Package ‘tidyMicro’

March 28, 2020

Title A Pipeline for Microbiome Analysis and Visualization
Version 1.43
Date 2020-03-17
Maintainer Charlie Carpenter <charles.carpenter@cuanschutz.edu>
Description A reliable alternative to popular microbiome analysis R packages. We provide standard tools as well as novel extensions on standard analyses to improve interpretability and the analyst’s ability to communicate results, all while maintaining object malleability to encourage open source collaboration.
Depends R (>= 3.5.0), tidyverse (>= 1.3.0)
Imports magrittr (>= 1.5.0), ggrepel (>= 0.8.1), MASS (>= 7.3-51.4), VGAM (>= 1.1-2), rlang (>= 0.3.4), car (>= 3.0-3), lme4 (>= 1.1-21), vegan (>= 2.5-5), Matrix (>= 1.2-17), cowplot (>= 0.9.4), lsr (>= 0.5), shapes (>= 1.2.4), Evomorph (>= 0.9), ThreeWay (>= 1.1.3), factoextra (>= 1.0.5), ade4 (>= 1.7-13), scatterplot3d (>= 0.3-41), gridExtra (>= 2.3), plotly (>= 4.9.0), png (>= 0.1-7), latex2exp(>= 0.4.0), broom (>= 0.5.0), plyr (>= 1.8.0), dplyr (>= 0.8.0), ggplot2 (>= 3.2.0), purrr (>= 0.3.0), stringr (>= 1.4.0), tibble (>= 2.1.0), tidyr (>= 1.0.0), scales (>= 1.1.0)
Suggests knitr, markdown, roxygen2, rmarkdown
Encoding UTF-8
License GPL-3
LazyData true
RoxygenNote 7.1.0
BugReports https://github.com/CharlieCarpenter/tidyMicro
VignetteBuilder knitr
NeedsCompilation no
Author Charlie Carpenter [aut, cre],
 Dan Frank [aut],
 Kayla Williamson [aut],
 Rachel Johnson [ctb]
Alpha Diversity Calculations for tidy_micro

Description

A wrapper function to calculate Sobs, Chao1, Goods, Shannon’s diversity and evenness, and Simpson’s diversity and evenness alpha diversities for your micro_set. Estimates are calculated based on rarefied bootstrapped samples.
alpha_div

Usage

alpha_div(micro_set, table = NULL, iter = 100, min_depth = 0, min_goods = 0)

Arguments

- **micro_set**: A tidy_micro data set
- **table**: OTU table of interest
- **iter**: The number of bootstrap resamples used for estimation
- **min_depth**: Filter out libraries with sequencing depth (Total) below min_depth
- **min_goods**: Filter out libraries Good’s coverage below min_goods

Details

If you have multiple otu tables, you can specify the table you’d like to use to calculate your alpha diversities using the `table` option. We highly recommend using the lowest taxonomic rank available to calculate your alpha diversity. If you would like to calculate alpha diversities for each otu table in your `micro_set`, you can leave the `table` option as `NULL` and the function will calculate the alpha diversity for each table. The function will append the estimated alpha diversities to the `tidy_micro` supplied. The alpha diversity columns will be just before your clinical data. Since alpha diversity is estimated for each individual library (Lib), it will be repeated within each taxa block.

Value

A tidy_micro set with alpha diversity columns added in to the left of clinical data

Note

Be aware of your minimal sequencing depth as this will be the size of all bootstrapped resamples (rarefied).

Examples

```r
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)

set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week

## calculate alpha diversity for every table
set_alpha <- set %>% alpha_div(min_depth = 5000, min_goods = 90)

## calculate alpha diversity for a specific table
set_fam_alpha <- set %>% alpha_div(table = "Family", min_depth = 5000, min_goods = 90)
```
bb_bars

Create stacked bar charts based on beta binomial model estimates

Description

bb_bars takes the output from bb_mods and creates stacked bar charts of the estimated relative abundance for each taxa. The benefit of modeling each taxa before creating stacked bar charts is the ability to control for potential confounders. The function will facet wrap interaction terms. Currently, only quant_style = "discrete" can be used for an interaction between two quantitative variables.

Usage

bb_bars(
 modsum,
 ...,
 range,
 quant_style = c("continuous", "discrete"),
 top_taxa = 0,
 RA = 0,
 specific_taxa,
 lines = TRUE,
 xaxis,
 main,
 subtitle,
 xlab,
 ylab = "Relative Abundance (%)",
 facet_labels,
 facet_layout = 1
)

Arguments

modsum The output from bb_mods
...

The covariate you'd like to plot. Can be an interaction term or main effect, but must be in the models created by bb_mods
range

The range you'd like to plot over for a quantitative variable. Will default to the first and third quartiles
quant_style

"continuous" will plot over the entire range specified; "discrete" will plot only the endpoints of the range specified. "continuous" by default. This option is ignored without a quantitative variable
top_taxa

Only plot X taxa with the highest relative abundance. The rest will be aggregated into an "Other" category
RA

Only plot taxa with a relative abundance higher than X. The rest will be aggregated into an "Other" category
bb_mods

specific_taxa Character; Plot these specific taxa even if it doesn’t meet the top_taxa or RA requirements

lines Logical; Add outlines around the different taxa colors in the stacked bar charts

xaxis Labels for the x-axis ticks. Most useful for categorical variables and defaults to the levels of the variable

main Plot title

subtitle Subtitle for the plot

xlab x-axis label

ylab y-axis label

facet_labels Labels for the facets created for interaction terms

facet_layout Rearrange the facets created for interaction terms

Value

Returns a ggplot that you can add geoms to if you’d like

Examples

```r
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
  filter(day == 7) ## Only including the first week

## Creating beta binomial models on filtered tidy_micro set
bb_phy <- set %>%
  otu_filter(ra_cutoff = 0.1, exclude_taxa = c("Unclassified", "Bacteria")) %>%
  bb_mods(table = "Phylum", bpd1)

bb_phy %>%
  bb_bars(bpd1, top_taxa = 4, xlab = "BPD Severity")
```

bb_mods

Fit beta binomial models to each taxa within an OTU table

Description

Fit beta binomial models to each taxa within an OTU table through `vglm` in the VGAM package. Summaries for models or confidence intervals that fail to converge will not be returned, but taxa summaries will be provided in the output. Rank-Sum tests or presence/absence tests can be run on these taxa using `tidi_rank_sum` or `tidi_chisq`, respectively.
Usage

```r
bb_mods(
  micro_set,
  table,
  ...,
  CI_method = c("wald", "profile"),
  SS_type = c(2, 3, "II", "III"),
  trace = FALSE
)
```

