Package ‘theftdlc’

March 14, 2024

Type Package
Title Analyse and Interpret Time Series Features
Version 0.1.0
Date 2024-03-14
Maintainer Trent Henderson <then6675@uni.sydney.edu.au>

BugReports https://github.com/hendersontrent/theftdlc/issues
License MIT + file LICENSE
Encoding UTF-8
Depends R (>= 3.5.0), theft (>= 0.6.1)
Imports rlang, stats, tibble, dplyr, ggplot2, tidyr, purrr, reshape2, scales, broom, Rtsne, e1071, janitor, umap, MASS, mclust, normaliseR, correctR
Suggests lifecycle, cachem, bslib, knitr, markdown, rmarkdown, pkgdown, testthat

RoxygenNote 7.2.2
VignetteBuilder knitr
URL https://hendersontrent.github.io/theftdlc/

NeedsCompilation no
Author Trent Henderson [cre, aut]
Repository CRAN
Date/Publication 2024-03-14 20:40:02 UTC
R topics documented:

classify ... 2
cluster ... 4
compare_features .. 5
filter_duplicates .. 7
filter_good_features .. 7
find_good_features .. 8
fit_models ... 8
get_rescale_vals ... 9
interval ... 10
make_title ... 11
pplot.feature_calculations ... 12
pplot.feature_projection .. 13
project ... 13
resample_data .. 15
rescale_zscore .. 16
select_stat_cols ... 16
stat_test ... 17
theftdlc ... 18

Index 19

classify

Fit classifiers using time-series features using a resample-based approach and get a fast understanding of performance

Description

Fit classifiers using time-series features using a resample-based approach and get a fast understanding of performance

Usage

classify(
 data,
classifier = NULL,
 train_size = 0.75,
 n_resamples = 30,
 by_set = TRUE,
 use_null = FALSE,
 seed = 123
)

tsfeature_classifier(
 data,
 classifier = NULL,
 train_size = 0.75,
)
classify

n_resamples = 30,
by_set = TRUE,
use_null = FALSE,
seed = 123
)

Arguments

data feature_calculations object containing the raw feature matrix produced by
theft::calculate_features

classifier function specifying the classifier to fit. Should be a function with 2 argu-
ments: formula and data containing a classifier compatible with R's predict
functionality. Please note that classify z-scores data prior to modelling using
the train set's information so disabling default scaling if your function uses it
is recommended. Defaults to NULL which means the following linear SVM is
fit: classifier = function(formula, data){mod <- e1071::svm(formula,
data = data, kernel = "linear", scale = FALSE, probability = TRUE)}

train_size numeric denoting the proportion of samples to use in the training set. Defaults
to 0.75

n_resamples integer denoting the number of resamples to calculate. Defaults to 30

by_set Boolean specifying whether to compute classifiers for each feature set. Defaults
to TRUE. If FALSE, the function will instead find the best individually-performing
features

use_null Boolean whether to fit null models where class labels are shuffled in order to
generate a null distribution that can be compared to performance on correct class
labels. Defaults to FALSE

seed integer to fix R's random number generator to ensure reproducibility. Defaults
to 123

Value

list containing a named vector of train-test set sizes, and a data.frame of classification performance results

Author(s)

Trent Henderson

Examples

library(theft)

features <- theft::calculate_features(theft::simData,
group_var = "process",
feature_set = "catch22")

classifiers <- classify(features,
Perform cluster analysis of time series using their feature vectors

Usage

cluster(
 data,
 norm_method = c("zScore", "Sigmoid", "RobustSigmoid", "MinMax"),
 unit_int = FALSE,
 clust_method = c("kmeans", "hclust", "mclust"),
 k = 2,
 features = NULL,
 na_removal = c("feature", "sample"),
 seed = 123,
 ...
)

