Package ‘tidyvpc’

September 29, 2020

Type Package

Title VPC Percentiles and Prediction Intervals

Version 1.1.0

Date 2020-09-28

Description Perform a Visual Predictive Check (VPC), while accounting for stratification, censoring, and prediction correction. Using piping from ‘magrittr’, the intuitive syntax gives users a flexible and powerful method to generate VPCs using both traditional binning and a new binless approach Jamsen et al. (2018) <doi:10.1002/psp4.12319> with Additive Quantile Regression (AQR) and Locally Estimated Scatterplot Smoothing (LOESS) prediction correction.

URL https://github.com/certara/tidyvpc

BugReports https://github.com/certara/tidyvpc/issues

Depends R (>= 3.5.0), data.table (>= 1.9.8), magrittr, quantreg (>= 5.51)

Imports rlang (>= 0.3.0), methods, classInt, ggplot2

Suggests cluster, KernSmooth, knitr, shiny, remotes, vpc, rmarkdown, testthat (>= 2.1.0)

License MIT + file LICENSE

LazyData true

Encoding UTF-8

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Olivier Barriere [aut],
Benjamin Rich [aut],
James Craig [aut, cre],
Samer Mouksassi [aut],
Kris Jamsen [ctb]

Maintainer James Craig <jameswbcraig@gmail.com>
bininfo

Obtain information about the bins from a VPC object.

Description

Obtain information about the bins from a VPC object.

Usage

bininfo(o, ...)

S3 method for class 'tidyvpcobj'
bininfo(o, by.strata = o$bin.by.strata, ...)

Arguments

- **o**
 An object.

- **...**
 Additional arguments.

- **by.strata**
 Should the calculations be done by strata? Defaults to what was specified when the binning was done.
Value

A ‘data.table’ containing the following columns:

- `nobs`: the number of observed data points in the bin
- `xmedian`: the median x-value of the observed data points in the bin
- `xmean`: the mean x-value of the observed data points in the bin
- `xmax`: the maximum x-value of the observed data points in the bin
- `xmin`: the minimum x-value of the observed data points in the bin
- `xmid`: the value halfway between ‘xmin’ and ‘xmax’. x-value of the observed data points in the bin
- `xleft`: the value halfway between the minimum x-value of the current bin and the maximum x-value of the previous bin to the left (for the left-most bin it is the minimum x-value).
- `xright`: the value halfway between the maximum x-value of the current bin and the minimum x-value of the next bin to the right (for the right-most bin it is the maximum x-value).
- `xcenter`: the value halfway between ‘xleft’ and ‘xright’.

In addition, if statification was performed, the stratification columns will be included as well.

Methods (by class)

- `tidyvpcobj`: Method for `tidyvpcobj`.

binless

Description

Perform binless Visual Predictive Check (VPC)

Usage

```
binless(o, ...)  
```

```r
## S3 method for class 'tidyvpcobj'
binless(
o,
qpred = c(0.05, 0.5, 0.95),
optimize = TRUE,
optimization.interval = c(0, 7),
conf.level = 0.95,
loess.ypc = FALSE,
lambda = NULL,
span = NULL,
...)
```

Arguments

- `tidyvpc object`
- ... other arguments
- `qpred` numeric vector of length 3 specifying quantiles (lower, median, upper) i.e. c(0.1, 0.5, 0.9)
- `optimize` logical indicating whether lambda and span should be optimized using AIC
- `optimization.interval` numeric vector of length 2 specifying interval for lambda optimization
- `conf.level` numeric confidence level for binless fit
- `loess.ypc` logical indicating loess precision corrected. Must first use `predcorrect()` if `loess.ypc = TRUE`
- `lambda` numeric vector of length 3 specifying lambda values for each quantile
- `span` numeric number between 0,1 specifying smoothing parameter for loess prediction corrected

Details

Use this function in substitute of traditional binning methods to derive VPC using additive quantile regression and loess for pcVPC.