Arguments

- `micro_set`: A `tidy.micro` data set
- `table`: OTU table of interest
- `...`: Covariates of interest. Can be interactions such as `Group*Age`
- `CI_method`: Character indicating the type of method used for confidence interval estimation. Wald intervals are the current default. Abbreviations allowed. See `confint.vglm` for more details
- `SS_type`: Type of sums of squares calculated in `anova.vglm`. Either type II (2) or type III (3) sums of squares. Type II is the default
- `trace`: Print messages of model fitting procedure

Details

Models containing only fixed effects are fit using `vglm` in the `VGAM` package. ANOVA / ANCOVA tests are conducted using a Likelihood Ratio test

Value

A list containing several different model components and summaries

- `Convergend_Summary`: A data.frame of model summaries from convergent models. Includes the Taxa name, the model coefficient, the estimated beta, the beta’s 95 percent confidence interval, the Z score, the p-value, false discovery rate p-value, and p-value from likelihood ratio test
- `Estimate_Summary`: A data.frame of model estimates from convergent models intended to be ready for export for publications. Includes the Taxa name, the model coefficient, the estimated Rate Ratio, the Wald 95 percent confidence interval, the Z-score, and false discovery rate p-value
- `RA_Summary`: A data.frame of taxa summaries. Includes the Taxa name, grouping variables (each factor variable in your models), sample size (n), percent of 0 counts, basic summaries of relative abundance, percentiles of relative abundance, and a logical indicator of whether or not the model converged
- `formula`: The formula used in the model
- `Model_Coef`: Model coefficients (used in plotting functions)
- `Model_Covs`: Model covariates (used in plotting functions)
Note

False Discovery Rate p-values are calculated using `p.adjust`. Estimated rate ratios and confidence intervals for interactions in the Estimate_Summary table include all main effects. It is not simply the exponentiated interaction beta, it is the interaction of the sum of the intercept, corresponding main effect betas, and interaction betas.

References

`anova.vglm`, `vglm`, `betabinomial`

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

`otu_tabs <- list(Phylum = phy, Class = cla, Order = ord, Family = fam)`
`set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%`
` filter(day == 7) ## Only including first week`

`bb_phy <- set %>%`

Filtering out low abundance and unclassified taxa
These models will either break or we don't care about them
`otu_filter(prev_cutoff = 5, ra_cutoff = 0.1,`
` exclude_taxa = c("Unclassified", "Bacteria")) %>%`

Beta binomial models for each Family of taxa with bpd1 as a covariate
`bb_mods(table = "Phylum", bpd1, CI_method = "wald")`

`names(bb_phy)`
`bb_phy$Estimate_Summary`

beta_div
Beta Diversity Calculations for tidy_micro

Description

Calculate beta diversities of your tidy_micro set. This function reformats the data into the original OTU table and then feeds that into the vegdist function.

Usage

`beta_div(micro_set, table, method = "bray")`
Arguments

micro_set A tidy_micro data set

Table you’d like to use when calculating alpha diversity. Your lowest level is recommended

method A dissimilarity method compatible with \texttt{vegdist}

Value

A symmetric distance matrix

References

\texttt{vegdist}

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

\begin{verbatim}
ottu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(ottu_tabs = otu_tabs, clinical = clin) # Only including the first week

Bray-Curtis beta diversity
bray <- set %>% beta_div(table = "Family")

Morisita-Horn beta diversity
horn <- set %>% beta_div(table = "Family", method = "horn")
\end{verbatim}
natural_order = TRUE,
legend_title = "Dissimilarity"
)

Arguments

beta_div A dissimilarity matrix calculated by beta_div
micro_set A tidy_micro data set
... Variables for ordering
low_grad Colors for the corelation magnitude. Will be fed into scale_fill_gradient
high_grad Colors for the corelation magnitude. Will be fed into scale_fill_gradient
main Plot title
xlab x-axis label
ylab y-axis label
subtitle Plot label
natural_order Keep order of axes in the conventional order for dissimilarity matrices
legend_title Title for the legend

Value

Returns a ggplot that you can add geoms to if you’d like

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week

Bray-Curtis beta diversity
bray <- set %>% beta_div(table = "Family")

bray %>% beta_heatmap(micro_set = set, bpd1)

cla An OTU table of class level taxa counts

Description

Infants who required mechanical ventilation had tracheal aspirates samples collected at 7, 14, and 21 days of age (+/- 48 hours). Infants who were mechanically ventilated and had at least one tracheal aspirate collected were included in this study. Subjects were required to be enrolled within 7 days of age. Bacterial profiles were determined by broad-range amplification and sequence analysis of 16S rRNA genes.
Usage

cla

Format

A 34x75 data.frame

OTU_Name A character vector of class level OTU names
Lib names The following columns are the sequencing counts for each library with library names

Source

https://doi.org/10.1371/journal.pone.0170120

clin

A data set containing the clinical data of the subjects sequenced

Description

Infants who required mechanical ventilation had tracheal aspirates samples collected at 7, 14, and 21 days of age (+/- 48 hours). Infants who were mechanically ventilated and had at least one tracheal aspirate collected were included in this study. Subjects were required to be enrolled within 7 days of age. Bacterial profiles were determined by broad-range amplification and sequence analysis of 16S rRNA genes

Usage

clin

Format

A 74x8 data.frame

study_id A character vector of study IDs
weight A numeric vector of infant birth weights (Kg)
sex A factor; infant sex
gestational_age A numeric vector of gestational age in weeks
mom_ethncty A factor; maternal ethnicity
bpd1 A factor; BPD severity
day A numeric vector; days of life at time of sequencing
Lib A character vector of sequencing library names

Source

https://doi.org/10.1371/journal.pone.0170120
Create correlation heatmaps of taxa and another continuous variable

Description

Calculated the correlation between a specified continuous variable and some taxa measure. Correlation type and taxa measure (count, relative abundance, etc.) can be specified by the user but is "spearman" and relative abundance, respectively, by default.

Usage

```
cor_heatmap(
  micro_set,  # A tidy_micro data set
  table,     # The OTU table
  ...,       # Continuous variables of interest
  y = clr,   # The taxa information: cts, ra, etc. The centered log ratio (clr) is recommended.
  method = c("pearson", "kendall", "spearman"),
  main = NULL,  # Plot title
  xlab = NULL,  # x-axis label
  ylab = NULL,  # y-axis label
  subtitle = NULL,  # Plot label
  legend_title = NULL,
  low_grad,  # Colors for the correlation magnitude. Will be fed into scale_fill_gradient
  high_grad  # Colors for the correlation magnitude. Will be fed into scale_fill_gradient
)
```

Arguments

- `micro_set`: A tidy_micro data set
- `table`: The OTU table
- `...`: Continuous variables of interest
- `y`: The taxa information: cts, ra, etc. The centered log ratio (clr) is recommended.
- `method`: Correlation type; must be supported by `cor`. By default it is "spearman" to use with clr. If you'd like to use taxa ra, it is recommend you switch to Kendall's correlation to account for the large number of ties common in taxa ra (lots of 0s)
- `main`: Plot title
- `xlab`: x-axis label
- `ylab`: y-axis label
- `subtitle`: Plot label
- `legend_title`: Title for the legend
- `low_grad`: Colors for the correlation magnitude. Will be fed into scale_fill_gradient
- `high_grad`: Colors for the correlation magnitude. Will be fed into scale_fill_gradient
Details

The output will give gray columns if there are missing values in the supplied continuous variable.

