Package ‘timereg’

January 14, 2019

Title Flexible Regression Models for Survival Data
Version 1.9.3
Date 2019-01-25
Author Thomas Scheike with contributions from Torben Martinussen, Jeremy Silver and Klaus Holst
Maintainer Thomas Scheike <ts@biostat.ku.dk>

LazyLoad yes

URL https://github.com/scheike/timereg.git
Depends R (>= 2.15), survival
Imports lava, numDeriv, stats, graphics, grDevices, utils, methods
Suggests mets,
License GPL (>= 2)
RoxygenNote 6.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-01-14 10:30:03 UTC

R topics documented:

 aalen ... 3
 bmt ... 6
 cause.pchazard.sim .. 7
 cd4 ... 8
 comp.risk .. 9
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>15</td>
</tr>
<tr>
<td>cox</td>
<td>15</td>
</tr>
<tr>
<td>cox.aalen</td>
<td>16</td>
</tr>
<tr>
<td>cox.ipw</td>
<td>20</td>
</tr>
<tr>
<td>csl</td>
<td>21</td>
</tr>
<tr>
<td>cum.residuals</td>
<td>22</td>
</tr>
<tr>
<td>diabetes</td>
<td>24</td>
</tr>
<tr>
<td>dynreg</td>
<td>24</td>
</tr>
<tr>
<td>Event</td>
<td>28</td>
</tr>
<tr>
<td>event.split</td>
<td>29</td>
</tr>
<tr>
<td>Gprop.odds</td>
<td>30</td>
</tr>
<tr>
<td>invsubdist</td>
<td>33</td>
</tr>
<tr>
<td>krylow.pls</td>
<td>36</td>
</tr>
<tr>
<td>mela.pop</td>
<td>37</td>
</tr>
<tr>
<td>melanoma</td>
<td>38</td>
</tr>
<tr>
<td>mypbc</td>
<td>38</td>
</tr>
<tr>
<td>pava.pred</td>
<td>39</td>
</tr>
<tr>
<td>pc.hazard</td>
<td>40</td>
</tr>
<tr>
<td>pe.sasieni</td>
<td>41</td>
</tr>
<tr>
<td>plot.aalen</td>
<td>43</td>
</tr>
<tr>
<td>plot.cum.residuals</td>
<td>44</td>
</tr>
<tr>
<td>plot.dynreg</td>
<td>46</td>
</tr>
<tr>
<td>predict.timereg</td>
<td>47</td>
</tr>
<tr>
<td>prep.comp.risk</td>
<td>50</td>
</tr>
<tr>
<td>print.aalen</td>
<td>52</td>
</tr>
<tr>
<td>prop</td>
<td>53</td>
</tr>
<tr>
<td>prop.excess</td>
<td>53</td>
</tr>
<tr>
<td>prop.odds</td>
<td>55</td>
</tr>
<tr>
<td>prop.odds.subdist</td>
<td>58</td>
</tr>
<tr>
<td>pval</td>
<td>61</td>
</tr>
<tr>
<td>qcut</td>
<td>62</td>
</tr>
<tr>
<td>recurrent.marginal.coxmean</td>
<td>62</td>
</tr>
<tr>
<td>recurrent.marginal.mean</td>
<td>64</td>
</tr>
<tr>
<td>res.mean</td>
<td>65</td>
</tr>
<tr>
<td>restricted.residual.mean</td>
<td>69</td>
</tr>
<tr>
<td>sim.cause.cox</td>
<td>71</td>
</tr>
<tr>
<td>sim.cif</td>
<td>72</td>
</tr>
<tr>
<td>sim.cox</td>
<td>75</td>
</tr>
<tr>
<td>simsubdist</td>
<td>76</td>
</tr>
<tr>
<td>summary.aalen</td>
<td>78</td>
</tr>
<tr>
<td>summary.cum.residuals</td>
<td>79</td>
</tr>
<tr>
<td>timecox</td>
<td>80</td>
</tr>
<tr>
<td>TRACE</td>
<td>82</td>
</tr>
<tr>
<td>two.stage</td>
<td>83</td>
</tr>
<tr>
<td>wald.test</td>
<td>86</td>
</tr>
</tbody>
</table>

Index 88
Description

Fits both the additive hazards model of Aalen and the semi-parametric additive hazards model of McKeague and Sasieni. Estimates are un-weighted. Time dependent variables and counting process data (multiple events per subject) are possible.

Usage

```r
aalen(formula = formula(data), data = sys.parent(), start.time = 0,
max.time = NULL, robust = 1, id = NULL, clusters = NULL,
residuals = 0, n.sim = 1000, weighted.test = 0, covariance = 0,
resample.iid = 0, delta.weight = 1, silent = 1, weights = NULL,
max.clust = 1000, gamma = NULL, offsets = 0, caseweight = NULL)
```

Arguments

- `formula`: a formula object with the response on the left of a `~` operator, and the independent terms on the right as regressors. The response must be a survival object as returned by the `Surv` function. Time- invariant regressors are specified by the wrapper `const()`, and cluster variables (for computing robust variances) by the wrapper `cluster()`.
- `data`: a data.frame with the variables.
- `start.time`: start of observation period where estimates are computed.
- `max.time`: end of observation period where estimates are computed. Estimates thus computed from [start.time, max.time]. Default is max of data.
- `robust`: to compute robust variances and construct processes for resampling. May be set to 0 to save memory.
- `id`: For time-varying covariates the variable must associate each record with the id of a subject.
- `clusters`: cluster variable for computation of robust variances.
- `residuals`: to return residuals that can be used for model validation in the function `cum.residuals`.
- `n.sim`: number of simulations in resampling.
- `weighted.test`: to compute a variance weighted version of the test-processes used for testing time-varying effects.
- `covariance`: to compute covariance estimates for nonparametric terms rather than just the variances.
- `resample.iid`: to return i.i.d. representation for nonparametric and parametric terms.
- `delta.weight`: uses weights to estimate semiparametric model, under construction, default=1 is standard least squares estimates.
silent set to 0 to print warnings for non-inverible design-matrices for different time-points, default is 1.

weights weights for estimating equations.

max.clust sets the total number of i.i.d. terms in i.i.d. decompostition. This can limit the amount of memory used by coarsening the clusters. When NULL then all clusters are used. Default is 1000 to save memory and time.

gamma fixes gamme at this value for estimation.

offsets offsets for the additive model, to make excess risk modelling.

caseweight caseweight: multiplied onto dN for score equations.

Details

Resampling is used for computing p-values for tests of time-varying effects.
The modelling formula uses the standard survival modelling given in the survival package.
The data for a subject is presented as multiple rows or 'observations', each of which applies to an interval of observation (start, stop]. For counting process data with the)start,stop] notation is used, the 'id' variable is needed to identify the records for each subject. The program assumes that there are no ties, and if such are present random noise is added to break the ties.

Value

returns an object of type "aalen". With the following arguments:

cum cumulative timevarying regression coefficient estimates are computed within the estimation interval.

var.cum the martingale based pointwise variance estimates for cumulatives.

robvar.cum robust pointwise variances estimates for cumulatives.

gamma estimate of parametric components of model.

var.gamma variance for gamma.

robvar.gamma robust variance for gamma.

residuals list with residuals. Estimated martingale increments (dM) and corresponding time vector (time).

obs.testBeq0 observed absolute value of supremum of cumulative components scaled with the variance.

pval.testBeq0 p-value for covariate effects based on supremum test.

sim.testBeq0 resampled supremum values.

obs.testBeqC observed absolute value of supremum of difference between observed cumulative process and estimate under null of constant effect.

pval.testBeqC p-value based on resampling.

sim.testBeqC resampled supremum values.

obs.testBeqC.is observed integrated squared differences between observed cumulative and estimate under null of constant effect.
pval.test
p-value based on resampling.
sim.test
resampled supremum values.
covariance
list of 50 random realizations of test-processes under null based on resampling.
B.iid
Resample processes for nonparametric terms of model.
gamma.iid
Resample processes for parametric terms of model.
deviance
Least squares of increments.

Author(s)
Thomas Scheike

References

Examples

data(sTRACE)
Fits Aalen model
out <- aalen(Surv(time, status==9)~age+sex+diabetes+chf+vf,
sTRACE, max.time=7, n.sim=100)

summary(out)
par(mfrow=c(2,3))
plot(out)

Fits semi-parametric additive hazards model
out <- aalen(Surv(time, status==9)~const(age)+const(sex)+const(diabetes)+chf+vf,
sTRACE, max.time=7, n.sim=100)

summary(out)
par(mfrow=c(2,3))
plot(out)

Excess risk additive modelling
data(mela.pop)
dummy <- rnorm(nrow(mela.pop));

Fits Aalen model with offsets
out <- aalen(Surv(start, stop, status==1)~age+sex+const(dummy),
mela.pop, max.time=7, n.sim=100, offsets=mela.pop$rate, id=mela.pop$id,
bmt

The Bone Marrow Transplant Data

Description

Bone marrow transplant data with 408 rows and 5 columns.

Format

The data has 408 rows and 5 columns.

- **cause**: a numeric vector code. Survival status. 1: dead from treatment related causes, 2: relapse, 0: censored.
- **time**: a numeric vector. Survival time.
- **platelet**: a numeric vector code. Platelet: 1: more than 10^9 per L, 0: less.
- **tcell**: a numeric vector. T-cell depleted BMT: 1:yes, 0:no.
- **age**: a numeric vector code. Age of patient, scaled and centered ((age-35)/15).

Source

Simulated data

References

NN

Examples

data(bmt)
names(bmt)
cause.pchazard.sim
Simulation of Piecewise constant hazard models with two causes (Cox).

Description
Simulates data from piecewise constant baseline hazard that can also be of Cox type. Censor data at highest value of the break points.

Usage
```R  
cause.pchazard.sim(cumhaz1, cumhaz2, rr1, rr2, cens = NULL, rrc = NULL,  
cens.cum.hazard = TRUE, ...)  
```

Arguments
- `cumhaz1`: cumulative hazard of cause 1
- `cumhaz2`: cumulative hazard of cause 1
- `rr1`: number of simulations or vector of relative risk for simulations.
- `rr2`: number of simulations or vector of relative risk for simulations.
- `cens`: to censor further
- `rrc`: relative risk for censoring.
- `cens.cum.hazard`: possible cumulative hazard for censoring.
- `...`: arguments for pc.hazard

Author(s)
Thomas Scheike

Examples
```R  
data(TRACE)  
cox1 <- cox.aalen(Surv(time, status==9)-prop(vf)+prop(chf)+prop(wmi),  
data=TRACE, robust=0)  
cox2 <- cox.aalen(Surv(time, status==0)-prop(vf)+prop(chf)+prop(wmi),  
data=TRACE, robust=0)  
X1 <- TRACE[,c("vf","chf","wmi")]
  n <- 1000
  xid <- sample(1:nrow(X1),n,replace=TRUE)
  Z1 <- X1[xid,]
  Z2 <- X1[xid,]
  rr1 <- exp(as.matrix(Z1) %*% cox1$gamma)
  rr2 <- exp(as.matrix(Z2) %*% cox2$gamma)  
```
The multicenter AIDS cohort study

Description

CD4 counts collected over time.

Format

This data frame contains the following columns:

- **obs**: a numeric vector. Number of observations.
- **id**: a numeric vector. Id of subject.
- **visit**: a numeric vector. Timings of the visits in years.
- **smoke**: a numeric vector code. 0: non-smoker, 1: smoker.
- **age**: a numeric vector. Age of the patient at the start of the trial.
- **cd4**: a numeric vector. CD4 percentage at the current visit.
- **cd4.prev**: a numeric vector. CD4 level at the preceding visit.
- **precd4**: a numeric vector. Post-infection CD4 percentage.
- **lt**: a numeric vector. Gives the starting time for the time-intervals.
- **rt**: a numeric vector. Gives the stopping time for the time-interval.

Source

References

Kaslow et al. (1987), The multicenter AIDS cohort study: rational, organisation and selected characteristics of the participants. Am. J. Epidemiology 126, 310–318.
comp.risk

Description

Fits a semiparametric model for the cause-specific quantities:

\[P(T < t, cause = 1|x, z) = P_1(t, x, z) = h(g(t, x, z)) \]

for a known link-function \(h() \) and known prediction-function \(g(t, x, z) \) for the probability of dying from cause 1 in a situation with competing causes of death.

Usage

```r
comp.risk(formula, data = sys.parent(), cause, times = NULL,
Nit = 50, clusters = NULL, est = NULL, fix.gamma = 0,
gamma = 0, n.sim = 0, weighted = 0, model = "fg", detail = 0,
interval = 0.01, resample.iid = 1, cens.model = "KM",
cens.formula = NULL, time.pow = NULL, time.pow.test = NULL,
silent = 1, conv = 1e-06, weights = NULL, max.clust = 1000,
n.times = 50, first.time.p = 0.05, estimator = 1, trunc.p = NULL,
cens.weights = NULL, admin.cens = NULL, conservative = 1,
monotone = 0, step = NULL)
```

Arguments

- **formula**: a formula object, with the response on the left of a `~` operator, and the terms on the right. The response must be a survival object as returned by the `Event` function. The status indicator is not important here. Time-invariant regressors are specified by the wrapper `const()`, and cluster variables (for computing robust variances) by the wrapper `cluster()`.

- **data**: a data.frame with the variables.

- **cause**: specifies the cause we consider.

- **times**: specifies the times at which the estimator is considered. Defaults to all the times where an event of interest occurs, with the first 10 percent or max 20 jump points removed for numerical stability in simulations.

- **Nit**: number of iterations for Newton-Raphson algorithm.

- **clusters**: specifies cluster structure, for backwards compatibility.

- **est**: possible starting value for nonparametric component of model.

- **fix.gamma**: to keep gamma fixed, possibly at 0.

- **gamma**: starting value for constant effects.
n.sim
number of simulations in resampling.

weighted
Not implemented. To compute a variance weighted version of the test-processes used for testing time-varying effects.

model
"additive", "prop"ortional, "rcif", or "logistic".

detail
if 0 no details are printed during iterations, if 1 details are given.

interval
specifies that we only consider timepoints where the Kaplan-Meier of the censoring distribution is larger than this value.

resample.iid
to return the iid decomposition, that can be used to construct confidence bands for predictions

cens.model
specified which model to use for the ICPW, KM is Kaplan-Meier alternatively it may be "cox"

cens.formula
specifies the regression terms used for the regression model for chosen regression model. When cens.model is specified, the default is to use the same design as specified for the competing risks model.

time.pow
specifies that the power at which the time-arguments is transformed, for each of the arguments of the const() terms, default is 1 for the additive model and 0 for the proportional model.

time.pow.test
specifies that the power the time-arguments is transformed for each of the arguments of the non-const() terms. This is relevant for testing if a coefficient function is consistent with the specified form $A_l(t)=\beta_l t^{\text{time.pow.test}(l)}$. Default is 1 for the additive model and 0 for the proportional model.

silent
if 0 information on convergence problems due to non-invertible derivatives of scores are printed.

cov
of convergence criteria in terms of sum of absolute change of parameters of model

weights
weights for estimating equations.

max.clust
sets the total number of i.i.d. terms in i.i.d. decomposition. This can limit the amount of memory used by coarsening the clusters. When NULL then all clusters are used. Default is 1000 to save memory and time.

n.times
only uses 50 points for estimation, if NULL then uses all points, subject to p.start condition.

first.time.p
first point for estimation is pth percentile of cause jump times.

default estimator is 1.

trunc.p
truncation weight for delayed entry, $P(T > \text{entry.time} \mid Z_i)$, typically Cox model.

cens.weights
censoring weights can be given here rather than calculated using the KM, cox or aalen models.

admin.cens
censoring times for the administrative censoring

conservative
set to 0 to compute correct variances based on censoring weights, default is conservative estimates that are much quicker.

monotone
monotone=0, uses estimating equations

\[(D_n \beta_1) w(t) (Y(t) / G_c(t) - P_1(t, X))and\]

montone 1 uses

\[w(t) (Y(t) / G_c(t) - P_1(t, X))and\]
step size for Fisher-Scoring algorithm.

Details

We consider the following models: 1) the additive model where \(h(x) = 1 - \exp(-x) \) and

\[
g(t, x, z) = x^T A(t) + (\text{diag}(t^p)z)^T \beta
\]

2) the proportional setting that includes the Fine & Gray (FG) "prop" model and some extensions where \(h(x) = 1 - \exp(-\exp(x)) \) and

\[
g(t, x, z) = (x^T A(t)) \exp((\text{diag}(t^p)z)^T \beta)
\]

The FG model is obtained when \(x = 1 \), but the baseline is parametrized as \(\exp(A(t)) \).

The "fg" model is a different parametrization that contains the FG model, where \(h(x) = 1 - \exp(-x) \) and

\[
g(t, x, z) = (x^T A(t)) \exp((\text{diag}(t^p)z)^T \beta)
\]

The FG model is obtained when \(x = 1 \).

3) a "logistic" model where \(h(x) = \exp(x)/(1 + \exp(x)) \) and

\[
g(t, x, z) = x^T A(t) + (\text{diag}(t^p)z)^T \beta
\]

The "logistic2" is

\[
P_1(t, x, z) = (x^T A(t)) \exp((\text{diag}(t^p)z)^T \beta)/(1 + x^T A(t) \exp((\text{diag}(t^p)z)^T \beta))
\]

The simple logistic model with just a baseline can also be fitted by an alternative procedure that has better small sample properties see prop.odds.subist().

4) the relative cumulative incidence function "rcif" model where \(h(x) = \exp(x) \) and

\[
g(t, x, z) = x^T A(t) + (\text{diag}(t^p)z)^T \beta
\]

The "rcif2"

\[
P_1(t, x, z) = (x^T A(t)) \exp((\text{diag}(t^p)z)^T \beta)
\]

Where \(p \) by default is 1 for the additive model and 0 for the other models. In general \(p \) may be powers of the same length as \(z \).