Value

Updates `tidyvpcobj` with additive quantile regression fits for observed and simulated data for quantiles specified in `qpred` argument. If `optimize = TRUE` argument is specified, the resulting `tidyvpcobj` will contain optimized lambda values according to AIC. For prediction corrected VPC (pcVPC), specifying `loess.ypc = TRUE` will return optimized span value for LOESS smoothing.

See Also

- `observed`
- `simulated`
- `censoring`
- `predcorrect`
- `stratify`
- `binning`
- `vpcstats`

Examples

```r
obs_data <- data.table::as.data.table(tidyvpc::obs_data)
sim_data <- data.table::as.data.table(tidyvpc::sim_data)
obs_data <- obs_data[MDV == 0]
sim_data <- sim_data[MDV == 0]

vpc <- observed(obs_data, y = DV, x = TIME) %>%
simulated(sim_data, y = DV) %>%
binless() %>%
vpcstats()

# Binless example with LOESS prediction correction
```
obs_data$PRED <- sim_data[REP == 1, PRED]

vpc <- observed(obs_data, y = DV, x = TIME) %>%
 simulated(sim_data, y = DV) %>%
 predcorrect(pred = PRED) %>%
 binless(optimize = TRUE, loess.ypc = TRUE) %>%
 vpcstats()

Binless example with user specified lambda values stratified on
"GENDER" with 2 levels ("M", "F"), 10%, 50%, 90% quantiles.

lambda_strat <- data.table(
 GENDER_M = c(3,5,2),
 GENDER_F = c(1,3,4)
)

vpc <- observed(obs_data, y = DV, x = TIME) %>%
 simulated(sim_data, y = DV) %>%
 stratify(~ GENDER) %>%
 binless(qpred = c(0.1, 0.5, 0.9), optimize = FALSE, lambda = lambda_strat) %>%
 vpcstats()

Description

Binning methods for Visual Predictive Check (VPC)

Usage

```
binning(o, ...)

## S3 method for class 'tidyvpcobj'
binning(
  o,
  bin,
  data = o$data,
  xbin = "xmedian",
  centers,
  breaks,
  nbins,
  altx,
  stratum = NULL,
  by.strata = TRUE,
  ...
)
```
Arguments

- **tidyvpc object**
 - **...** Other arguments to include
- **bin** Character string indicating binning method or unquoted variable name if binning on x-variable.
- **data** Observed data supplied in observed() function
- **xbin** Character string indicating midpoint type for binning
- **centers** Numeric vector of centers for binning. Use bin = "centers" if supplying centers
- **breaks** Numeric vector of breaks for binning. Use bin = "breaks" if supplying breaks
- **nbins** Numeric number indicating the number of bins to use
- **altx** Unquoted variable name in observed data for alternative x-variable binning
- **stratum** List indicating the name of stratification variable and level if using different binning methods by strata
- **by.strata** Logical indicating whether binning should be performed by strata

Details

This function executes binning methods available in classInt i.e. "jenks", "kmeans", "sd", "pretty", "pam", "kmeans", "hclust", "belclust", "fisher", and "dpih". You may also bin directly on x-variable or alternatively specify "centers" or "breaks". For explanation of binning methods see classIntervals

Value

Updates tidyvpcobj with data.frame containing bin information including left/right boundaries and midpoint as specified in xbin argument

See Also

observed simulated censoring predcorrect stratify binless vpcstats

Examples

```r
# Binning on x-variable NTIME
vpc <- observed(obs_data, x=TIME, y=DV) %>%
  simulated(sim_data, y=DV) %>%
  binning(bin = NTIME) %>%
  vpcstats()

# Binning using ntile and xmean for midpoint
vpc <- observed(obs_data, x=TIME, y=DV) %>%
  simulated(sim_data, y=DV) %>%
  binning(bin = "ntile", nbins = 8, xbin = "xmean") %>%
  vpcstats()

# Binning using centers
vpc <- observed(obs_data, x=TIME, y=DV) %>%
binningfunctions

