Package ‘tidyr’

May 19, 2020

Title Tidy Messy Data
Version 1.1.0
Description Tools to help to create tidy data, where each column is a
variable, each row is an observation, and each cell contains a single value.
‘tidyr’ contains tools for changing the shape (pivoting) and hierarchy
(nesting and ‘unnesting’) of a dataset, turning deeply nested lists
into rectangular data frames (‘rectangling’), and extracting values out
of string columns. It also includes tools for working with missing values
(both implicit and explicit).
License MIT + file LICENSE
https://github.com/tidyverse/tidyr
BugReports https://github.com/tidyverse/tidyr/issues
Depends R (>= 3.1)
Imports dplyr (>= 0.8.2),
ellipsis (>= 0.1.0),
glue,
magrittr,
purrr,
Rcpp,
rlang,
stringi,
tibble (>= 2.1.1),
tidyselect (>= 1.1.0),
utils,
vctrs (>= 0.3.0),
lifecycle
Suggests covr,
jsonlite,
knitr,
repurrrsive (>= 1.0.0),
rmarkdown,
readr,
testthat (>= 2.1.0)
LinkingTo Rcpp
VignetteBuilder knitr
Song rankings for billboard top 100 in the year 2000

Description

Song rankings for billboard top 100 in the year 2000

Usage

`billboard`
chop

Format

A dataset with variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>artist</td>
<td>Artist name</td>
</tr>
<tr>
<td>track</td>
<td>Song name,</td>
</tr>
<tr>
<td>date.enter</td>
<td>Date the song entered the top 100</td>
</tr>
<tr>
<td>wk1 – wk76</td>
<td>Rank of the song in each week after it entered</td>
</tr>
</tbody>
</table>

Source

The "Whitburn" project, https://waxy.org/2008/05/the_whitburn_project/, (downloaded April 2008)

chop

Chop and unchop

Description

Maturing

Chopping and unchopping preserve the width of a data frame, changing its length. chop() makes df shorter by converting rows within each group into list-columns. unchop() makes df longer by expanding list-columns so that each element of the list-column gets its own row in the output. chop() and unchop() are building blocks for more complicated functions (like unnest(), unnest_longer(), and unnest_wider()) and are generally more suitable for programming than interactive data analysis.

Usage

chop(data, cols)

unchop(data, cols, keep_empty = FALSE, ptype = NULL)

Arguments

data A data frame.
cols <tidy-select> Columns to chop or unchop (automatically quoted).
 For unchop(), each column should be a list-column containing generalised vectors (e.g. any mix of NULLs, atomic vector, S3 vectors, a lists, or data frames).
keep_empty By default, you get one row of output for each element of the list your unchopping/unnesting. This means that if there’s a size-0 element (like NULL or an empty data frame), that entire row will be dropped from the output. If you want to preserve all rows, use keep_empty = TRUE to replace size-0 elements with a single row of missing values.
ptype Optionally, supply a data frame prototype for the output cols, overriding the default that will be guessed from the combination of individual values.
Details

Generally, unchopping is more useful than chopping because it simplifies a complex data structure, and nest()ing is usually more appropriate than chop()ing` since it better preserves the connections between observations.

chop() creates list-columns of class `vctrs::list_of()` to ensure consistent behaviour when the chopped data frame is emptied. For instance this helps getting back the original column types after the roundtrip chop and unchop. Because <list_of> keeps tracks of the type of its elements, unchop() is able to reconstitute the correct vector type even for empty list-columns.

Examples

```
# Chop
-----------------------------------------------
df <- tibble(x = c(1, 1, 2, 3), y = 1:6, z = 6:1)
# Note that we get one row of output for each unique combination of
# non-chopped variables
df %>% chop(c(y, z))
# cf nest
df %>% nest(data = c(y, z))

# Unchop
-----------------------------------------------
df <- tibble(x = 1:4, y = list(integer(), 1L, 1:2, 1:3))
df %>% unchop(y)
df %>% unchop(y, keep_empty = TRUE)

# Incompatible types -----------------------------------------------
# If the list-col contains types that can not be natively
try(df %>% unchop(y))

# Unchopping data frames -----------------------------------------------
# Unchopping a list-col of data frames must generate a df-col because
# unchop leaves the column names unchanged
df <- tibble(x = 1:3, y = list(NULL, tibble(x = 1), tibble(y = 1:2)))
df %>% unchop(y)
df %>% unchop(y, keep_empty = TRUE)
```

complete

Complete a data frame with missing combinations of data

Description

Turns implicit missing values into explicit missing values. This is a wrapper around `expand()`, `dplyr::left_join()` and `replace_na()` that’s useful for completing missing combinations of data.

Usage

```
complete(data, ..., fill = list())
```
Arguments

- **data**
 A data frame.

- **...**
 Specification of columns to expand. Columns can be atomic vectors or lists.

 - To find all unique combinations of \(x, y, z\), including those not present in the data, supply each variable as a separate argument: `expand(df, x, y, z)`.
 - To find only the combinations that occur in the data, use nesting: `expand(df, nesting(x, y, z))`.
 - You can combine the two forms. For example, `expand(df, nesting(school_id, student_id))`, would produce a row for each present school-student combination for all possible dates.

When used with factors, `expand()` uses the full set of levels, not just those that appear in the data. If you want to use only the values seen in the data, use `forcats::fct_drop()`.

When used with continuous variables, you may need to fill in values that do not appear in the data: to do so use expressions like `year = 2010:2020` or `year = \link{full_seq}(year,1)`.

- **fill**
 A named list that for each variable supplies a single value to use instead of `NA` for missing combinations.

Details

If you supply `fill`, these values will also replace existing explicit missing values in the data set.

Examples

```r
library(dplyr, warn.conflicts = FALSE)
df <- tibble(
  group = c(1:2, 1),
  item_id = c(1:2, 2),
  item_name = c("a", "b", "b"),
  value1 = 1:3,
  value2 = 4:6
)
df %>% complete(group, nesting(item_id, item_name))
```

You can also choose to fill in missing values
```r
df %>% complete(group, nesting(item_id, item_name), fill = list(value1 = 0))
```

construction

Completed construction in the US in 2018

Description

Completed construction in the US in 2018

Usage

`construction`
Format

A dataset with variables:

Year,Month Record date
1 unit, 2 to 4 units, 5 units or more Number of completed units of each size
Northeast, Midwest, South, West Number of completed units in each region

Source

Completions of "New Residential Construction" found in Table 5 at https://www.census.gov/construction/nrc/xls/newresconst.xls (downloaded March 2019)

drop_na

Drop rows containing missing values

Description

Drop rows containing missing values

Usage

```
drop_na(data, ...)
```

Arguments

- `data`
A data frame.
- `...`

<tidy-select> Columns to inspect for missing values.

Examples

```
library(dplyr)
df <- tibble(x = c(1, 2, NA), y = c("a", NA, "b"))
df %>% drop_na()
df %>% drop_na(x)

vars <- "y"
df %>% drop_na(x, any_of(vars))
```
Description

`expand()` generates all combination of variables found in a dataset. It is paired with `nesting()` and `crossing()` helpers. `crossing()` is a wrapper around `expand_grid()` that de-duplicates and sorts its inputs; `nesting()` is a helper that only finds combinations already present in the data.