Since timereg version 1.8.4. the response must be specified with the \texttt{Event} function instead of the \texttt{Surv} function and the arguments. For example, if the old code was

\[
\texttt{comp.risk(Surv(time,cause>0)~x1+x2,data=mydata,cause=mydata$cause,causeS=1)}
\]

the new code is

\[
\texttt{comp.risk(Event(time,cause)~x1+x2,data=mydata,cause=1)}
\]

Also the argument cens.code is now obsolete since cens.code is an argument of \texttt{Event}.
Value

returns an object of type ‘comprisk’. With the following arguments:

cumcumulative timevarying regression coefficient estimates are computed within the estimation interval.
var.cumpointwise variances estimates.
gammaestimate of proportional odds parameters of model.
var.gammavariance for gamma.
scoresum of absolute value of scores.
gamma2estimate of constant effects based on the non-parametric estimate. Used for testing of constant effects.
obs.testBeqOobserved absolute value of supremum of cumulative components scaled with the variance.
pval.testBeqOp-value for covariate effects based on supremum test.
obs.testBeqCobserved absolute value of supremum of difference between observed cumulative process and estimate under null of constant effect.
pval.testBeqCp-value based on resampling.
obs.testBeqC.isobserved integrated squared differences between observed cumulative and estimate under null of constant effect.
pval.testBeqC.isp-value based on resampling.
conf.bandresampling based constant to construct 95% uniform confidence bands.
b.iidlist of iid decomposition of non-parametric effects.
gamma.iidmatrix of iid decomposition of parametric effects.
test.procBeqCobserved test process for testing of time-varying effects
sim.test.procBeqC50 resample processes for for testing of time-varying effects
convinformation on convergence for time points used for estimation.

Author(s)

Thomas Scheike

References

Scheike, Zhang and Gerds (2008), Predicting cumulative incidence probability by direct binomial regression, Biometrika, 95, 205-220.
Examples

data(bmt);

clust <- rep(1:204,each=2)
addclust<-comp.risk(Event(time,cause)=platelet+age+tcell+cluster(clust),data=bmt, cause=1,resample.id=1,n.sim=100,model="additive")
##
addclust<-comp.risk(Event(time,cause)=+1+cluster(clust),data=bmt,cause=1, resample.id=1,n.sim=100,model="additive")
pad <- predict(addclust,X=1)
plot(pad)

add<-comp.risk(Event(time,cause)=platelet+age+tcell,data=bmt, cause=1,resample.id=1,n.sim=100,model="additive")
summary(add)

par(mfrow=c(2,4))
plot(add);
to plot score functions for test

ndata<-data.frame(platelet=c(1,0,0),age=c(0,1,0),tcell=c(0,0,1))
par(mfrow=c(2,3))
out<-predict(add,ndata,uniform=1,n.sim=100)
par(mfrow=c(2,2))
plot(out,multiple=0,uniform=1,col=1:3,lty=1,se=1)

add<-comp.risk(Event(time,cause)=platelet+age+tcell,data=bmt, cause=1,resample.id=0,n.sim=0,cens.model="cox", cens.formula="factor(platelet),model="additive")

out<-predict(add,ndata,se=0,uniform=0)
par(mfrow=c(2,2))
plot(out,multiple=0,se=0,uniform=0,col=1:3,lty=1)

fits additive model with some constant effects
add.sem<-comp.risk(Event(time,cause)= const(platelet)+const(age)+const(tcell),data=bmt, cause=1,resample.id=1,n.sim=100,model="additive")
summary(add.sem)

out<-predict(add.sem,ndata,uniform=1,n.sim=100)
par(mfrow=c(2,2))
plot(out,multiple=0,uniform=1,col=1:3,lty=1,se=0)

Fine & Gray model
fg<-comp.risk(Event(time,cause)= const(platelet)+const(age)+const(tcell),data=bmt, cause=1,resample.id=1,model="fg",n.sim=100)
summary(fg)
out<-predict(fg,ndata,uniform=1,n.sim=100)

par(mfrow=c(2,2))
plot(out,multiple=1,uniform=0,col=1:3,lty=1,se=0)

extended model with time-varying effects
fg.npar<-comp.risk(Event(time,cause)+platelet+age+const(tcell), data=bmt,cause=1,resample.iid=1,model="prop",n.sim=100)
summary(fg.npar);

out<-predict(fg.npar,ndata,uniform=1,n.sim=100)
head(out$P[,1:5]); head(out$se.P[,1:5])

par(mfrow=c(2,2))
plot(out,multiple=1,uniform=0,col=1:3,lty=1,se=0)

Fine & Gray model with alternative parametrization for baseline
fg2<-comp.risk(Event(time,cause)+const(platelet)+const(age)+const(tcell),data=bmt, cause=1,resample.iid=1,model="prop",n.sim=100)
summary(fg2)

Delayed entry models,
Delayed entry models,
Delayed entry models,
nn <- nrow(bmt)
entrytime <- rbinom(nn,1,0.5)*(bmt$time+runif(nn))
bmt$entrytime <- entrytime
times <- seq(5,70,by=1)

bmtw <- prep.comp.risk(bmt,times=times,time="time",entrytime="entrytime",cause="cause")

non-parametric model
outnp <- comp.risk(Event(time,cause)+tcell+platelet+const(age),
 data=bmtw,cause=1,fix.gamma=1,gamma=0,
 cens.weights=bmtw$weights,bmtw$weights,times=times,n.sim=0)
par(mfrow=c(2,2))
plot(outnp)

outnp <- comp.risk(Event(time,cause)+tcell+platelet,
 data=bmtw,cause=1,
 cens.weights=bmtw$weights,bmtw$weights,times=times,n.sim=0)
par(mfrow=c(2,2))
plot(outnp)

semiparametric model
out <- comp.risk(Event(time,cause)+const(tcell)+const(platelet),data=bmtw,cause=1,
 cens.weights=bmtw$weights,bmtw$weights,times=times,n.sim=0)
summary(out)
const

Identifies parametric terms of model

Description
Specifies which of the regressors that have constant effect.

Usage
const(x)

Arguments
x variable

Author(s)
Thomas Scheike

cox

Identifies proportional excess terms of model

Description
Specifies which of the regressors that lead to proportional excess hazard

Usage
cox(x)

Arguments
x variable

Author(s)
Thomas Scheike
Description

Fits an Cox-Aalen survival model. Time dependent variables and counting process data (multiple events per subject) are possible.

Usage

```r
cox.aalen(formula = formula(data), data = sys.parent(), beta = NULL,
  Nit = 20, detail = 0, start.time = 0, max.time = NULL,
  id = NULL, clusters = NULL, n.sim = 500, residuals = 0,
  robust = 1, weighted.test = 0, covariance = 0, resample.iid = 1,
  weights = NULL, rate.sim = 1, beta.fixed = 0, max.clust = 1000,
  exact.deriv = 1, silent = 1, max.timepoint.sim = 100,
  basesim = 0, offsets = NULL, strata = NULL, propodds = 0,
  caseweight = NULL)
```

Arguments

- **formula**
 - a formula object with the response on the left of a ‘~’ operator, and the independent terms on the right as regressors. The response must be a survival object as returned by the ‘Surv’ function. Terms with a proportional effect are specified by the wrapper prop(), and cluster variables (for computing robust variances) by the wrapper cluster().

- **data**
 - a data.frame with the variables.

- **beta**
 - starting value for relative risk estimates.

- **Nit**
 - number of iterations for Newton-Raphson algorithm.

- **detail**
 - if 0 no details is printed during iterations, if 1 details are given.

- **start.time**
 - start of observation period where estimates are computed.

- **max.time**
 - end of observation period where estimates are computed. Estimates thus computed from [start.time, max.time]. Default is max of data.

- **id**
 - For timevarying covariates the variable must associate each record with the id of a subject.

- **clusters**
 - cluster variable for computation of robust variances.

- **n.sim**
 - number of simulations in resampling.

- **residuals**
 - to returns residuals that can be used for model validation in the function cum.residuals. Estimated martingale increments (dM) and corresponding time vector (time). When rate.sim=1 returns estimated martingales, dM_i(t) and if rate.sim=0, returns a matrix of dN_i(t).

- **robust**
 - to compute robust variances and construct processes for resampling. May be set to 0 to save memory and time, in particular for rate.sim=1.
weighted.test to compute a variance weighted version of the test-processes used for testing
time-varying effects.
covariance to compute covariance estimates for nonparametric terms rather than just the
variances.
resample.iid to return i.i.d. representation for nonparametric and parametric terms. based on
counting process or martingale residuals (rate.sim).
weights weights for weighted analysis.
rate.sim rate.sim=1 such that resampling of residuals is based on estimated martingales
and thus valid in rate case, rate.sim=0 means that resampling is based on counting
processes and thus only valid in intensity case.
beta.fixed option for computing score process for fixed relative risk parameter
max.clust sets the total number of i.i.d. terms in i.i.d. decompostition. This can limit
the amount of memory used by coarsening the clusters. When NULL then all
clusters are used. Default is 1000 to save memory and time.
exact.deriv if 1 then uses exact derivative in last iteration, if 2 then uses exact derivative for all
iterations, and if 0 then uses approximation for all computations and there may
be a small bias in the variance estimates. For Cox model always exact and all
options give same results.
silent if 1 then oppresses some output.
max.timepoint.sim considers only this resolution on the time scale for simulations, see time.sim.resolution
argument
basesim 1 to get simulations for cumulative baseline, including tests for contant effects.
offsets offsets for analysis on log-scale. RR=exp(offsets+ x beta).
strata future option for making strata in a different day than through X design in cox-
aalen model (~-1+factor(strata)).
propodds if I will fit the proportional odds model. Slightly less efficient than prop.odds() function but much quicker, for large data this also works.
caseweight these weights have length equal to number of jump times, and are multiplied all
jump times dN. Useful for getting the program to fit for example the proportional
odds model or frailty models.

Details

\[\lambda_i(t) = Y_i(t)(X_i^T(t)\alpha(t)) \exp(Z_i^T \beta) \]

The model thus contains the Cox’s regression model as special case.
To fit a stratified Cox model it is important to parametrize the baseline appropriately (see example
below).
Resampling is used for computing p-values for tests of time-varying effects. Test for proportionality
is considered by considering the score processes for the proportional effects of model.
The modelling formula uses the standard survival modelling given in the survival package.
The data for a subject is presented as multiple rows or 'observations', each of which applies to an interval of observation (start, stop]. For counting process data with the)start,stop] notation is used, the 'id' variable is needed to identify the records for each subject. The program assumes that there are no ties, and if such are present random noise is added to break the ties.

Value

returns an object of type “cox.aalen”. With the following arguments:

- `cum` cumulative timevarying regression coefficient estimates are computed within the estimation interval.
- `var.cum` the martingale based pointwise variance estimates.
- `robvar.cum` robust pointwise variances estimates.
- `gamma` estimate of parametric components of model.
- `var.gamma` variance for gamma sandwhich estimator based on optional variation estimator of score and 2nd derivative.
- `robvar.gamma` robust variance for gamma.
- `residuals` list with residuals.
- `obs.testBeq0` observed absolute value of supremum of cumulative components scaled with the variance.
- `pval.testBeq0` p-value for covariate effects based on supremum test.
- `sim.testBeq0` resampled supremum values.
- `obs.testBeqC` observed absolute value of supremum of difference between observed cumulative process and estimate under null of constant effect.
- `pval.testBeqC` p-value based on resampling.
- `sim.testBeqC` resampled supremum values.
- `obs.testBeqC.is` observed integrated squared differences between observed cumulative and estimate under null of constant effect.
- `pval.testBeqC.is` p-value based on resampling.
- `sim.testBeqC.is` resampled supremum values.
- `conf.band` resampling based constant to construct robust 95% uniform confidence bands.
- `test.procBeqC` observed test-process of difference between observed cumulative process and estimate under null of constant effect over time.
- `sim.test.procBeqC` list of 50 random realizations of test-processes under null based on resampling.
- `covariance` covariances for nonparametric terms of model.
- `B.iid` Resample processes for nonparametric terms of model.
- `gamma.iid` Resample processes for parametric terms of model.
- `loglike` approximate log-likelihood for model, similar to Cox’s partial likelihood. Only computed when robust=1.
Author(s)

Thomas Scheike

References

Examples

library(timereg)
data(stTRACE)
Fits Cox model
out<-cox.aalen(Surv(time,status==9)-prop(age)+prop(sex)+
prop(vf)+prop(chf)+prop(diabetes),data=stTRACE)

makes Lin, Wei, Ying test for proportionality
summary(out)
par(mfrow=c(2,3))
plot(out,score=1)

Fits stratified Cox model
out<-cox.aalen(Surv(time,status==9)-1+factor(vf)+prop(age)+prop(sex)+
prop(chf)+prop(diabetes),data=stTRACE,max.time=7,n.sim=100)
summary(out)
par(mfrow=c(1,2)); plot(out);
Same model, but needs to invert the entire marix for the aalen part: X(t)
out<-cox.aalen(Surv(time,status==9)-factor(vf)+prop(age)+prop(sex)+
prop(chf)+prop(diabetes),data=stTRACE,max.time=7,n.sim=100)
summary(out)
par(mfrow=c(1,2)); plot(out);

Fits Cox-Aalen model
out<-cox.aalen(Surv(time,status==9)-prop(age)+prop(sex)+
vf+chf+prop(diabetes),data=stTRACE,max.time=7,n.sim=100)
summary(out)
par(mfrow=c(2,3))
plot(out)

cox.ipw Missing data IPW Cox

Description

Fits an Cox-Aalen survival model with missing data, with glm specification of probability of missingness.

Usage

cox.ipw(survformula, glmformula, d = sys.parent(), max.clust = NULL,
 ipw.se = FALSE, tie.seed = 100)

Arguments

survformula a formula object with the response on the left of a ‘~’ operator, and the independent terms on the right as regressors. The response must be a survival object as returned by the ‘Surv’ function.
 Adds the prop() wrapper internally for using cox.aalen function for fitting Cox model.

glmformula formula for "being" observed, that is not missing.

d data frame.

max.clust number of clusters in iid approximation. Default is all.

ipw.se if TRUE computes standard errors based on iid decompositon of cox and glm model, thus should be asymptotically correct.

tie.seed if there are ties these are broken, and to get same break the seed must be the same. Recommend to break them prior to entering the program.

Details

Taylor expansion of Cox’s partial likelihood in direction of glm parameters using num-deriv and iid expansion of Cox and glm parameters (lava).

Value

returns an object of type "cox.aalen". With the following arguments:

iid iid decomposition.

coef missing data estiamtes for weighted cox.

var robust pointwise variances estimates.

se robust pointwise variances estimates.

se.naive estimate of parametric components of model.

ties list of ties and times with random noise to break ties.

cox output from weighted cox model.
Author(s)
Thomas Scheike

References
Paik et al.

Examples

```r
### fit <- cox.ipw(Surv(time,status)-X+Z.obs-Z+X+time+status,data=d,ipw.se=TRUE)
### summary(fit)
```

csl

CSL liver chirrosis data

Description

Survival status for the liver chirrosis patients of Schlichting et al.

Format

This data frame contains the following columns:

- **id**: a numeric vector. Id of subject.
- **time**: a numeric vector. Time of measurement.
- **prot**: a numeric vector. Prothrombin level at measurement time.
- **dc**: a numeric vector code. 0: censored observation, 1: died at eventT.
- **eventT**: a numeric vector. Time of event (death).
- **treat**: a numeric vector code. 0: active treatment of prednisone, 1: placebo treatment.
- **sex**: a numeric vector code. 0: female, 1: male.
- **age**: a numeric vector. Age of subject at inclusion time subtracted 60.
- **prot.base**: a numeric vector. Prothrombin base level before entering the study.
- **prot.prev**: a numeric vector. Level of prothrombin at previous measurement time.
- **lt**: a numeric vector. Gives the starting time for the time-intervals.
- **rt**: a numeric vector. Gives the stopping time for the time-intervals.

Source

P.K. Andersen
cum.residuals

References

Examples
data(csl)
names(csl)

cum.residuals

Model validation based on cumulative residuals

Description
Computes cumulative residuals and approximative p-values based on resampling techniques.

Usage
cum.residuals(object, data = sys.parent(), modelmatrix = 0, cum.resid = 1, n.sim = 500, weighted.test = 0, max.point.func = 50, weights = NULL)

Arguments
object: an object of class 'aalen', 'timecox', 'cox.aalen' where the residuals are returned ('residuals=1')
data: data frame based on which residuals are computed.
modelmatrix: specifies a grouping of the data that is used for cumulating residuals. Must have same size as data and be ordered in the same way.
cum.resid: to compute residuals versus each of the continuous covariates in the model.
n.sim: number of simulations in resampling.
weighted.test: to compute a variance weighted version of the test-processes used for testing constant effects of covariates.
max.point.func: limits the amount of computations, only considers a max of 50 points on the covariate scales.
weights: weights for sum of martingale residuals, now for cum.resid=1.

Value
returns an object of type "cum.residuals" with the following arguments:
cum: cumulative residuals versus time for the groups specified by modelmatrix.
var.cum: the martingale based pointwise variance estimates.
robvar.cum: robust pointwise variances estimates of cumulatives.
obs.testBeq0 observed absolute value of supremum of cumulative components scaled with the variance.

pval.testBeq0 p-value covariate effects based on supremum test.

sim.testBeq0 resampled supremum value.

conf.band resampling based constant to construct robust 95% uniform confidence bands for cumulative residuals.

obs.test absolute value of supremum of observed test-process.

pval.test p-value for supremum test statistic.

sim.test resampled absolute value of supremum cumulative residuals.

proc.cumz observed cumulative residuals versus all continuous covariates of model.

sim.test.procumz list of 50 random realizations of test-processes under model for all continuous covariates.

Author(s)
Thomas Scheike

References

Examples

data(sTRACE)
Fits Aalen model and returns residuals
fit<-aalen(Surv(time,status==9)-age+sex+diabetes+chf+vf,
 data=sTRACE,max.time=7,n.sim=0,residuals=1)

constructs and simulates cumulative residuals versus age groups
fit.mg<-cum.residuals(fit,data=sTRACE,n.sim=100,
 model.matrix=model.matrix(~-1+factor(cut(age,4)),sTRACE))

par(mfrow=c(1,4))
cumulative residuals with confidence intervals
plot(fit.mg);
cumulative residuals versus processes under model
plot(fit.mg.score=1);
summary(fit.mg)

cumulative residuals vs. covariates Lin, Wei, Ying style
fit.mg<-cum.residuals(fit,data=sTRACE,cum.resid=1,n.sim=100)

par(mfrow=c(2,4))
plot(fit.mg.score=2)
summary(fit.mg)
The Diabetic Retinopathy Data

Description

The data was collected to test a laser treatment for delaying blindness in patients with diabetic retinopathy. The subset of 197 patients given in Huster et al. (1989) is used.

