Package ‘tidygam’

May 9, 2023

Type Package
Title Tidy Prediction and Plotting of Generalised Additive Models
Version 0.2.0
Date 2023-05-08
Description Provides functions that compute predictions from Generalised Additive Models (GAMs) fitted with 'mgcv' and return them as a tibble. These can be plotted with a generic plot()-method that uses 'ggplot2' or plotted as any other data frame. The main function is predict_gam().
License MIT + file LICENSE
URL https://github.com/stefanocoretta/tidygam,
 https://stefanocoretta.github.io/tidygam/
BugReports https://github.com/stefanocoretta/tidygam/issues
Encoding UTF-8
LazyData true
Imports cli, dplyr, ggplot2, glue, insight, magrittr, mgcv, rlang,
 stringr, tibble, tidy, tidyselect
Suggests knitr, rmarkdown
VignetteBuilder knitr
Language en_GB
RoxygenNote 7.2.0
Depends R (>= 2.10)
NeedsCompilation no
Author Stefano Coretta [aut, cre]
Maintainer Stefano Coretta <stefano.coretta@gmail.com>
Repository CRAN
Date/Publication 2023-05-09 08:50:02 UTC
R topics documented:

- gest
- get_difference
- plot.tidygam
- plot.tidygam.diff
- predict_gam
- struct

Index

| gest | Number of gestures by infants at 10, 11 and 12 months |

Description

This data table contains counts of three type of gestures performed by 60 infants from Bengali, Chinese and British backgrounds.

Usage

`gest`

Format

A tibble with 540 observations and 5 variables:

- **dyad** Unique parent/infant dyad ID.
- **background** Cultural background of dyad.
- **months** Time point in infant months.
- **gesture** Type of gesture.
- **count** Number of gestures.

Source

doi:10.1111/cdev.13406
get_difference

Get difference between two smooths

Description

Get difference between two smooths

Usage

```r
get_difference(
  model,
  series,
  compare,
  values = NULL,
  exclude_terms = NULL,
  length_out = 25,
  ci_z = 1.96
)
```

Arguments

- **model**: A `gam` or `bam` model object.
- **series**: A string specifying the variable that corresponds to the series to be plotted on the x-axis. If a string is given, the other numeric variables in the model are set to their mean value, unless specific values are given in `values`. If a character vector of two strings is given, the two variables will be taken as the elements of a tensor product smooth. This allows the user to plot 2D raster plots.
- **compare**: A named list of factor levels to compare.
- **values**: User supplied values for specific variables as a named list.
- **exclude_terms**: Terms to be excluded from the prediction. Term names should be given as they appear in the model summary (for example, "s(x0, x1)").
- **length_out**: An integer indicating how many values to use along the numeric variables for predicting the response (the default is 10).
- **ci_z**: The z-value for calculating the CIs (the default is 1.96 for 95 percent CI).

Value

A tibble with the difference smooth.

Examples

```r
library(mgcv)
set.seed(10)
data <- gamSim(4)
model <- gam(y ~ s(x2, by = fac) + s(x0), data = data)

get_difference(model, "x2", list(fac = c("1", "2")))
```
plot.tidygam

Plot methods for tidygam objects

Description

Plotting methods for tidygam objects.

Usage

S3 method for class 'tidygam'
plot(x, series = NULL, comparison = NULL, raster_interp = FALSE, ...)

Arguments

x
A tidygam object (see predict_gam()).

series
A string specifying the variable that corresponds to the series to be plotted on
the x-axis. If a string is given, the other numeric variables in the model are
set to their mean value, unless specific values are given in values. If a character
vector of two strings is given, the two variables will be taken as the elements of
a tensor product smooth. This allows the user to plot 2D raster plots.

comparison
Name of a categorical predictor to compare as a string.

raster_interp
Whether to linearly interpolate when plotting a tensor product smooth/interaction.
It makes sense only when series has two variables. The default is FALSE.

...
Arguments passed to plot().

Value

A ggplot object.