Value

Returns a ggplot that you can add geoms to if you’d like.

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)

set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week

set %>% cor_heatmap(table = "Class", gestational_age, weight)

cor_rocky_mtn

Create Rocky Mountain plots from taxa relative abundance correlations

Description

Calculate the correlation between the relative abundance of each taxa within a specified table and a continuous variable of interest. correlation is calculated by cor. By default, Kendall’s correlation is used to account for the prevalence of ties that often occur (lots of 0s).

Usage

cor_rocky_mtn(
 micro_set,
 table,
 x,
 y = clr,
 method = "spearman",
 main = NULL,
 xlab = NULL,
 ylab = NULL,
 subtitle = NULL,
 cut_lines = TRUE,
 line_text = TRUE,
 sig_text = TRUE,
 lwd = 1,
 cor_label = 0.5,
 breaks = c(-0.6, -0.5, -0.3, 0.3, 0.5, 0.6)
)
cor_rocky_mtn

Arguments

- **micro_set**: A tidy_micro data set
- **table**: OTU table of interest
- **x**: Continuous variable of interest
- **y**: The taxa information. The centered log ratio (clr) is recommended.
- **method**: Correlation type; must be supported by `cor`. By default it is "spearman" to use with clr. If you'd like to use taxa ra, it is recommend you switch to Kendall’s correlation to account for the large number of ties common in taxa ra (lots of 0s)
- **main**: Plot title
- **xlab**: Label for x-axis
- **ylab**: Label for y-axis
- **subtitle**: Plot subtitle
- **cut_lines**: Add lines for p-value cutoffs
- **line_text**: Label p-value cut-offs
- **sig_text**: Label taxa with correlations greater than cor_label in magnitude
- **lwd**: line width for cut_lines
- **cor_label**: Cutoff for correlations to be labeled
- **breaks**: Where to place cut_lines along y-axis

Value

A ggplot you can add geoms to if you’d like

Author(s)

Charlie Carpenter, Dan Frank

Examples

```r
data(phy); data(cla); data(ord); data(fam); data(clin)

otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
  filter(day == 7) ## Only including the first week

set %>% cor_rocky_mtn(table = "Family", weight, cor_label = 0.3)
```
fam

Description
Infants who required mechanical ventilation had tracheal aspirates samples collected at 7, 14, and 21 days of age (+/- 48 hours). Infants who were mechanically ventilated and had at least one tracheal aspirate collected were included in this study. Subjects were required to be enrolled within 7 days of age. Bacterial profiles were determined by broad-range amplification and sequence analysis of 16S rRNA genes.

Usage
```r
fam
```

Format
A 116x75 data.frame

- **OTU_Name** A character vector of family level OTU names
- **Lib names** The following columns are the sequencing counts for each library with library names

Source
https://doi.org/10.1371/journal.pone.0170120

micro_alpha_reg

Description
A simple wrapper to run standard linear regression though the `lm` function. Will only use alpha diversities distinct libraries (Lib) from the specified table as to not inflate the sample size

Usage
```r
micro_alpha_reg(alpha_set, table, ...)
```

Arguments
- **alpha_set** A tidy_micro data set with alpha diversities calculated by `alpha_div`
- **table** OTU table of interest
- **...** Covariates of interest. Can include interaction terms such as `Group*Age`
Value

A data frame containing the model estimates for each alpha diversity

Note

Be aware of your minimal sequencing depth as this will be the size of all bootstrapped resamples (rarefied).

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

otu_tabs <- list(Phylum = phy, Class = cla, Order = ord, Family = fam)

set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
 filter(day == 7) ## Only including first week

set_fam_alpha <- set %>%
 alpha_div(table = "Family", min_depth = 5000, min_goods = 90)
set_fam_alpha %>%
 micro_alpha_reg(table = "Family", bpd1)

micro_chisq Run Chi-Squared tests for each taxa

Description

Run Chi-Squared tests for presence / absence of each taxa in your data set, or each taxa that didn’t converge in negative binomial models

Usage

micro_chisq(micro_set, table, grp_var, y = bin, mod = NULL, ...)

Arguments

micro_set A tidy_micro data set
table The OTU table you’d like to test
grp_var Grouping variable for chi-squared test
y Response variable for chi-squared test. Default is presence / absence (bin)
mod The output from mods if you’d like to only run on taxa that did not converge
... Options to be passed to chisq.test

Details

If the taxa are present or absent in every subject the chi-squared test will not run. The returned chi-squared stat will either be "All Absent" or "All Present." This will be clear in the output
Value

A data from containing the taxa, the chi-squared statistic, and the p-value of the test.

References

help(chisq.test)

Examples

data(cla); data(clin)

set <- tidy_micro(otu_tabs = cla, tab_names = "Class", clinical = clin,
prev_cutoff = 5, ra_cutoff = 0.1, exclude_taxa = c("Unclassified", "Bacteria")) %>%
filter(day == 7) ## Only including the first week

Chi-squared test on every taxa’s presence/absence
set %>% micro_chisq(table = "Class", grp_var = bpd1,
simulate.p.value = TRUE)

Chi-squared test on every taxa whose model didn’t converge
nb_cla <- set %>% nb_mods(table = "Class", bpd1)

micro_chisq(micro_set = set, table = "Class", grp_var = bpd1,
mod = nb_cla, simulate.p.value = TRUE)

micro_forest

Description

Create forest plots for specified coefficients in negative binomial taxa models. Plots estimated beta coefficients and confidence intervals.