Format

This data frame contains the following columns:

- **id**: a numeric vector. Patient code.
- **agedx**: a numeric vector. Age of patient at diagnosis.
- **time**: a numeric vector. Survival time: time to blindness or censoring.
- **status**: a numeric vector code. Survival status. 1: blindness, 0: censored.
- **trt.eye**: a numeric vector code. Random eye selected for treatment. 1: left eye 2: right eye.
- **treat**: a numeric vector. 1: treatment 0: untreated.
- **adult**: a numeric vector code. 1: younger than 20, 2: older than 20.

Source

Examples

data(diabetes)
names(diabetes)

dynreg

Fit time-varying regression model

Description

Fits time-varying regression model with partly parametric components. Time-dependent variables for longitudinal data. The model assumes that the mean of the observed responses given covariates is a linear time-varying regression model:

Usage

dynreg(formula, data = sys.parent(), aalenmod, bandwidth = 0.5, id = NULL, bhat = NULL, start.time = 0, max.time = NULL, n.sim = 500, meansub = 1, weighted.test = 0, resample = 0)
Arguments

- **formula**: a formula object with the response on the left of a ‘~’ operator, and the independent terms on the right as regressors.
- **data**: a data.frame with the variables.
- **aalenmod**: Aalen model for measurement times. Specified as a survival model (see aalen function).
- **bandwidth**: bandwidth for local iterations. Default is 50% of the range of the considered observation period.
- **id**: For time-varying covariates the variable must associate each record with the id of a subject.
- **bhat**: initial value for estimates. If NULL local linear estimate is computed.
- **start.time**: start of observation period where estimates are computed.
- **max.time**: end of observation period where estimates are computed. Estimates thus computed from [start.time, max.time]. Default is max of data.
- **n.sim**: number of simulations in resampling.
- **meansub**: if ’1’ then the mean of the responses is subtracted before the estimation is carried out.
- **weighted.test**: to compute a variance weighted version of the test-processes used for testing time-varying effects.
- **resample**: returns resample processes.

Details

\[E(Z_{ij}|X_{ij}(t)) = \beta^T(t)X_{ij}^1(t) + \gamma^T X_{ij}^2(t) \]

where \(Z_{ij} \) is the j'th measurement at time t for the i'th subject with covariates \(X_{ij}^1 \) and \(X_{ij}^2 \). Resampling is used for computing p-values for tests of time-varying effects.

The data for a subject is presented as multiple rows or ‘observations’, each of which applies to an interval of observation (start, stop]. For counting process data with the [start,stop] notation is used the ’id’ variable is needed to identify the records for each subject. The program assumes that there are no ties, and if such are present random noise is added to break the ties.

Value

returns an object of type “dynreg”. With the following arguments:

- **cum**: the cumulative regression coefficients. This is the efficient estimator obtained by local linear regression:

\[
\hat{B}(t) = \int_0^t \tilde{\beta}(s)ds + \int_0^t X^{-}(\text{Diag}(z) - \text{Diag}(X^T(s)\tilde{\beta}(s)))dp(ds \times dz),
\]

where \(\tilde{\beta}(t) \) is an initial estimate either provided or computed by local linear regression. To plot this estimate use type=”eff.smooth” in the plot() command.
var.cum the martingale based pointwise variance estimates.
robvar.cum robust pointwise variances estimates.
gamma estimate of semi-parametric components of model.
var.gamma variance for gamma.
robvar.gamma robust variance for gamma.
cum0 simple estimate of cumulative regression coefficients that does not use use an initial smoothing based estimate
\[
\hat{B}_0(t) = \int_0^t X^- \text{Diag}(z) dp(ds \times dz).
\]
To plot this estimate use type="0.mpp" in the plot() command.
var.cum0 the martingale based pointwise variance estimates of cum0.
cum.ms estimate of cumulative regression coefficients based on initial smoother (but robust to this estimator).
\[
\hat{B}_{ms}(t) = \int_0^t X^- (\text{Diag}(z) - f(s)) dp(ds \times dz),
\]
where f is chosen as the matrix
\[
f(s) = \text{Diag}(X^T(s)\hat{\beta}(s))(I - X_\alpha(s)X_\alpha^-(s)),
\]
where \(X_\alpha\) is the design for the sampling intensities.
This is also an efficient estimator when the initial estimator is consistent for \(\beta(t)\) and then asymptotically equivalent to cum, but small sample properties appear inferior. Its variance is estimated by var.cum.
To plot this estimate use type="ms.mpp" in the plot() command.
cum.ly estimator where local averages are subtracted. Special case of cum.ms. To plot this estimate use type="ly.mpp" in plot.
var.cum.ly the martingale based pointwise variance estimates.
gamma0 estimate of parametric component of model.
var.gamma0 estimate of variance of parametric component of model.
gamma.ly estimate of parametric components of model.
var.gamma.ly estimate of variance of parametric component of model.
gamma.ms estimate of variance of parametric component of model.
var.gamma.ms estimate of variance of parametric component of model.
obs.testBeq0 observed absolute value of supremum of cumulative components scaled with the variance.
pval.testBeq0 p-value for covariate effects based on supremum test.
sim.testBeq0 resampled supremum values.
obs.testBeqC observed absolute value of supremum of difference between observed cumulative process and estimate under null of constant effect.
Author(s)

Thomas Scheike

References

Examples

```r
## this runs slowly and is therefore donttest
data(csl)
indi.m<-rep(1,length(csl$lt))

# Fits time-varying regression model
out<dynreg(prot~treat+prot.prev+sex+age,data=csl,
Surv(lt,rt,indi.m)-1,start.time=0,max.time=2,id=csl$id,
n.sim=100,bandwidth=0.7,meansub=0)
summary(out)
par(mfrow=c(2,3))
plot(out)

# Fits time-varying semi-parametric regression model.
outS<dynreg(prot~treat+const(prot.prev)+const(sex)+const(age),data=csl,
Surv(lt,rt,indi.m)-1,start.time=0,max.time=2,id=csl$id,
n.sim=100,bandwidth=0.7,meansub=0)
summary(outS)
```
Event

Event history object

Description

Constructur for Event History objects

Usage

```r
Event(time, time2 = TRUE, cause = NULL, cens.code = 0, ...)
```

Arguments

- **time**: Time
- **time2**: Time 2
- **cause**: Cause
- **cens.code**: Censoring code (default 0)
- **...**: Additional arguments

Details

... content for details

Value

Object of class Event (a matrix)

Author(s)

Klaus K. Holst and Thomas Scheike

Examples

```r
t1 <- 1:10
t2 <- t1+runif(10)
cia <- rbinom(10,2,0.4)
(x <- Event(t1,t2,ca))
```
event.split

Description

constructs start stop formulation of event time data after a variable in the data.set. Similar to SurvSplit of the survival package but can also split after random time given in data frame.

Usage

event.split(data, time = "time", status = "status", cuts = "cuts", name.id = "id", name.start = "start", cens.code = 0, order.id = TRUE, time.group = TRUE)

Arguments

data data to be split
time time variable.
status status variable.
cuts cuts variable or numeric cut (only one value)
name.id name of id variable.
name.start name of start variable in data, start can also be numeric "0"
cens.code code for the censoring.
order.id order data after id and start.
time.group make variable "before","cut" that keeps track of whether start,stop is before (1) or after cut (0).

Author(s)

Thomas Scheike

Examples

set.seed(1)
d <- data.frame(event=round(5*runif(5),2),start=1:5,time=2*1:5, status=rbinom(5,1,.5),x=1:5)
d
d0 <- event.split(d,cuts="event",name.start=0)
d0
dd <- event.split(d,cuts="event")
dd
ddd <- event.split(dd,cuts=3.5)
ddd
event.split(ddd,cuts=5.5)

successive cutting for many values

dd <- d
for (cuts in seq(2,3,by=0.3)) dd <- event.split(dd,cuts=cuts)
dd

Gprop.odds | Fit Generalized Semiparametric Proportional Odds Model

Description

Fits a semiparametric proportional odds model:

\[
\text{logit}(1 - S_{X,Z}(t)) = log(X^T A(t)) + \beta^T Z
\]

where \(A(t) \) is increasing but otherwise unspecified. Model is fitted by maximising the modified partial likelihood. A goodness-of-fit test by considering the score functions is also computed by resampling methods.

Usage

```r
Gprop.odds(formula = formula(data), data = sys.parent(), beta = 0,
            nit = 50, detail = 0, start.time = 0, max.time = NULL,
            id = NULL, n.sim = 500, weighted.test = 0, sym = 0,
            mle.start = 0)
```

Arguments

- `formula` a formula object, with the response on the left of a ‘~’ operator, and the terms on the right. The response must be a survival object as returned by the ‘Surv’ function.
- `data` a data.frame with the variables.
- `beta` starting value for relative risk estimates
- `nit` number of iterations for Newton-Raphson algorithm.
- `detail` if 0 no details is printed during iterations, if 1 details are given.
- `start.time` start of observation period where estimates are computed.
- `max.time` end of observation period where estimates are computed. Estimates thus computed from \([\text{start.time}, \text{max.time}]\). This is very useful to obtain stable estimates, especially for the baseline. Default is max of data.
- `id` For timevarying covariates the variable must associate each record with the id of a subject.
- `n.sim` number of simulations in resampling.
weighted.test to compute a variance weighted version of the test-processes used for testing
time-varying effects.

sym to use symmetrized second derivative in the case of the estimating equation ap-
proach (profile=0). This may improve the numerical performance.

mle.start starting values for relative risk parameters.

Details

An alternative way of writing the model:

\[S_{X,Z}(t) = \frac{\exp(-\beta^T Z)}{(X^T A(t)) + \exp(-\beta^T Z)} \]

such that \(\beta \) is the log-odds-ratio of dying before time \(t \), and \(A(t) \) is the odds-ratio.

The modelling formula uses the standard survival modelling given in the survival package.

The data for a subject is presented as multiple rows or "observations", each of which applies to an
interval of observation (start, stop]. The program essentially assumes no ties, and if such are present
a little random noise is added to break the ties.

Value

returns an object of type 'cox.aalen'. With the following arguments:

cum cumulative time-varying regression coefficient estimates are computed within the
estimation interval.
var.cum the martingale based pointwise variance estimates.
robvar.cum robust pointwise variances estimates.
gamma estimate of proportional odds parameters of model.
var.gamma variance for gamma.
robvar.gamma robust variance for gamma.
residuals list with residuals. Estimated martingale increments (dM) and corresponding
time vector (time).
obs.testBeq0 observed absolute value of supremum of cumulative components scaled with the
variance.
pval.testBeq0 p-value for covariate effects based on supremum test.
sim.testBeq0 resampled supremum values.
obs.testBeqC observed absolute value of supremum of difference between observed cumula-
tive process and estimate under null of constant effect.
pval.testBeqC p-value based on resampling.
sim.testBeqC resampled supremum values.
obstestBeqC.is observed integrated squared differences between observed cumulative and esti-
mate under null of constant effect.
pval.testBeqC.is p-value based on resampling.
sim.testBeqC is resampled supremum values.

conf.band resampling based constant to construct robust 95% uniform confidence bands.

test.procBeqC observed test-process of difference between observed cumulative process and estimate under null of constant effect over time.

loglike modified partial likelihood, pseudo profile likelihood for regression parameters.

D2linv inverse of the derivative of the score function.

score value of score for final estimates.

test.procProp observed score process for proportional odds regression effects.

pval.Prop p-value based on resampling.

sim.supProp re-sampled supremum values.

sim.test.procProp list of 50 random realizations of test-processes for constant proportional odds under the model based on resampling.

Author(s)
Thomas Scheike

References

Examples

data(sTRACE)

runs slowly and is therefore dont test
data(sTRACE)
Fits Proportional odds model with stratified baseline
age.c<-scale(sTRACE$age,scale=FALSE);
out<Gprop.odds(Surv(time,status==9)~1+factor(diabetes)+prop(age.c)+prop(chf)+
 prop(sex)+prop(vf),data=sTRACE,max.time=7,n.sim=50)
summary(out)
par(mfrow=c(2,3))
plot(out,sim.ci=2); plot(out,score=1)
invsdist

Finds inverse of piecewise linear sub-distribution

Description

Finds inverse of piecewise linear sub-distribution to be used for simulation of subdistributions

Usage

invsdist(F, u, entry = NULL, cond = 1, ptrunc = NULL)

Arguments

F matrix with x, and F1(x)
U points for which to compute inverse
entry possible delayed entry points
cond 1 indicates that we draw given that this subdistribution is used, so scales mass to 1 to get conditional distribution function
ptrunc possible truncation weight for delayed entry, if NULL then uses ptrunc=1-F1(entry)

Author(s)

Thomas Scheike

Examples

F1 <- cbind(c(0,5,8,10),c(0,0.1,0.3,0.9))
plot(F1,type="l")
u <- runif(100)
F1u <- invsubdist(F1,u,cond=0)
points(F1u$time,u,pch="x")

F1cond <- F1
F1cond[,2] <- F1cond[,2]/0.9
plot(F1cond,type="l")
u <- runif(100)
F1cond <- invsubdist(F1cond,u,cond=0)
points(F1cond$time,u,pch="-")
F1u <- invsubdist(F1,u,cond=1)
points(F1u$time,u,pch="x")

entry <- 4
###
Fentry <- subdist(F1,entry)[,2]
ptrunc <- 1-Fentry
###
Fentry5 <- F1
Fentry5[,1] <- Fentry5[,1]-entry
invsubdist

F1entry5[,2] <- (F1entry5[,2]-F1entry)/ptrunc
pos <- F1entry5[,1]>=0
F1entry5 <- rbind(c(0,0),F1entry5[pos,])
##
plot(F1entry5,ylim=c(0,1),type="l")
u <- runif(100)
Fiu <- invsubdist(F1entry5,u,cond=0)
points(Fiu$time,u,pch="-")
##
Fiu2 <- invsubdist(F1,u,cond=0,entry=entry)
points(Fiu2$time-entry,u,pch="x")
sum(Fiu2$time-entry-Fiu$time)

F1ce <- F1entry5
F1ce[,2] <- F1ce[,2]/tail(F1entry5[,2],1)
plot(F1ce,type="l")
u <- runif(100)
Fi1ce <- invsubdist(F1ce,u,cond=0)
points(F1ce$time,u,pch="-")
Fi1ce <- invsubdist(F1,u,cond=1,entry=entry)
points(F1ce$time-entry,u,pch="x")
sum(F1ce$time-entry-F1ce$time)

simulation of distribution with delayed entry starting at 3
par(mfrow=c(1,1))
F1 <- cbind(c(0,5,8,10),c(0,0.5,0.6,0.9))
F1
plot(F1,ylim=c(0,1),type="l")

n <- 100000
entry <- c(rep(3,10000),runif(n)*7+3)
##entry <- rep(3,n)
u <- runif(n+10000)
##
Fiu <- invsubdist(F1,u,cond=0,entry=entry)
###
library(prodlim)
pp <- prodlim(Hist(time,status,entry=entry)~1,data=Fi1)
plot(pp,xlim=c(3,10))
###
entry <- 3
###
F1entry <- substdist(F1,entry)[,2]
ptrunc <- 1-F1entry
###
F1entry5 <- F1
F1entry5[,1] <- F1entry5[,1]-entry
F1entry5[,2] <- (F1entry5[,2]-F1entry)/ptrunc
pos <- F1entry5[,1]>=0
F1entry5 <- rbind(c(0,0),F1entry5[pos,])
#
lines(entry+F1entry5[,1],1-F1entry5[,2],col=2)

R code for plotting survival curves
library(survival)
fit <- survfit(Surv(time, status) ~ 1, data=Fi1)
plot(fit, type = "l", col = c(rep("blue", 3), rep("red", 1)))
legend("topright", legend = c(" entry = 0", " entry = 1"), col = c("blue", "red"), lty = 1)

R code for simulating survival curves with delayed entry
library(prodlim)
pp <- prodlim(Hist(time, status, entry) ~ 1, data=Fi1)
plot(pp, xlim = c(3, 10))
#entry <- 3
##
F1entry <- substdist(F1, entry)[, 2]
ptrunc <- 1 - F1entry
##
F1entry5 <- F1
F1entry5[, 1] <- F1entry5[, 1] - entry
F1entry5[, 2] <- (F1entry5[, 2] - F1entry) / ptrunc
pos <- F1entry5[, 1] >= 0
F1entry5 <- rbind(c(0, 0), F1entry5[pos,])
#
lines(entry + F1entry5[, 1], 1 - F1entry5[, 2], col = 2)
Simulations of two cumulative incidence functions with truncation

```r
par(mfrow=c(1,1))
F1 <- cbind(c(0.5, 0.8, 0.1), c(0.0, 0.5, 0.0, 0.9)*0.3)
F2 <- cbind(c(0.5, 0.8, 0.1), c(0.0, 0.5, 0.0, 0.9)*0.5)
plot(F1, ylim=c(0, 1), type='l')
lines(F2, col=2)
entry1 <- 3
F1entry <- subdist(F1, entry1)[, 2]
F2entry <- subdist(F2, entry1)[, 2]
ptrunc <- 1-F1entry-F2entry
F1e[, 1] <- F1[, 1]-entry1
F1e[, 2] <- (F1e[, 2]-F1entry)/ptrunc
pos <- F1e[, 1]>=0
F1e <- rbind(c(0, 0), F1e[pos,])
F2e <- F2
F2e[, 1] <- F2e[, 1]-entry1
F2e[, 2] <- (F2e[, 2]-F2entry)/ptrunc
pos <- F2e[, 1]>=0
F2e <- rbind(c(0, 0), F2e[pos,])
# truncated identifiable version
lines(entry1+F1e[, 1], F1e[, 2], col=1)
lines(entry1+F2e[, 1], F2e[, 2], col=2)

n <- 10000
entry <- c(rep(entry1, 10000), runif(n)*(10-entry1)+entry1)
U <- runif(n+10000)
F1entry <- subdist(F1, entry)[, 2]
F2entry <- subdist(F2, entry)[, 2]
ptrunc <- 1-(F1entry+F2entry)
F1u1 <- invsubdist(F1, U, cond=1, entry=entry, ptrunc=ptrunc)
F1u2 <- invsubdist(F1, U, cond=1, entry=entry, ptrunc=ptrunc)
ptot <- (tail(F1[, 2], 1)+tail(F2[, 2], 1)-F1entry-F2entry)/(ptrunc)
rt <- rbinom(n+10000, 1, ptot)
p1 <- ((tail(F1[, 2], 1)-F1entry)/ptrunc)
p2 <- ((tail(F2[, 2], 1)-F2entry)/ptrunc)
rh <- rbinom(n+10000, 1, p1/ptot)
cause=ifelse(rh==1, 1, 2)
time=ifelse(cause==1, F1u1$time, F1u2$time)
cause <- rt*cause
time[cause==0] <- 10
# simulated data, now checking that things are working
# pp <- prodlim(Hist(time, cause, entry=entry)->1)
# plot(pp, xlim=c(entry1, 10), cause=1)
# plot(pp, xlim=c(entry1, 10), cause=2, add=TRUE)
```
Fits Krylow based PLS for additive hazards model

Description

Fits the PLS estimator for the additive risk model based on the least squares fitting criterion

Usage

krylow.pls(D, d, dim = 1)

Arguments

D defined above

\(d\) defined above

\(\text{dim}\) number of pls dimensions

Details

\[L(\beta, D, d) = \beta^T D \beta - 2 \beta^T d \]

where \(D = \int ZHZdt\) and \(d = \int ZhdN\).

