| Name | Last modified | Size | Description | |
|---|---|---|---|---|
| Parent Directory | - | |||
| README.html | 2020-09-30 08:30 | 24K | ||
| man/ | 2020-09-30 08:30 | - | ||

tidytable?tidyverse-like syntax with data.table speedrlang compatibilitydtplyr is missing, including many tidyr functionsNote: tidytable functions do not use data.table’s modify-by-reference, and instead use the copy-on-modify principles followed by the tidyverse and base R.
Install the released version from CRAN with:
Or install the development version from GitHub with:
tidytable uses verb.() syntax to replicate tidyverse functions:
library(tidytable)
test_df <- data.table(x = c(1,2,3), y = c(4,5,6), z = c("a","a","b"))
test_df %>%
select.(x, y, z) %>%
filter.(x < 4, y > 1) %>%
arrange.(x, y) %>%
mutate.(double_x = x * 2,
double_y = y * 2)
#> # tidytable [3 × 5]
#> x y z double_x double_y
#> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 1 4 a 2 8
#> 2 2 5 a 4 10
#> 3 3 6 b 6 12A full list of functions can be found here.
Group by calls are done from inside any function that has group by functionality (such as summarize.() & mutate.())
.by = z.by = c(y, z)tidyselect can also be used, including using predicates:
.by = where(is.character).by = c(where(is.character), where(is.factor)).by = c(where(is.character), y)test_df %>%
summarize.(avg_x = mean(x),
count = n.(),
.by = z)
#> # tidytable [2 × 3]
#> z avg_x count
#> <chr> <dbl> <int>
#> 1 a 1.5 2
#> 2 b 3 1tidyselect supporttidytable allows you to select/drop columns just like you would in the tidyverse.
Normal selection can be mixed with:
where(is.numeric), where(is.character), etc.everything(), starts_with(), ends_with(), contains(), any_of(), etc.test_df <- data.table(a = c(1,2,3),
b = c(4,5,6),
c = c("a","a","b"),
d = c("a","b","c"))
test_df %>%
select.(a, where(is.character))
#> # tidytable [3 × 3]
#> a c d
#> <dbl> <chr> <chr>
#> 1 1 a a
#> 2 2 a b
#> 3 3 b cTo drop columns use a - sign:
test_df %>%
select.(-a, -where(is.character))
#> # tidytable [3 × 1]
#> b
#> <dbl>
#> 1 4
#> 2 5
#> 3 6These same ideas can be used whenever selecting columns in tidytable functions - for example when using count.(), drop_na.(), mutate_across.(), pivot_longer.(), etc.
A full overview of selection options can be found here.
rlang compatibilityrlang can be used to write custom functions with tidytable functions:
mutate.()df <- data.table(x = c(1,1,1), y = c(1,1,1), z = c("a","a","b"))
# Using enquo() with !!
add_one <- function(data, add_col) {
add_col <- enquo(add_col)
data %>%
mutate.(new_col = !!add_col + 1)
}
# Using the {{ }} shortcut
add_one <- function(data, add_col) {
data %>%
mutate.(new_col = {{ add_col }} + 1)
}
df %>%
add_one(x)
#> # tidytable [3 × 4]
#> x y z new_col
#> <dbl> <dbl> <chr> <dbl>
#> 1 1 1 a 2
#> 2 1 1 a 2
#> 3 1 1 b 2summarize.()df <- data.table(x = 1:10, y = c(rep("a", 6), rep("b", 4)), z = c(rep("a", 6), rep("b", 4)))
find_mean <- function(data, grouping_cols, col) {
data %>%
summarize.(avg = mean({{ col }}),
.by = {{ grouping_cols }})
}
df %>%
find_mean(grouping_cols = c(y, z), col = x)
#> # tidytable [2 × 3]
#> y z avg
#> <chr> <chr> <dbl>
#> 1 a a 3.5
#> 2 b b 8.5All tidytable functions automatically convert data.frame and tibble inputs to a data.table:
library(dplyr)
library(data.table)
test_df <- tibble(x = c(1,2,3), y = c(4,5,6), z = c("a","a","b"))
test_df %>%
mutate.(double_x = x * 2) %>%
is.data.table()
#> [1] TRUEdt() helperThe dt() function makes regular data.table syntax pipeable, so you can easily mix tidytable syntax with data.table syntax:
df <- data.table(x = c(1,2,3), y = c(4,5,6), z = c("a", "a", "b"))
df %>%
dt(, list(x, y, z)) %>%
dt(x < 4 & y > 1) %>%
dt(order(x, y)) %>%
dt(, double_x := x * 2) %>%
dt(, list(avg_x = mean(x)), by = z)
#> # tidytable [2 × 2]
#> z avg_x
#> <chr> <dbl>
#> 1 a 1.5
#> 2 b 3For those interested in performance, speed comparisons can be found here.