```r
simulated(sim_data, y=DV) %>%
 binning(bin = "centers", centers = c(1,3,5,7)) %>%
 vpcstats()

Different Binning for each level of Strata
vpc <- observed(obs_data, x=TIME, y=DV) %>%
 simulated(sim_data, y=DV) %>%
 stratify(~ GENDER) %>%
 binning(stratum = list(GENDER = "M"), bin = "jenks", nbins = 5, by.strata = TRUE) %>%
 binning(stratum = list(GENDER = "F"), bin = "pam", nbins = 4, by.strata = TRUE) %>%
 vpcstats()
```

---

**binningfunctions**  
Different functions that perform binning.

**Description**

Different functions that perform binning.

**Usage**

- `cut_at(breaks)`
- `nearest(centers)`
- `bin_by_ntile(nbins)`
- `bin_by_ecut(nbins)`
- `bin_by_pam(nbins)`
- `bin_by_classInt(style, nbins = NULL)`

**Arguments**

- `breaks`: A numeric vector of values that designate cut points between bins.
- `centers`: A numeric vector of values that designate the center of each bin.
- `nbins`: The number of bins to split the data into.
- `style`: A binning style (see `?classInt::classIntervals` for details).

**Value**

Each of these functions returns a function of a single numeric vector ‘x’ that assigns each value of ‘x’ to a bin.
Examples

```r
x <- c(rnorm(10, 1, 1), rnorm(10, 3, 2), rnorm(20, 5, 3))
centers <- c(1, 3, 5)
nearest(c(1, 3, 5))(x)

breaks <- c(2, 4)
cut_at(breaks)(x)

bin_by_eqcut(nbins=4)(x)
bin_by_ntile(nbins=4)(x)

bin_by_pam(nbins=4)(x)
bin_by_classInt("pretty", nbins=4)(x)
```

Description

Censoring observed data for Visual Predictive Check (VPC)

Usage

```r
censoring(o, ...)
```

## S3 method for class 'tidyvpcobj'
censoring(o, blq, lloq, alq, uloq, data = o$data, ...)

Arguments

- **o**: tidyvpc object
- **...**: Other arguments to include
- **blq**: blq variable if present in observed data
- **lloq**: lloq variable if present in observed data. Use numeric to specify lloq value
- **alq**: logical variable indicating above limit of quantification
- **uloq**: number or numeric variable in data indicating the upper limit of quantification
- **data**: observed data supplied in observed() function

Details

Specify censoring variables or censoring value for VPC using this function
check_order

Value
Updates obs data.frame in tidypcobj with censored values for observed data which includes lloq and uloq specified values for lower/upper limit of quantification. Logicals for blq and alq are returned which indicate whether the DV value lies below/above limit of quantification.

See Also
observed simulated stratify predcorrect binning binless vpcstats

Examples
obs_data <- as.data.table(tidyvpc::obs_data)
sim_data <- as.data.table(tidyvpc::sim_data)

vpc <- observed(obs_data, x=TIME, y=DV) %>%
  simulated(sim_data, y=DV) %>%
  censoring(blq=(DV < 50), lloq=50) %>%
  binning(bin = "pam", nbins = 5) %>%
  vpcstats()

#Using LLOQ variable in data with different values of LLOQ by Study:
obs_data$LLOQ <- obs_data[, ifelse(STUDY == "Study A", 50, 25)]

vpc <- observed(obs_data, x=TIME, y=DV) %>%
  simulated(sim_data, y=DV) %>%
  censoring(blq=(DV < LLOQ), lloq=LLOQ) %>%
  stratify(~ STUDY) %>%
  binning(bin = "kmeans", nbins = 4) %>%
  vpcstats()
Details
The consistency check is performed by comparing a combination of unique subject identifier (ID) and time. Both `data.frame`s must be given with those in positions 1 and 2 respectively.

Value
The number of replicates contained in `sim`.

See Also
`observed`, `simulated`.

Examples

