Package ‘timetk’

October 31, 2023

Type Package
Title A Tool Kit for Working with Time Series
Version 2.9.0
Description Easy visualization, wrangling, and feature engineering of time series data for
forecasting and machine learning prediction. Consolidates and extends time series functionality
from packages including 'dplyr', 'stats', 'xts', 'forecast', 'slider', 'padr', 'recipes', and 'rsample'.
URL https://github.com/business-science/timetk,
https://business-science.github.io/timetk/
BugReports https://github.com/business-science/timetk/issues
License GPL (>= 3)
Encoding UTF-8
LazyData true
Depends R (>= 3.3.0)
Imports recipes (>= 1.0.4), rsample, dplyr (>= 1.0.0), ggplot2 (>= 3.4.0), forcats, stringr, plotly, lubridate (>= 1.6.0), padr
(>= 0.5.2), purrr (>= 0.2.2), readr (>= 1.3.0), stringi (>= 1.4.6), tibble (>= 3.0.3), tidyr (>= 1.1.0), xts (>= 0.9-7),
zoo (>= 1.7-14), rlang (>= 1.1.1), tidyselect (>= 1.1.0), slider, anytime, timeDate, forecast, tsfeatures, hms, generics
Suggests modeltime, glmnet, workflows, parsnip, tune (>= 0.1.2),
knitr, rmarkdown, broom, scales, testthat, fracdiff,
timeSeries, tseries, trelliscopejs
RoxygenNote 7.2.3
VignetteBuilder knitr
NeedsCompilation no
Author Matt Dancho [aut, cre],
Davis Vaughan [aut]
Maintainer Matt Dancho <mdancho@business-science.io>
Repository CRAN
Date/Publication 2023-10-31 22:30:02 UTC
R topics documented:

- timetk-package .. 4
- anomalize ... 4
- between_time ... 7
- bike_sharing_daily 9
- box_cox_vec .. 10
- condense_period 12
- diff_vec .. 14
- FANG .. 16
- filter_by_time .. 17
- filter_period .. 19
- fourier_vec ... 20
- future_frame ... 23
- is_date_class .. 25
- lag_vec .. 26
- log_interval_vec 28
- m4_daily .. 29
- m4_hourly ... 30
- m4_monthly .. 31
- m4_quarterly .. 32
- m4_weekly ... 32
- m4_yearly .. 33
- mutate_by_time .. 34
- normalize_vec ... 36
- pad_by_time ... 37
- parse_date2 .. 40
- plot_acf_diagnostics 41
- plot_anomalies 45
- plot_anomaly_diagnostics 48
- plot_seasonal_diagnostics 52
- plot_stl_diagnostics 55
- plot_time_series 57
- plot_time_series_boxplot 61
- plot_time_series_cv_plan 66
- plot_time_series_regression 68
- set_tk_time_scale_template 69
- slice_period .. 71
- slidify .. 72
- slidify_vec .. 76
- smooth_vec ... 79
- standardize_vec 82
- step_box_cox .. 83
- step_diff ... 86
- step_fourier .. 88
- step_holiday_signature 91
- step_log_interval 94
- step_slidify .. 96
R topics documented:

step_slidify_augment ... 99
step_smooth .. 103
step_timeseries_signature .. 106
step_ts_clean .. 109
step_ts_impute ... 111
step_ts_pad ... 114
summarise_by_time ... 117
taylor_30_min ... 119
time_arithmetic ... 120
time_series_cv ... 122
time_series_split .. 125
tk_acf_diagnostics .. 127
tk_anomaly_diagnostics ... 129
tk_augment_differences .. 132
tk_augment_fourier ... 133
tk_augment_holiday ... 134
tk_augment_lags ... 136
tk_augment_slidify .. 138
tk_augment_timeseries .. 140
tk_get_frequency .. 141
tk_get_holiday ... 143
tk_get_timeseries ... 145
tk_get_timeseries_unit_frequency 146
tk_get_timeseries_variables ... 147
tk_index ... 148
tk_make_future_timeseries ... 149
tk_make_holiday_sequence .. 152
tk_make_timeseries ... 154
tk_seasonal_diagnostics .. 158
tk_stl_diagnostics .. 160
tk_summary_diagnostics ... 161
tk_tbl ... 162
tk_time_series_cv_plan .. 164
tk_ts ... 166
tk_tseries ... 168
tk_xts ... 170
tk_zoo ... 172
tk_zooreg ... 174

ts_clean_vec .. 176
ts_impute_vec .. 178
walmart_sales_weekly .. 179
wikipedia_traffic_daily ... 181

Index 182
timetk-package
timetk: Time Series Analysis in the Tidyverse

Description

The `timetk` package combines a collection of coercion tools for time series analysis.

