**  
The cumprod function and its gradient can result in numerical instabilities when its argument has very small and/or zero values. As long as the argument is all positive, we can instead compute the cumulative product as \( \exp(\text{cumsum}(\log(x))) \). This function can be called identically to tf$\text{cumprod}$.

**Value**  
Cumulative product of x.

**sampler**  
*Sampler*

**Description**  
Interface for implementing sampling in seq2seq decoders.

**Usage**  
sampler(...)

**Arguments**  
...  
parametr to pass batch_size, initialize, next_inputs, sample, sample_ids_dtype, sample_ids_shape

**Value**  
None
sampler_custom

**Base abstract class that allows the user to customize sampling.**

**Description**

Base abstract class that allows the user to customize sampling.

**Usage**

```python
sampler_custom(
 initialize_fn,
 sample_fn,
 next_inputs_fn,
 sample_ids_shape = NULL,
 sample_ids_dtype = NULL
)
```

**Arguments**

- `initialize_fn` callable that returns `(finished, next_inputs)` for the first iteration.
- `sample_fn` callable that takes `(time, outputs, state)` and emits tensor `sample_ids`.
- `next_inputs_fn` callable that takes `(time, outputs, state, sample_ids)` and emits `(finished, next_inputs, next_state)`.
- `sample_ids_shape` Either a list of integers, or a 1-D Tensor of type int32, the shape of each value in the `sample_ids` batch. Defaults to a scalar.
- `sample_ids_dtype` The dtype of the `sample_ids` tensor. Defaults to int32.

**Value**

None

sampler_greedy_embedding

**Greedy Embedding Sampler**

**Description**

A sampler for use during inference.

**Usage**

```python
sampler_greedy_embedding(embedding_fn = NULL)
```
sampler_inference

Arguments

embedding_fn  A optional callable that takes a vector tensor of ids (argmax ids), or the params argument for embedding_lookup. The returned tensor will be passed to the decoder input. Default to use tf$nn$embedding_lookup.

Details

Uses the argmax of the output (treated as logits) and passes the result through an embedding layer to get the next input.

Value

None

sampler_inference    Inference Sampler

Description

Inference Sampler

Usage

sampler_inference(
    sample_fn,
    sample_shape,
    sample_dtype = tf$int32,
    end_fn,
    next_inputs_fn = NULL,
    ...
)

Arguments

sample_fn       A callable that takes outputs and emits tensor sample_ids.
sample_shape    Either a list of integers, or a 1-D Tensor of type int32, the shape of the each sample in the batch returned by sample_fn.
sample_dtype    the dtype of the sample returned by sample_fn.
end_fn          A callable that takes sample_ids and emits a bool vector shaped [batch_size] indicating whether each sample is an end token.
next_inputs_fn  (Optional) A callable that takes sample_ids and returns the next batch of inputs. If not provided, sample_ids is used as the next batch of inputs.
...              A list that contains other common arguments for layer creation.
**sampler_sample_embedding**

**Details**

A helper to use during inference with a custom sampling function.

**Value**

None

---

**sampler_sample_embedding**

*Sample Embedding Sampler*

**Description**

A sampler for use during inference.

**Usage**

```r
sampler_sample_embedding(
 embedding_fn = NULL,
 softmax_temperature = NULL,
 seed = NULL
)
```

**Arguments**

- `embedding_fn` (Optional) A callable that takes a vector tensor of ids (argmax ids), or the params argument for embedding_lookup. The returned tensor will be passed to the decoder input.
- `softmax_temperature` (Optional) float32 scalar, value to divide the logits by before computing the softmax. Larger values (above 1.0) result in more random samples, while smaller values push the sampling distribution towards the argmax. Must be strictly greater than 0. Defaults to 1.0.
- `seed` (Optional) The sampling seed.

**Details**

Uses sampling (from a distribution) instead of argmax and passes the result through an embedding layer to get the next input.