```r
library(vpc)

exampleobs <- as.data.table(vpc::simple_data$obs)[MDV == 0]
examplesim <- as.data.table(vpc::simple_data$sim)[MDV == 0]

check_order(exampleobs[, .(ID, TIME)], examplesim[, .(ID, TIME)])
```

---

**generics**

*Perform a Visual Predictive Check (VPC) computation*

Description
These functions work together to calculate the statistics that are plotted in a VPC. They would typically be chained together using the "pipe" operator (see Examples).

Arguments
- `o` An object.
- `...` Additional arguments.
nopredcorrect

Description
No pred correction for Visual Predictive Check (VPC)

Usage
nopredcorrect(o, ...)

## S3 method for class 'tidyvpcobj'
nopredcorrect(o, ...)

Arguments
  o  tidyvpcobj
  ...  other arguments to include

Details
Optional function to use indicating no pred correction for VPC.

observed

Description
Specify observed dataset and variables for VPC

Usage
observed(o, ...)

## S3 method for class 'data.frame'
observed(
  o,
  x,
  yobs,
  pred = NULL,
  blq = NULL,
  lloq = -Inf,
  alq = NULL,
  uloq = Inf,
  ...
)

Arguments

- `o`: data.frame or data.table of observation data
- `...`: other arguments
- `x`: numeric x-variable, typically named TIME
- `yobs`: numeric y-variable, typically named DV
- `pred`: population prediction variable, typically named PRED
- `blq`: logical variable indicating below limit of quantification
- `lloq`: number or numeric variable in data indicating the lower limit of quantification
- `alq`: logical variable indicating above limit of quantification
- `uloq`: number or numeric variable in data indicating the upper limit of quantification

Details

The observed function is the first function in the vpc piping chain and is used for specifying observed data and variables for VPC. Note: Observed data must not contain missing DV and may require subsetting `MDV == 0` before generating VPC.

Value

A tidyvpcobj containing both original data and observed data formatted with x & y variables as specified in function. Resulting data is of class data.frame and data.table.

See Also

simulated censoring stratify predcorrect binning binless vpcstats

Examples

```r
obs_data <- as.data.table(tidyvpc::obs_data)
sim_data <- as.data.table(tidyvpc::sim_data)
obs_data <- obs_data[MDV == 0]
sim_data <- sim_data[MDV == 0]

vpc <- observed(obs_data, x=TIME, y=DV)
```

Description

An observed dataset from a hypothetical PK model. Altered to include NTIME, GROUP, GENDER.
Usage

obs_data

Format

A data frame with 600 rows and 7 variables:

**ID**  Subject identifier
**TIME**  Time
**DV**  Concentration of drug
**AMT**  Amount of dosage initially administered at DV = 0, TIME = 0
**DOSE**  Dosage amount
**MDV**  Dummy indicating missing dependent variable value
**NTIME**  Nominal Time
**GENDER**  Character variable indicating subject's gender ("M", "F")
**STUDY**  Character variable indicating study type ("Study A", "Study B")

Source

simple_data

Description

Plot a tidyvpcobj.

Usage

```r
S3 method for class 'tidyvpcobj'
plot(
 x,
 ...,
 show.points = TRUE,
 show.boundaries = TRUE,
 show.stats = !is.null(x$stats),
 show.binning = isFALSE(show.stats),
 xlab = NULL,
 ylab = NULL,
 color = c("red", "blue", "red"),
 linetype = c("dotted", "solid", "dashed"),
 legend.position = "top",
 facet.scales = "free",
 custom.theme = "ggplot2::theme_bw"
)
```
Arguments

- `x` A tidyvpcobj object.
- `...` Further arguments can be specified but are ignored.
- `show.points` Should the observed data points be plotted?
- `show.boundaries` Should the bin boundary be displayed?
- `show.stats` Should the VPC stats be displayed?
- `show.binning` Should the binning be displayed by coloring the observed data points by bin?
- `xlab` A character label for the x-axis.
- `ylab` A character label for the y-axis.
- `color` A character vector of colors for the percentiles, from low to high.
- `linetype` A character vector of linetypes for the percentiles, from low to high.
- `legend.position` A character string specifying the position of the legend.
- `facet.scales` A character string specifying the `scales` argument to use for facetting.
- `custom.theme` A Character string specifying theme from ggplot2 package

Details

Use ggplot2 graphics to plot and customize the appearance of VPC

Value

A 'ggplot' object.

See Also

ggplot

Description

Prediction corrected Visual Predictive Check (pcVPC)

Usage