Arguments

data: feature_calculations object containing the raw feature matrix produced by theft::calculate_features

norm_method: character denoting the rescaling/normalising method to apply. Can be one of "zScore", "Sigmoid", "RobustSigmoid", "MinMax", or "MaxAbs". Defaults to "zScore"

unit_int: Boolean whether to rescale into unit interval [0,1] after applying normalisation method. Defaults to FALSE

clust_method: character specifying the clustering algorithm to use. Can be one of "kmeans" for k-means clustering, "hclust" for hierarchical clustering, or "mclust" for Gaussian mixture model clustering. Defaults to "kMeans"

k: integer denoting the number of clusters to extract. Defaults to 2

features: character vector denoting the names of time-series features to use in the clustering algorithm. Defaults to NULL for no feature filtering and usage of the entire feature matrix

na_removal: character defining the way to deal with NAs produced during feature calculation. Can be one of "feature" or "sample". "feature" removes all features that produced any NAs in any sample, keeping the number of samples the same. "sample" omits all samples that produced at least one NA. Defaults to "feature"
compare_features

seed integer to fix R’s random number generator to ensure reproducibility. Defaults to 123

... arguments to be passed to stats::kmeans or stats::hclust, or mclust::Mclust depending on selection in clust_method

Value

object of class feature_cluster containing the clustering algorithm and a tidy version of clusters joined to the input dataset ready for further analysis

Author(s)

Trent Henderson

Examples

library(theft)

features <- theft::calculate_features(theft::simData,
 group_var = "process",
 feature_set = "catch22")

clusts <- cluster(features,
 k = 6)

compare_features Conduct statistical testing on time-series feature classification performance to identify top features or compare entire sets

Description

Conduct statistical testing on time-series feature classification performance to identify top features or compare entire sets

Usage

compare_features(
 data,
 metric = c("accuracy", "precision", "recall", "f1"),
 by_set = TRUE,
 hypothesis = c("null", "pairwise"),
 p_adj = c("none", "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr")
)
compare_features

Arguments

data list object containing the classification outputs produce by tsfeature_classifier
metric character denoting the classification performance metric to use in statistical testing. Can be one of "accuracy", "precision", "recall", "f1". Defaults to "accuracy"
by_set Boolean specifying whether you want to compare feature sets (if TRUE) or individual features (if FALSE). Defaults to TRUE but this is contingent on whether you computed by set or not in tsfeature_classifier
hypothesis character denoting whether p-values should be calculated for each feature set or feature (depending on by_set argument) individually relative to the null if use_null = TRUE in tsfeature_classifier through "null", or whether pairwise comparisons between each set or feature should be conducted on main model fits only through "pairwise". Defaults to "null"
p_adj character denoting the adjustment made to p-values for multiple comparisons. Should be a valid argument to stats::p.adjust. Defaults to "none" for no adjustment. "holm" is recommended as a starting point for adjustments

Value
data.frame containing the results

Author(s)
Trent Henderson

References

Examples

library(theft)

features <- theft::calculate_features(theft::simData,
 group_var = "process",
 feature_set = NULL,
 features = list("mean" = mean, "sd" = sd))

classifiers <- classify(features,
 by_set = FALSE,
 n_resamples = 3)

compare_features(classifiers,
 by_set = FALSE,
 hypothesis = "pairwise")
filter_duplicates

Remove duplicate features that exist in multiple feature sets and retain a reproducible random selection of one of them

Usage

filter_duplicates(data, preference = NULL, seed = 123)

Arguments

data feature_calculations object containing the raw feature matrix produced by calculate_features
preference deprecated. Do not use
seed integer denoting a fix for R’s pseudo-random number generator to ensure selections are reproducible. Defaults to 123

Value

feature_calculations object containing filtered feature data

Author(s)

Trent Henderson

filter_good_features

Filter resample data sets according to good feature list

Description

Filter resample data sets according to good feature list

Usage

filter_good_features(data, x, good_features)

Arguments

data list of "Train" and "Test" data
x integer denoting the resample index to operate on
good_features character vector of good features to keep
find_good_features
Helper function to find features in both train and test set that are "good"

Description
Helper function to find features in both train and test set that are "good"

