Package ‘tidygate’

July 12, 2024

Type Package
Title Interactively Gate Points
Version 1.0.13
Maintainer Stefano Mangiola <mangiolastefano@gmail.com>
Description Interactively gate points on a scatter plot. Interactively drawn gates are recorded and can be applied programmatically to reproduce results exactly. Programmatic gating is based on the package gatepoints by Wajid Jawaid (who is also an author of this package).
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.1
Depends R (>= 3.6.0)
Imports utils, graphics, lifecycle, scales, magrittr, tibble, dplyr, purrr, rlang, tidyr, viridis, grDevices, RColorBrewer, stringr, shiny, plotly, ggplot2
RdMacros lifecycle
Suggests testthat, markdown, knitr, readr
VignetteBuilder knitr
Biarch true
biocViews AssayDomain, Infrastructure
URL https://github.com/stemangiola/tidygate
BugReports https://github.com/stemangiola/tidygate/issues
NeedsCompilation no
Author Stefano Mangiola [aut, cre], Wajid Jawaid [ctb], William Hutchison [aut] (<https://orcid.org/0009-0001-6242-4268>)
Repository CRAN
Date/Publication 2024-07-12 13:30:01 UTC
Contents

demo_gate_data ... 2
fhs ... 2
gate .. 3
gate_chr .. 4
gate_chr.numeric ... 6
gate_int.numeric ... 7
gate_interactive ... 8
gate_programmatic .. 9
server ... 10
ui ... 10

Index 11

demo_gate_data

Description
Demo gate data

Usage
demo_gate_data

Format
An object of class tbl_df (inherits from tbl, data.frame) with 26 rows and 3 columns.

fhs Freehand select

Description
Freehand select

Usage
fhs(data, mark = TRUE, names = TRUE, ...)

Arguments
data Data frame or matrix of co-ordinates. (x,y) co-ordinates for each point will be on rows. Rownames of selected points will be returned.
mark Default TRUE. Predicate marking of selected points.
names Default TRUE. If TRUE will return rownames of data frame with points within polygon. If FALSE will return logical vector.
... Additional parameters passed to points.
Details

Freehand select function. First generate a 2D plot using R’s plot function, then select gate region by left clicking. Close polygon by right clicking. The function will return the rownames of the enclosed points by the rownames of th co-ordinates given in data.

Value

Returns character vector of rownames of the selected points from data if names parameter is TRUE. If names is FALSE then a logical vector indicating whether points are in the polygon is returned.

Author(s)

Wajid Jawaid

Examples

```
if(interactive()) {
  x <- cbind(1:10, 1:10)
  rownames(x) <- 1:10
  plot(x, pch = 16, col = "red")
  fhs(x)
}
```

gate

Gate points

Description

Gate points based on their X and Y coordinates. By default, this function launches an interactive scatter plot. Colour, shape, size and alpha can be defined as constant values, or can be controlled by the values of a specified column.

If previously drawn gates are supplied to the `programmatic_gates` argument, points will be gated programmatically. This feature allows the reproduction of previously drawn interactive gates. Programmatic gating is based on the package gatepoints by Wajid Jawaid.

Usage

```
gate(
  x,
  y,
  colour = NULL,
  shape = NULL,
  alpha = 1,
  size = 2,
  programmatic_gates = NULL
)
```
Arguments

x A vector representing the X dimension.
y A vector representing the Y dimension.
colour A single colour code string compatible with ggplot2. Or, a vector representing the point colour.
shape A single ggplot2 shape numeric ranging from 0 to 127. Or, a vector representing the point shape, coercible to a factor of 6 or less levels.
alpha A single ggplot2 alpha numeric ranging from 0 to 1. Or, a vector representing the point alpha, either a numeric or factor of 6 or less levels.
size A single ggplot2 size numeric ranging from 0 to 20. Or, a vector representing the point size, either a numeric or factor of 6 or less levels.
programmatic_gates
 A `data.frame` of the gate brush data, as saved in `tidygate_env$gates`. The column ‘x’ records X coordinates, the column ‘y’ records Y coordinates and the column ‘.gate’ records the gate number. When this argument is supplied, gates will be drawn programmatically.