Value

returns a list with the following arguments:

\(\text{beta}\) PLS regression coefficients

Author(s)

Thomas Scheike

References

Martinussen and Scheike, The Aalen additive hazards model with high-dimensional regressors, submitted.

Examples

```r
## makes data for pbc complete case
data(mypbc)
pbc<-mypbc
  pbc$time<-pbc$time+runif(418)*0.1; pbc$time<-pbc$time/365
pbc<-subset(pbc,complete.cases(pbc));
covs<-as.matrix(pbc[,\(-c(1:3,6)\)]
covs<-cbind(covs[,1:6,16],log(covs[,7:15]))

## computes the matrices needed for the least squares
## criterion
out<-aalen(Surv(time,status>=1)~const(covs), pbc, robust=0, n.sim=0)
S=out$intZH[2]; s=out$intZH[2]
out<-krylow.pls(S, s, dim=2)
```

Description

Melanoma data and Danish population mortality by age and sex

Melanoma data with background mortality of Danish population.

Format

This data frame contains the following columns:

- **id** a numeric vector. Gives patient id.
- **sex** a numeric vector. Gives sex of patient.
- **start** a numeric vector. Gives the starting time for the time-interval for which the covariate rate is representative.
- **stop** a numeric vector. Gives the stopping time for the time-interval for which the covariate rate is representative.
- **status** a numeric vector code. Survival status. 1: dead from melanoma, 0: alive or dead from other cause.
- **age** a numeric vector. Gives the age of the patient at removal of tumor.
- **rate** a numeric vector. Gives the population mortality for the given sex and age. Based on Table A.2 in Andersen et al. (1993).

Source

Examples

data(melanoma)
names(melanoma)

melanoma
The Melanoma Survival Data

Description

The melanoma data frame has 205 rows and 7 columns. It contains data relating to survival of patients after operation for malignant melanoma collected at Odense University Hospital by K.T. Drzewiecki.

Format

This data frame contains the following columns:

- **no**: a numeric vector. Patient code.
- **status**: a numeric vector code. Survival status. 1: dead from melanoma, 2: alive, 3: dead from other cause.
- **days**: a numeric vector. Survival time.
- **ulc**: a numeric vector code. Ulceration, 1: present, 0: absent.
- **thick**: a numeric vector. Tumour thickness (1/100 mm).
- **sex**: a numeric vector code. 0: female, 1: male.

Source

Examples

data(melanoma)
names(melanoma)

mypbc
my version of the PBC data of the survival package

Description

my version of the PBC data of the survival package

Source

survival package
pava.pred

Make predictions of predict functions in rows monotonone

Description

Make predictions of predict functions in rows monotonone using the pool-adjacent-violators-algorithm

Usage

pava.pred(pred, increasing = TRUE)

Arguments

pred predictions, either vector or rows of predictions.
increasing increasing or decreasing.

Value

monotonone predictions.

Author(s)

Thomas Scheike

Examples

data(bmt);
competing risks
add<comp.risk(Event(time,cause)~platelet+age+tcell, data=bmt, cause=1)
ndata<data.frame(platelet=c(1,0,0), age=c(0,1,0), tcell=c(0,0,1))
out<predict(add, newdata=ndata, uniform=0)

par(mfrow=c(1,1))
head(out)
matplot(out$time, t(out$P1), type="s")

PP1m <- t(apply(out$P1,1,pava))
PP1monotone <- pava.pred(out$P1)
head(PP1monotone)
matlines(out$time, t(PP1monotone), type="s")
pc.hazard

Simulation of Piecewise constant hazard model (Cox).

Description
Simulates data from piecewise constant baseline hazard that can also be of Cox type. Censor data at highest value of the break points.

Usage
pc.hazard(cumhazard, rr, n = NULL, entry = NULL, cum.hazard = TRUE, cause = 1)

Arguments
- `cumhazard`: cumulative hazard, or piece-constant rates for periods defined by first column of input.
- `rr`: number of simulations or vector of relative risk for simulations.
- `n`: number of simulations given as "n".
- `entry`: delayed entry time for simulations.
- `cum.hazard`: specifies whether input is cumulative hazard or rates.
- `cause`: name of cause

Author(s)
Thomas Scheike

Examples
```r
rates <- c(0, 0.01, 0.052, 0.01, 0.04)
breaks <- c(0, 10, 20, 30, 40)
haz <- cbind(breaks, rates)
n <- 1000
X <- rbinom(n, 1, 0.5)
beta <- 0.2
rrcox <- exp(X * beta)
cumhaz <- cumsum(c(0, diff(breaks) * rates[-1]))
cumhaz <- cbind(breaks, cumhaz)
pctime <- pc.hazard(haz, n=1000, cum.hazard=FALSE)
par(mfrow=c(1,2))
ss <- aalen(Surv(time, status)~1, data=pctime, robust=0)
plot(ss)
lines(cumhaz, col=2, lwd=2)
```
pe.sasieni <- pc.hazard(cumhaz, rrcox)
pctime <- cbind(pctime, X)
ssx <- cox.aalen(Surv(time, status) ~ prop(X), data = pctimecox, robust = 0)
plot(ssx)
lines(cumhaz, col = 2, lwd = 2)

simulating data with hazard as real data

data(TRACE)
par(mfrow = c(1, 2))
ss <- cox.aalen(Surv(time, status == 9) ~ prop(vf), data = TRACE, robust = 0)
par(mfrow = c(1, 2))
plot(ss)

pctime <- pc.hazard(ss$cum, 1000)
###
sss <- aalen(Surv(time, status) ~ 1, data = pctime, robust = 0)
lines(sss$cum, col = 2, lwd = 2)
pctime <- pc.hazard(ss$cum, rrcox)
pctime <- cbind(pctime, X)
###
sss <- cox.aalen(Surv(time, status) ~ prop(X), data = pctime, robust = 0)
summary(sss)
plot(ss)
lines(sss$cum, col = 3, lwd = 3)

pe.sasieni

Fits Proportional excess hazards model with fixed offsets

Description

Fits proportional excess hazards model. The Sasieni proportional excess risk model.

Usage

pe.sasieni(formula = formula(data), data = sys.parent(), id = NULL,
start.time = 0, max.time = NULL, offsets = 0, Nit = 50,
detail = 0, n.sim = 500)

Arguments

formula a formula object, with the response on the left of a ‘~’ operator, and the terms
 on the right. The response must be a survival object as returned by the ‘Surv’
 function.

data a data.frame with the variables.

id gives the number of individuals.

start.time starting time for considered time-period.
pe.sasieni

max.time stopping considered time-period if different from 0. Estimates thus computed from \([0, \text{max.time}]\) if max.time > 0. Default is max of data.

offsets fixed offsets giving the mortality.

Nit number of itterations.

detail if detail is one, prints iteration details.

n.sim number of simulations, 0 for no simulations.

Details

The models are written using the survival modelling given in the survival package. The program assumes that there are no ties, and if such are present random noise is added to break the ties.

Value

Returns an object of type "pe.sasieni". With the following arguments:

cum baseline of Cox model excess risk.

var.cum pointwise variance estimates for estimated cumulatives.

gamma estimate of relative risk terms of model.

var.gamma variance estimates for gamma.

Ut score process for Cox part of model.

D2linv The inverse of the second derivative.

score final score

test.Prop re-sampled absolute supremum values.

pval.Prop p-value based on resampling.

Author(s)

Thomas Scheike

References

Examples

data(mela.pop)
out<-pe.sasieni(Surv(start,stop,status==1)-age+sex,mela.pop,
id=1:205,Nit=10,max.time=7,offsets=mela.pop$rate,detail=0,n.sim=100)
summary(out)
plot.aalen

Plots estimates and test-processes

Description

This function plots the non-parametric cumulative estimates for the additive risk model or the test-processes for the hypothesis of time-varying effects with re-sampled processes under the null.

Usage

```r
## S3 method for class 'aalen'
plot(x, pointwise.ci = 1, hw.ci = 0, sim.ci = 0,
    robust.ci = 0, col = NULL, specific.comps = FALSE, level = 0.05,
    start.time = 0, stop.time = 0, add.to.plot = FALSE, mains = TRUE,
    xlab = "Time", ylab = "Cumulative coefficients", score = FALSE,
    ...)
```

Arguments

- `x` the output from the "aalen" function.
- `pointwise.ci` if >1 pointwise confidence intervals are plotted with lty=pointwise.ci
- `hw.ci` if >1 Hall-Wellner confidence bands are plotted with lty=hw.ci. Only 0.95% bands can be constructed.
- `sim.ci` if >1 simulation based confidence bands are plotted with lty=sim.ci. These confidence bands are robust to non-martingale behaviour.
- `robust.ci` robust standard errors are used to estimate standard error of estimate, otherwise martingale based standard errors are used.
- `col` specific colors of different components of plot, in order: c(estimate,pointwise.ci,robust.ci,hw.ci,sim.ci)
- `specific.comps` all components of the model is plotted by default, but a list of components may be specified, for example first and third "c(1,3)".
- `level` gives the significance level.
- `start.time` start of observation period where estimates are plotted.
- `stop.time` end of period where estimates are plotted. Estimates thus plotted from \([\text{start.time}, \text{max.time}]\).
- `add.to.plot` to add to an already existing plot.
plot.cum.residuals

Description

This function plots the output from the cumulative residuals function "cum.residuals". The cumulative residuals are compared with the performance of similar processes under the model.

Usage

```r
## S3 method for class 'cum.residuals'
plot(x, pointwise.ci = 1, hw.ci = 0,
     sim.ci = 0, robust = 1, specific.comps = FALSE, level = 0.05,
     start.time = 0, stop.time = 0, add.to.plot = FALSE, mains = TRUE,
     main = NULL, xlab = NULL, ylab = "Cumulative MG-residuals",
     ylim = NULL, score = 0, conf.band = FALSE, ...)
```

Author(s)

Thomas Scheike

References

Examples

```r
# see help(aaalen)
data(sTRACE)
out<-aaalen(Surv(time,status==9)-chf+vf,sTRACE,max.time=7,n.sim=100)
par(mfrow=c(2,2))
plot(out,pointwise.ci=1,hw.ci=1,sim.ci=1,col=c(1,2,3,4))
par(mfrow=c(2,2))
plot(out,pointwise.ci=0,robust.ci=1,hw.ci=1,sim.ci=1,col=c(1,2,3,4))
```

plot.cum.residuals

Plots cumulative residuals

This function plots the output from the cumulative residuals function "cum.residuals". The cumulative residuals are compared with the performance of similar processes under the model.

Usage

```r
## S3 method for class 'cum.residuals'
plot(x, pointwise.ci = 1, hw.ci = 0,
     sim.ci = 0, robust = 1, specific.comps = FALSE, level = 0.05,
     start.time = 0, stop.time = 0, add.to.plot = FALSE, mains = TRUE,
     main = NULL, xlab = NULL, ylab = "Cumulative MG-residuals",
     ylim = NULL, score = 0, conf.band = FALSE, ...)
```
Arguments

- `x` the output from the "cum.residuals" function.
- `pointwise.ci` if >1 pointwise confidence intervals are plotted with lty=pointwise.ci
- `hw.ci` if >1 Hall-Wellner confidence bands are plotted with lty=hw.ci. Only 95% bands can be constructed.
- `sim.ci` if >1 simulation based confidence bands are plotted with lty=sim.ci. These confidence bands are robust to non-martingale behaviour.
- `robust` if "1" robust standard errors are used to estimate standard error of estimate, otherwise martingale based estimate are used.
- `specific.comps` all components of the model is plotted by default, but a list of components may be specified, for example first and third "c(1,3)".
- `level` gives the significance level. Default is 0.05.
- `start.time` start of observation period where estimates are plotted. Default is 0.
- `stop.time` end of period where estimates are plotted. Estimates thus plotted from [start.time, max.time].
- `add.to.plot` to add to an already existing plot. Default is "FALSE".
- `mains` add names of covariates as titles to plots.
- `main` vector of names for titles in plots.
- `xlab` label for x-axis. NULL is default which leads to "Time" or "". Can also give a character vector.
- `ylab` label for y-axis. Default is "Cumulative MG-residuals".
- `ylim` limits for y-axis.
- `score` if '0' plots related to modelmatrix are specified, thus resulting in grouped residuals, if '1' plots for modelmatrix but with random realizations under model, if '2' plots residuals versus continuous covariates of model with random realizations under the model.
- `conf.band` makes simulation based confidence bands for the test processes under the 0 based on variance of these processes limits for y-axis. These will give additional information of whether the observed cumulative residuals are extreme or not when based on a variance weighted test.

... unused arguments - for S3 compatibility

Author(s)

Thomas Scheike

References

Examples

see cum.residuals for examples
plot.dynreg

Plots estimates and test-processes

Description

This function plots the non-parametric cumulative estimates for the additive risk model or the test-processes for the hypothesis of constant effects with re-sampled processes under the null.

Usage

```r
## S3 method for class 'dynreg'
plot(x, type = "eff.smooth", pointwise.ci = 1,
     hw.ci = 0, sim.ci = 0, robust = 0, specific.comps = FALSE,
     level = 0.05, start.time = 0, stop.time = 0, add.to.plot = FALSE,
     mains = TRUE, xlab = "Time", ylab = "Cumulative coefficients",
     score = FALSE, ...)
```

Arguments

- `x` the output from the "dynreg" function.
- `type` the estimator plotted. Choices "eff.smooth", "ms.mpp", "0.mpp" and "ly.mpp". See the dynreg function for more on this.
- `pointwise.ci` if >1 pointwise confidence intervals are plotted with `lty=pointwise.ci`
- `hw.ci` if >1 Hall-Wellner confidence bands are plotted with `lty.hw.ci`. Only 0.95 % bands can be constructed.
- `sim.ci` if >1 simulation based confidence bands are plotted with `lty=sim.ci`. These confidence bands are robust to non-martingale behaviour.
- `robust` robust standard errors are used to estimate standard error of estimate, otherwise martingale based estimate are used.
- `specific.comps` all components of the model is plotted by default, but a list of components may be specified, for example first and third "c(1,3)".
- `level` gives the significance level.
- `start.time` start of observation period where estimates are plotted.
- `stop.time` end of period where estimates are plotted. Estimates thus plotted from `[start.time, max.time]`.
- `add.to.plot` to add to an already existing plot.
- `mains` add names of covariates as titles to plots.
- `xlab` label for x-axis.
- `ylab` label for y-axis.
- `score` to plot test processes for test of time-varying effects along with 50 random realization under the null-hypothesis.
- `...` unused arguments - for S3 compatibility
predict.timereg

Author(s)

Thomas Scheike

References

Examples

```r
### runs slowly and therefore dont test
data(csl)
indi.m <- rep(1,length(csl$lt))

# Fits time-varying regression model
out <- dynreg(prot+treat+prot.prev+sex+age+csl, Surv(lt,rt,indi.m) ~ 1, start.time=0, max.time=3, id=csl$id, n.sim=100, bandwidth=0.7, meunsub=0)

par(mfrow=c(2,3))
# plots estimates
plot(out)
# plots tests-processes for time-varying effects
plot(out, score=TRUE)
```

predict.timereg

Predictions for Survival and Competing Risks Regression for timereg

Description

Make predictions based on the survival models (Aalen and Cox-Aalen) and the competing risks models for the cumulative incidence function (comp.risk). Computes confidence intervals and confidence bands based on resampling.

Usage

```r
## S3 method for class 'timereg'
predict(object, newdata = NULL, X = NULL,
    times = NULL, Z = NULL, n.sim = 500, uniform = TRUE, se = TRUE,
    alpha = 0.05, resample.iid = 0, ...)
```
Arguments

object
an object belonging to one of the following classes: comprisk, aalen or cox.aalen

newdata
specifies the data at which the predictions are wanted.

X
alternative to newdata, specifies the nonparametric components for predictions.

times
times in which predictions are computed, default is all time-points for baseline

Z
alternative to newdata, specifies the parametric components of the model for predictions.

n.sim
number of simulations in resampling.

uniform
computes resampling based uniform confidence bands.

se
computes pointwise standard errors

alpha
specificies the significance level which cause we consider.

resample.iid
set to 1 to return iid decomposition of estimates, 3-dim matrix (predictions x times x subjects)

... unused arguments - for S3 compatibility

Value

time
vector of time points where the predictions are computed.

unif.band
resampling based constant to construct 95% uniform confidence bands.

model
specifies what model that was fitted.

alpha
specificies the significance level for the confidence intervals. This relates directly to the constant given in unif.band.

newdata
specifies the newdata given in the call.

RR
gives relative risk terms for Cox-type models.

call
gives call for predict function.

initial.call
gives call for underlying object used for predictions.

P1
gives cumulative incicidence predictions for competing risks models. Predictions given in matrix form with different subjects in different rows.