Details

The `timetk` package has several benefits:

1. Visualizing Time Series
2. Wrangling Time Series.
3. Preprocessing and Feature Engineering.

To learn more about `timetk`, start with the documentation: https://business-science.github.io/timetk/

Author(s)

Maintainer: Matt Dancho <mdancho@business-science.io>

Authors:

- Davis Vaughan <dvaughan@business-science.io>

See Also

Useful links:

- https://github.com/business-science/timetk
- https://business-science.github.io/timetk/

anomalize
Automatic group-wise Anomaly Detection

Description

`anomalize()` is used to detect anomalies in time series data, either for a single time series or for multiple time series grouped by a specific column.
anomalize

Usage

anomalize(
 .data,
 .date_var,
 .value,
 .frequency = "auto",
 .trend = "auto",
 .method = "stl",
 .iqr_alpha = 0.05,
 .clean_alpha = 0.75,
 .max_anomalies = 0.2,
 .message = TRUE
)

Arguments

.data A tibble or data.frame with a time-based column
.date_var A column containing either date or date-time values
.value A column containing numeric values
.frequency Controls the seasonal adjustment (removal of seasonality). Input can be either "auto", a time-based definition (e.g. "2 weeks"), or a numeric number of observations per frequency (e.g. 10). Refer to tk_get_frequency().
.trend Controls the trend component. For STL, trend controls the sensitivity of the LOESS smoother, which is used to remove the remainder. Refer to tk_get_trend().
.method The outlier detection method. Default: "stl". Currently "stl" is the only method. "twitter" is planned.
.iqr_alpha Controls the width of the "normal" range. Lower values are more conservative while higher values are less prone to incorrectly classifying "normal" observations.
.clean_alpha Controls the threshold for cleaning the outliers. The default is 0.75, which means that the anomalies will be cleaned using the 0.75 * lower or upper bound of the recomposed time series, depending on the direction of the anomaly.
.max_anomalies The maximum percent of anomalies permitted to be identified.
.message A boolean. If TRUE, will output information related to automatic frequency and trend selection (if applicable).

Details

The anomalize() method for anomaly detection that implements a 2-step process to detect outliers in time series.

Step 1: Detrend & Remove Seasonality using STL Decomposition

The decomposition separates the "season" and "trend" components from the "observed" values leaving the "remainder" for anomaly detection.

The user can control two parameters: frequency and trend.
1. .frequency: Adjusts the "season" component that is removed from the "observed" values.
2. .trend: Adjusts the trend window (t.window parameter from stats::stl()) that is used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or numeric values (e.g. 180) or "auto", which predetermines the frequency and/or trend based on the scale of the time series using the tk_time_scale_template().

Step 2: Anomaly Detection

Once "trend" and "season" (seasonality) is removed, anomaly detection is performed on the "remainder". Anomalies are identified, and boundaries (recomposed_l1 and recomposed_l2) are determined.

The Anomaly Detection Method uses an inner quartile range (IQR) of +/-25 the median.

IQR Adjustment, alpha parameter

With the default alpha = 0.05, the limits are established by expanding the 25/75 baseline by an IQR Factor of 3 (3X). The IQR Factor = 0.15 / alpha (hence 3X with alpha = 0.05):

• To increase the IQR Factor controlling the limits, decrease the alpha, which makes it more difficult to be an outlier.
• Increase alpha to make it easier to be an outlier.
• The IQR outlier detection method is used in forecast::tsoutliers().
• A similar outlier detection method is used by Twitter's AnomalyDetection package.
• Both Twitter and Forecast tsoutliers methods have been implemented in Business Science’s anomalize package.