**Value**

None
sampler_scheduled_embedding_training

A training sampler that adds scheduled sampling

Description

A training sampler that adds scheduled sampling

Usage

sampler_scheduled_embedding_training(
    sampling_probability,
    embedding_fn = NULL,
    time_major = FALSE,
    seed = NULL,
    scheduling_seed = NULL
)

Arguments

sampling_probability
    A float32 0-D or 1-D tensor: the probability of sampling categorically from the
    output ids instead of reading directly from the inputs.

embedding_fn
    A callable that takes a vector tensor of ids (argmax ids), or the params argument
    for embedding_lookup.

time_major
    bool. Whether the tensors in inputs are time major. If ‘FALSE‘ (default), they
    are assumed to be batch major.

seed
    The sampling seed.

scheduling_seed
    The schedule decision rule sampling seed.

Value

Returns -1s for sample_ids where no sampling took place; valid sample id values elsewhere.

sampler_scheduled_output_training

Scheduled Output Training Sampler

Description

A training sampler that adds scheduled sampling directly to outputs.
Usage

sampler_scheduled_output_training(
    sampling_probability,
    time_major = FALSE,
    seed = NULL,
    next_inputs_fn = NULL
)

Arguments

  sampling_probability: A float32 scalar tensor: the probability of sampling from the outputs instead of reading directly from the inputs.
  time_major: bool. Whether the tensors in inputs are time major. If False (default), they are assumed to be batch major.
  seed: The sampling seed.
  next_inputs_fn: (Optional) callable to apply to the RNN outputs to create the next input when sampling. If None (default), the RNN outputs will be used as the next inputs.

Value

FALSE for sample_ids where no sampling took place; TRUE elsewhere.

sampler_training

A Sampler for use during training.

Description

Only reads inputs.

Usage

sampler_training(time_major = FALSE)

Arguments

  time_major: bool. Whether the tensors in inputs are time major. If ‘FALSE’ (default), they are assumed to be batch major.

Value

None
sample_bernoulli  
*Bernoulli sample*

**Description**
Samples from Bernoulli distribution.

**Usage**
```r
code
```
sample_bernoulli(
  probs = NULL,
  logits = NULL,
  dtype = tf$int32,
  sample_shape = list(),
  seed = NULL
)
```

Arguments
- `probs` probabilities
- `logits` logits
- `dtype` the data type
- `sample_shape` a list/vector of integers
- `seed` integer, random seed

Value
a Tensor

sample_categorical
Categorical sample

Description
Samples from categorical distribution.

Usage
```r
code
```
sample_categorical(
 logits,
 dtype = tf$int32,
 sample_shape = list(),
 seed = NULL
)
```

**Arguments**
- `logits` logits
- `dtype` the data type
- `sample_shape` a list/vector of integers
- `seed` integer, random seed

**Value**
a Tensor
skip_gram_sample

Arguments

- **logits**: logits
- **dtype**: dtype
- **sample_shape**: the shape of sample
- **seed**: random seed: integer

Value

- a Tensor

---

skip_gram_sample  
*Skip gram sample*

---

**Description**

Generates skip-gram token and label paired Tensors from the input

**Usage**

```python
skip_gram_sample(
 input_tensor,
 min_skips = 1,
 max_skips = 5,
 start = 0,
 limit = -1,
 emit_self_as_target = FALSE,
 vocab_freq_table = NULL,
 vocab_min_count = NULL,
 vocab_subsampling = NULL,
 corpus_size = NULL,
 batch_size = NULL,
 batch_capacity = NULL,
 seed = NULL,
 name = NULL
)
```

**Arguments**

- **input_tensor**: A rank-1 `Tensor` from which to generate skip-gram candidates.
- **min_skips**: ‘int’ or scalar ‘Tensor’ specifying the minimum window size to randomly use for each token. Must be >= 0 and <= ‘max_skips’. If ‘min_skips’ and ‘max_skips’ are both 0, the only label outputted will be the token itself when ‘emit_self_as_target = TRUE’ - or no output otherwise.
- **max_skips**: ‘int’ or scalar ‘Tensor’ specifying the maximum window size to randomly use for each token. Must be >= 0.
start  'int' or scalar 'Tensor' specifying the position in 'input_tensor' from which to start generating skip-gram candidates.