S0
gives survival predictions for survival models. Predictions given in matrix form with different subjects in different rows.

se.P1
pointwise standard errors for predictions of P1.

se.S0
pointwise standard errors for predictions of S0.

Author(s)

Thomas Scheike, Jeremy Silver

References

Scheike, Zhang and Gerds (2008), Predicting cumulative incidence probability by direct binomial regression, Biometrika, 95, 205-220.

Examples

data(bmt);

competing risks
add<-comp.risk(Event(time,cause)=platelet+age+tcell,data=bmt,cause=1)
ndata<-data.frame(platelet=c(1,0,0),age=c(0,1,0),tcell=c(0,0,1))
out<-predict(add,newdata=ndata,uniform=1,n.sim=1000)
par(mfrow=c(2,2))
plot(out,multiple=0,uniform=1,col=1:3,1ty=1,se=1)
see comp.risk for further examples.

add<-comp.risk(Event(time,cause)=factor(tcell),data=bmt,cause=1)
summary(add)
out<-predict(add,newdata=ndata,uniform=1,n.sim=1000)
plot(out,multiple=1,uniform=1,col=1:3,1ty=1,se=1)

add<-prop.odds.subdist(Event(time,cause)=factor(tcell),
data=bmt,cause=1)
out <- predict(add,X=1,Z=1)
plot(out,multiple=1,uniform=1,col=1:3,1ty=1,se=1)

SURVIVAL predictions aalen function
data(sTRACE)
out<-aalen(Surv(time,status==9)-sex+ diabetes+chf+vf,
data=sTRACE,max.time=7,n.sim=0,resample.iid=1)
pout<-predict(out,X=cbind(c(1,0,0,0,0),rep(1,5)))
head(pout$se[,1:5]); head(pout$se[,1:5])
par(mfrow=c(2,2))
plot(out,multiple=1,se=0,uniform=0,col=1:2,1ty=1:2)
plot(out,multiple=0,se=1,uniform=1,col=1:2)

out<-aalen(Surv(time,status==9)-const(age)+const(se)+
const(diabetes)+chf+vf,
data=sTRACE,max.time=7,n.sim=0,resample.iid=1)
pout<-predict(out,X=cbind(c(1,0,0),c(1,0)),
Z=cbind(c(0.0,1.0),c(0.0,1.1)))
head(pout$se[,1:5]); head(pout$se[,1:5])
par(mfrow=c(2,2))
plot(out,multiple=1,se=0,uniform=0,col=1:2,1ty=1:2)
plot(out,multiple=0,se=1,uniform=1,col=1:2)
pout<-predict(out,uniform=0,se=0,newdata=sTRACE[1:10,])
plot(out,multiple=1,se=0,uniform=0)

cox.aalen
out<-cox.aalen(Surv(time,status==9)-prop(age)+prop(se)+
prop(diabetes)+chf+vf,
prep.comp.risk

Set up weights for delayed-entry competing risks data for comp.risk function

Description

Computes the weights of Geskus (2011) modified to the setting of the comp.risk function. The returned weights are \(1/(H(T_i) \cdot G_c(\min(T_i, \tau)))\) and \(\tau\) is the max of the times argument, here \(H\) is the estimator of the truncation distribution and \(G_c\) is the right censoring distribution.

Usage

prep.comp.risk(data, times = NULL, entrytime = NULL, time = "time", cause = "cause", cname = "cweight", tname = "tweight", strata = NULL, nocens.out = TRUE, cens.formula = NULL, cens.code = 0, prec.factor = 100, trunc.mintau = FALSE)

Arguments

data data frame for comp.risk.
times times for estimating equations.
entrytime name of delayed entry variable, if not given computes right-censoring case.
time name of survival time variable.
cause name of cause indicator
cname name of censoring weight.
tname name of truncation weight.
strata strata variable to obtain stratified weights.
nocens.out returns only uncensored part of data-frame
cens.formula censoring model formula for Cox models for the truncation and censoring model.
prep.comp.risk

cens.code code for censoring among causes.
prec.factor precision factor, for ties between censoring/even times, truncation times/event times
trunc.mintau specifies whether the truncation distribution is evaluated in death times or death times minimum max(times), FALSE makes the estimator equivalent to Kaplan-Meier (in the no covariate case).

Value

Returns an object. With the following arguments:
dataw a data.frame with weights.

The function wants to make two new variables "weights" and "cw" so if these already are in the data frame it tries to add an "_" in the names.

Author(s)

Thomas Scheike

References

Examples

data(bmt)
nn <- nrow(bmt)
entrytime <- rbinom(nn,1,0.5)*(bmt$time*runif(nn))
bmt$entrytime <- entrytime
times <- seq(5,70,by=1)

adds weights to uncensored observations
bmtw <- prep.comp.risk(bmt,times=times,time="time", entrytime="entrytime",cause="cause")

nonparametric estimates, right-censoring only
out <- comp.risk(Event(time,cause)+1,data=bmt, cause=1,model="rcif2", times=c(5,30,70),n.sim=0)
out$cum # same as
out <- prodlim(Hist(time,cause)+1,data=bmt)
print.aalen

Prints call

Description

Prints call for object. Lists nonparametric and parametric terms of model

Usage

```r
## S3 method for class 'aalen'
print(x, ...)
```

Arguments

- `x` an aalen object
- `...` unused arguments - for S3 compatibility

Author(s)

Thomas Scheike
Identifies the multiplicative terms in Cox-Aalen model and proportional excess risk model

Description

Specifies which of the regressors that belong to the multiplicative part of the Cox-Aalen model

Usage

prop(x)

Arguments

x variable

Details

\[\lambda_i(t) = Y_i(t)(X_i^T(t)\alpha(t)) \exp(Z_i^T(t)\beta) \]

for this model prop specified the covariates to be included in \(Z_i(t) \)

Author(s)

Thomas Scheike

Fits Proportional excess hazards model

Description

Fits proportional excess hazards model.

Usage

prop.excess(formula = formula(data), data = sys.parent(), excess = 1,
 tol = 1e-04, max.time = NULL, n.sim = 1000, alpha = 1,
 frac = 1)
Arguments

- **formula**: a formula object, with the response on the left of a ‘~’ operator, and the terms on the right. The response must be a survival object as returned by the ‘Surv’ function.
- **data**: a data.frame with the variables.
- **excess**: specifies for which of the subjects the excess term is present. Default is that the term is present for all subjects.
- **tol**: tolerance for numerical procedure.
- **max.time**: stopping considered time-period if different from 0. Estimates thus computed from [0,max.time] if max.time>0. Default is max of data.
- **n.sim**: number of simulations in re-sampling.
- **alpha**: tuning parameter in Newton-Raphson procedure. Value smaller than one may give more stable convergence.
- **frac**: number between 0 and 1. Is used in supremum test where observed jump times t1, ..., tk is replaced by t1, ..., tl with l=round(frac*k).

Details

The models are written using the survival modelling given in the survival package. The program assumes that there are no ties, and if such are present random noise is added to break the ties.

Value

Returns an object of type "prop.excess". With the following arguments:

- **cum**: estimated cumulative regression functions. First column contains the jump times, then follows the estimated components of additive part of model and finally the excess cumulative baseline.
- **var.cum**: robust pointwise variance estimates for estimated cumulatives.
- **gamma**: estimate of parametric components of model.
- **var.gamma**: robust variance estimate for gamma.
- **pval**: p-value of Kolmogorov-Smirnov test (variance weighted) for excess baseline and Aalen terms, H: B(t)=0.
- **pval.HW**: p-value of supremum test (corresponding to Hall-Wellner band) for excess baseline and Aalen terms, H: B(t)=0. Reported in summary.
- **pval.CM**: p-value of Cramer von Mises test for excess baseline and Aalen terms, H: B(t)=0.
- **quant**: 95 percent quantile in distribution of resampled Kolmogorov-Smirnov test statistics for excess baseline and Aalen terms. Used to construct 95 percent simulation band.
- **quant95HW**: 95 percent quantile in distribution of resampled supremum test statistics corresponding to Hall-Wellner band for excess baseline and Aalen terms. Used to construct 95 percent Hall-Wellner band.
- **simScoreProp**: observed score process and 50 resampled score processes (under model). List with 51 elements.
prop.odds

Author(s)

Torben Martinussen

References

Examples

```r
### working on memory leak issue, 3/3-2015
### data(melanoma)
### lt<-log(melanoma$thick)       # log-thickness
### excess<-(melanoma$thick>210)  # excess risk for thick tumors
###
### Fits Proportional Excess hazards model
### fit<-prop.excess(Surv(days/365, status==1)-sex+ulc+cox(sex)+
###                  cox(ulc)+cox(lt), melanoma, excess=excess, n.sim=100)
### summary(fit)
### par(mfrow=c(2,3))
### plot(fit)
```

prop.odds
Fit Semiparametric Proportional Odds Model

Description

Fits a semiparametric proportional odds model:

\[
\text{logit}(1 - S_Z(t)) = \log(G(t)) + \beta^T Z
\]

where \(G(t)\) is increasing but otherwise unspecified. Model is fitted by maximising the modified partial likelihood. A goodness-of-fit test by considering the score functions is also computed by resampling methods.

Usage

```r
prop.odds(formula, data = sys.parent(), beta = NULL, Nit = 20,
          detail = 0, start.time = 0, max.time = NULL, id = NULL,
          n.sim = 500, weighted.test = 0, profile = 1, sym = 0,
          baselinevar = 1, clusters = NULL, max.clust = 1000,
          weights = NULL)
```
Arguments

- **formula**: A formula object, with the response on the left of a `~` operator, and the terms on the right. The response must be a Event object as returned by the ‘Event’ function.
- **data**: A data.frame with the variables.
- **beta**: Starting value for relative risk estimates.
- **nit**: Number of iterations for Newton-Raphson algorithm.
- **detail**: If 0 no details is printed during iterations, if 1 details are given.
- **start.time**: Start of observation period where estimates are computed.
- **max.time**: End of observation period where estimates are computed. Estimates thus computed from [start.time, max.time]. This is very useful to obtain stable estimates, especially for the baseline. Default is max of data.
- **id**: For timevarying covariates the variable must associate each record with the id of a subject.
- **n.sim**: Number of simulations in resampling.
- **weighted.test**: To compute a variance weighted version of the test-processes used for testing time-varying effects.
- **profile**: If profile is 1 then modified partial likelihood is used, profile=0 fits by simple estimating equation. The modified partial likelihood is recommended.
- **sym**: To use symmetrized second derivative in the case of the estimating equation approach (profile=0). This may improve the numerical performance.
- **baselinevar**: Set to 0 to omit calculations of baseline variance.
- **clusters**: To compute cluster based standard errors.
- **max.clust**: Number of maximum clusters to be used, to save time in iid decomposition.
- **weights**: Weights for score equations.

Details

The modelling formula uses the standard survival modelling given in the survival package.

For large data sets use the divide.conquer.timereg of the mets package to run the model on splits of the data, or the alternative estimator by the cox.aalen function.

The data for a subject is presented as multiple rows or “observations”, each of which applies to an interval of observation (start, stop]. The program essentially assumes no ties, and if such are present a little random noise is added to break the ties.

Value

Returns an object of type ‘cox.aalen’. With the following arguments:

- **cum**: Cumulative timevarying regression coefficient estimates are computed within the estimation interval.
- **var.cum**: The martingale based pointwise variance estimates.
- **robvar.cum**: Robust pointwise variances estimates.
prop.odds

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gamma</td>
<td>estimate of proportional odds parameters of model.</td>
</tr>
<tr>
<td>var.gamma</td>
<td>variance for gamma.</td>
</tr>
<tr>
<td>robvar.gamma</td>
<td>robust variance for gamma.</td>
</tr>
<tr>
<td>residuals</td>
<td>list with residuals. Estimated martingale increments (dM) and corresponding</td>
</tr>
<tr>
<td></td>
<td>time vector (time).</td>
</tr>
<tr>
<td>obs.testBeqθ</td>
<td>observed absolute value of supremum of cumulative components scaled with the</td>
</tr>
<tr>
<td></td>
<td>variance.</td>
</tr>
<tr>
<td>pval.testBeqθ</td>
<td>p-value for covariate effects based on supremum test.</td>
</tr>
<tr>
<td>sim.testBeqθ</td>
<td>resampled supremum values.</td>
</tr>
<tr>
<td>obs.testBeqC</td>
<td>observed absolute value of supremum of difference between observed cumulative</td>
</tr>
<tr>
<td></td>
<td>process and estimate under null of constant effect.</td>
</tr>
<tr>
<td>pval.testBeqC</td>
<td>p-value based on resampling.</td>
</tr>
<tr>
<td>sim.testBeqC</td>
<td>resampled supremum values.</td>
</tr>
<tr>
<td>obs.testBeqC.is</td>
<td>observed integrated squared differences between observed cumulative and esti-</td>
</tr>
<tr>
<td></td>
<td>mate under null of constant effect.</td>
</tr>
<tr>
<td>pval.testBeqC.is</td>
<td>p-value based on resampling.</td>
</tr>
<tr>
<td>sim.testBeqC.is</td>
<td>resampled supremum values.</td>
</tr>
<tr>
<td>conf.band</td>
<td>resampling based constant to construct robust 95% uniform confidence bands.</td>
</tr>
<tr>
<td>test.procBeqC</td>
<td>observed test-process of difference between observed cumulative process and</td>
</tr>
<tr>
<td></td>
<td>estimate under null of constant effect over time.</td>
</tr>
<tr>
<td>loglike</td>
<td>modified partial likelihood, pseudo profile likelihood for regression param-</td>
</tr>
<tr>
<td></td>
<td>eters.</td>
</tr>
<tr>
<td>D2linv</td>
<td>inverse of the derivative of the score function.</td>
</tr>
<tr>
<td>score</td>
<td>value of score for final estimates.</td>
</tr>
<tr>
<td>test.procProp</td>
<td>observed score process for proportional odds regression effects.</td>
</tr>
<tr>
<td>pval.Prop</td>
<td>p-value based on resampling.</td>
</tr>
<tr>
<td>sim.supProp</td>
<td>re-sampled supremum values.</td>
</tr>
<tr>
<td>sim.test.procProp</td>
<td>list of 50 random realizations of test-processes for constant proportional</td>
</tr>
<tr>
<td></td>
<td>odds under the model based on resampling.</td>
</tr>
</tbody>
</table>

Author(s)

Thomas Scheike

References

Examples

```r
data(sTRACE)
# Fits Proportional odds model
out<prop.odds(Event(time,status==9)~age+diabetes+chf+vf+sex, sTRACE,max.time=7,n.sim=100)
summary(out)

par(mfrow=c(2,3))
plot(out,sim.ci=2)
plot(out,score=1)

pout <- predict(out,Z=c(70,0,0,0,0))
plot(pout)

### alternative estimator for large data sets
form <- Surv(time,status==9)~age+diabetes+chf+vf+sex
pform <- timereg.formula(form)
out2<-cox.aalen(pform,data=sTRACE,max.time=7,
propodds=1,n.sim=0,robust=0,detail=0,Nit=40)
summary(out2)
```

prop.odds.subdist

Fit Semiparametric Proportional Odds Model for the competing risks subdistribution

Description

Fits a semiparametric proportional odds model:

\[
\text{logit}(F(t; X, Z)) = \log(A(t)) + \beta^T Z
\]

where \(A(t) \) is increasing but otherwise unspecified. Model is fitted by maximising the modified partial likelihood. A goodness-of-fit test by considering the score functions is also computed by resampling methods.

Usage

```r
prop.odds.subdist(formula, data = sys.parent(), cause = 1, 
beta = NULL, Nit = 10, detail = 0, start.time = 0, 
max.time = NULL, id = NULL, n.sim = 500, weighted.test = 0, 
profile = 1, sym = 0, cens.model = "KM", cens.formula = NULL, 
clusters = NULL, max.clust = 1000, baselinevar = 1, 
weights = NULL, cens.weights = NULL)
```
prop.odds.subdist

Arguments

- **formula**: a formula object, with the response on the left of a `~` operator, and the terms on the right. The response must be an object as returned by the `Event` function.
- **data**: a data.frame with the variables.
- **cause**: cause indicator for competing risks.
- **beta**: starting value for relative risk estimates.
- **Nit**: number of iterations for Newton-Raphson algorithm.
- **detail**: if 0 no details is printed during iterations, if 1 details are given.
- **start.time**: start of observation period where estimates are computed.
- **max.time**: end of observation period where estimates are computed. Estimates thus computed from [start.time, max.time]. This is very useful to obtain stable estimates, especially for the baseline. Default is max of data.
- **id**: For timevarying covariates the variable must associate each record with the id of a subject.
- **n.sim**: number of simulations in resampling.
- **weighted.test**: to compute a variance weighted version of the test-processes used for testing time-varying effects.
- **profile**: use profile version of score equations.
- **sym**: to use symmetrized second derivative in the case of the estimating equation approach (profile=0). This may improve the numerical performance.
- **cens.model**: specifies censoring model. So far only Kaplan-Meier "KM".
- **cens.formula**: possible formula for censoring distribution covariates. Default all !
- **clusters**: to compute cluster based standard errors.
- **max.clust**: number of maximum clusters to be used, to save time in iid decomposition.
- **baselinevar**: set to 0 to save time on computations.
- **weights**: additional weights.
- **cens.weights**: specify censoring weights related to the observations.

Details

An alternative way of writing the model:

\[F_1(t; X, Z) = \frac{\exp(\beta^T Z)}{(A(t)) + \exp(\beta^T Z)} \]

such that \(\beta \) is the log-odds-ratio of cause 1 before time t, and \(A(t) \) is the odds-ratio.

The modelling formula uses the standard survival modelling given in the `survival` package.