`expand()` is often useful in conjunction with joins:
- use it with `right_join()` to convert implicit missing values to explicit missing values (e.g., fill in gaps in your data frame).
- use it with `anti_join()` to figure out which combinations are missing (e.g., identify gaps in your data frame).

Usage

```r
expand(data, ..., .name_repair = "check_unique")
crossing(..., .name_repair = "check_unique")
nesting(..., .name_repair = "check_unique")
```

Arguments

- **data**
 - A data frame.
 - Specification of columns to expand. Columns can be atomic vectors or lists.
 - To find all unique combinations of x, y and z, including those not present in the data, supply each variable as a separate argument: `expand(df,x,y,z)`.
 - To find only the combinations that occur in the data, use `nesting`: `expand(df,nesting(x,y,z))`.
 - You can combine the two forms. For example, `expand(df,nesting(school_id,student_id),date)` would produce a row for each present school-student combination for all possible dates.

When used with factors, `expand()` uses the full set of levels, not just those that appear in the data. If you want to use only the values seen in the data, use `forcats::fct_drop()`.

When used with continuous variables, you may need to fill in values that do not appear in the data: to do so use expressions like `year = 2010:2020` or `year = \link{full_seq}(year,1)`.

- **.name_repair**
 - Treatment of problematic column names:
 - "minimal": No name repair or checks, beyond basic existence,
 - "unique": Make sure names are unique and not empty,
 - "check_unique": (default value), no name repair, but check they are unique,
 - "universal": Make the names unique and syntactic
 - a function: apply custom name repair (e.g., `.name_repair = make.names` for names in the style of base R).
 - A purrr-style anonymous function, see `rlang::as_function()`

This argument is passed on as repair to `vctrs::vec_as_names()`. See there for more details on these terms and the strategies used to enforce them.
See Also

complete() to expand list objects. expand_grid() to input vectors rather than a data frame.

Examples

fruits <- tibble(
 type = c("apple", "orange", "apple", "orange", "orange", "orange"),
 size = factor(
 levels = c("XS", "S", "M", "L")
),
 weights = rnorm(6, as.numeric(size) + 2)
)

All possible combinations -------------------------------
Note that all defined, but not necessarily present, levels of the
factor variable `size` are retained.
fruits %>% expand(type)
fruits %>% expand(type, size)
fruits %>% expand(type, size, year)

Only combinations that already appear in the data ----------
fruits %>% expand(nesting(type))
fruits %>% expand(nesting(type, size))
fruits %>% expand(nesting(type, size, year))

Other uses --
Use with `full_seq()` to fill in values of continuous variables
fruits %>% expand(type, size, full_seq(year, 1))
fruits %>% expand(type, size, 2010:2012)

Use `anti_join()` to determine which observations are missing
all <- fruits %>% expand(type, size, year)
all
all %>% dplyr::anti_join(fruits)

Use with `right_join()` to fill in missing rows
fruits %>% dplyr::right_join(all)

expand_grid

Create a tibble from all combinations of inputs

Description

Create a tibble from all combinations of inputs

Usage

expand_grid(..., .name_repair = "check_unique")
Arguments

... Name-value pairs. The name will become the column name in the output.
.name_repair Treatment of problematic column names:
 • "minimal": No name repair or checks, beyond basic existence,
 • "unique": Make sure names are unique and not empty,
 • "check_unique": (default value), no name repair, but check they are unique,
 • "universal": Make the names unique and syntactic
 • a function: apply custom name repair (e.g., .name_repair = make.names for names in the style of base R).
 • A purrr-style anonymous function, see rlang::as_function()
This argument is passed on as repair to vctrs::vec_as_names(). See there for more details on these terms and the strategies used to enforce them.

Value

A tibble with one column for each input in The output will have one row for each combination of the inputs, i.e. the size be equal to the product of the sizes of the inputs. This implies that if any input has length 0, the output will have zero rows.

Compared to expand.grid

• Varies the first element fastest.
• Never converts strings to factors.
• Does not add any additional attributes.
• Returns a tibble, not a data frame.
• Can expand any generalised vector, including data frames.

Examples

expand_grid(x = 1:3, y = 1:2)
expand_grid(l1 = letters, l2 = LETTERS)

Can also expand data frames
expand_grid(df = data.frame(x = 1:2, y = c(2, 1)), z = 1:3)
And matrices
expand_grid(x1 = matrix(1:4, nrow = 2), x2 = matrix(5:8, nrow = 2))

extract Extract a character column into multiple columns using regular expression groups

Description

Given a regular expression with capturing groups, extract() turns each group into a new column. If the groups don’t match, or the input is NA, the output will be NA.
Usage

extract(
data,
col,
into,
regex = "([[:alnum:]])+",
remove = TRUE,
convert = FALSE,
...
)

Arguments

data A data frame.

col Column name or position. This is passed to tidyselect::vars_pull().

This argument is passed by expression and supports quasiquotation (you can unquote column names or column positions).

into Names of new variables to create as character vector. Use NA to omit the variable in the output.

regex a regular expression used to extract the desired values. There should be one group (defined by ()) for each element of into.

remove If TRUE, remove input column from output data frame.

convert If TRUE, will run type.convert() with as.is = TRUE on new columns. This is useful if the component columns are integer, numeric or logical.

NB: this will cause string "NA"s to be converted to NAs.

... Additional arguments passed on to methods.

See Also

separate() to split up by a separator.

Examples

df <- data.frame(x = c(NA, "a-b", "a-d", "b-c", "d-e"))
df %>% extract(x, "A")
df %>% extract(x, c("A", "B"), "([[:alnum:]]+)-([[:alnum:]]+)")

If no match, NA:
df %>% extract(x, c("A", "B"), "([a-d]+)-([a-d]+)"")

fill Fill in missing values with previous or next value

Description

Fills missing values in selected columns using the next or previous entry. This is useful in the common output format where values are not repeated, and are only recorded when they change.
Usage

```r
fill(data, ..., .direction = c("down", "up", "downup", "updown"))
```

Arguments

- **data**: A data frame.
- **...**: `<tidy-select>` Columns to fill.
- **.direction**: Direction in which to fill missing values. Currently either "down" (the default), "up", "downup" (i.e. first down and then up) or "updown" (first up and then down).

Details

Missing values are replaced in atomic vectors; NULLs are replaced in lists.