Usage
```r
data, x
```

Arguments
- `data`: list of "Train" and "Test" data
- `x`: integer denoting the resample index to operate on

Value
character vector of "good" feature names

Author(s)
Trent Henderson

fit_models
Fit classification model and compute key metrics

Description
Fit classification model and compute key metrics

Usage
```r
data, iter_data, row_id, is_null_run = FALSE, classifier
```
get_rescale_vals

Arguments

- **data**: list containing train and test sets
- **iter_data**: data.frame containing the values to iterate over for seed and either feature name or set name
- **row_id**: integer denoting the row ID for iter_data to filter to
- **is_null_run**: Boolean whether the calculation is for a null model. Defaults to FALSE
- **classifier**: function specifying the classifier to fit. Should be a function with 2 arguments: formula and data. Please note that tsfeature_classifier z-scores data prior to modelling using the train set’s information so disabling default scaling if your function uses it is recommended.

Value

data.frame of classification results

Author(s)

Trent Henderson

get_rescale_vals

Calculate central tendency and spread values for all numeric columns in a dataset

Description

Calculate central tendency and spread values for all numeric columns in a dataset

Usage

get_rescale_vals(data)

Arguments

- **data**: data.frame containing data to normalise

Value

list of central tendency and spread values

Author(s)

Trent Henderson
interval

Calculate interval summaries with a measure of central tendency of classification results

Description

Calculate interval summaries with a measure of central tendency of classification results

Usage

\[
\text{interval(}
\text{data,}
\text{metric = c("accuracy", "precision", "recall", "f1"),}
\text{by_set = TRUE,}
\text{type = c("sd", "qt", "quantile"),}
\text{interval = NULL,}
\text{model_type = c("main", "null")}
\text{)}
\]

\[
\text{calculate_interval(}
\text{data,}
\text{metric = c("accuracy", "precision", "recall", "f1"),}
\text{by_set = TRUE,}
\text{type = c("sd", "qt", "quantile"),}
\text{interval = NULL,}
\text{model_type = c("main", "null")}
\text{)}
\]

Arguments

data list object containing the classification outputs produce by \text{tsfeature_classifier}

metric character denoting the classification performance metric to calculate intervals for. Can be one of "accuracy", "precision", "recall", "f1". Defaults to "accuracy"

by_set Boolean specifying whether to compute intervals for each feature set. Defaults to TRUE. If FALSE, the function will instead calculate intervals for each feature

type character denoting whether to calculate a +/- SD interval with "sd", confidence interval based off the t-distribution with "qt", or based on a quantile with "quantile". Defaults to "sd"

interval numeric scalar denoting the width of the interval to calculate. Defaults to 1 if type = "sd" to produce a +/- 1 SD interval. Defaults to 0.95 if type = "qt" or type = "quantile" for a 95 per cent interval

model_type character denoting whether to calculate intervals for main models with "main" or null models with "null" if the use_null argument when using \text{tsfeature_classifier} was use_null = TRUE. Defaults to "main"
Value

data.frame containing the results

Author(s)

Trent Henderson

Examples

library(heist)

features <- theif::calculate_features(heif::simData,
group_var = "process",
feature_set = NULL,
features = list("mean" = mean, "sd" = sd))

classifiers <- classify(features,
by_set = FALSE,
n_resamples = 3)

interval(classifiers,
by_set = FALSE,
type = "sd",
interval = 1)

make_title

Helper function for converting to title case

Description

Helper function for converting to title case

Usage

make_title(x)

Arguments

x character vector

Value

character vector

Author(s)

Trent Henderson
plot.feature_calculations

Produce a plot for a feature_calculations object

Description

Produce a plot for a feature_calculations object

Usage

```r
## S3 method for class 'feature_calculations'
plot(
  x,
  type = c("quality", "matrix", "cor", "violin"),
  norm_method = c("z-score", "Sigmoid", "RobustSigmoid", "MinMax"),
  unit_int = FALSE,
  clust_method = c("average", "ward.D", "ward.D2", "single", "complete", "mcquitty",
                   "median", "centroid"),
  cor_method = c("pearson", "spearman"),
  feature_names = NULL,
  ...
)
```