Value

A tibble or data.frame with the following columns:

• observed: original data
• seasonal: seasonal component
• seasadaj: seasonal adjusted
• trend: trend component
• remainder: residual component
• anomaly: Yes/No flag for outlier detection
• anomaly score: distance from centerline
• anomaly direction: -1, 0, 1 inidcator for direction of the anomaly
• recomposed_l1: lower level bound of recomposed time series
• recomposed_l2: upper level bound of recomposed time series
• observed_clean: original data with anomalies interpolated

References

between_time

Examples

```r
library(dplyr)

walmart_sales_weekly %>%
    filter(id %in% c("1_1", "1_3")) %>%
    group_by(id) %>%
    anomalize(Date, Weekly_Sales)
```

between_time

Between (For Time Series): Range detection for date or date-time sequences

Description

The easiest way to filter time series date or date-time vectors. Returns a logical vector indicating which date or date-time values are within a range. See `filter_by_time()` for the `data.frame` (tibble) implementation.

Usage

```r
between_time(index, start_date = "start", end_date = "end")
```

Arguments

- `index`: A date or date-time vector.
- `start_date`: The starting date
- `end_date`: The ending date

Details

Pure Time Series Filtering Flexibility

The `start_date` and `end_date` parameters are designed with flexibility in mind. Each side of the `time_formula` is specified as the character `"YYYY-MM-DD HH:MM:SS"`, but powerful shorthand is available. Some examples are:

- **Year**: `start_date = '2013'`, `end_date = '2015'`
- **Month**: `start_date = '2013-01'`, `end_date = '2016-06'`
- **Day**: `start_date = '2013-01-05'`, `end_date = '2016-06-04'`
- **Second**: `start_date = '2013-01-05 10:22:15'`, `end_date = '2018-06-03 12:14:22'`
- **Variations**: `start_date = '2013'`, `end_date = '2016-06'`

Key Words: "start" and "end"

Use the keywords "start" and "end" as shorthand, instead of specifying the actual start and end values. Here are some examples:
• **Start of the series to end of 2015**: start_date = 'start', end_date = '2015'
• **Start of 2014 to end of series**: start_date = '2014', end_date = 'end'

Internal Calculations

All shorthand dates are expanded:

• The start_date is expanded to be the first date in that period
• The end_date side is expanded to be the last date in that period

This means that the following examples are equivalent (assuming your index is a POSIXct):

• start_date = '2015' is equivalent to start_date = '2015-01-01 + 00:00:00'
• end_date = '2016' is equivalent to 2016-12-31 + 23:59:59

Value

A logical vector the same length as index indicating whether or not the timestamp value was within the start_date and end_date range.

References

• This function is based on the tibbletime::filter_time() function developed by Davis Vaughan.

See Also

Time-Based dplyr functions:

• `summarise_by_time()` - Easily summarise using a date column.
• `mutate_by_time()` - Simplifies applying mutations by time windows.
• `pad_by_time()` - Insert time series rows with regularly spaced timestamps
• `filter_by_time()` - Quickly filter using date ranges.
• `filter_period()` - Apply filtering expressions inside periods (windows)
• `slice_period()` - Apply slice inside periods (windows)
• `condense_period()` - Convert to a different periodicity
• `between_time()` - Range detection for date or date-time sequences.
• `slidify()` - Turn any function into a sliding (rolling) function

Examples

```r
library(dplyr)

index_daily <- tk_make_timeseries("2016-01-01", "2017-01-01", by = "day")
index_min   <- tk_make_timeseries("2016-01-01", "2017-01-01", by = "min")

# How it works
# - Returns TRUE/FALSE length of index
# - Use sum() to tally the number of TRUE values
```
bike_sharing_daily

```r
index_daily %>% between_time("start", "2016-01") %>% sum()

# ---- INDEX SLICING ----

# Daily Series: Month of January 2016
index_daily[index_daily %>% between_time("start", "2016-01")]

# Daily Series: March 1st - June 15th, 2016
index_daily[index_daily %>% between_time("2016-03", "2016-06-15")]

# Minute Series:
index_min[index_min %>% between_time("2016-02-01 12:00", "2016-02-01 13:00")]

# ---- FILTERING WITH DPLYR ----
FANG %>%
  group_by(symbol) %>%
  filter(date %>% between_time("2016-01", "2016-01"))
```

bike_sharing_daily
Daily Bike Sharing Data

Description

This dataset contains the daily count of rental bike transactions between years 2011 and 2012 in Capital bikeshare system with the corresponding weather and seasonal information.