Usage

micro_forest(
 modsum,
 ...,
 main,
 ylab,
 xlab,
 subtitle,
 legend_title,
 legend_labs
)

micro_forest

Create forest plots from negative binomial taxa models
micro_heatmap

Arguments

- **modsum**: The output from nb_mods
- **...**: The covariate you'd like to plot. Must be in the models created by nb_mods
- **main**: The title for your plot
- **ylab**: The label for the y-axis; default is "Taxa"
- **xlab**: The label for the x-axis; default is output from function "TeX"
- **subtitle**: The plot subtitle
- **legend_title**: The title of the plot's legend
- **legend_labs**: The names of the elements within the legend

Value

Returns a ggplot that you can add geoms to if you'd like

Examples

```r
data(phy); data(cla); data(ord); data(fam); data(clin)

otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
  filter(day == 7) ## Only including the first week

## Creating negative binomial models on filtered tidi_micro set
nb_fam <- set %>%
  otu_filter(prev_cutoff = 5, ra_cutoff = 0.1,
             exclude_taxa = c("Unclassified", "Bacteria")) %>%
  nb_mods(table = "Family", bpd1)

nb_fam %>% micro_forest(bpd1)
```
micro_heatmap

top_taxa = 10,
low_lim,
high_lim,
mute_cols = T,
alpha = 0.05,
dot_size = 2,
dot_shape = 8,
main = NULL,
xlab = NULL,
ylab = NULL,
subtitle = NULL,
xaxis = NULL,
legend_title = NULL,
caption = NULL
)

Arguments

modsum The output from nb.mods
low_grad The low gradient colors for the coefficient magnitude. Will be fed into scale_fill_gradient
high_grad The high gradient colors for the coefficient magnitude. Will be fed into scale_fill_gradient
mid_grad The medium gradient colors for the coefficient magnitude. Will be fed into scale_fill_gradient
midpoint Midpoint for coefficient magnitude in legend
top_taxa Only plot X taxa with the largest magnitude beta coefficients
low_lim Lower limits of the fill gradient. Will default to the largest magnitude effect size
high_lim Upper limits of the fill gradient. Will default to the largest magnitude effect size
mute_cols Mute the colors of the fill gradients
alpha Mark beta coefficient cells with p-values below this cutoff
dot_size size of marker in cells
dot_shape shape of marker in cells
main Plot title
xlab x-axis label
ylab y-axis label
subtitle Plot label
xaxis Labels for the x-axis ticks
legend_title Title of figure legend
caption plot caption to be displayed at the bottom of plot

Details

The output will give gray columns if there are missing values in the supplied continuous variable
micro_pca

Value

Returns a ggplot that you can add geoms to if you’d like

Examples

```r
data(phy); data(cla); data(ord); data(fam); data(clin)

otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
  filter(day == 7) ## Only including the first week

## Creating negative binomial models on filtered tidy_micro set
nb_fam <- set %>%
  mutate(bpd1 = factor(bpd1)) %>%  ## making bpd1 a factor
  otu_filter(ra_cutoff = 0.1, exclude_taxa = c("Unclassified", "Bacteria")) %>%
  nb_mods(table = "Family", bpd1)

nb_fam %>% micro_heatmap
```

micro_pca

Calculate and plot principle components

Description

Principle components are calculated on the centered log ratio tranformation of the OTU table using the `prcomp` function from the `stats` package. Scaling the OTU table to a unit variance is the default option, and recommended, but this can be changed using `scaled = F`.

Usage

```r
micro_pca(
  micro_set,  
  table = NULL,  
  dist = NULL,  
  grp_var,  
  y = clr,  
  scale = TRUE,  
  axes_arrows = F,  
  main = NULL,  
  subtitle = NULL,  
  legend_title = NULL
)
```

Arguments

- `micro_set` A tidy_micro data set
- `table` OTU table of interest
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dist</code></td>
<td>A distance matrix, such as a beta diversity. If supplied a PCoA plot will be returned</td>
</tr>
<tr>
<td><code>grp_var</code></td>
<td>Categorical grouping variable for color</td>
</tr>
<tr>
<td><code>y</code></td>
<td>Value to calculate principle components or coordinates on. Default is centered log ratio (recommended)</td>
</tr>
<tr>
<td><code>scale</code></td>
<td>Logical. Indicating whether the variables should be scaled to have unit variance before the analysis takes place</td>
</tr>
<tr>
<td><code>axes_arrows</code></td>
<td>Logical. Plot component axes arrows</td>
</tr>
<tr>
<td><code>main</code></td>
<td>Plot title</td>
</tr>
<tr>
<td><code>subtitle</code></td>
<td>Plot subtitle</td>
</tr>
<tr>
<td><code>legend_title</code></td>
<td>Legend title</td>
</tr>
</tbody>
</table>

Details

PCA calculation is done by a singular value decomposition of the (centered and possibly scaled) data matrix, not by using `eigen` on the covariance matrix. This is generally the preferred method for numerical accuracy. Calculations are accomplished through the `prcomp` function, and the plot is created through internal code based on the ggbiplot function https://github.com/vqv/ggbiplot.

Value

A ggplot you can add geoms to if you’d like

References

Examples

```r
data(phy); data(cla); data(ord); data(fam); data(clin)

otu_tabs <- list(Phylum = phy, Class = cla, Order = ord, Family = fam)
s <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>% filter(day == 7) ## Only including first week

## PCA Plot
s %>% micro_pca(table = "Family", grp_var = bpd1)

## PCoA Plot (Recommended for p > n)
bray_beta <- s %>% beta_div(table = "Family")
s %>% micro_pca(dist = bray_beta, grp_var = bpd1)
```
micro_PERMANOVA

A function to run PERMANOVA on tidi_micro data sets

Description

A wrapper function to call adonis2 from the vegan package. PERMANOVA is a method for partitioning distance matrices among sources of variation and fitting linear models (e.g., factors, polynomial regression) to distance matrices; uses a permutation test with pseudo-F ratios

Usage

micro_PERMANOVA(micro_set, beta_div, method, ..., nperm = 999)

Arguments

- micro_set: A tidy_micro data set
- beta_div: A dissimilarity matrix calculated by beta_div
- method: A character string indicating the method used to calculated dissimilarity
- ...: Covariates of interest
- nperm: Number of permutations

Details

The function adonis2 is based on the principles of McArdle & Anderson (2001) and can perform sequential, marginal and overall tests. Function adonis2 also allows using additive constants or squareroot of dissimilarities to avoid negative eigenvalues

References

vegdist adonis2

See Also

adonis

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
 filter(day == 7) ## Only including the first week

Bray-Curtis beta diversity
bray <- set %>% beta_div(table = "Family")

set %>% micro_PERMANOVA(bray, method = "bray", bpd1)
micro_rank_sum

Run rank sum tests for each taxa within an OTU table

Description

Runs a rank sum test for each taxa within an OTU table or each taxa that didn’t converge in nb_mods or bb_mods.

Usage

micro_rank_sum(micro_set, table, grp_var, y = ra, mod = NULL, ...)

Arguments

- **micro_set**: A tidy_micro data set
- **table**: OTU table of interest
- **grp_var**: A factor variable for grouping
- **y**: A continuous response variable. Taxa relative abundance (ra) is recommended
- **mod**: The output from nb_mods or bb_mods if desired
- **...**: Options to be passed to wilcox.test or kruskal.test

Details

The grp_var must have at least 2 levels. For a 2 level factor a Mann-Whitney test will be calculated through wilcox.test, and for 3 or more levels a Kruskal-Wallis test will be run through kruskal.test.