Arguments

- `x` feature_calculations object containing the raw feature matrix produced by `theft::calculate_features`
- `type` character specifying the type of plot to draw. Defaults to "quality"
- `norm_method` character specifying a rescaling/normalising method to apply if type = "matrix" or if type = "cor". Can be one of "z-score", "Sigmoid", "RobustSigmoid", or "MinMax". Defaults to "z-score"
- `unit_int` Boolean whether to rescale into unit interval [0,1] after applying normalisation method. Defaults to FALSE
- `clust_method` character specifying the hierarchical clustering method to use if type = "matrix" or if type = "cor". Defaults to "average"
- `cor_method` character specifying the correlation method to use if type = "cor". Defaults to "pearson"
- `feature_names` character vector denoting the name of the features to plot if type = "violin". Defaults to NULL
- `...` Arguments to be passed to `ggplot2::geom_bar` if type = "quality", `ggplot2::geom_raster` if type = "matrix", `ggplot2::geom_raster` if type = "cor", or `ggplot2::geom_point` if type = "violin"

Value

object of class `ggplot` that contains the graphic
plot.feature_projection

Produce a plot for a feature_projection object

Description

Produce a plot for a feature_projection object

Usage

```r
## S3 method for class 'feature_projection'
plot(x, show_covariance = TRUE, ...)
```

Arguments

- `x` feature_projection object containing the two-dimensional embedding calculated by project
- `show_covariance` Boolean specifying whether covariance ellipses should be shown on the plot. Defaults to \texttt{TRUE}
- `...` Arguments to be passed to methods

Value

object of class \texttt{ggplot} that contains the graphic

Author(s)

Trent Henderson

project

Project a feature matrix into a two-dimensional representation using PCA, MDS, t-SNE, or UMAP ready for plotting

Description

Project a feature matrix into a two-dimensional representation using PCA, MDS, t-SNE, or UMAP ready for plotting
Usage

project(
 data,
 norm_method = c("zScore", "Sigmoid", "RobustSigmoid", "MinMax"),
 unit_int = FALSE,
 low_dim_method = c("PCA", "tSNE", "ClassicalMDS", "KruskalMDS", "SammonMDS", "UMAP"),
 na_removal = c("feature", "sample"),
 seed = 123,
 ...
)

reduce_dims(
 data,
 norm_method = c("zScore", "Sigmoid", "RobustSigmoid", "MinMax"),
 unit_int = FALSE,
 low_dim_method = c("PCA", "tSNE", "ClassicalMDS", "KruskalMDS", "SammonMDS", "UMAP"),
 na_removal = c("feature", "sample"),
 seed = 123,
 ...
)

Arguments

data feature_calculations object containing the raw feature matrix produced by theft::calculate_features

norm_method character denoting the rescaling/normalising method to apply. Can be one of "zScore", "Sigmoid", "RobustSigmoid", "MinMax", or "MaxAbs". Defaults to "zScore"

unit_int Boolean whether to rescale into unit interval \([0,1]\) after applying normalisation method. Defaults to FALSE

low_dim_method character specifying the low dimensional embedding method to use. Can be one of "PCA", "tSNE", "ClassicalMDS", "KruskalMDS", "SammonMDS", or "UMAP". Defaults to "PCA"

na_removal character defining the way to deal with NAs produced during feature calculation. Can be one of "feature" or "sample". "feature" removes all features that produced any NAs in any sample, keeping the number of samples the same. "sample" omits all samples that produced at least one NA. Defaults to "feature"

seed integer to fix R’s random number generator to ensure reproducibility. Defaults to 123

... arguments to be passed to stats::prcomp or Rtsne::Rtsne, stats::cmdscale, MASS::isoMDS, MASS::sammon, or umap::umap depending on selection in low_dim_method

Value

object of class feature_project which is a named list containing the feature_calculations data supplied to the function, the wide matrix of filtered data, a tidy data.frame of the projected
resample_data