Usage

`bike_sharing_daily`

Format

A tibble: 731 x 16

- `instant`: record index
- `dteday`: date
- `season`: season (1: winter, 2: spring, 3: summer, 4: fall)
- `yr`: year (0: 2011, 1: 2012)
- `mth`: month (1 to 12)
- `hr`: hour (0 to 23)
- `holiday`: weather day is holiday or not
- `weekday`: day of the week
- `workingday`: if day is neither weekend nor holiday is 1, otherwise is 0.
- `weathersit`:
 - 1: Clear, Few clouds, Partly cloudy, Partly cloudy
- 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
- 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
- 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

- temp: Normalized temperature in Celsius. The values are derived via (t-t_min)/(t_max-t_min), t_min=-8, t_max=+39 (only in hourly scale)
- atemp: Normalized feeling temperature in Celsius. The values are derived via (t-t_min)/(t_max-t_min), t_min=-16, t_max=+50 (only in hourly scale)
- hum: Normalized humidity. The values are divided to 100 (max)
- windspeed: Normalized wind speed. The values are divided to 67 (max)
- casual: count of casual users
- registered: count of registered users
- cnt: count of total rental bikes including both casual and registered

References

Examples

bike_sharing_daily

box_cox_vec

Box Cox Transformation

Description

This is mainly a wrapper for the BoxCox transformation from the forecast R package. The box_cox_vec() function performs the transformation. box_cox_inv_vec() inverts the transformation. auto_lambda() helps in selecting the optimal lambda value.

Usage

```r
box_cox_vec(x, lambda = "auto", silent = FALSE)
box_cox_inv_vec(x, lambda)
auto_lambda(
  x,
  method = c("guerrero", "loglik"),
  lambda_lower = -1,
  lambda_upper = 2
)
```
Arguments

- **x**: A numeric vector.
- **lambda**: The box cox transformation parameter. If set to "auto", performs automated lambda selection using auto_lambda().
- **silent**: Whether or not to report the automated lambda selection as a message.
- **method**: The method used for automatic lambda selection. Either "guerrero" or "loglik".
- **lambda_lower**: A lower limit for automatic lambda selection
- **lambda_upper**: An upper limit for automatic lambda selection

Details

The Box Cox transformation is a power transformation that is commonly used to reduce variance of a time series.

Automatic Lambda Selection

If desired, the lambda argument can be selected using auto_lambda(), a wrapper for the Forecast R Package's forecast::BoxCox.lambda() function. Use either of 2 methods:

1. "guerrero" - Minimizes the non-seasonal variance
2. "loglik" - Maximizes the log-likelihood of a linear model fit to x

Value

Returns a numeric vector that has been transformed.

References

- Forecast R Package
- Forecasting: Principles & Practices: Transformations & Adjustments

See Also

- Box Cox Transformation: `box_cox_vec()`
- Lag Transformation: `lag_vec()`
- Differencing Transformation: `diff_vec()`
- Rolling Window Transformation: `slidify_vec()`
- Loess Smoothing Transformation: `smooth_vec()`
- Fourier Series: `fourier_vec()`
- Missing Value Imputation for Time Series: `ts_impute_vec(), ts_clean_vec()`

Other common transformations to reduce variance: `log()`, `log1p()` and `sqrt()`
condense_period

Examples

```r
library(dplyr)
d10_daily <- m4_daily %>% dplyr::filter(id == "D10")

# --- VECTOR ---
value_bc <- box_cox_vec(d10_daily$value)
value <- box_cox_inv_vec(value_bc, lambda = 1.25119350454964)

# --- MUTATE ---
m4_daily %>%
  dplyr::group_by(id) %>%
  dplyr::mutate(value_bc = box_cox_vec(value))
```

condense_period

Convert the Period to a Lower Periodicity (e.g. Go from Daily to Monthly)

Description

Convert a data.frame object from daily to monthly, from minute data to hourly, and more. This allows the user to easily aggregate data to a less granular level by taking the value from either the beginning or end of the period.

