Package ‘thurstonianIRT’

August 9, 2019

Encoding UTF-8
Type Package
Title Thurstonian IRT Models
Version 0.9.0
Date 2019-08-07
License GPL (>= 3)
LazyData true
ByteCompile true
Depends R (>= 3.2.0), Rcpp (>= 0.12.16), methods
Imports rstan (>= 2.17.3), rstantools (>= 1.5.0), lavaan (>= 0.6-1), MplusAutomation, dplyr (>= 0.6.0), tibble (>= 1.3.1), tidyr, magrittr, mvtnorm, utils, stats, rlang
Suggests testthat (>= 0.9.1),
LinkingTo StanHeaders (>= 2.17.2), rstan (>= 2.17.3), BH (>= 1.66.0-1), Rcpp (>= 0.12.16), RcppEigen (>= 0.3.3.4.0)
SystemRequirements GNU make
URL https://github.com/paul-buerkner/thurstonianIRT
BugReports https://github.com/paul-buerkner/thurstonianIRT/issues
NeedsCompilation yes
RoxygenNote 6.1.1
Author Paul-Christian Bürkner [aut, cre], Trustees of Columbia University [cph]
Maintainer Paul-Christian Bürkner <paul.buerkner@gmail.com>
Repository CRAN
Date/Publication 2019-08-09 10:40:02 UTC
R topics documented:

thurstonianIRT-package .. 2
cor_matrix ... 2
fit_TIRT_lavaan .. 3
fit_TIRT_mplus .. 4
fit_TIRT_stan ... 5
make_lavaan_code ... 6
make_mplus_code ... 7
make_sem_data ... 8
make_stan_data .. 8
make_TIRT_data .. 9
set_block .. 10
sim_TIRT_data ... 11
triplets .. 12

Index

thurstonianIRT-package

The 'thurstonianIRT' package.

Description

This package fits Thurstonian Item Response Theory (IRT) models using 'Stan', 'lavaan', or 'Mplus'. To bring your data into the right format, use the make_TIRT_data function. Models can then be fitted via fit_TIRT_stan, fit_TIRT_lavaan, or fit_TIRT_mplus depending on the desired model fitting engine. Data from Thurstonian IRT models can be simulated via sim_TIRT_data.

References

cor_matrix

Set up Correlation Matrices

Description

Set up Correlation Matrices

Usage

 cor_matrix(cors, dim, dimnames = NULL)
fit_TIRT_lavaan

Fit Thurstonian IRT models in lavaan

Description

Fit Thurstonian IRT models in lavaan

Usage

```r
fit_TIRT_lavaan(data, estimator = "ULSMV", ...)
```

Arguments

- `data` An object of class 'TIRTdata'. see `make_TIRT_data` for documentation on how to create one.
- `estimator` Name of the estimator that should be used. See `lavOptions`.
- `...` Further arguments passed to `lavaan`.

Value

A 'TIRTfit' object.

Examples

```r
# load the data
data("triplets")
# define the blocks of items
blocks <-
  set_block(c("i1", "i2", "i3"), traits = c("t1", "t2", "t3"),
    signs = c(1, 1, 1)) +
  set_block(c("i4", "i5", "i6"), traits = c("t1", "t2", "t3"),
    signs = c(-1, 1, 1)) +
```

Arguments

- `cors` vector of unique correlations
- `dim` Dimension of the correlation matrix
- `dimnames` Optional dimnames of the correlation matrix

Value

A correlation matrix of dimension dim.

Examples

```r
cor_matrix(c(0.2, 0.3, 0.5), dim = 3)
```
set_block(c("i7", "i8", "i9"), traits = c("t1", "t2", "t3"),
 signs = c(1, 1, -1)) +
set_block(c("i10", "i11", "i12"), traits = c("t1", "t2", "t3"),
 signs = c(1, -1, 1))

generate the data to be understood by 'thurstonianIRT'
triplets_long <- make_TIRT_data(
 data = triplets, blocks = blocks, direction = "larger",
 format = "pairwise", family = "bernoulli", range = c(0, 1)
)

fit the data using lavaan
fit <- fit_TIRT_lavaan(triplets_long)
print(fit)
predict(fit)

fit_TIRT_mplus

Fit Thurstonian IRT models in Mplus

Description

Fit Thurstonian IRT models in Mplus

Usage

```r
fit_TIRT_mplus(data, ...)
```

Arguments

- `data` An object of class 'TIRTdata'. see `make_TIRT_data` for documentation on how to create one.
- `...` Further arguments passed to `mplusModeler`.