Examples

library(mgcv)
set.seed(10)
sim_data <- gamSim(4)
model_1 <- gam(y ~ s(x2, by = fac) + s(x0), data = sim_data)
preds_1 <- predict_gam(model_1, length_out = 50, exclude_terms = "s(x0)"
plot(preds_1, "x2")
preds_2 <- predict_gam(model_1, length_out = 100, values = list(x0 = 0))
plot(preds_2, "x2", "fac")
library(ggplot2)
plot(preds_2, "x2", "fac") +
scale_fill_brewer(type = "qual") +
scale_color_brewer(type = "qual")
Plotting tensor product smooths/interactions
model_2 <- gam(y ~ te(x0, x2, by = fac), data = sim_data)
preds_3 <- predict_gam(model_2)
preds_3 %>% plot(series = c("x0", "x2"), comparison = "fac")

plot.tidygam.diff

S3 method for class 'tidygam.diff'
plot(x, ..., sig = TRUE, sig_col = "red", sig_alpha = 0.25)

Arguments

x
A tidygam.diff object (see get_difference()).

...
Arguments passed to plot().

sig
Shade the interval(s) where the difference smooth does not include 0 (default is TRUE).

sig_col
Colour for the shading (default is "red").

sig_alpha
Alpha level for the shading (default is 0.25)

Value

A ggplot object.

Examples

library(mgcv)
set.seed(10)
data <- gamSim(4)
model <- gam(y ~ s(x2, by = fac) + s(x0), data = data)

model_diff <- get_difference(model, "x2", list(fac = c("1", "2")))
plot(model_diff)
predict_gam

Get predictions from a GAM model

Description

Return predictions from a GAM model generated with mgcv. The output can be plotted with plot().

Usage

```r
predict_gam(
  model,
  length_out = 10,
  values = NULL,
  series = NULL,
  exclude_terms = NULL,
  ci_z = 1.96,
  tran_fun = NULL,
  separate = NULL,
  sep_by = "\.
)
```

Arguments

- **model**
 A gam or bam model object.
- **length_out**
 An integer indicating how many values to use along the numeric variables for predicting the response (the default is 10).
- **values**
 User supplied values for specific variables as a named list.
- **series**
 A string specifying the variable that corresponds to the series to be plotted on the x-axis. If a string is given, the other numeric variables in the model are set to their mean value, unless specific values are given in values. If a character vector of two strings is given, the two variables will be taken as the elements of a tensor product smooth. This allows the user to plot 2D raster plots.
- **exclude_terms**
 Terms to be excluded from the prediction. Term names should be given as they appear in the model summary (for example, "s(x0, x1)").
- **ci_z**
 The z-value for calculating the CIs (the default is 1.96 for 95 percent CI).
- **tran_fun**
 Function to use for transforming the predicted values and CIs.
- **separate**
 Names list of factor interaction variables to be separated.
- **sep_by**
 Character to separate by (the default is \\.).

Value

A tibble with predictions.
Examples

```r
library(mgcv)
set.seed(10)

sim_data_1 <- gamSim(1, n = 200, scale = 2)
model <- gam(y ~ x0 + s(I(x1^2)) + s(x2) + offset(x3), data = sim_data_1)
predict_gam(model)
predict_gam(model, values = list(x0 = mean(sim_data_1$x0)))
predict_gam(model, series = "x2")
predict_gam(model, exclude_terms = "s(I(x1^2))")

# By-variables
sim_data_2 <- gamSim(4)
model_2 <- gam(y ~ s(x2, by = fac) + s(x0), data = sim_data_2)
predict_gam(model_2)

# Poisson data
sim_data_3 <- sim_data_2
sim_data_3$y <- round(sim_data_2$y) + 20
model_3 <- gam(y ~ s(x2, by = fac), data = sim_data_3, family = poisson)
predict_gam(model_3, length_out = 50)
predict_gam(model_3, length_out = 50, tran_fun = exp)

# Bivariate smooths
model_4 <- gam(y ~ te(x1, x2), data = sim_data_1)
predict_gam(model_4)
```

struct

ERP to structural violation in music and language

Description

This data table contains ERP amplitude data from 39 subjects listening to speech and music.

Usage

`struct`

Format

A tibble with 17160 observations and 6 variables:

- `t` Time from stimulus onset in milliseconds.
- `electrode` Electrode number.
- `voltage` Electrode voltage at time t.
- `stimulus.condition` Language vs music.
- `grammar.condition` Structural type (grammatical vs ungrammatical).
Source

doi:10.31234/osf.io/e9w3v
Index

* datasets
 gest, 2
 struct, 7

 gest, 2
 get_difference, 3
 get_difference(), 5

 plot.tidygam, 4
 plot.tidygam.diff, 5
 predict_gam, 6
 predict_gam(), 4

 struct, 7