Examples

```r
# Value (year) is recorded only when it changes
sales <- tibble::tribble(  
  quarter, "year", "sales",  
  "Q1", 2000, 66013,  
  "Q2", NA, 69182,  
  "Q3", NA, 53175,  
  "Q4", NA, 21901,  
  "Q1", 2001, 46836,  
  "Q2", NA, 58842,  
  "Q3", NA, 44568,  
  "Q4", NA, 50197,  
  "Q1", 2002, 39113,  
  "Q2", NA, 41668,  
  "Q3", NA, 30144,  
  "Q4", NA, 52897,  
  "Q1", 2004, 32129,  
  "Q2", NA, 67686,  
  "Q3", NA, 31768,  
  "Q4", NA, 49894  
)
```

```r
# `fill()` defaults to replacing missing data from top to bottom
sales %>% fill(year)
```

```r
# Value (pet_type) is missing above
tidy_pets <- tibble::tribble(  
  ~rank, ~pet_type, ~breed,  
  1L, NA, "Boston Terrier",  
  2L, NA, "Retriever (Labrador)",  
  3L, NA, "Retriever (Golden)",  
  4L, NA, "French Bulldogs",  
  5L, NA, "Bulldogs",  
  6L, "Dog", "Beagles",  
  1L, NA, "Persian",  
  2L, NA, "Maine Coon",  
  3L, NA, "Ragdoll",  
  4L, NA, "Exotic",  
  5L, NA, "Siamese",  
)`
Fish encounters

Description
Information about fish swimming down a river: each station represents an autonomous monitor that records if a tagged fish was seen at that location. Fish travel in one direction (migrating downstream). Information about misses is just as important as hits, but is not directly recorded in this form of the data.

Usage
fish_encounters

Format
A dataset with variables:

- fish  Fish identifier
- station  Measurement station
- seen  Was the fish seen? (1 if yes, and true for all rows)
**full_seq**

Create the full sequence of values in a vector

**Description**

This is useful if you want to fill in missing values that should have been observed but weren’t. For example, `full_seq(c(1,2,4,6),1)` will return `1:6`.

**Usage**

```
full_seq(x, period, tol = 1e-06)
```

**Arguments**

- **x**: A numeric vector.
- **period**: Gap between each observation. The existing data will be checked to ensure that it is actually of this periodicity.
- **tol**: Numerical tolerance for checking periodicity.

**Examples**

```
full_seq(c(1, 2, 4, 5, 10), 1)
```

---

**gather**

Gather columns into key-value pairs

**Description**

Retired

Development on `gather()` is complete, and for new code we recommend switching to `pivot_longer()`, which is easier to use, more featureful, and still under active development. `df %>% gather("key","value",x,y,z)` is equivalent to `df %>% pivot_longer(c(x,y,z),names_to = "key",values_to = "value")`

See more details in vignette("pivot").

**Usage**

```
gather(
 data,
 key = "key",
 value = "value",
 ...,
 na.rm = FALSE,
 convert = FALSE,
 factor_key = FALSE
)
```
Arguments

- **data**: A data frame.
- **key, value**: Names of new key and value columns, as strings or symbols. This argument is passed by expression and supports quasiquotation (you can unquote strings and symbols). The name is captured from the expression with `rlang::ensym()` (note that this kind of interface where symbols do not represent actual objects is now discouraged in the tidyverse; we support it here for backward compatibility).
- **...**: A selection of columns. If empty, all variables are selected. You can supply bare variable names, select all variables between `x` and `z` with `x:z`, exclude `y` with `-y`. For more options, see the `dplyr::select()` documentation. See also the section on selection rules below.
- **na.rm**: If `TRUE`, will remove rows from output where the value column is `NA`.
- **convert**: If `TRUE` will automatically run `type.convert()` on the key column. This is useful if the column types are actually numeric, integer, or logical.
- **factor_key**: If `FALSE`, the default, the key values will be stored as a character vector. If `TRUE`, will be stored as a factor, which preserves the original ordering of the columns.

Rules for selection

Arguments for selecting columns are passed to `tidyselect::vars_select()` and are treated specially. Unlike other verbs, selecting functions make a strict distinction between data expressions and context expressions.

- A data expression is either a bare name like `x` or an expression like `x:y` or `c(x,y)`. In a data expression, you can only refer to columns from the data frame.
- Everything else is a context expression in which you can only refer to objects that you have defined with `<-`

For instance, `col1:col3` is a data expression that refers to data columns, while `seq(start, end)` is a context expression that refers to objects from the contexts.

If you need to refer to contextual objects from a data expression, you can use `all_of()` or `any_of()`. These functions are used to select data-variables whose names are stored in an env-variable. For instance, `all_of(a)` selects the variables listed in the character vector `a`. For more details, see the `tidyselect::select_helpers()` documentation.

Examples

```r
library(dplyr)
From https://stackoverflow.com/questions/1181068
stocks <- tibble(
 time = as.Date('2009-01-01') + 0:9,
 X = rnorm(10, 0, 1),
 Y = rnorm(10, 0, 2),
 Z = rnorm(10, 0, 4)
)
gather(stocks, "stock", "price", ~time)
stocks %>% gather("stock", "price", ~time)

get first observation for each Species in iris data -- base R
mini_iris <- iris[c(1, 51, 101),]
```
hoist

# gather Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
gather(mini_iris, key = "flower_att", value = "measurement",
      Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)
# same result but less verbose
gather(mini_iris, key = "flower_att", value = "measurement", -Species)

# repeat iris example using dplyr and the pipe operator
library(dplyr)
mini_iris <-
  iris %>%
  group_by(Species) %>%
  slice(1)
mini_iris %>%
  gather(key = "flower_att", value = "measurement", -Species)

---

hoist  Rectangle a nested list into a tidy tibble

Description

Maturing

hoist(), unnest_longer(), and unnest_wider() provide tools for rectangling, collapsing deeply nested lists into regular columns. hoist() allows you to selectively pull components of a list-column out into their own top-level columns, using the same syntax as purrr::pluck(). unnest_wider() turns each element of a list-column into a column, and unnest_longer() turns each element of a list-column into a row. unnest_auto() picks between unnest_wider() or unnest_longer() based heuristics described below.

Learn more in vignette("rectangle").

Usage

hoist(
  .data,
  .col,
  ....,
  .remove = TRUE,
  .simplify = TRUE,
  .ptype = list(),
  .transform = list()
)

unnest_longer(
  data,
  col,
  values_to = NULL,
  indices_to = NULL,
  indices_include = NULL,
  names_repair = "check_unique",
  simplify = TRUE,
  ptype = list(),
  transform = list()
)
unnest_wider(
  data,
  col,
  names_sep = NULL,
  simplify = TRUE,
  names_repair = "check_unique",
  ptype = list(),
  transform = list()
)
unnest_auto(data, col)

Arguments

.data, data    A data frame.
.col, col      List-column to extract components from.
...
Components of .col to turn into columns in the form col_name = "pluck_specification".
You can pluck by name with a character vector, by position with an integer vector,
or with a combination of the two with a list. See purrr::pluck() for details.
The column names must be unique in a call to hoist(), although existing
columns with the same name will be overwritten. When plucking with a single
string you can choose to omit the name, i.e. hoist(df, col,"x") is short-hand
for hoist(df, col,x = "x").
.remove        If TRUE, the default, will remove extracted components from .col. This ensures
               that each value lives only in one place.
.simplify, simplify
               If TRUE, will attempt to simplify lists of length-1 vectors to an atomic vector
.ptype, ptype  Optionally, a named list of prototypes declaring the desired output type of each
               component. Use this argument if you want to check each element has the types
               you expect when simplifying.
.transform, transform
               Optionally, a named list of transformation functions applied to each component.
               Use this function if you want transform or parse individual elements as they are
               hoisted.
.values_to     Name of column to store vector values. Defaults to col.
.indices_to    A string giving the name of column which will contain the inner names or position
               (if not named) of the values. Defaults to col with _id suffix
.indices_include
               Add an index column? Defaults to TRUE when col has inner names.
.names_repair  Used to check that output data frame has valid names. Must be one of the
               following options:
               • "minimal": no name repair or checks, beyond basic existence,
               • "unique": make sure names are unique and not empty,
               • "check_unique": (the default), no name repair, but check they are unique,
               • "universal": make the names unique and syntactic
               • a function: apply custom name repair.
               • tidyr_legacy: use the name repair from tidyr 0.8.
• a formula: a purrr-style anonymous function (see `rlang::as_function()`)

See `vctrs::vec_as_names()` for more details on these terms and the strategies used to enforce them.

`names_sep` If `NULL`, the default, the names will be left as is. If a string, the inner and outer names will be paste together using `names_sep` as a separator.

### Unnest variants

The three `unnest()` functions differ in how they change the shape of the output data frame:

- `unnest_wider()` preserves the rows, but changes the columns.
- `unnest_longer()` preserves the columns, but changes the rows
- `unnest()` can change both rows and columns.

These principles guide their behaviour when they are called with a non-primary data type. For example, if you `unnest_wider()` a list of data frames, the number of rows must be preserved, so each column is turned into a list column of length one. Or if you `unnest_longer()` a list of data frames, the number of columns must be preserved so it creates a packed column. I’m not sure how if these behaviours are useful in practice, but they are theoretically pleasing.

`unnest_auto()` heuristics

`unnest_auto()` inspects the inner names of the list-col:

- If all elements are unnamed, it uses `unnest_longer()`
- If all elements are named, and there’s at least one name in common across all components, it uses `unnest_wider()`
- Otherwise, it falls back to `unnest_longer(indices_include = TRUE)`.

### Examples