Value

A data frame containing the p-value for each taxa’s rank sum test.

References

- kruskal.test and wilcox.test

Examples

```r
data(cla); data(clin)

set <- tidy_micro(otu_tabs = cla, tab_names = "Class", clinical = clin, prev_cutoff = 5, ra_cutoff = 0.1, exclude_taxa = c("Unclassified", "Bacteria")) %>%
filter(day == 7) ## Only including the first week

## Rank sum test on every taxa's relative abundance
set %>% micro_rank_sum(table = "Class", grp_var = bpd1)

## Rank sum test on every taxa whose model didn't converge
```
micro_rocky_mtn

Create Rocky Mountain plots from negative binomial taxa models

Description
Display the magnitude of log p-values for each of the taxa in nb_mods as vertical bars next to each other along the x-axis. The direction of the bars will be determined by the direction of the estimated relationship. The taxa will be color coded by the phylum they belong to, and taxa that have FRD adjusted p-values below your desired significance cutoff for the specified covariate will be labeled

Usage
micro_rocky_mtn(
 modsum,
 ..., # The covariate you’d like to plot. Must be in the models created by nb_mods
 main = NULL,
 ylab = NULL,
 subtitle = NULL,
 pval_lines = TRUE,
 pval_text = TRUE,
 sig_text = TRUE,
 facet_labels = NULL,
 alpha = 0.05,
 lwd = 2,
 lty = 1
)

Arguments
modsum The output from nb_mods
... The covariate you’d like to plot. Must be in the models created by nb_mods
main Plot title
ylab y-axis labels
subtitle Plot subtitle
pval_lines Logical; include horizontal dashed lines at corresponding p-values
pval_text Logical; label the y-axis with corresponding p-values
sig_text Logical; label the taxa with p-values below specified alpha
facet_labels Labels for different facets if covariate has more than 1 beta coefficient
alpha Significance cutoff
lwd Line width for pval_lines
lty Line type for pval_lines
Value

A ggplot you can add geoms to if you’d like

Author(s)

Charlie Carpenter, Rachel Johnson, Dan Frank

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week

Creating negative binomial models on filtered tidy_micro set
nb_fam <- set %>%
 otu_filter(ra_cutoff = 0.1, exclude_taxa = c("Unclassified", "Bacteria")) %>%
nb_mods(table = "Family", bpd1)

nb_fam %>% micro_rocky_mtn(bpd1)

nb_bars

Create stacked bar charts based on negative binomial model estimates

Description

nb_bars takes the output from nb_mods and creates stacked bar charts of the estimated relative abundance for each taxa. The benefit of modeling each taxa before creating stacked bar charts is the ability to control for potential confounders. The function will facet wrap interaction terms. Currently, only quant_style "discrete" can be used for an interaction between two quantitative variables.

Usage

nb_bars(
 modsum,
 ...,
 range,
 quant_style = c("continuous", "discrete"),
 top_taxa = 0,
 RA = 0,
 specific_taxa = NULL,
 lines = TRUE,
 xaxis,
 main,
 subtitle,
 xlab,
 ylab,
Arguments

modsum: The output from nb_mods

...: The covariate you’d like to plot. Can be an interaction term or main effect, but must be in the models created by nb_mods

range: The range you’d like to plot over for a quantitative variable. Will default to the IQR

quant_style: "continuous" will plot over the entire range specified; "discrete" will plot only the endpoints of the range specified. "continuous" by default. This option is ignored without a quantitative variable

top_taxa: Only plot X taxa with the highest relative abundance. The rest will be aggregated into an "Other" category

RA: Only plot taxa with a relative abundance higher than X. The rest will be aggregated into an "Other" category

specific_taxa: Plot this specific taxa even if it doesn’t meet the top_taxa or RA requirements

lines: Logical; Add outlines around the different taxa colors in the stacked bar charts

xaxis: Labels for the x-axis ticks. Most useful for categorical variables and defaults to the levels

main: Plot title

subtitle: Subtitle for the plot

xlab: x-axis label

ylab: y-axis label

facet_labels: Labels for the facets created for interaction terms

facet_layout: Rearrange the facets created for interaction terms

Value

Returns a ggplot that you can add geoms to if you’d like

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)

set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week

Creating negative binomial models on filtered tidy_micro set

nb_fam <- set %>%

otu_filter(ra_cutoff = 0.1, exclude_taxa = c("Unclassified", "Bacteria")) %>%
nb_mods(table = "Family", bpd1)

nb_fam %>%
nb_bars(bpd1, top_taxa = 9, xlab = "BPD Severity")
Description

Fit negative binomial models to each taxa within an OTU table through `glm.nb` in the MASS package. Models can include a random effect if desired. Models will then be fit through `glmer.nb` in the lmer package. Summaries for models or confidence intervals that fail to converge will not be returned, but taxa summaries will be provided in the output. Rank-Sum tests or presence/absence tests can be run on these taxa using `tidi_rank_sum` or `tidi_chisq`, respectively.

Usage

```r
nb_mods(
  micro_set,  # A tidy_micro data set
  table,      # OTU table of interest
  ...,        # Covariates of interest. Can be interactions such as Group*Age
  Offset = TRUE,  # Logical; include subject sequencing depth as an offset for negative binomial models. This is highly recommended
  ref = NULL,    # A character vector of the desired reference levels for each factor covariate. The order of the specified references must match the order for the corresponding covariates specified in '...'  
  SS_type = c(2, 3, "II", "III")  # Type of sums of squares calculated in Anova. Either type II (2) or type III (3) sums of squares  
)
```

Arguments

- `micro_set`: A tidy_micro data set
- `table`: OTU table of interest
- `...`: Covariates of interest. Can be interactions such as Group*Age
- `Offset`: Logical; include subject sequencing depth as an offset for negative binomial models. This is highly recommended
- `ref`: A character vector of the desired reference levels for each factor covariate. The order of the specified references must match the order for the corresponding covariates specified in '....'
- `SS_type`: Type of sums of squares calculated in Anova. Either type II (2) or type III (3) sums of squares

Details

Models containing only fixed effects are fit using `glm.nb` in the MASS package and models containing random effects are fit using `glmer.nb`. ANOVA / ANCOVA tests are conducted using a Likelihood Ratio test for fixed effects models and Chi-Squared tests for random effect models.