Value

A 'TIRTfit' object.

Examples

```r
# load the data
data("triplets")

# define the blocks of items
blocks <-
    set_block(c("i1", "i2", "i3"), traits = c("t1", "t2", "t3"),
        signs = c(1, 1, 1)) +
```
fit_TIRT_stan

\[
\text{set_block}(c("i4", "i5", "i6"), traits = c("t1", "t2", "t3"),
\text{signs} = c(-1, 1, 1)) + \\
\text{set_block}(c("i7", "i8", "i9"), traits = c("t1", "t2", "t3"),
\text{signs} = c(1, 1, -1)) + \\
\text{set_block}(c("i10", "i11", "i12"), traits = c("t1", "t2", "t3"),
\text{signs} = c(1, -1, 1))
\]

generate the data to be understood by 'thurstonianIRT'
triplets_long <- make_TIRT_data(
 data = triplets, blocks = blocks, direction = "larger",
 format = "pairwise", family = "bernoulli", range = c(0, 1)
)

fit the data using Mplus
fit <- fit_TIRT_mplus(triplets_long)
print(fit)
predict(fit)

fit_TIRT_stan

Fit Thurstonian IRT models in Stan

Description

Fit Thurstonian IRT models in Stan

Usage

fit_TIRT_stan(data, init = 0, ...)

Arguments

data An object of class 'TIRTdata'. see make_TIRT_data for documentation on how to create one.
init Initial values of the parameters. Defaults to 0 as it proved to be most stable.
... Further arguments passed to rstan::sampling.

Value

A 'TIRTfit' object.

Examples

load the data
data("triplets")

define the blocks of items
blocks <-
 set_block(c("i1", "i2", "i3"), traits = c("t1", "t2", "t3"),
 signs = c(1, 1, 1)) +
 set_block(c("i4", "i5", "i6"), traits = c("t1", "t2", "t3"),
 signs = c(-1, 1, 1)) +
 set_block(c("i7", "i8", "i9"), traits = c("t1", "t2", "t3"),
 signs = c(1, 1, -1)) +
 set_block(c("i10", "i11", "i12"), traits = c("t1", "t2", "t3"),
 signs = c(1, -1, 1))

generate the data to be understood by 'thurstonianIRT'
triplets_long <- make_TIRT_data(
 data = triplets, blocks = blocks, direction = "larger",
 format = "pairwise", family = "bernoulli", range = c(0, 1))

fit the data using Stan
fit <- fit_TIRT_stan(triplets_long, chains = 1)
print(fit)
predict(fit)

make_lavaan_code

Generate lavaan code for Thurstonian IRT models

Description

Generate lavaan code for Thurstonian IRT models

Usage

make_lavaan_code(data)

Arguments

data An object of class 'TIRTdata'. see make_TIRT_data for documentation on
how to create one.

Value

A character string of lavaan code for a Thurstonian IRT model.

Examples

lambdas <- c(runif(6, 0.5, 1), runif(6, -1, -0.5))
sim_data <- sim_TIRT_data(
 npersons = 100,
 ntraits = 3,
make_mplus_code

Generate Mplus code for Thurstonian IRT models

Usage

make_mplus_code(data, iter = 1000, eta_file = "eta.csv")

Arguments

data An object of class 'TIRTdata'. see make_TIRT_data for documentation on how to create one.
iter Maximum number of iterations of the model fitting algorithm.
eta_file optional file name in which predicted trait scores should be stored.

Value

A list of Mplus code snippets to be interpreted by the MplusAutomation package.