limit  'int' or scalar 'Tensor' specifying the maximum number of elements in 'input_tensor' to use in generating skip-gram candidates. -1 means to use the rest of the 'Tensor' after 'start'.

etmit_self_as_target  'bool' or scalar 'Tensor' specifying whether to emit each token as a label for itself.

vocab_freq_table  (Optional) A lookup table (subclass of 'lookup.InitializableLookupTableBase') that maps tokens to their raw frequency counts. If specified, any token in 'input_tensor' that is not found in 'vocab_freq_table' will be filtered out before generating skip-gram candidates. While this will typically map to integer raw frequency counts, it could also map to float frequency proportions. 'vocab_min_count' and 'corpus_size' should be in the same units as this.

vocab_min_count  (Optional) 'int', 'float', or scalar 'Tensor' specifying minimum frequency threshold (from 'vocab_freq_table') for a token to be kept in 'input_tensor'. If this is specified, 'vocab_freq_table' must also be specified - and they should both be in the same units.

vocab_subsampling  (Optional) 'float' specifying frequency proportion threshold for tokens from 'input_tensor'. Tokens that occur more frequently (based on the ratio of the token's 'vocab_freq_table' value to the 'corpus_size') will be randomly down-sampled. Reasonable starting values may be around 1e-3 or 1e-5. If this is specified, both 'vocab_freq_table' and 'corpus_size' must also be specified - and they should both be in the same units.

corpus_size  (Optional) 'int', 'float', or scalar 'Tensor' specifying the total number of tokens in the corpus (e.g., sum of all the frequency counts of 'vocab_freq_table'). Used with 'vocab_subsampling' for down-sampling frequently occurring tokens. If this is specified, 'vocab_freq_table' and 'vocab_subsampling' must also be specified.

batch_size  (Optional) 'int' specifying batch size of returned 'Tensors'.

batch_capacity  (Optional) 'int' specifying batch capacity for the queue used for batching returned 'Tensors'. Only has an effect if 'batch_size' > 0. Defaults to 100 * 'batch_size' if not specified.

seed  (Optional) 'int' used to create a random seed for window size and subsampling. See 'set_random_seed' docs for behavior.

name  (Optional) A 'string' name or a name scope for the operations.

details  tensor. Generates skip-gram ('token', 'label') pairs using each element in the rank-1 'input_tensor' as a token. The window size used for each token will be randomly selected from the range specified by [min_skips, max_skips], inclusive. See https://arxiv.org/abs/1301.3781 for more details about skip-gram. For example, given 'input_tensor = ['the', 'quick', 'brown', 'fox', 'jumps']'; 'min_skips = 1'; 'max_skips = 2'; 'emit_self_as_target = FALSE'; the output {'tokens, labels'}
pairs for the token "quick" will be randomly selected from either (tokens=["quick", "quick"], labels=["the", "brown"]) for 1 skip, or (tokens=["quick", "quick", "quick"], labels=["the", "brown", "fox"]) for 2 skips. If `emit_self_as_target = TRUE`, each token will also be emitted as a label for itself. From the previous example, the output will be either (tokens=["quick", "quick", "quick"], labels=["the", "quick", "brown"]) for 1 skip, or (tokens=["quick", "quick", "quick", "quick"], labels=["the", "quick", "brown", "fox"]) for 2 skips. The same process is repeated for each element of `input_tensor` and concatenated together into the two output rank-1 ‘Tensors’ (one for all the tokens, another for all the labels). If `vocab_freq_table` is specified, tokens in `input_tensor` that are not present in the vocabulary are discarded. Tokens whose frequency counts are below `vocab_min_count` are also discarded. Tokens whose frequency proportions in the corpus exceed `vocab_subsampling` may be randomly down-sampled. See Eq. 5 in http://arxiv.org/abs/1310.4546 for more details about subsampling. Due to the random window sizes used for each token, the lengths of the outputs are non-deterministic, unless `batch_size` is specified to batch the outputs to always return ‘Tensors’ of length ‘batch_size’.