Value

A vector of strings, of the gates each X and Y coordinate pair is within. If gates are drawn interactively, they are temporarily saved to `tidygate_env$gates`.

Examples

```r
library(dplyr)
data("demo_gate_data", package = "tidygate")

# Gate points interactively
if(interactive()) {
  mtcars |> 
    mutate(gated = gate(x = mpg, y = wt, shape = am))
}

# Gate points programmatically
mtcars |> 
    mutate(gated = gate(x = mpg, y = wt, programmatic_gates = demo_gate_data))
```

gate_chr

Label points within a scatter plot drawing a gate

Description

gate() takes as input a ‘tbl’ formatted as | <DIMENSION 1> | <DIMENSION 2> | <...> | and calculates the rotated dimensional space of the feature value.
gate_chr

Usage

```r
gate_chr(
  .dim1,
  .dim2,
  .color = NULL,
  .shape = NULL,
  .size = NULL,
  opacity = 1,
  how_many_gates = 1,
  .group_by = NULL,
  gate_list = NULL,
  ...
)
```

```r
gate_int(
  .dim1,
  .dim2,
  .color = NULL,
  .shape = NULL,
  .size = NULL,
  opacity = 1,
  how_many_gates = 1,
  .group_by = NULL,
  gate_list = NULL,
  ...
)
```

Arguments

- `.dim1` A column symbol. The x dimension
- `.dim2` A column symbol. The y dimension
- `.color` A column symbol. Colour of points
- `.shape` A column symbol. Shape of points
- `.size` A column symbol. Size of points
- `.opacity` A number between 0 and 1. The opacity level of the data points
- `.how_many_gates` An integer. The number of gates to label
- `.group_by` A column symbol. The column that is used to calculate distance (i.e., normally genes)
- `.gate_list` A list of gates. It is returned by gate function as attribute `\gate\`. If you want to create this list yourself, each element of the list is a data frame with x and y columns. Each row is a coordinate. The order matter.
- `...` Further parameters passed to the function gatepoints::fhs

Details

[Maturing]
This function allows the user to label data points inside one or more 2D gates. This package is based on the package gatepoints.

Value

An character vector, with "0" for elements outside gates and "1..N" for the elements inside the N gates.

An integer vector, with 0 for elements outside gates and 1..N for the elements inside the N gates.

Examples

```r
# Standard use - interactive
if(interactive()){

tidygate::tidygate_data %>%
distinct('ct 1', 'ct 2', Dim1, Dim2) %>%
mutate(gate = gate_chr(Dim1, Dim2))
}

library(magrittr)
library(dplyr)

# Standard use - programmatic
res_distinct = tidygate::tidygate_data %>%
distinct('ct 1', 'ct 2', Dim1, Dim2) %>%
mutate(gate = gate_chr(Dim1, Dim2,gate_list = tidygate::gate_list))

# Grouping - programmatic
res = tidygate::tidygate_data %>%
mutate(gate = gate_chr(Dim1, Dim2,
.group_by = c('ct 1', 'ct 2'),
.gate_list = tidygate::gate_list))
```

<table>
<thead>
<tr>
<th>gate_chr.numeric</th>
<th>gate_chr</th>
</tr>
</thead>
</table>

Description

gate_chr
Usage

```r
## S3 method for class 'numeric'
gate_chr(
  .dim1,
  .dim2,
  .color = NULL,
  .shape = NULL,
  .size = NULL,
  opacity = 1,
  how_many_gates = 1,
  .group_by = NULL,
  gate_list = NULL,
  ...
)
```

Arguments

- `.dim1`: A column symbol. The x dimension
- `.dim2`: A column symbol. The y dimension
- `.color`: A column symbol. Colour of points
- `.shape`: A column symbol. Shape of points
- `.size`: A column symbol. Size of points
- `opacity`: A number between 0 and 1. The opacity level of the data points
- `how_many_gates`: An integer. The number of gates to label
- `.group_by`: A column symbol. The column that is used to calculate distance (i.e., normally genes)
- `gate_list`: A list of gates. It is returned by gate function as attribute "gate". If you want to create this list yourself, each element of the list is a data frame with x and y columns. Each row is a coordinate. The order matter.
- `...`: Further parameters passed to the function gatepoints::fhs