```
predcorrect(o, ...)
```

```
S3 method for class 'tidyvpcobj'
predcorrect(o, pred, data = o$data, ..., log = FALSE)
```
predcorrect

Arguments

- `tidyvpc` object
- Other arguments to include
- prediction variable in observed data
- observed data supplied in observed() function
- logical indicating whether DV was modeled in logarithmic scale

Details

Specify prediction variable for pcVPC

Value

Updates tidyvpcobj with required information to performing prediction correction which include predcor logical indicating whether prediction corrected VPC is to be performed, predcor.log logical indicating whether the DV is on a log-scale, and the pred prediction column from the original data.

See Also

observed simulated censoring stratify binning binless vpcstats

Examples

```r
obs_data <- data.table::as.data.table(tidyvpc::obs_data)
sim_data <- data.table::as.data.table(tidyvpc::sim_data)

obs_data <- obs_data[MDV == 0]
sim_data <- sim_data[MDV == 0]

Add PRED variable to observed data from first replicate of
simulated data

obs_data$PRED <- sim_data[REP == 1, PRED]

vpc <- observed(obs_data, x=TIME, y=DV) %>%
simulated(sim_data, y=DV) %>%
binning(bin = NTIME) %>%
predcorrect(pred=PRED) %>%
vpcstats()

For binless loess prediction corrected, use predcorrect() before
binless() and set loess.ypc = TRUE

vpc <- observed(obs_data, x=TIME, y=DV) %>%
simulated(sim_data, y=DV) %>%
predcorrect(pred=PRED) %>%
binless(loess.ypc = TRUE) %>%
```
print.tidyvpcobj  

Print a tidyvpcobj.

Description

Print a tidyvpcobj.

Usage

## S3 method for class 'tidyvpcobj'
print(x, ...)

Arguments

x  
An object.

...  
Further arguments can be specified but are ignored.

Value

Returns x invisibly.

runShinyVPC  

Run Shiny app for tidyvpc

Description

Run Shiny app for tidyvpc

Usage

runShinyVPC()

Details

Use this function to run Shiny application to parameterize VPC from a GUI and generate corresponding tidyvpc code to derive VPC.

See Also

Shiny-VPC GitHub
simulated

observed

Description

Specify simulated dataset and variables for VPC

Usage

simulated(o, ...)

## S3 method for class 'tidyvpcobj'
simulated(o, data, ysim, ...)

Arguments

- `o`: tidyvpcobj
- `...`: other arguments
- `data`: data.frame or data.table of simulated data
- `ysim`: numeric y-variable, typically named DV

Details

The simulated function is used for specifying simulated input data and variables for VPC. Note: Simulated data must not contain missing DV and may require subsetting $MDV == 0$ before generating VPC. The ordering of observed and simulated data must also be consistent, with replicates in simulated data stacked on top of each other.

Value

A tidyvpcobj containing simulated dataset sim formatted with columns x, y, and repl which indicates the replicate number. The column x is used from the observed() function. Resulting dataset is of class data.frame and data.table.

See Also

observed censoring stratify predcorrect binning binless vpcstats

Examples