Value

A ‘list’ containing (token, label) ‘Tensors’. Each output ‘Tensor’ is of rank-1 and has the same type as ‘input_tensor’. The ‘Tensors’ will be of length ‘batch_size’; if ‘batch_size’ is not specified, they will be of random length, though they will be in sync with each other as long as they are evaluated together.

Raises

ValueError: If `vocab_freq_table` is not provided, but `vocab_min_count`, `vocab_subsampling`, or `corpus_size` is specified. If `vocab_subsampling` and `corpus_size` are not both present or both absent.

---

**skip_gram_sample_with_text_vocab**

*Skip gram sample with text vocab*

**Description**

Skip-gram sampling with a text vocabulary file.

**Usage**

```r
skip_gram_sample_with_text_vocab(
 input_tensor,
 vocab_freq_file,
 vocab_token_index = 0,
 vocab_token_dtype = tf$string,
 vocab_freq_index = 1,
 vocab_freq_dtype = tf$float64,
 vocab_delimiter = ",",
 vocab_min_count = NULL,
)```
vocab_subsampling = NULL,
corpus_size = NULL,
min_skips = 1,
max_skips = 5,
start = 0,
limit = -1,
emit_self_as_target = FALSE,
batch_size = NULL,
batch_capacity = NULL,
seed = NULL,
name = NULL
)

Arguments

input_tensor A rank-1 `Tensor` from which to generate skip-gram candidates.
vocab_freq_file 'string' specifying full file path to the text vocab file.
vocab_token_index 'int' specifying which column in the text vocab file contains the tokens.
vocab_token_dtype 'DType' specifying the format of the tokens in the text vocab file.
vocab_freq_index 'int' specifying which column in the text vocab file contains the frequency counts of the tokens.
vocab_freq_dtype 'DType' specifying the format of the frequency counts in the text vocab file.
vocab_delimiter 'string' specifying the delimiter used in the text vocab file.
vocab_min_count 'int', 'float', or scalar `Tensor` specifying minimum frequency threshold (from 'vocab_freq_file') for a token to be kept in 'input_tensor'. This should correspond with 'vocab_freq_dtype'.
vocab_subsampling (Optional) 'float' specifying frequency proportion threshold for tokens from 'input_tensor'. Tokens that occur more frequently will be randomly down-sampled. Reasonable starting values may be around 1e-3 or 1e-5. See Eq. 5 in http://arxiv.org/abs/1310.4546 for more details.
corpus_size (Optional) 'int', 'float', or scalar `Tensor` specifying the total number of tokens in the corpus (e.g., sum of all the frequency counts of 'vocab_freq_file'). Used with 'vocab_subsampling' for down-sampling frequently occurring tokens. If this is specified, 'vocab_freq_file' and 'vocab_subsampling' must also be specified. If 'corpus_size' is needed but not supplied, then it will be calculated from 'vocab_freq_file'. You might want to supply your own value if you have already eliminated infrequent tokens from your vocabulary files (where frequency