The data for a subject is presented as multiple rows or "observations", each of which applies to an interval of observation (start, stop]. The program essentially assumes no ties, and if such are present a little random noise is added to break the ties.
Value

returns an object of type ‘cox.aalen’. With the following arguments:

cum cumulative timevarying regression coefficient estimates are computed within the estimation interval.
var.cum the martingale based pointwise variance estimates.
robvar.cum robust pointwise variances estimates.
gamma estimate of proportional odds parameters of model.
var.gamma variance for gamma.
robvar.gamma robust variance for gamma.
residuals list with residuals. Estimated martingale increments (dM) and corresponding time vector (time).
obs.testBeq0 observed absolute value of supremum of cumulative components scaled with the variance.
pval.testBeq0 p-value for covariate effects based on supremum test.
sim.testBeq0 resampled supremum values.
obs.testBeqC observed absolute value of supremum of difference between observed cumulative process and estimate under null of constant effect.
pval.testBeqC p-value based on resampling.
sim.testBeqC resampled supremum values.
obs.testBeqC.is observed integrated squared differences between observed cumulative and estimate under null of constant effect.
pval.testBeqC.is p-value based on resampling.
sim.testBeqC.is resampled supremum values.
conf.band resampling based constant to construct robust 95% uniform confidence bands.
test.procBeqC observed test-process of difference between observed cumulative process and estimate under null of constant effect over time.
loglike modified partial likelihood, pseudo profile likelihood for regression parameters.
D2linv inverse of the derivative of the score function.
score value of score for final estimates.
test.procProp observed score process for proportional odds regression effects.
pval.Prop p-value based on resampling.
sim.supProp re-sampled supremum values.
sim.test.procProp list of 50 random realizations of test-processes for constant proportional odds under the model based on resampling.

Author(s)

Thomas Scheike
References

Examples

library(timereg)
data(bmt)
Fits Proportional odds model
out <- prop.odds.subdist(Event(time,cause)=platelet+age+tcell, data=bmt,
 cause=1,cens.model="KM",detail=0,n.sim=1000)
summary(out)
par(mfrow=c(2,3))
plot(out,sim.ci=2);
plot(out,score=1)

simple predict function without confidence calculations
pout <- predictpropodds(out,X=model.matrix(~platelet+age+tcell, data=bmt)[-1])
matplot(pout$time,pout$pred,type="l")

predict function with confidence intervals
pout2 <- predict(out,Z=c(1,0,1))
plot(pout2,col=2)
pout1 <- predictpropodds(out,X=c(1,0,1))
lines(pout1$time,pout1$pred,type="l")

Fits Proportional odds model with stratified baseline, does not work yet!
###out <- Gprop.odds.subdist(Surv(time,cause=1)-I+factor(platelet)+
###prop(age)+prop(tcell), data=bmt,cause=bmt$cause,
###cens.code=0,cens.model="KM",causeS=1,detail=0,n.sim=1000)
###summary(out)
###par(mfrow=c(2,3))
###plot(out,sim.ci=2);
###plot(out,score=1)

pval

For internal use

Description

for internal use

Author(s)

Thomas Scheike
qcut

Cut a variable

Description
Calls the cut function to cut variables on data frame.

Usage
qcut(x, cuts = 4, breaks = NULL, ...)

Arguments
- x: variable to cut
- cuts: number of groups, 4 gives quartiles
- breaks: can also give breaks
- ...: other argument for cut function of R

Author(s)
Thomas Scheike

Examples

data(sTRACE)
gx <- qcut(sTRACE$age)
table(gx)

recurrent.marginal.coxmean

Estimates marginal mean of recurrent events based on two cox models

Description
Fitting two Cox models for death and recurrent events these are combined to produce the estimator

\[\int_0^t S(u|x = 0) dR(u|x = 0) \]

the mean number of recurrent events, here

\[S(u|x = 0) \]
is the probability of survival, and
\[dR(u|x = 0) \]
is the probability of an event among survivors. For now the estimator is based on the two-baselines so
\[x = 0 \]
but covariates can be rescaled to look at different x’s and extensions possible.

Usage

`recurrent.marginal.coxmean(recurrent, death)`

Arguments

- `recurrent` aalen model for recurrent events
- `death` cox.aalen (cox) model for death events

Details

IID versions along the lines of Ghosh & Lin (2000) variance. See also mets package for quick version of this for large data. IID versions used for Ghosh & Lin (2000) variance. See also mets package for quick version of this for large data mets:::recurrent.marginal, these two version should give the same when there are now ties.

Author(s)

Thomas Scheike

References

Examples

```r
# do not test because iid slow and uses data from mets
library(mets)
data(base1cumhaz)
data(base4cumhaz)
data(drcumhaz)
dr <- drcumhaz
base1 <- base1cumhaz
base4 <- base4cumhaz
rr <- simRecurrent(100, base1, death.cumhaz=dr)
rr$x <- rnorm(nrow(rr))
rr$strata <- floor((rr$yid-0.01)/50)
drename(rr) <- start+stop+entry+time

ar <- cox.aalen(Surv(start,stop,status)-+1+prop(x)+cluster(id),data=rr, 
    resample.iid=1, max.clust=NULL, max.timepoint.sim=NULL)
ad <- cox.aalen(Surv(start,stop,death)-+1+prop(x)+cluster(id),data=rr, 
    resample.iid=1, max.clust=NULL, max.timepoint.sim=NULL)
```
recurrent.marginal.mean

Estimates marginal mean of recurrent events

Description

Fitting two aalen models for death and recurrent events these are combined to prducte the estimator

\[
\int_0^t S(u)dR(u)
\]

the mean number of recurrent events, here

\(S(u)\)

is the probability of survival, and

\(dR(u)\)

is the probability of an event among survivors.

Usage

recurrent.marginal.mean(recurrent, death)

Arguments

- recurrent: aalen model for recurrent events
- death: aalen model for recurrent events

Details

IID versions used for Ghosh & Lin (2000) variance. See also mets package for quick version of this for large data mets:::recurrent.marginal, these two version should give the same when there are no ties.

Author(s)

Thomas Scheike

References

Examples

```r
### get some data using mets simulaitons
data(base1cumhaz)
data(base4cumhaz)
data(drcumhaz)

res <- drcumhaz
base1 <- base1cumhaz
base4 <- base4cumhaz

rr <- simRecurrent(100, base1, death.cumhaz=dr)
rr$x <- rnorm(nrow(rr))
rr$strata <- floor((rr$id-0.01)/50)
drename(rr) <- start+stop+entry+time

ar <- aalen(Surv(start, stop, status)==1+cluster(id), data=rr, resample.iid=1,
             max.clust=NULL)
ad <- aalen(Surv(start, stop, death)==1+cluster(id), data=rr, resample.iid=1,
             max.clust=NULL)

mm <- recurrent.marginal.mean(ar, ad)
with(mm, plot(times, mu, type="s"))
with(mm, lines(times, mu+1.96*se.mu, type="s", lty=2))
with(mm, lines(times, mu-1.96*se.mu, type="s", lty=2))
```

res.mean
Residual mean life (restricted)

Description

Fits a semiparametric model for the residual life (estimator=1):

\[
E(\min(Y, \tau) - t | Y > t) = h_1(g(t, x, z))
\]

or cause specific years lost of Andersen (2012) (estimator=3)

\[
E(\tau - \min(Y_j, \tau) | Y > 0) = \int_0^t (1 - F_j(s))ds = h_2(g(t, x, z))
\]

where \(Y_j = \sum_j Y_i(\epsilon = j) + \infty * I(\epsilon = 0) \) or (estimator=2)

\[
E(\tau - \min(Y_j, \tau) | Y < \tau, \epsilon = j) = h_3(g(t, x, z)) = h_2(g(t, x, z))F_j(\tau, x, z)
\]

where \(F_j(s, x, z) = P(Y < \tau, \epsilon = j|x, z) \) for a known link-function \(h() \) and known prediction-function \(g(t, x, z) \)
Usage

res.mean(formula, data = sys.parent(), cause = 1, restricted = NULL,
times = NULL, Nit = 50, clusters = NULL, gamma = 0, n.sim = 0,
weighted = 0, model = "additive", detail = 0, interval = 0.01,
resample.iid = 1, cens.model = "KM", cens.formula = NULL,
time.pow = NULL, time.pow.test = NULL, silent = 1, conv = 1e-06,
estimator = 1, cens.weights = NULL, conservative = 1,
weights = NULL)

Arguments

formula a formula object, with the response on the left of a ‘~’ operator, and the terms
on the right. The response must be a survival object as returned by the ‘Event’
function. The status indicator is not important here. Time-invariant regressors
are specified by the wrapper const(), and cluster variables (for computing robust
variances) by the wrapper cluster().
data a data.frame with the variables.
cause For competing risk models specifies which cause we consider.
restricted gives a possible restriction times for means.
times specifies the times at which the estimator is considered. Defaults to all the times
where an event of interest occurs, with the first 10 percent or max 20 jump points
removed for numerical stability in simulations.
Nit number of iterations for Newton-Raphson algorithm.
clusters specifies cluster structure, for backwards compability.
gamma starting value for constant effects.
n.sim number of simulations in resampling.
weighted Not implemented. To compute a variance weighted version of the test-processes
used for testing time-varying effects.
model "additive", "prop"ortional.
detail if 0 no details are printed during iterations, if 1 details are given.
interval specifies that we only consider timepoints where the Kaplan-Meier of the cen-
soring distribution is larger than this value.
resample.iid to return the iid decomposition, that can be used to construct confidence bands
for predictions
cens.model specified which model to use for the ICPW, KM is Kaplan-Meier alternatively
it may be "cox" or "aalen" model for further flexibility.
cens.formula specifies the regression terms used for the regression model for chosen regression
model. When cens.model is specified, the default is to use the same de-
sign as specified for the competing risks model. "KM","cox","aalen","weights".
"weights" are user specified weights given is cens.weight argument.
time.pow specifies that the power at which the time-arguments is transformed, for each of
the arguments of the const() terms, default is 1 for the additive model and 0 for
the proportional model.
time.pow.test specifies that the power the time-arguments is transformed for each of the arguments of the non-const() terms. This is relevant for testing if a coefficient function is consistent with the specified form $A_l(t) = \beta_l t^{\text{time.pow.test}(l)}$. Default is 1 for the additive model and 0 for the proportional model.

silent if 0 information on convergence problems due to non-invertible derivatives of scores are printed.

conv gives convergence criteria in terms of sum of absolute change of parameters of model.

estimator specifies what that is estimated.

cens.weights censoring weights for estimating equations.

conservative for slightly conservative standard errors.

weights weights for estimating equations.

Details

Uses the IPCW for the score equations based on

$$w(t) \Delta(\tau) / P(\Delta(\tau) = 1 | T, \epsilon, X, Z) (Y(t) - h_1(t, X, Z))$$

and where $\Delta(\tau)$ is the at-risk indicator given data and requires a IPCW model.

Since timereg version 1.8.4, the response must be specified with the Event function instead of the Surv function and the arguments.

Value

returns an object of type 'comprisk'. With the following arguments:

cum cumulative time-varying regression coefficient estimates are computed within the estimation interval.

var.cum pointwise variances estimates.

gamma estimate of proportional odds parameters of model.

var.gamma variance for gamma.

score sum of absolute value of scores.

gamma2 estimate of constant effects based on the non-parametric estimate. Used for testing of constant effects.

obs.testEq0 observed absolute value of supremum of cumulative components scaled with the variance.

pval.testEq0 p-value for covariate effects based on supremum test.

obs.testEqC observed absolute value of supremum of difference between observed cumulative process and estimate under null of constant effect.

pval.testEqC p-value based on resampling.

obs.testEqC.is observed integrated squared differences between observed cumulative and estimate under null of constant effect.
pval.testBeqC.is
 p-value based on resampling.
conf.band resampling based constant to construct 95% uniform confidence bands.
B.iid list of iid decomposition of non-parametric effects.
gamma.iid matrix of iid decomposition of parametric effects.
test.procBeqC observed test process for testing of time-varying effects
sim.test.procBeqC 50 resample processes for for testing of time-varying effects
conv information on convergence for time points used for estimation.

Author(s)
Thomas Scheike

References
Andersen (2013), Decomposition of number of years lost according to causes of death, Statistics in Medicine, 5278-5285.
Scheike, and Cortese (2015), Regression Modelling of Cause Specific Years Lost,
Scheike, Cortese and Holmboe (2015), Regression Modelling of Restricted Residual Mean with Delayed Entry.

Examples

data(bmt);
tau <- 100

residual restricted mean life
out<-res.mean(Event(time,cause>=1)-factor(tcell)+factor(platelet), data=bmt, cause=1, times=0, restricted=tau, n.sim=0, model="additive", estimator=1);
summary(out)

out<-res.mean(Event(time,cause>=1)-factor(tcell)+factor(platelet), data=bmt, cause=1, times=seq(0,90,5), restricted=tau, n.sim=0, model="additive", estimator=1);
par(mfrow=c(1,3))
plot(out)

restricted years lost given death
out21<-res.mean(Event(time,cause)~factor(tcell)+factor(platelet), data=bmt, cause=1, times=0, restricted=tau, n.sim=0, model="additive", estimator=2);
summary(out21)
out22<-res.mean(Event(time,cause)~factor(tcell)+factor(platelet), data=bmt, cause=2, times=0, restricted=tau, n.sim=0, model="additive", estimator=2);
summary(out22)

total restricted years lost
out31<-res.mean(Event(time,cause)~factor(tcell)+factor(platelet), data=bmt, cause=1,
restricted.residual.mean

Estimates restricted residual mean for Cox or Aalen model

Description

The restricted means are the

\[\int_0^\tau S(t) dt \]

the standard errors are computed using the i.i.d. decompositions from the cox.aalen (that must be called with the argument "max.timpoint.sim=NULL") or aalen function.

Usage

restricted.residual.mean(out, x = 0, tau = 10, iid = 0)

Arguments

out an "cox.aalen" with a Cox model or an "aalen" model.

x matrix with covariates for Cox model or additive hazards model (aalen).

tau restricted residual mean.

iid if iid=1 then uses iid decomposition for estimation of standard errors.

Details

must have computed iid decomposition of survival models for standard errors to be computed. Note that competing risks models can be fitted but then the interpretation is not clear.
Value

Returns an object. With the following arguments:

- **mean**: restricted mean for different covariates.
- **var.mean**: variance matrix.
- **se**: standard errors.
- **S0tau**: estimated survival functions on time-range [0,tau].
- **timetau**: vector of time arguments for S0tau.

Author(s)

Thomas Scheike

References

Examples

```r
### this example runs slowly and is therefore don't test
data(sTRACE)
sTRACE$cage <- scale(sTRACE$age)
# Fits Cox model and aalen model
out <- cox.aalen(Surv(time, status) ~ 1) + prop(sex) + prop(diabetes) + prop(chf) +
           prop(vf), data = sTRACE, max.timepoint.sim = NULL, resample.id = 1)
outa <- aalen(Surv(time, status) ~ sex + diabetes + chf + vf,
data = sTRACE, resample.id = 1)
coxrm <- restricted.residual.mean(out, tau = 7,
                                   x = rbind(c(0, 0, 0, 0), c(0, 0, 1, 0), c(0, 0, 0, 1),
c(0, 0, 1, 1), c(0, 0, 0, 1)), iid = 1)
plot(coxrm)
summary(coxrm)

### aalen model not optimal here
aalenrm <- restricted.residual.mean(outa, tau = 7,
                                    x = rbind(c(1, 0, 0, 0), c(1, 0, 1, 0),
c(1, 0, 0, 1), c(1, 0, 0, 1)), iid = 1)
with(aalenrm, matlines(timetau, S0tau, type = "s", ylim = c(0, 1)))
legend("bottomleft", c("baseline", "+chf", "+chf+vf", "+vf"), col = 1:4, lty = 1)
summary(aalenrm)

mm <- cbind(coxrm$mean, coxrm$se, aalenrm$mean, aalenrm$se)
rownames(mm) <- c("cox-res-mean", "se", "aalen-res-mean", "se")
colnames(mm) <- c("baseline", "+chf", "+chf+vf", "+vf")
mm
```
Simulation of cause specific from Cox models.

Description

Simulates data that looks like fit from cause specific Cox models. Censor data automatically. When censoring is given in the list of causes this will give censoring that looks like the data. Covariates are drawn from data-set with replacement. This gives covariates like the data.