```r
df <- tibble(
 character = c("Toothless", "Dory"),
 metadata = list(
 list(
 species = "dragon",
 color = "black",
 films = c("How to Train Your Dragon", "How to Train Your Dragon 2", "How to Train Your Dragon: The Hidden World")
),
 list(
 species = "blue tang",
 color = "blue",
 films = c("Finding Nemo", "Finding Dory")
)
)
)

df

Turn all components of metadata into columns
df %>% unnest_wider(metadata)
```
Nest and unnest

Description

Nesting creates a list-column of data frames; unnesting flattens it back out into regular columns. Nesting is implicitly a summarising operation: you get one row for each group defined by the non-nested columns. This is useful in conjunction with other summaries that work with whole datasets, most notably models.

Learn more in vignette("nest").

Usage

```r
nest(.data, ..., .names_sep = NULL, .key = deprecated())
unnest(
 data,
 cols,
 ...,
 keep_empty = FALSE,
)```
nest

```r
ptype = NULL,
names_sep = NULL,
names_repair = "check_unique",
.drop = deprecated(),
.id = deprecated(),
.sep = deprecated(),
.preserve = deprecated()
```

Arguments

.data

A data frame.

...< tidy-select > Columns to nest, specified using name-variable pairs of the form `new_col = c(col1, col2, col3)`. The right hand side can be any valid tidy select expression.

Deprecated: previously you could write `df %>% nest(x,y,z)` and `df %>% unnest(x,y,z). Convert to `df %>% nest(data = c(x,y,z))` and `df %>% unnest(c(x,y,z))`.

If you previously created new variable in `unnest()` you'll now need to do it explicitly with `mutate()`. Convert `df %>% unnest(y = fun(x,y,z))` to `df %>% mutate(y = fun(x,y,z)) %>% unnest(y)`.

.key

Deprecated: No longer needed because of the new `new_col = c(col1, col2, col3)` syntax.

.data A data frame.

cols

< tidy-select > Columns to unnest.

If you `unnest()` multiple columns, parallel entries must be of compatible sizes, i.e. they’re either equal or length 1 (following the standard tidyverse recycling rules).

.keep_empty

By default, you get one row of output for each element of the list your unchopping/unnesting. This means that if there’s a size-0 element (like NULL or an empty data frame), that entire row will be dropped from the output. If you want to preserve all rows, use `keep_empty = TRUE` to replace size-0 elements with a single row of missing values.

.ptype

 Optionally, supply a data frame prototype for the output `cols`, overriding the default that will be guessed from the combination of individual values.

.names_sep, .names_sep

If NULL, the default, the names will be left as is. In `nest()`, inner names will come from the former outer names; in `unnest()`, the new outer names will come from the inner names.

If a string, the inner and outer names will be used together. In `nest()`, the names of the new outer columns will be formed by pasting together the outer and the inner column names, separated by `.names_sep`. In `unnest()`, the new inner names will have the outer names (+ `.names_sep`) automatically stripped. This makes `.names_sep` roughly symmetric between nesting and unnesting.

.names_repair

Used to check that output data frame has valid names. Must be one of the following options:

- "minimal": no name repair or checks, beyond basic existence,
- "unique": make sure names are unique and not empty,
- "check_unique": (the default), no name repair, but check they are unique,
- "universal": make the names unique and syntactic
• a function: apply custom name repair.
• tidyrf Legacy: use the name repair from tidyrf 0.8.
• a formula: a purrr-style anonymous function (see rlang::as_function())
See vctrs::vec_name() for more details on these terms and the strategies used to enforce them.

.drop, .preserve

Deprecated: all list-columns are now preserved; If there are any that you don’t want in the output use select() to remove them prior to unnesting.

.id

Deprecated: convert df %>% unnest(x, .id = "id") to df %>% mutate(id = names(x)) %>% unnest(

.sep

Deprecated: use names_sep instead.

New syntax

tidyrf 1.0.0 introduced a new syntax for nest() and unnest() that’s designed to be more similar to other functions. Converting to the new syntax should be straightforward (guided by the message you’ll recieve) but if you just need to run an old analysis, you can easily revert to the previous behaviour using nest Legacy() and unnest Legacy() as follows:

library(tidyf)
nest <- nest Legacy
unnest <- unnest Legacy

Grouped data frames

df %>% nest(data = c(x, y)) specifies the columns to be nested; i.e. the columns that will appear in the inner data frame. Alternatively, you can nest() a grouped data frame created by dplyf::group_by(). The grouping variables remain in the outer data frame and the others are nested. The result preserves the grouping of the input.

Variables supplied to nest() will override grouping variables so that df %>% group_by(x, y) %>% nest(data = -z) will be equivalent to df %>% nest(data = -z).