Value

An character vector, with "0" for elements outside gates and "1..N" for the elements inside the N gates.

gate_int.numeric gate_int

Description

gate_int
Usage

S3 method for class 'numeric'
gate_int(
 .dim1,
 .dim2,
 .color = NULL,
 .shape = NULL,
 .size = NULL,
 opacity = 1,
 how_many_gates = 1,
 .group_by = NULL,
 gate_list = NULL,
 ...
)

Arguments

- **.dim1**: A column symbol. The x dimension
- **.dim2**: A column symbol. The y dimension
- **.color**: A column symbol. Colour of points
- **.shape**: A column symbol. Shape of points
- **.size**: A column symbol. Size of points
- **opacity**: A number between 0 and 1. The opacity level of the data points
- **how_many_gates**: An integer. The number of gates to label
- **.group_by**: A column symbol. The column that is used to calculate distance (i.e., normally genes)
- **gate_list**: A list of gates. It is returned by gate function as attribute \"gate\". If you want to create this list yourself, each element of the list is a data frame with x and y columns. Each row is a coordinate. The order matter.
- **...**: Further parameters passed to the function gatepoints::fhs

Value

An integer vector, with 0 for elements outside gates and 1..N for the elements inside the N gates.

gate_interactive
Interactively gate data with a simple scatter plot

Description

Create an interactive scatter plot based on user-defined X and Y coordinates. Colour, shape, size and alpha can be defined as constant values, or can be controlled by values in a specified column.
gate_programmatic

Usage

gate_interactive(x, y, colour = NULL, shape = NULL, alpha = 1, size = 2)

Arguments

x A vector representing the X dimension.
y A vector representing the Y dimension.
colour A single colour code string compatible with ggplot2. Or, a vector representing
the point colour.
shape A single ggplot2 shape numeric ranging from 0 to 127. Or, a vector representing
the point shape, coercible to a factor of 6 or less levels.
alpha A single ggplot2 alpha numeric ranging from 0 to 1. Or, a vector representing
the point alpha, either a numeric or factor of 6 or less levels.
size A single ggplot2 size numeric ranging from 0 to 20. Or, a vector representing
the point size, either a numeric or factor of 6 or less levels.

Value

A vector of strings, of the gates each X and Y coordinate pair is within. If gates are drawn interac-
tively, they are temporarily saved to ‘tidygate_env$gates’

gate_programmatic Programmatically gate data with pre-recorded lasso selection coordi-
nates

Description

A helpful way to repeat previous interactive lasso selections to enable reproducibility. Program-
matic gating is based on the package [gatepoints](https://github.com/wjawaid/gatepoints) by Wajid
Jawaid.

Usage

gate_programmatic(x, y, programmatic_gates)

Arguments

x A vector representing the X dimension.
y A vector representing the Y dimension.
programmatic_gates A ‘data.frame’ of the gate brush data, as saved in ‘tidygate_env$gates’. The
column ‘x’ records X coordinates, the column ‘y’ records Y coordinates and the
column ‘.gate’ records the gate number.

Value

A vector of strings, of the gates each X and Y coordinate pair is within.
server

Run Shiny App for interactive gating

Description

Run Shiny App for interactive gating

Usage

`server(input, output, session)`

Arguments

- `input`: Server input parameter
- `output`: Server output parameter
- `session`: Server session parameter

Value

NA

ui

Create Shiny App UI

Description

Create Shiny App UI

Usage

`ui`

Format

An object of class `shiny.tag.list` (inherits from `list`) of length 4.

Value

Fluid UI container
Index

* datasets
 ui, 10
* data
 demo_gate_data, 2

demo_gate_data, 2

fhs, 2

gate, 3
gate_chr, 4
gate_chr.numeric, 6
gate_int (gate_chr), 4
gate_int.numeric, 7
gate_interactive, 8
gate_programmatic, 9

points, 2

server, 10

ui, 10