Usage

```r
## S3 method for class 'cause.cox'
sim(coxs, n, data = NULL, cens = NULL,
    rrc = NULL, ...)
```

Arguments

- `coxs` list of cox models.
- `n` number of simulations.
- `data` to extract covariates for simulations (draws from observed covariates).
- `cens` specifies censoring model, if NULL then only censoring for each cause at end of last event of this type. if "is.matrix" then uses cumulative hazard given, if "is.scalar" then uses rate for exponential, and if not given then takes average rate of in simulated data from cox model. But censoring can also be given as a cause.
- `rrc` possible vector of relative risk for cox-type censoring.
- `...` arguments for pc.hazard, for example entry-time

Author(s)

Thomas Scheike

Examples

```r
nsim <- 1000
data(bmt)
coxl <- cox.aalen(Surv(time, cause==1) ~ prop(tcell)+prop(platelet), data=bmt, robust=0)
coxl <- cox.aalen(Surv(time, cause==2) ~ prop(tcell)+prop(platelet), data=bmt, robust=0)
coxs <- list(coxl, cox2)
dd <- sim.cause.cox(coxs, nsim, data=bmt)
scox1 <- cox.aalen(Surv(time, status==1) ~ prop(tcell)+prop(platelet), data=dd, robust=0)
scox2 <- cox.aalen(Surv(time, status==2) ~ prop(tcell)+prop(platelet), data=dd, robust=0)
##
cbind(scox1$gamma, scox1$gamma)
cbind(scox2$gamma, scox2$gamma)
par(mfrow=c(1,2))
plot(coxl); lines(scox1$cum, col=2)
```
```r
plot(cox$cum,type="l");
lines(scox$cum,col=2)

### do not test to avoid dependence on mets
library(mets)
data(bmt)
cox1 <- phreg(Surv(time,cause==1)~tcell+platelet, data=bmt)
cox2 <- phreg(Surv(time,cause==2)~tcell+platelet, data=bmt)
cox <- list(cox1, cox2)
dd <- sim.cause.cox(coxs, nsim, data=bmt)
scox1 <- phreg(Surv(time,status==1)~tcell+platelet, data=dd)
scox2 <- phreg(Surv(time,status==2)~tcell+platelet, data=dd)
cbind(cox1$coef, scox1$coef)
cbind(cox2$coef, scox2$coef)
par(mfrow=c(1,2))
basehazplot.phreg(cox1); basehazplot.phreg(scox1, add=TRUE);
basehazplot.phreg(cox2); basehazplot.phreg(scox2, add=TRUE);

cox1 <- phreg(Surv(time,cause==1)~strata(tcell)+platelet, data=bmt)
cox2 <- phreg(Surv(time,cause==2)~strata(tcell)+platelet, data=bmt)
cox <- list(cox1, cox2)
dd <- sim.cause.cox(coxs, nsim, data=bmt)
scox1 <- phreg(Surv(time,status==1)~strata(tcell)+platelet, data=dd)
scox2 <- phreg(Surv(time,status==2)~strata(tcell)+platelet, data=dd)
cbind(cox1$coef, scox1$coef)
cbind(cox2$coef, scox2$coef)
par(mfrow=c(1,2))
basehazplot.phreg(cox1); basehazplot.phreg(scox1, add=TRUE);
basehazplot.phreg(cox2); basehazplot.phreg(scox2, add=TRUE);

# coxph
cox1 <- coxph(Surv(time,cause==1)~tcell+platelet, data=bmt)
cox2 <- coxph(Surv(time,cause==2)~tcell+platelet, data=bmt)
cox <- list(cox1, cox2)
dd <- sim.cause.cox(coxs, nsim, data=bmt)
scox1 <- coxph(Surv(time,status==1)~tcell+platelet, data=dd)
scox2 <- coxph(Surv(time,status==2)~tcell+platelet, data=dd)
cbind(cox1$coef, scox1$coef)
cbind(cox2$coef, scox2$coef)
```

sim.cif
Simulation of output from Cumulative incidence regression model

Description

Simulates data that looks like fit from fitted cumulative incidence model
Usage

```r
## S3 method for class 'cif'
sim(cif, n, data = NULL, Z = NULL, drawZ = TRUE,
    cens = NULL, rrc = NULL, cumstart = c(0, 0), ...)
```

Arguments

cif output form prop.odds.subdist or ccr (cmprsk), can also call invsubdist with cumulative and linear predictor

n number of simulations.
data to extract covariates for simulations (draws from observed covariates).
Z to use these covariates for simulation rather than drawing new ones.
drawZ to random sample from Z or not
cens specifies censoring model, if "is.matrix" then uses cumulative hazard given, if "is.scalar" then uses rate for exponential, and if not given then takes average rate of in simulated data from cox model.
rrc possible vector of relative risk for cox-type censoring.
cumstart to start cumulatives at time 0 in 0.
... arguments for invsubdist

Author(s)

Thomas Scheike

Examples

data(TRACE)

```r
## Logit link for proportional odds model, using comp.risk to save time
# cif <- prop.odds.subdist(Event(time,status)-vf+chf+wmi,data=TRACE,cause=9)
cif <- comp.risk(Event(time,status)-const(vf)+const(chf)+const(wmi),
    data=TRACE, cause=9, model="logistic2")
sim1 <- sim.cif(cif,500, data=TRACE)
# cc <- prop.odds.subdist(Event(time,status)-vf+chf+wmi, data=sim1,cause=1)
c <- comp.risk(Event(time,status)-const(vf)+const(chf)+const(wmi),
    data=sim1, cause=1, model="logistic2")
```

cbind(cif$gamma, cc$gamma)

```r
plot(cif)
lines(cc$cum)
```

###
Fine-Gray model model, using comp.risk to avoid dependcies
###
cif <- comp.risk(Event(time,status)-const(vf)+const(chf)+const(wmi),
 data=TRACE, cause=9)
sim1 <- sim.cif(cif,500, data=TRACE)
```

```r
cc <- crr
```
cc <- comp.risk(Event(time,status)-const(vf)+const(chf)+const(wmi),
data=sim1,cause=1)
cbind(cc$gamma,cc$gamma)
plot(cc)
lines(cc$cum)

# data(TRACE)
# mm <- model.matrix(~vf+chf+wmi, data=TRACE)[-1]
# library(cmprsk)
# cif <- crr(TRACE$time, TRACE$status, mm, failcode=9)
# sim1 <- sim.cif(10000, data=TRACE, Z=mm)
# mms <- model.matrix(~vf+chf+wmi, data=sim1)[-1]
# # cc <- prop.odds.subdist(Event(time, status)-vf+chf+wmi, data=sim1, cause=1)
# cif1 <- crr(sim1$time, sim1$status, mms, failcode=1)
# cbind(cif$coef, cif1$coef)
#
#########################################################################
# simulating several causes with specific cumulatives
#########################################################################
data(bmt)
cif1 <- comp.risk(Event(time, cause)-const(tcell)+const(age),
data=bmt, cause=1, model="logistic2")
cif2 <- comp.risk(Event(time, cause)-const(tcell)+const(age),
data=bmt, cause=2, model="logistic2")

## must look at same time-scale

cifs <- pre.cifs(list(cif1, cif2))
plot(cifs[[1]]$cum, type="1")
lines(cifs[[2]]$cum, col=2)
legend("topleft", c("cause1", "cause2"), lty=1, col=1:2)

n <- 500
sim1 <- sim.cif(cifs[[1]], n, data=bmt)
Z <- sim1[,c("tcell", "age")]
sim2 <- sim.cif(cifs[[2]], n, data=bmt, Z=Z, drawZ=FALSE)
##
rt <- rbinom(n, 1, (sim1$F1tau+sim2$F1tau))
rb <- rbinom(n, 1, sim1$F1tau/(sim1$F1tau+sim2$F1tau))
cause <- ifelse(rb==1, 1, 2)
time<-ifelse(cause==1, sim1$time, cause, sim2$time)
cause <- rt*cause
time[cause==0] <- tail(cifs[[1]]$cum[,1], 1)

bt <- data.frame(time=time, cause=cause, tcell=sim1$tcell, age=sim1$age)
sclf1 <- comp.risk(Event(time, cause)-const(tcell)+const(age),
data=bt, cause=1, model="logistic2")
sclf2 <- comp.risk(Event(time, cause)-const(tcell)+const(age),
data=bt, cause=2, model="logistic2")

plot(sclf1$cum, type="1")
lines(sclf2$cum, col=1, lty=2)
legend("topleft", c("cause1", "cause2"), lty=1:2, col=1:1)
lines(cifs[[1]]$cum, col=2)
```r
lines(cifs[[2]]$cum,col=2,lty=2)

Everything wrapped in a call assuming covariates work in the same way for two models
dd <- sim.cifs(list(cif1,cif2),2000,data=bmt)
cif1 <- comp.risk(Event(time,cause)-const(tcell)+const(age),
data=dd,cause=1,model="logistic2")
cif2 <- comp.risk(Event(time,cause)-const(tcell)+const(age),
data=dd,cause=2,model="logistic2")

plot(cif1$cum,type="l")
lines(cif2$cum,col=1,lty=2)
legend("topleft",c("cause1","cause2"),lty=1:2,col=1:1)
lines(cifs[[1]]$cum,col=2)
lines(cifs[[2]]$cum,col=2,lty=2)
```

---

### Description

Simulates data that looks like fit from Cox model. Censor data automatically for highest value of
the event times by using cumulative hazard.

### Usage

```r
S3 method for class 'cox'
sim(cox, n, data = NULL, cens = NULL, rrc = NULL,
 entry = NULL, ...)
```

### Arguments

- **cox**: output form coxph or cox.aalen model fitting cox model.
- **n**: number of simulations.
- **data**: to extract covariates for simulations (draws from observed covariates).
- **cens**: specifies censoring model, if "is.matrix" then uses cumulative hazard given, if
  "is.scalar" then uses rate for exponential, and if not given then takes average rate
  of in simulated data from cox model.
- **rrc**: possible vector of relative risk for cox-type censoring.
- **entry**: delayed entry variable for simulation.
- **...**: arguments for pc.hazard, for example entry-time

### Author(s)

Thomas Scheike
Examples

data(TRACE)

cox <- coxph(Surv(time, status==9)~vf+chf+wmi, data=TRACE)
sim1 <- sim.cox(cox, 1000, data=TRACE)
cc <- coxph(Surv(time, status)==vf+chf+wmi, data=sim1)
cbind(cox$coef, cc$coef)

cor(sim1[,c("vf","chf","wmi")])
cor(TRACE[,c("vf","chf","wmi")])

cox <- cox.aalen(Surv(time, status==9) ~ prop(vf)+prop(chf)+prop(wmi), TRACE, robust=0)
sim2 <- sim.cox(cox, 1000, data=TRACE)
cc <- cox.aalen(Surv(time, status)==prop(vf)+prop(chf)+prop(wmi), data=sim2, robust=0)
###
plot(cox)
lines(cc$cum,type="s",col=2)
cbind(cox$gamma, cc$gamma)

### do not test to avoid dependence on mets
library(mets)
cox <- phreg(Surv(time, status==9)~vf+chf+wmi, data=TRACE)
sim3 <- sim.cox(cox, 1000, data=TRACE)
cc <- phreg(Surv(time, status)==vf+chf+wmi, data=sim3)
cbind(cox$coef, cc$coef)
basehazplot.phreg(cox, se=TRUE)
lines(cc$cumhaz, col=2)

cox <- phreg(Surv(time, status==9)~strata(chf)+vf+wmi, data=TRACE)
sim3 <- sim.cox(cox, 1000, data=TRACE)
cc <- phreg(Surv(time, status)==strata(chf)+vf+wmi, data=sim3)
cbind(cox$coef, cc$coef)
basehazplot.phreg(cox)
basehazplot.phreg(cc, add=TRUE)

---

**simsubdist**  
*Simulation from subdistribution function assuming piecwise linearity*

Description

Simulation from subdistribution function assuming piecwise linearity for Fine-Gray or logistic link.

Usage

`simsubdist(cumhazard, rr, entry = NULL, type = "cloglog", startcum = c(0, 0), ...)`
Arguments

cumhazard matrix that specified times and values of some cumulative hazard.
rr "relative risk" terms
entry not implemented yet
type either cloglog or logistic
startcum c(0,0) to make cumulativ start in 0 with 0 cumhazard.

Author(s)

Thomas Scheike

Examples

data(sTRACE)

cif <- comp.risk(Event(time,status)-const(vf),data=sTRACE,cause=9,model="logistic2")
cumhaz <- cif$cum

## 1000 logistic without covariates with baseline from model fit
sim1 <- simsubdist(cumhaz,1000,type="logistic")
###
cifs <- comp.risk(Event(time,status)-+1,data=sim1,cause=1,model="logistic2")
###
plot(cifs)
lines(cifs$cum,col=2)

## 1000 logistic with covariates with baseline from model fit
x <- rbinom(1000,1,0.5)
rr <- exp(x*0.3)
sim1 <- simsubdist(cumhaz,rr,type="logistic")
sim1$x <- x
cifs <- comp.risk(Event(time,status)-+const(x),data=sim1,cause=1,model="logistic2")
###
cifs$gamma
plot(cifs)
lines(cumhaz,cum=2)

#########################################################
### simulation of cumulative incidence with specified functions
#########################################################
F1logit<function(t, lam0=0.2, beta=0.3, x=0)
{ pt <- t*lam0; rr <- exp(x*beta); return(pt*rr/(1+pt*rr)); }

F1p<function(t, lam0=0.4, beta=0.3, x=0) # proportional version
{ return( 1 - exp(-(t*lam0)*exp(x*beta)) ) }
n=10000
tt=seq(0,3,by=.01)
tt <- seq(0,3,by=.01)
t1 <- invsubdist(cbind(tt,F1p(tt)),runif(n))
t2 <- invsubdist(cbind(tt,F1p(tt, lam0=0.1)),runif(n))
rt <- rbinom(n,1,(F1p(3)+F1p(3,lam0=0.1)))
rb <- rbinom(n,1,F1p(3)/(F1p(3)+F1p(3,lam0=0.1)))
cause=ifelse(rb==1,1,2)
time=ifelse(cause==1,t1$time,t2$time)
cause <- rt*cause
time[cause==0] <- 3

datC=data.frame(time=time,cause=cause)
p1=comp.risk(Event(time,cause)+1,data=datC,cause=1)
p2=comp.risk(Event(time,cause)+1,data=datC,cause=2)
pp1=predict(p1,X=1,se=0)
pp2=predict(p2,X=1,se=0)
par(mfrow=c(1,2))
plot(pp1)
lines(tt,F1p(tt),col=2)
plot(pp2)
lines(tt,F1p(tt,lam0=0.1),col=2)

#to avoid dependencies when checking
#library(prodlim)
#pp=prodlim(Hist(time,cause)+1)
#par(mfrow=c(1,2))
#plot(pp,cause="I")
#lines(tt,F1p(tt),col=2)
#plot(pp,cause="2")
#lines(tt,F1p(tt,lam0=0.1),col=2)

summary.aalen # Prints summary statistics

**Description**

Computes p-values for test of significance for nonparametric terms of model, p-values for test of constant effects based on both supremum and integrated squared difference.

**Usage**

```r
S3 method for class 'aalen'
summary(object, digits = 3, ...)
```

**Arguments**

- `object` an aalen object.
- `digits` number of digits in printouts.
- `...` unused arguments - for S3 compatibility
summary.cum.residuals

Details
Returns parameter estimates and their standard errors.

Author(s)
Thomas Scheike

References
Martinussen and Scheike,

Examples

### see help(aalen)

---

**summary.cum.residuals**  
*Prints summary statistics for goodness-of-fit tests based on cumulative residuals*

Description
Computes p-values for extreme behaviour relative to the model of various cumulative residual processes.

Usage

```r
S3 method for class 'cum.residuals'
summary(object, digits = 3, ...)
```

Arguments
- `object`: output from the `cum.residuals()` function.
- `digits`: number of digits in printouts.
- `...`: unused arguments - for S3 compatibility

Author(s)
Thomas Scheike

Examples

```r
see cum.residuals for examples
```
Fit Cox model with partly time-varying effects.

Description

Fits proportional hazards model with some effects time-varying and some effects constant. Time
dependent variables and counting process data (multiple events per subject) are possible.

Usage

timecox(formula = formula(data), data = sys.parent(), start.time = 0,
max.time = NULL, id = NULL, clusters = NULL, n.sim = 1000,
residuals = 0, robust = 1, Nit = 20, bandwidth = 0.5,
method = "basic", weighted.test = 0, degree = 1, covariance = 0)

Arguments

formula a formula object with the response on the left of a ’~’ operator, and the indepen-
dent terms on the right as regressors. The response must be a survival object as
returned by the ‘Surv’ function. Time-invariant regressors are specified by the
wrapper const(), and cluster variables (for computing robust variances) by the
wrapper cluster().

data a data.frame with the variables.
start.time start of observation period where estimates are computed.
max.time end of observation period where estimates are computed. Estimates thus com-
puted from [start.time, max.time]. Default is max of data.
id For timevarying covariates the variable must associate each record with the id
of a subject.
clusters cluster variable for computation of robust variances.
n.sim number of simulations in resampling.
residuals to returns residuals that can be used for model validation in the function cum.residuals
robust to compute robust variances and construct processes for resampling. May be set
to 0 to save memory.
Nit number of iterations for score equations.
bandwidth bandwidth for local iterations. Default is 50 % of the range of the considered
observation period.
method Method for estimation. This refers to different parametrisations of the baseline
of the model. Options are "basic" where the baseline is written as $\lambda_0(t) = \exp(\alpha_0(t))$ or the "breslow" version where the baseline is parametrised as $\lambda_0(t)$.
weighted.test to compute a variance weighted version of the test-processes used for testing
time-varying effects.
degree gives the degree of the local linear smoothing, that is local smoothing. Possible
values are 1 or 2.
covariance to compute covariance estimates for nonparametric terms rather than just the
variances.
Details

Resampling is used for computing p-values for tests of time-varying effects.
The modelling formula uses the standard survival modelling given in the `survival` package.
The data for a subject is presented as multiple rows or 'observations', each of which applies to an interval of observation (start, stop]. When counting process data with the )start,stop] notation is used, the 'id' variable is needed to identify the records for each subject. The program assumes that there are no ties, and if such are present random noise is added to break the ties.

Value

Returns an object of type "timecox". With the following arguments:

- `cum`: cumulative time-varying regression coefficient estimates are computed within the estimation interval.
- `var.cum`: the martingale based pointwise variance estimates.
- `robvar.cum`: robust pointwise variances estimates.
- `gamma`: estimate of parametric components of model.
- `var.gamma`: variance for gamma.
- `robvar.gamma`: robust variance for gamma.
- `residuals`: list with residuals. Estimated martingale increments (dM) and corresponding time vector (time).
- `obs.testBeq0`: observed absolute value of supremum of cumulative components scaled with the variance.
- `pval.testBeq0`: p-value for covariate effects based on supremum test.
- `sim.testBeq0`: resampled supremum values.
- `obs.testBeqC`: observed absolute value of supremum of difference between observed cumulative process and estimate under null of constant effect.
- `pval.testBeqC`: p-value based on resampling.
- `sim.testBeqC`: resampled supremum values.
- `obs.testBeqC.is`: observed integrated squared differences between observed cumulative and estimate under null of constant effect.
- `pval.testBeqC.is`: p-value based on resampling.
- `sim.testBeqC.is`: resampled supremum values.
- `conf.band`: resampling based constant to construct robust 95% uniform confidence bands.
- `test.procBeqC`: observed test-process of difference between observed cumulative process and estimate under null of constant effect over time.
- `sim.test.procBeqC`: list of 50 random realizations of test-processes under null based on resampling.
- `schoenfeld.residuals`: Schoenfeld residuals are returned for "breslow" parametrisation.
Author(s)

Thomas Scheike

References


Examples

data(tTRACE)

# Fits time-varying Cox model
out<-timecox(Surv(time/365,status==9)-age+sex+diabetes+chf+vf,
data=tTRACE,max.time=7,n.sim=100)

summary(out)
par(mfrow=c(2,3))
plot(out)
par(mfrow=c(2,3))
plot(out,score=TRUE)

# Fits semi-parametric time-varying Cox model
out<-timecox(Surv(time/365,status==9)-const(age)+const(sex)+
const(diabetes)+chf+vf,data=tTRACE,max.time=7,n.sim=100)

summary(out)
par(mfrow=c(2,3))
plot(out)

The TRACE study group of myocardial infarction

Description

The TRACE data frame contains 1877 patients and is a subset of a data set consisting of approximately 6000 patients. It contains data relating survival of patients after myocardial infarction to various risk factors.

sTRACE is a subsample consisting of 300 patients.
tTRACE is a subsample consisting of 1000 patients.

Format

This data frame contains the following columns:

id a numeric vector. Patient code.
status a numeric vector code. Survival status. 9: dead from myocardial infarction, 0: alive, 7: dead from other causes.
time a numeric vector. Survival time in years.

chf a numeric vector code. Clinical heart pump failure, 1: present, 0: absent.

diabetes a numeric vector code. Diabetes, 1: present, 0: absent.

vf a numeric vector code. Ventricular fibrillation, 1: present, 0: absent.

wmi a numeric vector. Measure of heart pumping effect based on ultrasound measurements where 2 is normal and 0 is worst.

sex a numeric vector code. 1: female, 0: male.

age a numeric vector code. Age of patient.

Source

The TRACE study group.


Examples