Usage

`condense_period(.data, .date_var, .period = "1 day", .side = c("start", "end"))`

Arguments

- `.data`: A tbl object or data.frame
- `.date_var`: A column containing date or date-time values. If missing, attempts to auto-detect date column.
- `.period`: A period to condense the time series to. Time units are condensed using `lubridate::floor_date()` or `lubridate::ceiling_date()`.

The value can be:

- second
- minute
- hour
- day
- week
- month
- bimonth
- quarter
condense_period

- `season`
- `halfyear`
- `year`

Arbitrary unique English abbreviations as in the `lubridate::period()` constructor are allowed:

- "1 year"
- "2 months"
- "30 seconds"

.side

One of "start" or "end". Determines if the first observation in the period should be returned or the last.

Value

A tibble or data.frame

See Also

Time-Based dplyr functions:

- `summarise_by_time()` - Easily summarise using a date column.
- `mutate_by_time()` - Simplifies applying mutations by time windows.
- `pad_by_time()` - Insert time series rows with regularly spaced timestamps
- `filter_by_time()` - Quickly filter using date ranges.
- `filter_period()` - Apply filtering expressions inside periods (windows)
- `slice_period()` - Apply slice inside periods (windows)
- `condense_period()` - Convert to a different periodicity
- `between_time()` - Range detection for date or date-time sequences.
- `slidify()` - Turn any function into a sliding (rolling) function

Examples

```r
# Libraries
library(dplyr)

# First value in each month
m4_daily %>%
  group_by(id) %>%
  condense_period(.period = "1 month")

# Last value in each month
m4_daily %>%
  group_by(id) %>%
  condense_period(.period = "1 month", .side = "end")
```
diff_vec

Differencing Transformation

Description

diff_vec() applies a Differencing Transformation. diff_inv_vec() inverts the differencing transformation.

Usage

diff_vec(
 x,
 lag = 1,
 difference = 1,
 log = FALSE,
 initial_values = NULL,
 silent = FALSE
)

diff_inv_vec(x, lag = 1, difference = 1, log = FALSE, initial_values = NULL)

Arguments

- **x** A numeric vector to be differenced or inverted.
- **lag** Which lag (how far back) to be included in the differencing calculation.
- **difference** The number of differences to perform.
 - 1 Difference is equivalent to measuring period change.
 - 2 Differences is equivalent to measuring period acceleration.
- **log** If log differences should be calculated. Note that difference inversion of a log-difference is approximate.
- **initial_values** Only used in the diff_vec_inv() operation. A numeric vector of the initial values, which are used to invert differences. This vector is the original values that are the length of the NA missing differences.
- **silent** Whether or not to report the initial values used to invert the difference as a message.

Details

Benefits:
This function is NA padded by default so it works well with dplyr::mutate() operations.

Difference Calculation
Single differencing, diff_vec(x_t) is equivalent to: x_t - x_t1, where the subscript _t1 indicates the first lag. This transformation can be interpreted as change.

Double Differencing Calculation
Double differencing, `diff_vec(x_t, difference = 2)` is equivalent to:

\[(x_t - x_{t1}) - (x_t - x_{t1})_{t1}\]

where the subscript _t1 indicates the first lag. *This transformation can be interpreted as acceleration.*

Log Difference Calculation

Log differencing, `diff_vec(x_t, log = TRUE)` is equivalent to:

\[\log(x_t) - \log(x_{t1}) = \log(x_t / x_{t1})\]

where \(x_t\) is the series and \(x_{t1}\) is the first lag.

The 1st difference `diff_vec(difference = 1, log = TRUE)` has an interesting property where `diff_vec(difference = 1, log = TRUE) %>% exp()` is approximately \(1 + \text{rate of change}\).