```r
vpc <- observed(obs_data, x=TIME, y=DV) %>%
simulated(sim_data, y=DV)
```
### sim_data

**Example simulated data from vpc package.**

**Description**

A simulated dataset from a hypothetical PK model with 100 replicates.

**Usage**

`sim_data`

**Format**

A data frame with 60000 rows and 10 variables:

- **ID**: Subject identifier
- **REP**: Replicate num for simulation
- **TIME**: Time
- **DV**: Concentration of drug
- **IPRED**: Individual prediction variable
- **PRED**: Population prediction variable
- **AMT**: Amount of dosage initially administered at DV = 0, TIME = 0
- **DOSE**: Dosage amount
- **MDV**: Dummy indicating missing dependent variable value
- **NTIME**: Nominal Time

**Source**

`simple_data`

---

### stratify

**stratify**

**Description**

Stratification for Visual Predictive Check (VPC)

**Usage**

`stratify(o, ...)`

```r
S3 method for class 'tidyvpcobj'
stratify(o, formula, data = o$data, ...)
```
Arguments

- tidyvpc object
- Other arguments to include
- formula for stratification
- Observed data supplied in observed() function

Details

specify stratification variables for VPC using this function

Value

Returns updated tidyvpcobj with stratification formula, stratification column(s), and strat.split datasets which is obs split by unique levels of stratification variable(s). Resulting datasets are of class object data.frame and data.table.

See Also

observed simulated censoring predcorrect binning binless vpcstats

Examples

vpc <- observed(obs_data, x=TIME, y=DV) %>%
simulated(sim_data, y=DV) %>%
stratify(~ GENDER) %>%
binning(NTIME) %>%
vpcstats()

# Example with 2-way stratification by GENDER and STUDY.

vpc <- vpc %>%
stratify(~ GENDER + STUDY) %>%
binning(bin = "centers", centers = c(1,3,5,7,10)) %>%
vpcstats()
Usage

vpcstats(o, ...)

## S3 method for class 'tidyvpcobj'

vpcstats(
  o,
  qpred = c(0.05, 0.5, 0.95),
  ...,
  conf.level = 0.95,
  quantile.type = 7
)

Arguments

  o           tidyvpc object
  ...         Other arguments to include
  qpred       Numeric vector of length 3 specifying quantile prediction interval
  conf.level  Numeric specifying confidence level
  quantile.type Numeric indicating quantile type. See quantile

Details

Compute predictional interval statistics for VPC

Value

Updates tidyvpcobj with stats data.table object which contains the following columns:

  - bin: the resulting bin value as specified in ‘binning()’ function
  - xbin: the midpoint x-value of the observed data points in the bin as specified in ‘xbin’ argument of ‘binning()’ function
  - qname: the quantiles specified in 'qpred'
  - y: the observed y value for the specified quantile
  - lo: the lower bound of specified confidence interval for y value in simulated data
  - md: the median y value in simulated data
  - hi: the upper bound of specified confidence interval for y value in simulated data

See Also

observed simulated censoring stratify binning binless predcorrect
Index

* datasets
  obs_data, 12
  sim_data, 18

bin_by_classInt (binningfunctions), 7
bin_by_eqcut (binningfunctions), 7
bin_by_ntile (binningfunctions), 7
bin_by_pam (binningfunctions), 7
bininfo, 2
binless, 3, 6, 9, 12, 15, 17, 19, 20
binning, 4, 5, 9, 12, 15, 17, 19, 20
binningfunctions, 7

censoring, 4, 6, 8, 12, 15, 17, 19, 20
check_order, 9
classIntervals, 6
cut_at (binningfunctions), 7
generics, 10

nearest (binningfunctions), 7
nopredcorrect, 11

obs_data, 12
observed, 4, 6, 9, 10, 11, 15, 17, 19, 20

plot.tidyvpcobj, 13
predcorrect, 4, 6, 9, 12, 14, 17, 19, 20
print.tidyvpcobj, 16

quantile, 20

runShinyVPC, 16

sim_data, 18
simple_data, 13, 18
simulated, 4, 6, 9, 10, 12, 15, 17, 19, 20
stratify, 4, 6, 9, 12, 15, 17, 18, 20
vpcstats, 4, 6, 9, 12, 15, 17, 19, 19