Examples

df <- tibble(x = c(1, 1, 1, 2, 3), y = 1:6, z = 6:1)
Note that we get one row of output for each unique combination of
non-nested variables
df %>% nest(data = c(y, z))
chop does something similar, but retains individual columns
df %>% chop(c(y, z))

use tidyselect syntax and helpers, just like in dplyf::select()
df %>% nest(data = one_of("y", "z"))

iris %>% nest(data = -Species)
nest_vars <- names(iris)[1:4]
iris %>% nest(data = one_of(nest_vars))
iris %>%
 nest(petal = starts_with("Petal"), sepal = starts_with("Sepal"))
iris %>%
 nest(width = contains("Width"), length = contains("Length"))

Nesting a grouped data frame nests all variables apart from the group vars
library(dplyf)
fish_encounters %>%
group_by(fish) %>%
nest()

Nesting is often useful for creating per group models
mtcars %>%
group_by(cyl) %>%
nest() %>%
mutate(models = lapply(data, function(df) lm(mpg ~ wt, data = df)))

unnest() is primarily designed to work with lists of data frames
df <- tibble(
x = 1:3,
y = list(
 NULL,
 tibble(a = 1, b = 2),
 tibble(a = 1:3, b = 3:1)
)
)
df %>% unnest(y)
df %>% unnest(y, keep_empty = TRUE)

If you have lists of lists, or lists of atomic vectors, instead
see hoist(), unnest_wider(), and unnest_longer()

#’ # You can unnest multiple columns simultaneously
df <- tibble(
a = list(c("a", "b"), "c"),
b = list(1:2, 3),
c = c(11, 22)
)
df %>% unnest(c(a, b))

Compare with unnesting one column at a time, which generates
the Cartesian product
df %>% unnest(a) %>% unnest(b)

nest_legacy

Legacy versions of nest() and unnest()

Description

Retired

tidyr 1.0.0 introduced a new syntax for `nest()` and `unnest()`. The majority of existing usage should be automatically translated to the new syntax with a warning. However, if you need to quickly roll back to the previous behaviour, these functions provide the previous interface. To make old code work as is, add the following code to the top of your script:

```r
library(tidyrr)
nest <- nest_legacy
unnest <- unnest_legacy
```
Usage

```r
nest_legacy(data, ..., .key = "data")

unnest_legacy(data, ..., .drop = NA, .id = NULL, .sep = NULL, .preserve = NULL)
```

Arguments

data A data frame.

... Specification of columns to unnest. Use bare variable names or functions of variables. If omitted, defaults to all list-cols.

.key The name of the new column, as a string or symbol. This argument is passed by expression and supports `quasiquotation` (you can unquote strings and symbols). The name is captured from the expression with `rlang::ensym()` (note that this kind of interface where symbols do not represent actual objects is now discouraged in the tidyverse; we support it here for backward compatibility).

.drop Should additional list columns be dropped? By default, `unnest()` will drop them if unnesting the specified columns requires the rows to be duplicated.

.id Data frame identifier - if supplied, will create a new column with name `.id`, giving a unique identifier. This is most useful if the list column is named.

.sep If non-NULL, the names of unnested data frame columns will combine the name of the original list-col with the names from the nested data frame, separated by `.sep`.

.preserve Optionally, list-columns to preserve in the output. These will be duplicated in the same way as atomic vectors. This has `dplyr::select()` semantics so you can preserve multiple variables with `.preserve = c(x, y)` or `.preserve = starts_with("list")`.

Examples

```r
# Nest and unnest are inverses
df <- data.frame(x = c(1, 1, 2), y = 3:1)
df %>% nest_legacy(y)
df %>% nest_legacy(y) %>% unnest_legacy()

# nesting ---------------------------------------------------------------
as_tibble(iris) %>% nest_legacy(Species)
as_tibble(chickwts) %>% nest_legacy(weight)

# unnesting ---------------------------------------------------------------
df <- tibble(
  x = 1:2,
  y = list(
    tibble(z = 1),
    tibble(z = 3:4)
  )
)
df %>% unnest_legacy(y)

# You can also unnest multiple columns simultaneously
df <- tibble(
  a = list(c("a", "b"), "c"),
  b = list(1:2, 3),
  c = c(11, 22)
)`
Description

Maturing

Packing and unpacking preserve the length of a data frame, changing its width. `pack()` makes df narrow by collapsing a set of columns into a single df-column. `unpack()` makes data wider by expanding df-columns back out into individual columns.

Usage

```r
pack(.data, ..., .names_sep = NULL)
```

```r
unpack(data, cols, names_sep = NULL, names_repair = "check_unique")
```

Arguments

- `...` `<tidy-select>` Columns to pack, specified using name-variable pairs of the form `new_col = c(col1, col2, col3)`. The right hand side can be any valid tidy select expression.
- `data, .data` A data frame.
- `cols` `<tidy-select>` Column to unpack.
- `names_sep, .names_sep` If NULL, the default, the names will be left as is. In `pack()`, inner names will come from the former outer names; in `unpack()`, the new outer names will come from the inner names. If a string, the inner and outer names will be used together. In `pack()`, the names of the new outer columns will be formed by pasting together the outer and the inner column names, separated by `names_sep`. In `unpack()`, the new inner names will have the outer names (+ `names_sep`) automatically stripped. This makes `names_sep` roughly symmetric between packing and unpacking.
- `names_repair` Used to check that output data frame has valid names. Must be one of the following options:
  - "minimal": no name repair or checks, beyond basic existence,
  - "unique": make sure names are unique and not empty,
  - "check_unique": (the default), no name repair, but check they are unique,
  - "universal": make the names unique and syntactic
  - a function: apply custom name repair.
  - `tidyr_legacy`: use the name repair from tidyr 0.8.
  - a formula: a purrr-style anonymous function (see `rlang::as_function()`)

See `vctrs::vec_as_names()` for more details on these terms and the strategies used to enforce them.
Details

Generally, unpacking is more useful than packing because it simplifies a complex data structure. Currently, few functions work with df-cols, and they are mostly a curiosity, but seem worth exploring further because they mimic the nested column headers that are so popular in Excel.

Examples

```r
Packing
It's not currently clear why you would ever want to pack columns
since few functions work with this sort of data.
df <- tibble(x1 = 1:3, x2 = 4:6, x3 = 7:9, y = 1:3)
df

pack(x = starts_with("x"))
df %>% pack(x = c(x1, x2, x3), y = y)

.names_sep allows you to strip off common prefixes; this
acts as a natural inverse to name_sep in unpack()
iris %>%
as_tibble() %>%
pack(
 Sepal = starts_with("Sepal"),
 Petal = starts_with("Petal"),
 .names_sep = "."
)

Unpacking

df <- tibble(
 x = 1:3,
 y = tibble(a = 1:3, b = 3:1),
 z = tibble(X = c("a", "b", "c"), Y = runif(3), Z = c(TRUE, FALSE, NA))
)
df

df %>% unpack(y)
df %>% unpack(c(y, z))
df %>% unpack(c(y, z), names_sep = "_")
```

---

**pivot_longer**  
**Pivot data from wide to long**

Description

**Maturing**

`pivot_longer()` "lengthens" data, increasing the number of rows and decreasing the number of columns. The inverse transformation is `pivot_wider()`.

Learn more in vignette("pivot").

Usage

```r
pivot_longer(
 data,
cols,
 names_to = "name",
)```

pivot_longer

```r
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
names_ptypes = list(),
names_transform = list(),
names_repair = "check_unique",
values_to = "value",
values_drop_na = FALSE,
values_ptypes = list(),
values_transform = list(),
```