Value

A numeric vector

See Also

Advanced Differencing and Modeling:

- `step_diff()` - Recipe for tidymodels workflow
- `tk_augment_differences()` - Adds many differences to a data.frame (tibble)

Additional Vector Functions:

- Box Cox Transformation: `box_cox_vec()`
- Lag Transformation: `lag_vec()`
- Differencing Transformation: `diff_vec()`
- Rolling Window Transformation: `slidify_vec()`
- Loess Smoothing Transformation: `smooth_vec()`
- Fourier Series: `fourier_vec()`
- Missing Value Imputation for Time Series: `ts_impute_vec(), ts_clean_vec()`

Examples

```r
library(dplyr)

# --- USAGE ----

diff_vec(1:10, lag = 2, difference = 2) %>%
  diff_inv_vec(lag = 2, difference = 2, initial_values = 1:4)

# --- VECTOR ----

# Get Change
1:10 %>% diff_vec()

# Get Acceleration
1:10 %>% diff_vec(difference = 2)

# Get approximate rate of change
```
FANG

Stock prices for the "FANG" stocks.

Description

A dataset containing the daily historical stock prices for the "FANG" tech stocks, "FB", "AMZN", "NFLX", and "GOOG", spanning from the beginning of 2013 through the end of 2016.

Usage

FANG

Format

A "tibble" ("tidy" data frame) with 4,032 rows and 8 variables:

symbol stock ticker symbol
date trade date
open stock price at the open of trading, in USD
high stock price at the highest point during trading, in USD
low stock price at the lowest point during trading, in USD
close stock price at the close of trading, in USD
volume number of shares traded
adjusted stock price at the close of trading adjusted for stock splits, in USD
Description

The easiest way to filter time-based start/end ranges using shorthand timeseries notation. See `filter_period()` for applying filter expression by period (windows).

Usage

```r
filter_by_time(.data, .date_var, .start_date = "start", .end_date = "end")
```

Arguments

- `.data` A tibble with a time-based column.
- `.date_var` A column containing date or date-time values to filter. If missing, attempts to auto-detect date column.
- `.start_date` The starting date for the filter sequence
- `.end_date` The ending date for the filter sequence

Details

Pure Time Series Filtering Flexibility

The `.start_date` and `.end_date` parameters are designed with flexibility in mind.

Each side of the `time_formula` is specified as the character 'YYYY-MM-DD HH:MM:SS', but powerful shorthand is available. Some examples are:

- **Year**: `.start_date = '2013', .end_date = '2015'`
- **Month**: `.start_date = '2013-01', .end_date = '2016-06'`
- **Day**: `.start_date = '2013-01-05', .end_date = '2016-06-04'`
- **Variations**: `.start_date = '2013', .end_date = '2016-06'`

Key Words: "start" and "end"

Use the keywords "start" and "end" as shorthand, instead of specifying the actual start and end values. Here are some examples:

- **Start of the series to end of 2015**: `.start_date = 'start', .end_date = '2015'`
- **Start of 2014 to end of series**: `.start_date = '2014', .end_date = 'end'`

Internal Calculations

All shorthand dates are expanded:

- The `.start_date` is expanded to be the first date in that period
- The `.end_date` side is expanded to be the last date in that period
This means that the following examples are equivalent (assuming your index is a POSIXct):

- `.start_date = '2015'` is equivalent to `.start_date = '2015-01-01 + 00:00:00'`
- `.end_date = '2016'` is equivalent to `2016-12-31 + 23:59:59`

Value

Returns a tibble or data.frame that has been filtered.

References

- This function is based on the tibbletime::filter_time() function developed by Davis Vaughan.

See Also

Time-Based dplyr functions:

- `summarise_by_time()` - Easily summarise using a date column.
- `mutate_by_time()` - Simplifies applying mutations by time windows.
- `pad_by_time()` - Insert time series rows with regularly spaced timestamps
- `filter_by_time()` - Quickly filter using date ranges.
- `filter_period()` - Apply filtering expressions inside periods (windows)
- `slice_period()` - Apply slice inside periods (windows)
- `condense_period()` - Convert to a different periodicity
- `between_time()` - Range detection for date or date-time sequences.
- `slidify()` - Turn any function into a sliding (rolling) function

Examples

```r
library(dplyr)

# Filter values in January 1st through end of February, 2013
FANG %>%
group_by(symbol) %>%
filter_by_time(.start_date = "start", .end_date = "2013-02") %>%
plot_time_series(date, adjusted, .facet_ncol = 2, .interactive = FALSE)
```
filter_period