Examples

sim_data <- sim_TIRT_data(
 npersons = 100,
 ntraits = 3,
 nblocks_per_trait = 4,
 gamma = 0,
 lambda = c(runif(6, 0.5, 1), runif(6, -1, -0.5)),
 Phi = diag(3)
)

show the created Mplus code
lapply(make_mplus_code(sim_data), cat)
make_sem_data

Prepare data for Thurstonian IRT models fitted with lavaan or Mplus

Description

Prepare data for Thurstonian IRT models fitted with lavaan or Mplus

Usage

make_sem_data(data)

Arguments

data An object of class 'TIRTdata'. see make_TIRT_data for documentation on how to create one.

Value

A data.frame ready to be passed to lavaan or Mplus.

Examples

simulate some data
sdata <- sim_TIRT_data(
 npersons = 100,
 ntraits = 3,
 nblocks_per_trait = 4,
 gamma = 0,
 lambda = c(runif(6, 0.5, 1), runif(6, -1, -0.5)),
 Phi = diag(3)
)

create data ready for use in SEM software
sem_data <- make_sem_data(sdata)
head(sem_data)

make_stan_data

Prepare data for Thurstonian IRT models fitted with Stan

Description

Prepare data for Thurstonian IRT models fitted with Stan

Usage

make_stan_data(data)
make_TIRT_data

Prepare data for Thurstonian IRT models

Description

Prepare data for Thurstonian IRT models

Usage

make_TIRT_data(data, blocks, direction = c("larger", "smaller"), format = c("ranks", "pairwise"), family = "bernoulli", partial = FALSE, range = c(0, 1))

Arguments

data An object of class data.frame containing data of all variables used in the model.

blocks Object of class TIRTblocks generated by set_block indicating which items belong to which block, trait and more. Ignored if data already contains information on the blocks.

direction Indicates if "larger" (the default) or "smaller" input values are considered as indicating the favored answer.

format Format of the item responses. Either "ranks" for responses in ranked format or "pairwise" for responses in pairwise comparison format. If "ranks", each item must have its own column in the data frame which contains its ranks within the block. If "pairwise", each existing item combination must have its own column named after the combination of the two compared items.

family Name of assumed the response distribution. Either "bernoulli", "cumulative", or "gaussian".

partial A flag to indicate whether partial comparisons are allowed for responses stored in the "ranks" format.

range Numeric vector of length two giving the range of the responses when using the "pairwise" format. Defaults to c(0,1) for use with dichotomous responses.
set_block

Prepare blocks of items

Description

Prepare blocks of items and incorporate information about which item belongs to which trait

Usage

```r
set_block(items, traits, names = items, signs = 1)
empty_block()
```
Arguments

- **items**: Names of item comparisons to be combined into one block. Should correspond to variables in the data.
- **traits**: Names of the traits to which each item belongs.
- **names**: Optional names of the items in the output. Can be used to equate parameters of items across blocks, if the same item was used in different blocks.
- **signs**: Expected signs of the item loadings (1 or -1).

Examples

```r
define_block(
  items = c("i1", "i2", "i3"),
  traits = c("A", "B", "C")
) +
define_block(
  items = c("i4", "i5", "i6"),
  traits = c("A", "B", "C")
)
```

Description

Simulate Thurstonian IRT data

Usage

```r
sim_TIRT_data(npersons, ntraits, lambda, gamma, psi = NULL, Phi = NULL, 
eta = NULL, family = "bernoulli", nblocks_per_trait = 5, 
nitems_per_block = 3, comb_blocks = c("random", "fixed"))
```

Arguments

- **npersons**: Number of persons.
- **ntraits**: Number of traits.
- **lambda**: Item factor loadings.
- **gamma**: Baseline attractiveness parameters of the first item versus the second item in the pairwise comparisons. Can be thought of as intercept parameters.
- **psi**: Optional item uniquenesses. If not provided, they will be computed as psi = 1 - lambda^2 in which case lambda are taken to be the standardized factor loadings.
- **Phi**: Optional trait correlation matrix from which to sample person factor scores. Only used if eta is not provided.
Optional person factor scores. If provided, argument Phi will be ignored.