```r
data(TRACE)
names(TRACE)
```

```
 two.stage Fit Clayton-Oakes-Glidden Two-Stage model
```

Description

Fit Clayton-Oakes-Glidden Two-Stage model with Cox-Aalen marginals and regression on the variance parameters.

Usage

```r
two.stage(margsurv, data = sys.parent(), Nit = 60, detail = 0,
 start.time = 0, max.time = NULL, id = NULL, clusters = NULL,
 robust = 1, theta = NULL, theta.des = NULL, var.link = 0,
 step = 0.5, notaylor = 0, se.clusters = NULL)
```

Arguments

- `margsurv` fit of marginal survival cox.aalen model with residuals=2, and resample.iid=1 to get fully correct standard errors. See notaylor below.
- `data` a data.frame with the variables.
- `Nit` number of iterations for Newton-Raphson algorithm.
- `detail` if 0 no details is printed during iterations, if 1 details are given.
- `start.time` start of observation period where estimates are computed.
max.time  end of observation period where estimates are computed. Estimates thus computed from \([\text{start.time}, \text{max.time}]\). Default is max of data.

id  For timevarying covariates the variable must associate each record with the id of a subject.

clusters  cluster variable for computation of robust variances.

robust  if 0 then totally omits computation of standard errors.

theta  starting values for the frailty variance (default=0.1).

theta.des  design for regression for variances. The defaults is NULL that is equivalent to just one theta and the design with only a baseline.

var.link  default "0" is that the regression design on the variances is without a link, and "1" uses the link function exp.

step  step size for Newton-Raphson.

notaylor  if 1 then ignores variation due to survival model, this is quicker and then resample.id=0 and residuals=0 is ok for marginal survival model that then is much quicker.

se.clusters  cluster variable for sandwich estimator of variance.

Details

The model specification allows a regression structure on the variance of the random effects, such it is allowed to depend on covariates fixed within clusters

\[ \theta_k = Q_k^T \nu \]

This is particularly useful to model jointly different groups and to compare their variances.

Fits an Cox-Aalen survival model. Time dependent variables and counting process data (multiple events per subject) are not possible !

The marginal baselines are on the Cox-Aalen form

\[ \lambda_{ki}(t) = Y_{ki}(t)(X_{ki}^T(t)\alpha(t)) \exp(Z_{ki}^T\beta) \]

The model thus contains the Cox’s regression model and the additive hazards model as special cases. (see cox.aalen function for more on this).

The modelling formula uses the standard survival modelling given in the survival package. Only for right censored survival data.

The data for a subject is presented as multiple rows or 'observations', each of which applies to an interval of observation (start, stop]. For counting process data with the ]start,stop] notation is used the 'id' variable is needed to identify the records for each subject. Only one record per subject is allowed in the current implementation for the estimation of theta. The program assumes that there are no ties, and if such are present random noise is added to break the ties.

Left truncation is dealt with. Here the key assumption is that the marginals are correctly estimated and that we have a common truncation time within each cluster.
Value

returns an object of type "two.stage". With the following arguments:

- `cum`: cumulative timevarying regression coefficient estimates are computed within the estimation interval.
- `var.cum`: the martingale based pointwise variance estimates.
- `robvar.cum`: robust pointwise variances estimates.
- `gamma`: estimate of parametric components of model.
- `var.gamma`: variance for gamma.
- `robvar.gamma`: robust variance for gamma.
- `D2linv`: inverse of the derivative of the score function from marginal model.
- `score`: value of score for final estimates.
- `theta`: estimate of Gamma variance for frailty.
- `var.theta`: estimate of variance of theta.
- `StthetaInv`: inverse of derivative of score of theta.
- `theta.score`: score for theta parameters.

Author(s)

Thomas Scheike

References

Glidden (2000), A Two-Stage estimator of the dependence parameter for the Clayton Oakes model.


Examples

```r
library(timereg)
data(diabetes)
Marginal Cox model with treat as covariate
marg <- cox.aalen(Surv(time,status)-prop(treat)+prop(adult)+
 cluster(id),data=diabetes,resample.id=1)
fit<-two.stage(marg,data=diabetes,theta=1.0,Nit=40)
summary(fit)

using coxph and giving clusters, but SE without cox uncertainty
margph <- coxph(Surv(time,status)-treat,data=diabetes)
fit<-two.stage(margph,data=diabetes,theta=1.0,Nit=40,clusters=diabetes$id)

Stratification after adult
theta.des<-model.matrix(~-1+factor(adult),diabetes);
des.tc=model.matrix(~-1+factor(treat),diabetes);
design.treat<-cbind(des.t[,1]*(diabetes$adult==1),
 des.t[,1]*(diabetes$adult==2))
```
wald.test makes wald test

Description

Makes wald test, either by contrast matrix or testing components to 0. Can also specify the regression coefficients and the variance matrix. Also makes confidence intervals of the defined contrasts. Reads coefficients and variances from timereg and coxph objects.

Usage

wald.test(object = NULL, coef = NULL, Sigma = NULL, contrast, 
  coef.null = NULL, null = NULL, print.coef = TRUE, alpha = 0.05)
Arguments

- **object**: `timereg` object
- **coef**: Estimates from some model
- **Sigma**: Variance of estimates
- **contrast**: Contrast matrix for testing
- **coef.null**: Which indeces to test to 0
- **null**: Mean of null, 0 by default
- **print.coef**: Print the coefficients of the linear combinations.
- **alpha**: Significance level for CI for linear combinations of coefficients.

Author(s)

Thomas Scheike

Examples

data(sTRACE)

# Fits Cox model
out<-cox.aalen(Surv(time,status==9)-prop(age)+prop(sex)+
    prop(vf)+prop(chf)+prop(diabetes),data=sTRACE,n.sim=0)

wald.test(out,coef.null=c(1,2,3))
### test age=sex       vf=chf
wald.test(out,contrast=rbind(c(1,-1,0,0,0),c(0,1,0,-1,0)))

### now same with direct specification of estimates and variance
wald.test(coef=out$gamma,Sigma=out$var.gamma,coef.null=c(1,2,3))
wald.test(coef=out$gamma,Sigma=out$robsvar.gamma,coef.null=c(1,2,3))
### test age=sex       vf=chf
wald.test(coef=out$gamma,Sigma=out$var.gamma,
    contrast=rbind(c(1,-1,0,0,0),c(0,0,1,-1,0)))
Index

*Topic datasets
bmt, 6
cd4, 8
csl, 21
diabetes, 24
mela(pop), 37
malignoma, 38
mypbc, 38
trace, 82

*Topic survival
aalen, 3
cause.pchazard.sim, 7
comp.risk, 9
const, 15
cox, 15
cox.aalen, 16
cox.ipw, 20
cum.residuals, 22
dynreg, 24
event.split, 29
Gprop.odds, 30
invsdist, 33
krylow.pls, 36
pava.pred, 39
pc.hazard, 40
pe.sasieni, 41
plot.aalen, 43
plot.cum.residuals, 44
plot.dynreg, 46
predict.tierneg, 47
prep.comp.risk, 50
print.aalen, 52
prop, 53
prop.excess, 53
prop.odds, 55
prop.odds.subdist, 58
pval, 61
qcut, 62
recurrant.marginal.coxmean, 62

recurrant.marginal.mean, 64
res.mean, 65
restricted.residual.mean, 69
sim.cause.cox, 71
sim.cif, 72
sim.cox, 75
simsubdist, 76
summary.aalen, 78
summary.cum.residuals, 79
timecox, 80
two.stage, 83
wald.test, 86

[.Event(Event), 28

aalen, 3
aalen.des(pval), 61
aalen.des2(pval), 61
aalenBase(pval), 61
aalenBaseC(pval), 61
additive.comps(pval), 61
as.character.Event(Event), 28
as.matrix.Event(Event), 28

bmt, 6

cause.pchazard.sim, 7
cd4, 8
check.missing(pval), 61
cluster.index.timerg(pval), 61
coeff.aalen(pval), 61
coeff.comprisk(pval), 61
coeff.coxaalen(pval), 61
coeff.cox.ipw(cox.ipw), 61
coeff.cox.marg(pval), 61
coeff.dynreg(pval), 61
coeff.resmean(pval), 61
coeff.timecox(pval), 61
coeff.two.stage(pval), 61
coeffBase(pval), 61
coeffcox(pval), 61
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>comp.risk</td>
<td>9</td>
</tr>
<tr>
<td>comprisk.ipw (pval)</td>
<td>61</td>
</tr>
<tr>
<td>const</td>
<td>15</td>
</tr>
<tr>
<td>cox</td>
<td>15</td>
</tr>
<tr>
<td>cox.aalen</td>
<td>16</td>
</tr>
<tr>
<td>cox.aalenBase (pval)</td>
<td>61</td>
</tr>
<tr>
<td>cox.ipw</td>
<td>20</td>
</tr>
<tr>
<td>cox.marg (pval)</td>
<td>61</td>
</tr>
<tr>
<td>Cpred (pval)</td>
<td>61</td>
</tr>
<tr>
<td>csl</td>
<td>21</td>
</tr>
<tr>
<td>Csmooth2B (pval)</td>
<td>61</td>
</tr>
<tr>
<td>CsmoothB (pval)</td>
<td>61</td>
</tr>
<tr>
<td>cum.residuals</td>
<td>22</td>
</tr>
<tr>
<td>des.aalen (pval)</td>
<td>61</td>
</tr>
<tr>
<td>diabetes</td>
<td>24</td>
</tr>
<tr>
<td>dynreg</td>
<td>24</td>
</tr>
<tr>
<td>dynregBase (pval)</td>
<td>61</td>
</tr>
<tr>
<td>Event</td>
<td>11, 28, 67</td>
</tr>
<tr>
<td>event.split</td>
<td>29</td>
</tr>
<tr>
<td>faster.reshape (pval)</td>
<td>61</td>
</tr>
<tr>
<td>format.Event (Event)</td>
<td>28</td>
</tr>
<tr>
<td>Gprop.odds</td>
<td>30</td>
</tr>
<tr>
<td>invsubdist</td>
<td>33</td>
</tr>
<tr>
<td>is.diag (pval)</td>
<td>61</td>
</tr>
<tr>
<td>kernel (pval)</td>
<td>61</td>
</tr>
<tr>
<td>kmplot</td>
<td>61</td>
</tr>
<tr>
<td>krylow.pls</td>
<td>36</td>
</tr>
<tr>
<td>localTimeReg (pval)</td>
<td>61</td>
</tr>
<tr>
<td>mela.pop</td>
<td>37</td>
</tr>
<tr>
<td>melanoma</td>
<td>38</td>
</tr>
<tr>
<td>mypbc</td>
<td>38</td>
</tr>
<tr>
<td>nameestimate (pval)</td>
<td>61</td>
</tr>
<tr>
<td>namematrix (pval)</td>
<td>61</td>
</tr>
<tr>
<td>names2formula (pval)</td>
<td>61</td>
</tr>
<tr>
<td>pava (pval)</td>
<td>61</td>
</tr>
<tr>
<td>pava.pred</td>
<td>39</td>
</tr>
<tr>
<td>pc.hazard</td>
<td>40</td>
</tr>
<tr>
<td>pchazard.sim (pc.hazard)</td>
<td>40</td>
</tr>
<tr>
<td>pe.sasieni</td>
<td>41</td>
</tr>
<tr>
<td>percen (pval)</td>
<td>61</td>
</tr>
<tr>
<td>plot.aalen</td>
<td>43</td>
</tr>
<tr>
<td>plot.comprisk (pval)</td>
<td>61</td>
</tr>
<tr>
<td>plot.cox.aalen (plot.aalen)</td>
<td>43</td>
</tr>
<tr>
<td>plot.cox.aalen2 (pval)</td>
<td>61</td>
</tr>
<tr>
<td>plot.cum.residuals</td>
<td>44</td>
</tr>
<tr>
<td>plot.cums (pval)</td>
<td>61</td>
</tr>
<tr>
<td>plot.dynreg</td>
<td>46</td>
</tr>
<tr>
<td>plot.predict (pval)</td>
<td>61</td>
</tr>
<tr>
<td>plot.prop.excess (plot.aalen)</td>
<td>43</td>
</tr>
<tr>
<td>plot.resmean</td>
<td>61</td>
</tr>
<tr>
<td>plot.restricted.residual.mean (pval)</td>
<td>61</td>
</tr>
<tr>
<td>plot.timecox (plot.aalen)</td>
<td>43</td>
</tr>
<tr>
<td>plot.two.stage (pval)</td>
<td>61</td>
</tr>
<tr>
<td>plot.Confregion (pval)</td>
<td>61</td>
</tr>
<tr>
<td>plotScore (pval)</td>
<td>61</td>
</tr>
<tr>
<td>pred.cif (sim.cif)</td>
<td>72</td>
</tr>
<tr>
<td>pred.cum (pval)</td>
<td>61</td>
</tr>
<tr>
<td>pred.des (pval)</td>
<td>61</td>
</tr>
<tr>
<td>pred.stratKM (pval)</td>
<td>61</td>
</tr>
<tr>
<td>predict.aalen (predict.timereg)</td>
<td>47</td>
</tr>
<tr>
<td>predict.comprisk (predict.timereg)</td>
<td>47</td>
</tr>
<tr>
<td>predict.cox.aalen (predict.timereg)</td>
<td>47</td>
</tr>
<tr>
<td>predict.timereg</td>
<td>47</td>
</tr>
<tr>
<td>predict.two.stage (pval)</td>
<td>61</td>
</tr>
<tr>
<td>predictpropodds (pval)</td>
<td>61</td>
</tr>
<tr>
<td>prep.comp.risk</td>
<td>50</td>
</tr>
<tr>
<td>prep.glm.comprisk (pval)</td>
<td>61</td>
</tr>
<tr>
<td>print.aalen</td>
<td>52</td>
</tr>
<tr>
<td>print.comprisk (print.aalen)</td>
<td>52</td>
</tr>
<tr>
<td>print.comprisk.ipw (pval)</td>
<td>61</td>
</tr>
<tr>
<td>print.cox.aalen (print.aalen)</td>
<td>52</td>
</tr>
<tr>
<td>print.cox.ipw (cox.ipw)</td>
<td>20</td>
</tr>
<tr>
<td>print.cox.marg (pval)</td>
<td>61</td>
</tr>
<tr>
<td>print.cum.residuals (print.aalen)</td>
<td>52</td>
</tr>
<tr>
<td>print.dynreg (print.aalen)</td>
<td>52</td>
</tr>
<tr>
<td>print.Event (Event)</td>
<td>28</td>
</tr>
<tr>
<td>print.pe.sasieni (pval)</td>
<td>61</td>
</tr>
<tr>
<td>print.predict.timereg (pval)</td>
<td>61</td>
</tr>
<tr>
<td>print.prop.excess (print.aalen)</td>
<td>52</td>
</tr>
<tr>
<td>print.resmean (pval)</td>
<td>61</td>
</tr>
<tr>
<td>print.timecox (print.aalen)</td>
<td>52</td>
</tr>
<tr>
<td>print.two.stage (pval)</td>
<td>61</td>
</tr>
<tr>
<td>prop</td>
<td>53</td>
</tr>
<tr>
<td>prop.excess</td>
<td>53</td>
</tr>
<tr>
<td>prop.excessBase (pval)</td>
<td>61</td>
</tr>
<tr>
<td>prop.odds</td>
<td>55</td>
</tr>
<tr>
<td>prop.odds.gam (pval)</td>
<td>61</td>
</tr>
<tr>
<td>prop.odds.subdist</td>
<td>58</td>
</tr>
</tbody>
</table>
prop.odds.subdist.ipw (pval), 61
pval, 61
qcut, 62
rbind.Event (Event), 28
read.design (pval), 61
read.design (pval), 61
read.fit (sim.cox), 75
read.surv (pval), 61
recurrent.marginal.coxmean, 62
recurrent.marginal.mean, 64
res.mean, 65
residualsTimeereg (pval), 61
restricted.residual.mean, 69
risk.index (pval), 61
rm.missing (pval), 61
semaalen (pval), 61
semicox (pval), 61
semiregBase (pval), 61
sim.cause.cox, 71
sim.cif, 72
sim.cifs (sim.cif), 72
sim.cox, 75
simsbdist, 76
sindex.prodlim (pval), 61
slaaop (pval), 61
sTRACE (TRACE), 82
subdist (sim.cif), 72
summary.aalen, 78
summary.comprisk (pval), 61
summary.cox.aalen (summary.aalen), 78
summary.cox.ipw (cox.ipw), 20
summary.cox.marg (pval), 61
summary.cum.residuals, 79
summary.dynreg (summary.aalen), 78
summary.Event (Event), 28
summary.pe-sasieni (pe.sasieni), 41
summary.pe.sasieni (pval), 61
summary.predict.timeereg (pval), 61
summary.prop.excess (summary.aalen), 78
summary.resmean (pval), 61
summary.restricted.residual.mean (pval), 61
summary.timecox (summary.aalen), 78
summary.two.stage (pval), 61
Surv, 11, 67
timecox, 80
t imecoxB ase (pval), 61
timeereg.formula (pval), 61
timetest (pval), 61
TRACE, 82
tTRACE (TRACE), 82
twin.clustertrunc (pval), 61
two.stage, 83
vcov.aalen (pval), 61
vcov.comp.risk (pval), 61
vcov.cox.aalen (pval), 61
vcov.two.stage (pval), 61
wald.test, 86