Arguments

- **data**: A data frame to pivot.
- **cols**: <tidy-select> Columns to pivot into longer format.
- **names_to**: A string specifying the name of the column to create from the data stored in the column names of data. Can be a character vector, creating multiple columns, if `names_sep` or `names_pattern` is provided. In this case, there are two special values you can take advantage of:
 - `na` will discard that component of the name.
 - `.value` indicates that component of the name defines the name of the column containing the cell values, overriding `values_to`.
- **names_prefix**, **names_sep**, **names_pattern**: If `names_to` contains multiple values, these arguments control how the column name is broken up.
 - `names_sep` takes the same specification as `separate()`, and can either be a numeric vector (specifying positions to break on), or a single string (specifying a regular expression to split on).
 - `names_pattern` takes the same specification as `extract()`, a regular expression containing matching groups (())
 - If these arguments do not give you enough control, use `pivot_longer_spec()` to create a spec object and process manually as needed.
- **names_ptypes**, **values_ptypes**: A list of column name-prototype pairs. A prototype (or ptype for short) is a zero-length vector (like `integer()` or `numeric()`) that defines the type, class, and attributes of a vector. Use these arguments to confirm that the created columns are the types that you expect.
 - If not specified, the type of the columns generated from `names_to` will be character, and the type of the variables generated from `values_to` will be the common type of the input columns used to generate them.
- **names_transform**, **values_transform**: A list of column name-function pairs. Use these arguments if you need to change the type of specific columns. For example, `names_transform = list(week = as.integer) would convert a character week variable to an integer.
- **names_repair**: What happens if the output has invalid column names? The default, "check_unique" is to error if the columns are duplicated. Use "minimal" to allow duplicates
in the output, or "unique" to de-duplicated by adding numeric suffixes. See `vctrs::vec_as_names()` for more options.

values_to
A string specifying the name of the column to create from the data stored in cell values. If `names_to` is a character containing the special `.value` sentinel, this value will be ignored, and the name of the value column will be derived from part of the existing column names.

values_drop_na
If TRUE, will drop rows that contain only NAs in the `value_to` column. This effectively converts explicit missing values to implicit missing values, and should generally be used only when missing values in `data` were created by its structure.

... Additional arguments passed on to methods.

Details

`pivot_longer()` is an updated approach to `gather()`, designed to be both simpler to use and to handle more use cases. We recommend you use `pivot_longer()` for new code; `gather()` isn’t going away but is no longer under active development.

Examples

```r
# See vignette("pivot") for examples and explanation

# Simplest case where column names are character data
relig_income
relig_income %>%
  pivot_longer(-religion, names_to = "income", values_to = "count")

# Slightly more complex case where columns have common prefix,
# and missing missings are structural so should be dropped.
billboard
billboard %>%
  pivot_longer(
    cols = starts_with("wk"),
    names_to = "week",
    names_prefix = "wk",
    values_to = "rank",
    values_drop_na = TRUE
  )

# Multiple variables stored in column names
who %>% pivot_longer(
  cols = new_sp_m014:newrel_f65,
  names_to = c("diagnosis", "gender", "age"),
  names_pattern = "new_.+\.(\d+)(\d*)",
  values_to = "count"
)

# Multiple observations per row
anscombe
anscombe %>%
  pivot_longer(everything()),
  names_to = c(".value", "set"),
  names_pattern = "(.\d)"
)
```
pivot_wider

Pivot data from long to wide

Description

Maturing

pivot_wider() "widens" data, increasing the number of columns and decreasing the number of rows. The inverse transformation is pivot_longer().

Learn more in vignette("pivot").

Usage

pivot_wider(
 data,
 id_cols = NULL,
 names_from = name,
 names_prefix = "",
 names_sep = "_",
 names_glue = NULL,
 names_sort = FALSE,
 names_repair = "check_unique",
 values_from = value,
 values_fill = NULL,
 values_fn = NULL,
 ...
)

Arguments

data A data frame to pivot.
id_cols A set of columns that uniquely identifies each observation. Defaults to all columns in data except for the columns specified in names_from and values_from. Typically used when you have redundant variables, i.e. variables whose values are perfectly correlated with existing variables.

names_from, values_from

A pair of arguments describing which column (or columns) to get the name of the output column (names_from), and which column (or columns) to get the cell values from (values_from). If values_from contains multiple values, the value will be added to the front of the output column.

names_prefix String added to the start of every variable name. This is particularly useful if names_from is a numeric vector and you want to create syntactic variable names.

names_sep If names_from or values_from contains multiple variables, this will be used to join their values together into a single string to use as a column name.

names_glue Instead of names_sep and names_prefix, you can supply a glue specification that uses the names_from columns (and special .value) to create custom column names.
Should the column names be sorted? If FALSE, the default, column names are ordered by first appearance.

What happens if the output has invalid column names? The default, "check_unique" is to error if the columns are duplicated. Use "minimal" to allow duplicates in the output, or "unique" to de-duplicated by adding numeric suffixes. See `vctrs::vec_as_names()` for more options.

Optionally, a (scalar) value that specifies what each value should be filled in with when missing. This can be a named list if you want to apply different aggregations to different value columns.

Optionally, a function applied to the value in each cell in the output. You will typically use this when the combination of `id_cols` and `value` column does not uniquely identify an observation. This can be a named list if you want to apply different aggregations to different value columns.

Additional arguments passed on to methods.

pivot_wider() is an updated approach to spread(), designed to be both simpler to use and to handle more use cases. We recommend you use pivot_wider() for new code; spread() isn’t going away but is no longer under active development.

See Also

pivot_wider_spec() to pivot "by hand" with a data frame that defines a pivoting specification.

Examples

```r
# See vignette("pivot") for examples and explanation

fish_encounters
fish_encounters %>%
pivot_wider(names_from = station, values_from = seen)
# Fill in missing values
fish_encounters %>%
pivot_wider(names_from = station, values_from = seen, values_fill = 0)

# Generate column names from multiple variables
us_rent_income
us_rent_income %>%
pivot_wider(names_from = variable, values_from = c(estimate, moe))

# When there are multiple 'names_from' or 'values_from', you can use # use 'names_sep' or 'names_glue' to control the output variable names
us_rent_income %>%
pivot_wider(  
  names_from = variable,  
  names_sep = ",",  
  values_from = c(estimate, moe)  
)
us_rent_income %>%
pivot_wider(  
  names_from = variable,  
)
relig_income

names_glue = "(variable)_{.value}"
values_from = c(estimate, moe)

# Can perform aggregation with values_fn
warpbreaks <- as_tibble(warpbreaks[c("wool", "tension", "breaks")])

warpbreaks %>%
pivot_wider(
  names_from = wool,
  values_from = breaks,
  values_fn = mean)

relig_income  Pew religion and income survey

Description
Pew religion and income survey

Usage
relig_income

Format
A dataset with variables:

religion  Name of religion
<$10k-Don\'t know/refused  Number of respondents with income range in column name

Source
Downloaded from https://www.pewforum.org/religious-landscape-study/ (downloaded November 2009)

replace_na  Replace NAs with specified values

Description
Replace NAs with specified values

Usage
replace_na(data, replace, ...)

replace_na(data, replace, ...)

source
Downloaded from https://www.pewforum.org/religious-landscape-study/ (downloaded November 2009)
Arguments

- **data**: A data frame or vector.
- **replace**: If `data` is a data frame, `replace` takes a list of values, with one value for each column that has NA values to be replaced. If `data` is a vector, `replace` takes a single value. This single value replaces all of the NA values in the vector.
- **...**: Additional arguments for methods. Currently unused.

Value

- If `data` is a data frame, `replace_na()` returns a data frame.
- If `data` is a vector, `replace_na()` returns a vector, with class given by the union of `data` and `replace`.

See Also

- `dplyr::na_if()` to replace specified values with NAs; `dplyr::coalesce()` to replaces NAs with values from other vectors.

Examples