2-D data, and the model fit object

Author(s)

Trent Henderson

Examples

```r
library(theft)

features <- theft::calculate_features(theft::simData,
  group_var = "process",
  feature_set = "catch22")

pca <- project(features,
  norm_method = "zScore",
  low_dim_method = "PCA")
```

resample_data

Helper function to create a resampled dataset

Description

Helper function to create a resampled dataset

Usage

`resample_data(data, train_rows, test_rows, train_groups, test_groups, seed)`

Arguments

data
data.frame containing time-series features

train_rows
integer denoting the number of cases in the train set

test_rows
integer denoting the number of cases in the test set

train_groups
data.frame containing proportions of each class in original train split

test_groups
data.frame containing proportions of each class in original test split

seed
integer denoting fixed value for R’s pseudorandom number generator

Value

list containing new train and test data

Author(s)

Trent Henderson
rescale_zscore | Calculate z-score for all columns in a dataset using train set central tendency and spread

Description

Calculate z-score for all columns in a dataset using train set central tendency and spread

Usage

rescale_zscore(data, rescalers)

Arguments

data | data.frame containing data to normalise
rescalers | list containing central tendency and spread values for the train set

Value

data.frame of rescaled data

Author(s)

Trent Henderson

select_stat_cols | Helper function to select only the relevant columns for statistical testing

Description

Helper function to select only the relevant columns for statistical testing

Usage

select_stat_cols(data, by_set, metric, hypothesis)

Arguments

data | data.frame of classification accuracy results
by_set | Boolean specifying whether you want to compare feature sets (if TRUE) or individual features (if FALSE).
metric | character denoting the classification performance metric to use in statistical testing. Can be one of "accuracy", "precision", "recall", "f1". Defaults to "accuracy"
stat_test

hypothesis character denoting whether p-values should be calculated for each feature set or feature (depending on by_set argument) individually relative to the null if use_null = TRUE in tsfeature_classifier through "null", or whether pairwise comparisons between each set or feature should be conducted on main model fits only through "pairwise".

Value

object of class data.frame

Author(s)

Trent Henderson

stat_test Calculate p-values for feature sets or features relative to an empirical null or each other using resampled t-tests

Description

Calculate p-values for feature sets or features relative to an empirical null or each other using resampled t-tests

Usage

stat_test(
 data,
 iter_data,
 row_id,
 by_set = FALSE,
 hypothesis,
 metric,
 train_test_sizes,
 n_resamples
)

Arguments

data data.frame of raw classification accuracy results
iter_data data.frame containing the values to iterate over for seed and either feature name or set name
row_id integer denoting the row ID for iter_data to filter to
by_set Boolean specifying whether you want to compare feature sets (if TRUE) or individual features (if FALSE).
hypothesis character denoting whether p-values should be calculated for each feature set or feature (depending on by_set argument) individually relative to the null if use_null = TRUE in tsfeature_classifier through "null", or whether pairwise comparisons between each set or feature should be conducted on main model fits only through "pairwise".

metric character denoting the classification performance metric to use in statistical testing. Can be one of "accuracy", "precision", "recall", "f1". Defaults to "accuracy"

train_test_sizes integer vector containing the train and test set sample sizes

n_resamples integer denoting the number of resamples that were calculated

Value
object of class data.frame

Author(s)
Trent Henderson

theftdlc

Analyse and Interpret Time Series Features

Description

Analyse and Interpret Time Series Features
Index

calculate_interval (interval), 10
classify, 2
cluster, 4
compare_features, 5

filter_duplicates, 7
filter_good_features, 7
find_good_features, 8
fit_models, 8

get_rescale_vals, 9

interval, 10

make_title, 11

plot.feature_calculations, 12
plot.feature_projection, 13
project, 13

reduce_dims (project), 13
resample_data, 15
rescale_zscore, 16

select_stat_cols, 16
stat_test, 17

theftdlc, 18
theftdlc-package (theftdlc), 18
tsfeature_classifier (classify), 2