< vocab_min_count) to save memory in the internal token lookup table. Otherwise, the unused tokens’ variables will waste memory. The user-supplied ‘corpus_size’ value must be greater than or equal to the sum of all the frequency counts of ‘vocab_freq_file’.

min_skips
‘int’ or scalar ‘Tensor’ specifying the minimum window size to randomly use for each token. Must be >= 0 and <= ‘max_skips’. If ‘min_skips’ and ‘max_skips’ are both 0, the only label outputted will be the token itself.

max_skips
‘int’ or scalar ‘Tensor’ specifying the maximum window size to randomly use for each token. Must be >= 0.

start
‘int’ or scalar ‘Tensor’ specifying the position in ‘input_tensor’ from which to start generating skip-gram candidates.

limit
‘int’ or scalar ‘Tensor’ specifying the maximum number of elements in ‘input_tensor’ to use in generating skip-gram candidates. -1 means to use the rest of the ‘Tensor’ after ‘start’.

emit_self_as_target
‘bool’ or scalar ‘Tensor’ specifying whether to emit each token as a label for itself.

batch_size
(Optional) ‘int’ specifying batch size of returned ‘Tensors’.

batch_capacity
(Optional) ‘int’ specifying batch capacity for the queue used for batching returned ‘Tensors’. Only has an effect if ‘batch_size’ > 0. Defaults to 100 * ‘batch_size’ if not specified.

seed
(Optional) ‘int’ used to create a random seed for window size and subsampling. See [‘set_random_seed’](../../g3doc/python/constant_op.md#set_random_seed) for behavior.

name
(Optional) A ‘string’ name or a name scope for the operations.

Details
Wrapper around ‘skip_gram_sample()’ for use with a text vocabulary file. The vocabulary file is expected to be a plain-text file, with lines of ‘vocab_delimiter’-separated columns. The ‘vocab_token_index’ column should contain the vocabulary term, while the ‘vocab_freq_index’ column should contain the number of times that term occurs in the corpus. For example, with a text vocabulary file of: “' bonjour,fr,42 hello,en,777 hola,es,99 ” You should set ‘vocab_delimiter=”,”, ‘vocab_token_index=0’, and ‘vocab_freq_index=2’. See ‘skip_gram_sample()’ documentation for more details about the skip-gram sampling process.

Value
A ‘list’ containing (token, label) ‘Tensors’. Each output ‘Tensor’ is of rank-1 and has the same type as ‘input_tensor’. The ‘Tensors’ will be of length ‘batch_size’; if ‘batch_size’ is not specified, they will be of random length, though they will be in sync with each other as long as they are evaluated together.

Raises
ValueError: If ‘vocab_token_index’ or ‘vocab_freq_index’ is less than 0 or exceeds the number of columns in ‘vocab_freq_file’. If ‘vocab_token_index’ and ‘vocab_freq_index’ are both set to the same column. If any token in ‘vocab_freq_file’ has a negative frequency.
tfaddons_version

Description

Get the current version of TensorFlow SIG Addons

Usage