```r
Replace NAs in a data frame
df <- tibble(x = c(1, 2, NA), y = c("a", NA, "b"))
df %>% replace_na(list(x = 0, y = "unknown"))

Replace NAs in a vector
df$x %>% dplyr::mutate(x = replace_na(x, 0))
OR
df$x %>% replace_na(0)
df$y %>% replace_na("unknown")

Replace NULLs in a list: NULLs are the list-col equivalent of NAs
df_list <- tibble(z = list(1:5, NULL, 10:20))
df_list %>% replace_na(list(z = list(5)))
```

---

**separate**

*Separate a character column into multiple columns with a regular expression or numeric locations*

Description

Given either a regular expression or a vector of character positions, `separate()` turns a single character column into multiple columns.

Usage

```r
separate(
 data,
 col,
 into,
 sep = "[^[:alnum:]]+",
```
Arguments

- **data**: A data frame.
- **col**: Column name or position. This is passed to `tidyselect::vars_pull()`. This argument is passed by expression and supports quasiquotation (you can unquote column names or column positions).
- **into**: Names of new variables to create as character vector. Use `NA` to omit the variable in the output.
- **sep**: Separator between columns.
  - If character, `sep` is interpreted as a regular expression. The default value is a regular expression that matches any sequence of non-alphanumeric values.
  - If numeric, `sep` is interpreted as character positions to split at. Positive values start at 1 at the far-left of the string; negative values start at -1 at the far-right of the string. The length of `sep` should be one less than `into`.
- **remove**: If `TRUE`, remove input column from output data frame.
- **convert**: If `TRUE`, will run `type.convert()` with `as.is = TRUE` on new columns. This is useful if the component columns are integer, numeric or logical. NB: this will cause string "NA"s to be converted to `NA`s.
- **extra**: If `sep` is a character vector, this controls what happens when there are too many pieces. There are three valid options:
  - "warn" (the default): emit a warning and drop extra values.
  - "drop": drop any extra values without a warning.
  - "merge": only splits at most `length(into)` times
- **fill**: If `sep` is a character vector, this controls what happens when there are not enough pieces. There are three valid options:
  - "warn" (the default): emit a warning and fill from the right
  - "right": fill with missing values on the right
  - "left": fill with missing values on the left

See Also

- `unite()`, the complement, `extract()` which uses regular expression capturing groups.

Examples

```r
library(dplyr)
If you want to split by any non-alphanumeric value (the default):
df <- data.frame(x = c(NA, "a.b", "a.d", "b.c"))
df %>% separate(x, c("A", "B"))

If you just want the second variable:
```
df %>% separate(x, c(NA, "B"))

# If every row doesn't split into the same number of pieces, use
# the extra and fill arguments to control what happens:
df <- data.frame(x = c("a", "b", "a b c", NA))
df %>% separate(x, c("a", "b"))
# The same behaviour as previous, but drops the c without warnings:
df %>% separate(x, c("a", "b"), extra = "drop", fill = "right")
# Opposite of previous, keeping the c and filling left:
df %>% separate(x, c("a", "b"), extra = "merge", fill = "left")
# Or you can keep all three:
df %>% separate(x, c("a", "b", "c"))

# To only split a specified number of times use extra = "merge":
df <- data.frame(x = c("x: 123", "y: error: 7"))
df %>% separate(x, c("key", "value"), ": ", extra = "merge")

# Use regular expressions to separate on multiple characters:
df <- data.frame(x = c(NA, "a?b", "a.d", "b:c"))
df %>% separate(x, c("A","B"), sep = "[\[\.:\]"]")

# convert = TRUE detects column classes:
df <- data.frame(x = c("a:1", "a:2", "c:4", "d", NA))
df %>% separate(x, c("key","value"), ": ") %>% str
df %>% separate(x, c("key","value"), ": " , convert = TRUE) %>% str

**sep`are_rows** Separate a collapsed column into multiple rows

**Description**

If a variable contains observations with multiple delimited values, this separates the values and places each one in its own row.

**Usage**

separate_rows(data, ..., sep = "[^[:alnum:].]*", convert = FALSE)

**Arguments**

data A data frame.

... <tidy-select> Columns to separate across multiple rows

sep Separator delimiting collapsed values.

convert If TRUE will automatically run type.convert() on the key column. This is useful if the column types are actually numeric, integer, or logical.

**Examples**

df <- tibble(
  x = 1:3,
  y = c("a", "d,e,f", "g,h"),
  z = c("1", "2,3,4", "5,6")
)
separate_rows(df, y, z, convert = TRUE)
**smiths**  

*Some data about the Smith family*

---

**Description**

A small demo dataset describing John and Mary Smith.

**Usage**

`smiths`

**Format**

A data frame with 2 rows and 5 columns.

---

**spread**  

*Spread a key-value pair across multiple columns*

---

**Description**

**Retired**

Development on `spread()` is complete, and for new code we recommend switching to `pivot_wider()`, which is easier to use, more featureful, and still under active development. `df %>% spread(key, value)` is equivalent to `df %>% pivot_wider(names_from = key, values_from = value)`

See more details in vignette("pivot").

**Usage**

`spread(data, key, value, fill = NA, convert = FALSE, drop = TRUE, sep = NULL)`

**Arguments**

- **data**  
  A data frame.

- **key, value**  
  Column names or positions. This is passed to `tidyselect::vars_pull()`. These arguments are passed by expression and support quasiquotation (you can unquote column names or column positions).

- **fill**  
  If set, missing values will be replaced with this value. Note that there are two types of missingness in the input: explicit missing values (i.e. `NA`), and implicit missings, rows that simply aren’t present. Both types of missing value will be replaced by `fill`.

- **convert**  
  If `TRUE`, `type.convert()` with `asis = TRUE` will be run on each of the new columns. This is useful if the value column was a mix of variables that was coerced to a string. If the class of the value column was factor or date, note that will not be true of the new columns that are produced, which are coerced to character before type conversion.

- **drop**  
  If `FALSE`, will keep factor levels that don’t appear in the data, filling in missing combinations with `fill`.

- **sep**  
  If `NULL`, the column names will be taken from the values of `key` variable. If non-`NULL`, the column names will be given by `"<key_name><sep><key_value>"`. 
Examples

```r
library(dplyr)
stocks <- data.frame(
 time = as.Date('2009-01-01') + 0:9,
 X = rnorm(10, 0, 1),
 Y = rnorm(10, 0, 2),
 Z = rnorm(10, 0, 4)
)
stocksm <- stocks %>% gather(stock, price, -time)
stocksm %>% spread(stock, price)
stocksm %>% spread(time, price)

Spread and gather are complements
df <- data.frame(x = c("a", "b"), y = c(3, 4), z = c(5, 6))
df %>% spread(x, y) %>% gather("x", "y", a:b, na.rm = TRUE)