Apply filtering expressions inside periods (windows)

Description

Applies a dplyr **filtering expression inside a time-based period (window)**. See `filter_by_time()` for filtering continuous ranges defined by start/end dates. `filter_period()` enables filtering expressions like:

- Filtering to the maximum value each month.
- Filtering the first date each month.
- Filtering all rows with value greater than a monthly average

Usage

```r
define the usage example
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>.data</code></td>
<td>A tbl object or data.frame</td>
</tr>
<tr>
<td><code>...</code></td>
<td>Filtering expression. Expressions that return a logical value, and are defined in terms of the variables in <code>.data</code>. If multiple expressions are included, they are combined with the & operator. Only rows for which all conditions evaluate to TRUE are kept.</td>
</tr>
<tr>
<td><code>.date_var</code></td>
<td>A column containing date or date-time values. If missing, attempts to auto-detect date column.</td>
</tr>
<tr>
<td><code>.period</code></td>
<td>A period to filter within. Time units are grouped using <code>lubridate::floor_date()</code> or <code>lubridate::ceiling_date()</code>. The value can be:</td>
</tr>
<tr>
<td></td>
<td>- second</td>
</tr>
<tr>
<td></td>
<td>- minute</td>
</tr>
<tr>
<td></td>
<td>- hour</td>
</tr>
<tr>
<td></td>
<td>- day</td>
</tr>
<tr>
<td></td>
<td>- week</td>
</tr>
<tr>
<td></td>
<td>- month</td>
</tr>
<tr>
<td></td>
<td>- bimonth</td>
</tr>
<tr>
<td></td>
<td>- quarter</td>
</tr>
<tr>
<td></td>
<td>- season</td>
</tr>
<tr>
<td></td>
<td>- halfyear</td>
</tr>
<tr>
<td></td>
<td>- year</td>
</tr>
<tr>
<td></td>
<td>Arbitrary unique English abbreviations as in the <code>lubridate::period()</code> constructor are allowed:</td>
</tr>
<tr>
<td></td>
<td>- "1 year"</td>
</tr>
<tr>
<td></td>
<td>- "2 months"</td>
</tr>
<tr>
<td></td>
<td>- "30 seconds"</td>
</tr>
</tbody>
</table>
Value

A tibble or data.frame

See Also

Time-Based dplyr functions:

- `summarise_by_time()` - Easily summarise using a date column.
- `mutate_by_time()` - Simplifies applying mutations by time windows.
- `pad_by_time()` - Insert time series rows with regularly spaced timestamps
- `filter_by_time()` - Quickly filter using date ranges.
- `filter_period()` - Apply filtering expressions inside periods (windows)
- `slice_period()` - Apply slice inside periods (windows)
- `condense_period()` - Convert to a different periodicity
- `between_time()` - Range detection for date or date-time sequences.
- `slidify()` - Turn any function into a sliding (rolling) function

Examples

```
# Libraries
library(dplyr)