Name of assumed the response distribution. Either "bernoulli", "cumulative", or "gaussian".

Number of blocks per trait.

Number of items per block.

Indicates how to combine traits to blocks. "fixed" implies a simple non-random design that may combine certain traits which each other disproportionally often. We thus recommend to use a "random" block design (the default) that combines all traits with all other traits equally often on average.

A data.frame of the same structure as returned by make_TIRT_data. Parameter values from which the data were simulated are stored as attributes of the returned object.

```r
# simulate some data
sdata <- sim_TIRT_data(
  npersons = 100,
  ntraits = 3,
  nblocs_per_trait = 4,
  gamma = 0,
  lambda = c(runif(6, 0.5, 1), runif(6, -1, -0.5)),
  Phi = diag(3)
)

# take a look at the data
head(sdata)
str(attributes(sdata))

# fit a Thurstonian IRT model using lavaan
fit <- fit_TIRT_lavaan(sdata)
print(fit)
```

Description

This data set contains synthetic data of 100 participants on 4 triplets. In each triplet, participants had to rank the three alternative items according to their preference. Responses were then converted into a set of dichotomous pairwise responses between all the three alternatives. More details can be found in Brown and Maydeu-Olivares (2011).
Usage

triplets

Format

A data frame of 100 observations containing information on 12 variables. Overall, the 12 items measure 3 different traits. Items 1, 4, 7, and 10 load on trait 1, items 2, 5, 8, and 11 load on trait 2, and items 3, 6, 9, and 12 load on trait 3. Moreover, items 4, 9, and 11 are inverted.

- **i1i2**: Response preferences between item 1 and 2.
- **i1i3**: Response preferences between item 1 and 3.
- **i2i3**: Response preferences between item 2 and 3.
- **i4i5**: Response preferences between item 4 and 5.
- **i4i6**: Response preferences between item 4 and 6.
- **i5i6**: Response preferences between item 5 and 6.
- **i7i8**: Response preferences between item 7 and 8.
- **i7i9**: Response preferences between item 7 and 9.
- **i8i9**: Response preferences between item 8 and 9.
- **i10i11**: Response preferences between item 10 and 11.
- **i10i12**: Response preferences between item 10 and 12.
- **i11i12**: Response preferences between item 11 and 12.

Source

Examples

```r
# load the data
data("triplets")

# define the blocks of items
blocks <-
  set_block(c("i1", "i2", "i3"), traits = c("t1", "t2", "t3"),
            signs = c(1, 1, 1)) +
  set_block(c("i4", "i5", "i6"), traits = c("t1", "t2", "t3"),
            signs = c(-1, 1, 1)) +
  set_block(c("i7", "i8", "i9"), traits = c("t1", "t2", "t3"),
            signs = c(1, 1, -1)) +
  set_block(c("i10", "i11", "i12"), traits = c("t1", "t2", "t3"),
            signs = c(1, -1, 1))

# generate the data to be understood by 'thurstonianIRT'
tdat <- make_TIRT_data(
  triplets, blocks, direction = "larger",
  format = "pairwise", family = "bernoulli", range = c(0, 1)
)```
# fit the data using Stan
fit <- fit_TIRT_stan(tdat, chains = 1)
print(fit)
predict(fit)
Index

*Topic **datasets**
  triplets, 12

cor_matrix, 2

empty_block (set_block), 10

fit_TIRT_lavaan, 2, 3
fit_TIRT_mplus, 2, 4
fit_TIRT_stan, 2, 5

lavaan, 3
lavOptions, 3

make_lavaan_code, 6
make_mplus_code, 7
make_sem_data, 8
make_TIRT_data, 2–8, 9, 12
mplusModeler, 4

rstan::sampling, 5

set_block, 9, 10
sim_TIRT_data, 2, 11

thurstonianIRT
  (thurstonianIRT-package), 2
thurstonianIRT-package, 2
triplets, 12