Use 'convert = TRUE' to produce variables of mixed type
df <- data.frame(row = rep(c(1, 51), each = 3),
 var = c("Sepal.Length", "Species", "Species_num"),
 value = c(5.1, "setosa", 1, 7.0, "versicolor", 2))
df %>% spread(var, value) %>% str
df %>% spread(var, value, convert = TRUE) %>% str
```

table1

## Example tabular representations

### Description

Data sets that demonstrate multiple ways to layout the same tabular data.

### Usage

- table1
- table2
- table3
- table4a
- table4b
- table5

### Details

table1, table2, table3, table4a, table4b, and table5 all display the number of TB cases documented by the World Health Organization in Afghanistan, Brazil, and China between 1999 and 2000. The data contains values associated with four variables (country, year, cases, and population), but each table organizes the values in a different layout.

The data is a subset of the data contained in the World Health Organization Global Tuberculosis Report.
uncount

"Uncount" a data frame

Description

Performs the opposite operation to dplyr::count(), duplicating rows according to a weighting variable (or expression).

Usage

uncount(data, weights, remove = TRUE, .id = NULL)

Arguments

data A data frame, tibble, or grouped tibble.
weights A vector of weights. Evaluated in the context of data; supports quasiquotation.
.remove If TRUE, and weights is a single
.id Supply a string to create a new variable which gives a unique identifier for each created row.

Examples

df <- tibble(x = c("a", "b"), n = c(1, 2))
uncount(df, n)
uncount(df, n, .id = "id")

# You can also use constants
uncount(df, 2)

# Or expressions
uncount(df, 2 / n)

unite

Unite multiple columns into one by pasting strings together

Description

Convenience function to paste together multiple columns into one.

Usage

unite(data, col, ..., sep = " ", remove = TRUE, na.rm = FALSE)
Arguments

- **data**: A data frame.
- **col**: The name of the new column, as a string or symbol.
  This argument is passed by expression and supports quasiquotation (you can unquote strings and symbols). The name is captured from the expression with `rlang::ensym()` (note that this kind of interface where symbols do not represent actual objects is now discouraged in the tidyverse; we support it here for backward compatibility).

- **<tidy-select>**: Columns to unite
- **sep**: Separator to use between values.
- **remove**: If TRUE, remove input columns from output data frame.
- **na.rm**: If TRUE, missing values will be remove prior to uniting each value.

See Also

- `separate()`, the complement.

Examples

```r
df <- expand_grid(x = c("a", NA), y = c("b", NA))
df

df %>% unite("z", x:y, remove = FALSE)
To remove missing values:
df %>% unite("z", x:y, na.rm = TRUE, remove = FALSE)

Separate is almost the complement of unite
df %>%
 unite("xy", x:y) %>%
 separate(xy, c("x", "y"))
(but note 'x' and 'y' contain now "NA" not NA)
```

Description

Captured from the 2017 American Community Survey using the tidycensus package.

Usage

`us_rent_income`

Format

A dataset with variables:

- **GEOID**: FIP state identifier
- **NAME**: Name of state
- **variable**: Variable name: income = median yearly income, rent = median monthly rent
- **estimate**: Estimated value
- **moe**: 90% margin of error
Description

A subset of data from the World Health Organization Global Tuberculosis Report, and accompanying global populations.

Usage

who

population

Format

who: a data frame with 7,240 rows and the columns:

- **country**  Country name
- **iso2, iso3**  2 & 3 letter ISO country codes
- **year**  Year
- **new_sp_m014 - new_rel_f65**  Counts of new TB cases recorded by group. Column names encode three variables that describe the group (see details).

population: a data frame with 4,060 rows and three columns:

- **country**  Country name
- **year**  Year
- **population**  Population

Details

The data uses the original codes given by the World Health Organization. The column names for columns five through 60 are made by combining new_ to a code for method of diagnosis (rel = relapse, sn = negative pulmonary smear, sp = positive pulmonary smear, ep = extrapulmonary) to a code for gender (f = female, m = male) to a code for age group (PQT = 0-14 yrs of age, QURT = 15-24 years of age, RUST = 25 to 34 years of age, SUTT = 35 to 44 years of age, TUUT = 45 to 54 years of age, UUVT = 55 to 64 years of age, VU = 65 years of age or older).

Source

world_bank_pop  Population data from the world bank

Description

Data about population from the World Bank.

Usage

world_bank_pop

Format

A dataset with variables:

- **country**  Three letter country code
- **indicator**  Indicator name: SP.POP.GROW = population growth, SP.POP.TOTL = total population, SP.URB.GROW = urban population growth, SP.URB.TOTL = total urban population
- **2000-2018**  Value for each year

Source

Dataset from the World Bank data bank: [https://data.worldbank.org](https://data.worldbank.org)
Index

»Topic datasets
  billboard, 2
  construction, 5
  fish_encounters, 12
  relig_income, 29
  smiths, 33
  table1, 34
  us_rent_income, 36
  who, 37
  world_bank_pop, 38

billboard, 2
chop, 3
complete, 4
complete(), 8
construction(), 5
crossing (expand), 7
dplyr::coalesce(), 30
dplyr::count(), 35
dplyr::group_by(), 20
dplyr::left_join(), 4
dplyr::na_if(), 30
dplyr::select(), 14, 22
drop_na, 6
expand, 7
expand(), 4
expand.grid, 9
expand_grid, 8
expand_grid(), 7, 8
extract, 9
extract(), 25, 31
fill, 10
fish_encounters, 12
full_seq, 13
gather, 13
gather(), 26
hoist, 15
nest, 18
nest(), 4, 21
nest_legacy, 21
nest Legacy(), 20
nesting (expand), 7
pack, 23
pivot_longer, 24
pivot_longer(), 27
pivot_wider, 27
pivot_wider(), 24
pivot_wider_spec(), 28
population (who), 37
purrr::pluck(), 15, 16
quasiquotation, 10, 14, 22, 31, 33, 36
relig_income, 29
replace_na, 29
replace_na(), 4
rlang::as_function(), 7, 9, 17, 20, 23
rlang::ensym(), 14, 22, 36
separate, 30
separate(), 10, 25, 36
separate_rows, 32
smiths, 33
spread, 33
spread(), 28
table1, 34
table2 (table1), 34
table3 (table1), 34
table4a (table1), 34
table4b (table1), 34
table5 (table1), 34
tidyr Legacy, 16, 20, 23
tidyselect::select helpers(), 14
tidyselect::vars pull(), 10, 31, 33
tidyselect::vars select(), 14
type.convert(), 10, 14, 31–33

unchop (chop), 3
uncount, 35
unite, 35
unite(), 31
unnest(nest), 18
unnest(), 3, 21
unnest_auto(hoist), 15
unnest_legacy(nest_legacy), 21
unnest_legacy(), 20
unnest_longer(hoist), 15
unnest_longer(), 3
unnest_wider(hoist), 15
unnest_wider(), 3
unpack(pack), 23
us_rent_income, 36
vctrs::list_of(), 4
vctrs::vec_as_names(), 7, 9, 17, 20, 23, 26, 28

who, 37
world_bank_pop, 38