```python
tfaddons_version()
```

Value

prints the version.

tile_batch

Description

Tile the batch dimension of a (possibly nested structure of) tensor(s)

Usage

```python
tile_batch(t, multiplier, name = NULL)
```

Arguments

- `t`: ‘Tensor’ shaped ‘[batch_size, ...]’.
- `multiplier`: Python int.
- `name`: Name scope for any created operations.

Details

t. For each tensor t in a (possibly nested structure) of tensors, this function takes a tensor t shaped ‘[batch_size, s0, s1, ...]’ composed of minibatch entries ‘t[0], ..., t[batch_size - 1]’ and tiles it to have a shape ‘[batch_size * multiplier, s0, s1, ...]’ composed of minibatch entries ‘t[0], t[0], ..., t[1], t[1], ...’ where each minibatch entry is repeated ‘multiplier’ times.

Value

A (possibly nested structure of) ‘Tensor’ shaped ‘[batch_size * multiplier, ...]’.

Raises

ValueError: if tensor(s) ‘t’ do not have a statically known rank or the rank is < 1.
Description

Decode the highest scoring sequence of tags outside of TensorFlow.

Usage

\[
\text{viterbi_decode(score, transition_params)}
\]

Arguments

- **score**: A \([\text{seq_len}, \text{num_tags}]\) matrix of unary potentials.
- **transition_params**: A \([\text{num_tags}, \text{num_tags}]\) matrix of binary potentials.

Details

This should only be used at test time.

Value

- **viterbi**: A \([\text{seq_len}]\) list of integers containing the highest scoring tag indices. **viterbi_score**: A float containing the score for the Viterbi sequence.
Index

activation_gelu, 5
activation_hardshrink, 6
activation_lisht, 7
activation_mish, 7
activation_rrelu, 8
activation_softshrink, 9
activation_sparsemax, 10
activation_tanhshrink, 10
attention_bahdanau, 11
attention_bahdanau_monotonic, 12
attention_luong, 13
attention_luong_monotonic, 15
attention_monotonic, 16
attention_wrapper, 17
attention_wrapper_state, 19

callback_average_model_checkpoint, 20
callback_time_stopping, 21
callback_tqdm_progress_bar, 22
crf_binary_score, 23
crf_decode, 24
crf_decode_backward, 24
crf_decode_forward, 25
crf_forward, 25
crf_log_likelihood, 26
crf_log_norm, 27
crf_multitag_sequence_score, 27
crf_sequence_score, 28
crf_unary_score, 29

decode_dynamic, 34
decoder, 29
decoder_base, 30
decoder_basic, 30
decoder_basic_output, 31
decoder_beam_search, 31
decoder_beam_search_output, 32
decoder_beam_search_state, 33
decoder_final_beam_search_output, 34
extend_with_decoupled_weight_decay, 35
gather_tree, 36
gather_tree_from_array, 37
hardmax, 38
img_adjust_hsv_in_yiq, 38
img_angles_to_projective_transforms, 39
img_blend, 40
img_compose_transforms, 40
img_connected_components, 41
img_cutout, 42
img_dense_image_warp, 43
img_equalize, 44
img_euclidean_dist_transform, 45
img_flat_transforms_to_matrices, 46
img_from_4D, 46
img_get_ndims, 47
img_interpolate_bilinear, 47
img_interpolate_spline, 48
img_matrices_to_flat_transforms, 49
img_mean_filter2d, 50
img_median_filter2d, 51
img_random_cutout, 52
img_random_hsv_in_yiq, 53
img_resampler, 54
img_rotate, 55
img_sharpness, 56
img_shear_x, 56
img_shear_y, 57
img_sparse_image_warp, 57
img_to_4D, 58
img_transform, 59
img_translate, 60
img_translate_xy, 61
img_translations_to_projective_transforms, 62
img_unwrap, 62
INDEX

img_wrap, 63
install_tfaddons, 63
layer_activation_gelu, 64
layer_correlation_cost, 64
layer_filter_response_normalization, 65
layer_group_normalization, 67
layer_instance_normalization, 68
layer_maxout, 70
layer_multi_head_attention, 70
layer_nas_cell, 72
layer_norm_lstm_cell, 73
layer_poincare_normalize, 75
layer_sparsemax, 76
layer_weight_normalization, 77
lookahead_mechanism, 78
loss_contrastive, 79
loss_giou, 80
loss_hamming, 81
loss_lifted_struct, 82
loss_npairs, 83
loss_npairs_multilabel, 83
loss_pinball, 84
loss_sequence, 85
loss_sigmoid_focal_crossentropy, 86
loss_sparsemax, 87
loss_triplet_hard, 88
loss_triplet_semihard, 89
metric_cohen_kappa, 91
metric_fbetascore, 92
metric_hamming_distance, 93
metric_mcc, 94
metric_multilabel_confusion_matrix, 95
metric_rsquare, 96
metrics_f1score, 90
optimizer_conditional_gradient, 97
optimizer_decay_adamw, 98
optimizer_decay_sgdw, 100
optimizer_lamb, 101
optimizer_lazy_adam, 103
optimizer_moving_average, 104
optimizer_novograd, 105
optimizer_radam, 107
optimizer_swa, 108
optimizer_yogi, 110
parse_time, 111
register_all, 112
register_custom_kernels, 113
register_keras_objects, 113
safe_cumprod, 114
sample_bernoulli, 120
sample_categorical, 120
sampler, 114
sampler_custom, 115
sampler_greedy_embedding, 115
sampler_inference, 116
sampler_sample_embedding, 117
sampler_scheduled_embedding_training, 118
sampler_scheduled_output_training, 118
sampler_training, 119
skip_gram_sample, 121
skip_gram_sample_with_text_vocab, 123
tfaddons_version, 126
tile_batch, 126
viterbi_decode, 127