Value

A list containing several different model components and summaries
ConvergEnd_Summary
A data.frame of model summaries from convergent models. Includes the Taxa name, the model coefficient, the estimated beta, the beta’s 95 percent confidence interval, Z score, p_value, false discovery rate p-value, and p-value from likelihood ratio test

Estimate_Summary
A data.frame of model estimates from convergent models intended to be ready for export for publications. Includes the Taxa name, the model coefficient, the estimated Rate Ratio, the Wald 95 percent confidence interval, the Z-score, and false discovery rate p-value

RA_Summary
A data.frame of taxa summaries. Includes the Taxa name, grouping variables (each factor variable in your models), sample size (n), percent of 0 counts, basic summaries of relative abundance, percentiles of relative abundance, and a logical indicator of whether or not the model converged

formula
The formula used in the model

Model_Coef
Model coefficients (used in plotting functions)

Model_Covs
Model covariates (used in plotting functions)

Note
False Discovery Rate p-values are calculated using `p.adjust`. Estimated rate ratios and confidence intervals for interactions in the Estimate_Summary table include all main effects. It is not simply the exponentiated interaction beta, it is the interaction of the sum of the intercept, corresponding main effect betas, and interaction betas

References

Anova, glm.nb, glmer.nb

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

otu_tabs <- list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
 filter(day == 7)

nb_fam <- set %>%
 otu_filter(prev_cutoff = 5, ra_cutoff = 0.1, exclude_taxa = c("Unclassified", "Bacteria")) %>%
 nb_mods(table = "Family", bpd1)

names(nb_fam)
nb_fam$Estimate_Summary
An OTU table of order level taxa counts

Description

Infants who required mechanical ventilation had tracheal aspirates samples collected at 7, 14, and 21 days of age (+/- 48 hours). Infants who were mechanically ventilated and had at least one tracheal aspirate collected were included in this study. Subjects were required to be enrolled within 7 days of age. Bacterial profiles were determined by broad-range amplification and sequence analysis of 16S rRNA genes.

Usage

```r
test <- ord
```

Format

A 62x75 data.frame

- `OTU_Name` A character vector of ord level OTU names
- `Lib names` The following columns are the sequencing counts for each library with library names

Source

https://doi.org/10.1371/journal.pone.0170120

A function to aggregate low prevalence, abundance, or unwanted taxa together

Description

Will take a tidi_micro set and aggregate the raw counts of taxa with a low prevalence and/or abundance into a new "Other" taxa. Can also find specific taxa you'd like to include in the "Other" taxa counts. Once the counts are aggregated taxa relative abundance, centered log ratio (CLR) transformations, and presence will be recalculated. This recalculation will only change the "Other" category

Usage

```r
otu_filter(
  micro_set,
  prev_cutoff = 0,
  ra_cutoff = 0,
  exclude_taxa = NULL,
  filter_summary = T
)
```
Arguments

- **micro_set**: A tidy_micro data set
- **prev_cutoff**: Minimum percent of subjects with OTU counts above 0
- **ra_cutoff**: At least one subject must have RA above this subject
- **exclude_taxa**: A character vector of OTU names that you would like filter into your "Other" category
- **filter_summary**: Logical; print out summaries of filtering steps

Details

\[\frac{1}{Total} \] will be added to each taxa count for CLR transformations in order to avoid issues with log(0)

Value

Returns a tidy_micro set

Author(s)

Charlie Carpenter and Dan Frank

Examples

```r
data(phy); data(cla); data(ord); data(fam); data(clin)

otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
  filter(day == 7) %>%
  filter_set <- set %>%
  otu_filter(prev_cutoff = 5, ## 5% of subjects must have this bug, or it is filtered
  ra_cutoff = 1, ## At least 1 subject must have RA of 1, or it is filtered
  exclude_taxa = c("Unclassified", "Bacteria") ## Unclassified taxa we don't want
```

pca_3d

Create 3d PCA plots

Description

Create three dimensional PCA plots from longitudinal data or multiple omics data sets.
Usage

```r
c PCA_3d(
    micro_set,  # A tidy_micro data set
    table,      # OTU table of interest
    time_var,   # The time point variable column name in your tidi_MIBI set
    subject,    # The subject variable column name in your tidi_MIBI set
    y = clr,    # Value to calculate principle components or coordinates on. Default is centered log ratio (recommended)
    modes = c("AC", "BA", "CB"), # Components of the data to focus on: time, subjects, bacteria, etc. "AC" by default
    dist_method = "euclidean", # Dissimilarity method to be calculated by `vegdist`. Euclidean by default
    type = "PCoA", # "PCA" for principle components or "PCoA" to calculated dissimilarity matrix using `vegdist`
    plot_scores = FALSE, # Plot the scores instead of the principle components
    n_compA, # The number of components along first axis. See details
    n_compB, # The number of components along second axis. See details
    n_compC, # The number of components along third axis. See details
    cex.axis = 1, # Options for `scatterplot3d`
    cex.lab = 1, # Options for `scatterplot3d`
    main = NULL, # Plot title
    subtitle = NULL, # Plot subtitle
    scalewt = TRUE) # Logical; center and scale OTU table, recommended
```

Arguments

- `micro_set`: A tidy_micro data set
- `table`: OTU table of interest
- `time_var`: The time point variable column name in your tidi_MIBI set
- `subject`: The subject variable column name in your tidi_MIBI set
- `y`: Value to calculate principle components or coordinates on. Default is centered log ratio (recommended)
- `modes`: Components of the data to focus on: time, subjects, bacteria, etc. "AC" by default
- `dist_method`: Dissimilarity method to be calculated by `vegdist`. Euclidean by default
- `type`: "PCA" for principle components or "PCoA" to calculated dissimilarity matrix using `vegdist`
- `plot_scores`: Plot the scores instead of the principle components
- `n_compA`: The number of components along first axis. See details
- `n_compB`: The number of components along second axis. See details
- `n_compC`: The number of components along third axis. See details
- `cex.axis`: Options for `scatterplot3d`
- `cex.lab`: Options for `scatterplot3d`
- `main`: Plot title
- `subtitle`: Plot subtitle
- `scalewt`: Logical; center and scale OTU table, recommended
Details

Requires that you have columns for subject name and time point. Data must be complete across time points. The function will filter out inconsistent subjects.

When type = "PCoA" the component matrices must be specified prior to the optimization. This is handled automatically.

If n_compA, n_compB, and n_compC aren’t specified they will default to the number of complete subjects, the number of taxa, and the number of time points, respectively. This slows down performance slightly, but will not change the results.

Author(s)

Charlie Carpenter, Kayla Williamson

References

vegdist

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin)

set %>% pca_3d(table = "Family", time_var = day, subject = study_id)

phy

An OTU table of phylum level taxa counts

Description

Infants who required mechanical ventilation had tracheal aspirates samples collected at 7, 14, and 21 days of age (+/- 48 hours). Infants who were mechanically ventilated and had at least one tracheal aspirate collected were included in this study. Subjects were required to be enrolled within 7 days of age. Bacterial profiles were determined by broad-range amplification and sequence analysis of 16S rRNA genes.

Usage

phy

Format

A 15x75 data.frame

OTU_Name A character vector of phylum level OTU names
Lib names The following columns are the sequencing counts for each library with library names
ra_bars

Function to make stacked bar charts of taxa relative abundance

Description
A function to make stacked bar charts of taxa relative abundance with the choice to stratify by a variable of interest

Usage
ra_bars(
micro_set,
table,
...
, top_taxa = 0,
RA = 0,
specific_taxa,
main,
subtitle,
ylab,
xlab,
xaxis,
lines = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>micro_set</td>
<td>A tidy_micro data set</td>
</tr>
<tr>
<td>table</td>
<td>OTU table you’d like to use when calculating alpha diversity. Your lowest level is recommended</td>
</tr>
<tr>
<td>...</td>
<td>A categorical variable by which you’d like to stratify your relative abundances</td>
</tr>
<tr>
<td>top_taxa</td>
<td>Only plot X taxa with the highest relative abundance. The rest will be aggregated into an "Other" category.</td>
</tr>
<tr>
<td>RA</td>
<td>Only plot taxa with a relative abundance higher than X. The rest will be aggregated into an "Other" category.</td>
</tr>
<tr>
<td>specific_taxa</td>
<td>Plot this specific taxa even if it doesn’t meet the top_taxa or RA requirements</td>
</tr>
<tr>
<td>main</td>
<td>Plot title</td>
</tr>
<tr>
<td>subtitle</td>
<td>Subtitle for the plot</td>
</tr>
<tr>
<td>ylab</td>
<td>y-axis label</td>
</tr>
<tr>
<td>xlab</td>
<td>x-axis label</td>
</tr>
<tr>
<td>xaxis</td>
<td>Labels for the x-axis ticks. Most useful for categorical variables and defaults to the levels</td>
</tr>
<tr>
<td>lines</td>
<td>Logical; Add outlines around the different taxa colors in the stacked bar charts</td>
</tr>
</tbody>
</table>
taxa_boxplot

Value

Returns a ggplot that you can add geoms to if you’d like

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week

Full cohort abundance
set %>%
ra_bars(table = "Family", top_taxa = 10)

Stratified by variable of interest
set %>%
ra_bars(table = "Family", bpd1, top_taxa = 10)

taxa_boxplot

Function to make boxplots of taxa counts or relative abundance

Description

A function to make boxplots of one specified taxa relative abundance with the option to stratify by a factor variable

Usage

taxa_boxplot(
 micro_set,
 taxa,
 ...,
 y = ra,
 xlab = NULL,
 ylab = NULL,
 main = NULL,
 subtitle = NULL,
 legend_title = NULL
)

Arguments

- **micro_set**: A tidy_micro data set
- **taxa**: A character string. The name of the taxa of interest
- **...**: The factor variable you’d like to stratify by
- **y**: The taxa information
taxa_summary

xlab x-axis label
ylab y-axis label
main Plot title
subtitle Subtitle for the plot
legend_title Title of plot legend

Value

A ggplot that you can add geoms to if you’d like

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
 filter(day == 7) ## Only including the first week
set %>%
taxa_boxplot("Firmicutes/Bacilli/Bacillales/Staphylococcaceae", bpd1)

taxa_summary Summarize the information

Description

Give taxa summary table stratified by variables of interest and/or OTU tables

Usage

taxa_summary(micro_set, ..., table = NULL, obj = ra, taxa = TRUE)

Arguments

micro_set A tidy_micro data set
... Covariates of interest
table OTU table of interest. If NULL, all tables will be used
obj The taxonomic information of interest
taxa Logical; Whether or not to stratify by taxa

Value

A tibble containing columns of stratifying variables and several summary columns
Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

otu_tabs <- list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>% mutate(bpd1 = factor(bpd1))

Summarize each taxa by Table
set %>% taxa_summary

Summarize each taxa by a categorical variable of interest
set %>% taxa_summary(bpd1)

Summarize each taxa by a categorical variable of interest within a Table
set %>% taxa_summary(bpd1, table = "Phylum")

Summarize within group or table only
set %>% taxa_summary(taxa = FALSE)

three_mode

Create Three Mode PCA and PCoA plots

Description

Three Mode Principal Components, an ordination method that can take into account repeated measure of subjects. These methods have also been extended to other common ecological distance metrics for Three Mode Principal Coordinate Analysis

Usage

three_mode(
 micro_set,
 table,
 group,
 time_var,
 subject,
 y = clr,
 modes = c("AC", "BA", "CB"),
 plot_scores = F,
 n_compA,
 n_compB,
 n_compC,
 main = NULL,
 subtitle = NULL,
 legend_title = NULL,
 scalewt = TRUE
)
Arguments

- **micro_set**: A tidy_micro data set
- **table**: OTU table of interest
- **group**: A categorical variable to color by
- **time_var**: The time point variable column name in your tidi_MIBI set
- **subject**: The subject variable column name in your tidi_MIBI set
- **y**: Value to calculate principle components or coordinates on. Default is centered log ratio (recommended)
- **modes**: Components of the data to focus on: time, subjects, bacteria, etc.
- **plot_scores**: Plot the scores instead of the principle components
- **n_compA**: The number of components along first axis. See details
- **n_compB**: The number of components along second axis. See details
- **n_compC**: The number of components along third axis. See details
- **main**: Plot title
- **subtitle**: Plot subtitle
- **legend_title**: Plot legend title
- **scalewt**: Logical; center and scale OTU table, recommended

Details

Requires that you have columns for subject name and time point. Data must be complete across time points. The function will filter out inconsistent subjects.

If n_compA, n_compB, and n_compC aren’t specified they will default to the number of complete subjects, the number of taxa, and the number of time points, respectively. This slows down performance slightly, but will not change the results.

Value

A ggplot you can add geoms to if you’d like

Author(s)

Charlie Carpenter, Kayla Williamson

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

```r
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin)
```

```r
set %>% three_mode(table = "Family", group = bpd1, time_var = day, subject = study_id)
```
tidy_micro A function to merge multiple OTU tables and clinical data into a "tidy" format

Description
A function to take any number of OTU tables (or other sequencing data tables), calculate taxa prevalence, relative abundance, and a CLR transformation, and finally merges clinical data

Usage

```r
tidy_micro(
  otu_tabs,
  tab_names,
  clinical,
  prev_cutoff = 0,
  ra_cutoff = 0,
  exclude_taxa = NULL,
  library_name = "Lib",
  complete_clinical = T,
  filter_summary = T
)
```

Arguments

- **otu_tabs**: A single table or list of metagenomic sequencing data. Tables should have a first column of OTU Names and following columns of OTU counts. Column names should be sequencing library names.
- **tab_names**: names for `otu_tabs`. These will become the "Tables" column. It is also an option to simply name the OTU tables in the list supplied to `otu_tabs`.
- **clinical**: Sequencing level clinical data. Must have a column with unique names for library (sequencing ID).
- **prev_cutoff**: A prevalence cutoff where *X* percent of libraries must have this taxa or it will be included in the "Other" category.
- **ra_cutoff**: A relative abundance (RA) cutoff where at least one library must have a RA above the cutoff or the taxa will be included in the "Other" category.
- **exclude_taxa**: A character vector used to specify any taxa that you would like to included in the "Other" category. Taxa specified will be included in "Other" for every OTU table provided.
- **library_name**: The column name containing sequencing library names. Should match with column names of supplied OTU tables (after first column).
- **complete_clinical**: Logical; only include columns from OTU tables who’s library name is in clinical data.
- **filter_summary**: Logical; print out summaries of filtering steps.
Details

Column names of the OTU tables must be the same for each table, and these should be the library names inside of your clinical. Please see the vignette for a detailed description.

The CLR transformation adds \((1 / \text{sequencing depth})\) to each OTU count for each library before centering and log transforming in order to avoid issues with 0 counts.

The list of OTU tables are split, manipulated, and stacked into a data frame using the \texttt{ldply} function from the \texttt{plyr} package. Names of OTU tables supplied will be the name of their "Table" in the final \texttt{tidy_micro} set.

Value

A data.frame in the \texttt{tidy_micro} format

Author(s)

Charlie Carpenter

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

Multiple OTU tables with named list
otu_tabs <- list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin)

Multiple OTU tables with unnamed list
unnamed_tabs <- list(phy,cla,ord,fam)
set <- tidy_micro(otu_tabs = unnamed_tabs, tab_names = c("Phylum", "Class", "Order", "Family"), clinical = clin)

Single OTU table
set <- tidy_micro(otu_tabs = cla, tab_names = "Class", clinical = clin)

Filtering out low abundance or uninteresting taxa right away
WARNING: Only do this if you do not want to calculate alpha diversities with this micro_set

filter_set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin,
 prev_cutoff = 5, ## 5% of libraries must have this bug, or it is filtered
 ra_cutoff = 1, ## At least 1 libraries must have RA of 1, or it is filtered
 exclude_taxa = c("Unclassified", "Bacteria") ## Unclassified taxa we don't want
)
<table>
<thead>
<tr>
<th>Topic</th>
<th>datasets</th>
</tr>
</thead>
<tbody>
<tr>
<td>cla, 9</td>
<td></td>
</tr>
<tr>
<td>clin, 10</td>
<td></td>
</tr>
<tr>
<td>fam, 14</td>
<td></td>
</tr>
<tr>
<td>ord, 28</td>
<td></td>
</tr>
<tr>
<td>phy, 31</td>
<td></td>
</tr>
<tr>
<td>adonis, 21</td>
<td></td>
</tr>
<tr>
<td>adonis2, 21</td>
<td></td>
</tr>
<tr>
<td>alpha_div, 2</td>
<td></td>
</tr>
<tr>
<td>Anova, 26, 27</td>
<td></td>
</tr>
<tr>
<td>anova.vglm, 6, 7</td>
<td></td>
</tr>
<tr>
<td>bb_bars, 4</td>
<td></td>
</tr>
<tr>
<td>bb_mods, 5, 22</td>
<td></td>
</tr>
<tr>
<td>beta_div, 7</td>
<td></td>
</tr>
<tr>
<td>beta_heatmap, 8</td>
<td></td>
</tr>
<tr>
<td>betabinomial, 7</td>
<td></td>
</tr>
<tr>
<td>cla, 9</td>
<td></td>
</tr>
<tr>
<td>clin, 10</td>
<td></td>
</tr>
<tr>
<td>confintvglm, 6</td>
<td></td>
</tr>
<tr>
<td>cor, 11–13</td>
<td></td>
</tr>
<tr>
<td>cor_heatmap, 11</td>
<td></td>
</tr>
<tr>
<td>cor_rocky_mtn, 12</td>
<td></td>
</tr>
<tr>
<td>fam, 14</td>
<td></td>
</tr>
<tr>
<td>glm.nb, 26, 27</td>
<td></td>
</tr>
<tr>
<td>glmer.nb, 26, 27</td>
<td></td>
</tr>
<tr>
<td>kruskal.test, 22</td>
<td></td>
</tr>
<tr>
<td>ldply, 38</td>
<td></td>
</tr>
<tr>
<td>lm, 14</td>
<td></td>
</tr>
<tr>
<td>micro_alpha_reg, 14</td>
<td></td>
</tr>
<tr>
<td>micro_chisq, 15</td>
<td></td>
</tr>
<tr>
<td>micro_forest, 16</td>
<td></td>
</tr>
<tr>
<td>micro_heatmap, 17</td>
<td></td>
</tr>
<tr>
<td>micro_pca, 19</td>
<td></td>
</tr>
<tr>
<td>micro_PERMANOVA, 21</td>
<td></td>
</tr>
<tr>
<td>micro_rank_sum, 22</td>
<td></td>
</tr>
<tr>
<td>micro_rocky_mtn, 23</td>
<td></td>
</tr>
<tr>
<td>nb_bars, 24</td>
<td></td>
</tr>
<tr>
<td>nb_mods, 22, 26</td>
<td></td>
</tr>
<tr>
<td>ord, 28</td>
<td></td>
</tr>
<tr>
<td>otu_filter, 28</td>
<td></td>
</tr>
<tr>
<td>p.adjust, 7, 27</td>
<td></td>
</tr>
<tr>
<td>pca_3d, 29</td>
<td></td>
</tr>
<tr>
<td>phy, 31</td>
<td></td>
</tr>
<tr>
<td>prcomp, 19, 20</td>
<td></td>
</tr>
<tr>
<td>ra_bars, 32</td>
<td></td>
</tr>
<tr>
<td>scatterplot3d, 30</td>
<td></td>
</tr>
<tr>
<td>stats, 19</td>
<td></td>
</tr>
<tr>
<td>taxa_boxplot, 33</td>
<td></td>
</tr>
<tr>
<td>taxa_summary, 34</td>
<td></td>
</tr>
<tr>
<td>three_mode, 35</td>
<td></td>
</tr>
<tr>
<td>tidy_micro, 37</td>
<td></td>
</tr>
<tr>
<td>vegdist, 8, 21, 30, 31</td>
<td></td>
</tr>
<tr>
<td>vglm, 5–7</td>
<td></td>
</tr>
<tr>
<td>vignette, 38</td>
<td></td>
</tr>
<tr>
<td>wilcox.test, 22</td>
<td></td>
</tr>
</tbody>
</table>