# Max value in each month
m4_daily %>%
  group_by(id) %>%
  filter_period(.period = "1 month", value == max(value))

# First date each month
m4_daily %>%
  group_by(id) %>%
  filter_period(.period = "1 month", date == first(date))

# All observations that are greater than a monthly average
m4_daily %>%
  group_by(id) %>%
  filter_period(.period = "1 month", value > mean(value))
```

<table>
<thead>
<tr>
<th>fourier_vec</th>
<th>Fourier Series</th>
</tr>
</thead>
</table>

Description

`fourier_vec()` calculates a Fourier Series from a date or date-time index.
Usage

fourier_vec(x, period, K = 1, type = c("sin", "cos"), scale_factor = NULL)

Arguments

x A date, POSIXct, yearmon, yearqtr, or numeric sequence (scaled to difference 1 for period alignment) to be converted to a fourier series.
period The number of observations that complete one cycle.
K The fourier term order.
type Either "sin" or "cos" for the appropriate type of fourier term.
scale_factor Scale factor is a calculated value that scales date sequences to numeric sequences. A user can provide a different value of scale factor to override the date scaling. Default: NULL (auto-scale).

Details

Benefits:
This function is NA padded by default so it works well with dplyr::mutate() operations.

Fourier Series Calculation
The internal calculation is relatively straightforward: fourier(x) = sin(2 * pi * term * x) or cos(2 * pi * term * x), where term = K / period.

Period Alignment, period
The period alignment with the sequence is an essential part of fourier series calculation.

- Date, Date-Time, and Zoo (yearqtr and yearmon) Sequences - Are scaled to unit difference of 1. This happens internally, so there’s nothing you need to do or to worry about. Future time series will be scaled appropriately.
- Numeric Sequences - Are not scaled, which means you should transform them to a unit difference of 1 so that your x is a sequence that increases by 1. Otherwise your period and fourier order will be incorrectly calculated. The solution is to just take your sequence and divide by the median difference between values.

Fourier Order, K
The fourier order is a parameter that increases the frequency. K = 2 doubles the frequency. It’s common in time series analysis to add multiple fourier orders (e.g. 1 through 5) to account for seasonalties that occur faster than the primary seasonality.

Type (Sin/Cos)
The type of the fourier series can be either sin or cos. It’s common in time series analysis to add both sin and cos series.

Value
A numeric vector
See Also

Fourier Modeling Functions:

- `step_fourier()` - Recipe for tidymodels workflow
- `tk_augment_fourier()` - Adds many fourier series to a `data.frame` (tibble)

Additional Vector Functions:

- Fourier Series: `fourier_vec()`
- Box Cox Transformation: `box_cox_vec()`
- Lag Transformation: `lag_vec()`
- Differencing Transformation: `diff_vec()`
- Rolling Window Transformation: `slidify_vec()`
- Loess Smoothing Transformation: `smooth_vec()`
- Missing Value Imputation for Time Series: `ts_impute_vec(), ts_clean_vec()`

Examples

```r
library(dplyr)

# Set max.print to 50
options_old <- options()$max.print
options(max.print = 50)

date_sequence <- tk_make_timeseries("2016-01-01", "2016-01-31", by = "hour")

# --- VECTOR ---
fourier_vec(date_sequence, period = 7 * 24, K = 1, type = "sin")

# --- MUTATE ---
tibble(date = date_sequence) %>%
  # Add cosine series that oscilates at a 7-day period
  mutate(
    C1_7 = fourier_vec(date, period = 7*24, K = 1, type = "cos"),
    C2_7 = fourier_vec(date, period = 7*24, K = 2, type = "cos")) %>%
  # Visualize
  tidyr::pivot_longer(cols = contains("_"), names_to = "name", values_to = "value") %>%
  plot_time_series(
    date, value, .color_var = name,
    .smooth = FALSE,
    .interactive = FALSE,
    .title = "7-Day Fourier Terms"
  )

options(max.print = options_old)
```
future_frame

Make future time series from existing

Arguments

.data A data.frame or tibble
.date_var A date or date-time variable.
.length_out Number of future observations. Can be numeric number or a phrase like "1 year".
.inspect_weekdays Uses a logistic regression algorithm to inspect whether certain weekdays (e.g. weekends) should be excluded from the future dates. Default is FALSE.
.inspect_months Uses a logistic regression algorithm to inspect whether certain days of months (e.g. last two weeks of year or seasonal days) should be excluded from the future dates. Default is FALSE.
.skip_values A vector of same class as idx of timeseries values to skip.
.insert_values A vector of same class as idx of timeseries values to insert.
.bind_data Whether or not to perform a row-wise bind of the .data and the future data. Default: FALSE

Details

This is a wrapper for tk_make_future_timeseries() that works on data.frames. It respects dplyr groups.

Specifying Length of Future Observations

The argument .length_out determines how many future index observations to compute. It can be specified as:
• A numeric value - the number of future observations to return.
 – The number of observations returned is always equal to the value the user inputs.
 – The end date can vary based on the number of timestamps chosen.
• A time-based phrase - The duration into the future to include (e.g. "6 months" or "30 minutes").
 – The duration defines the end date for observations.
 – The end date will not change and those timestamps that fall within the end date will be returned (e.g. a quarterly time series will return 4 quarters if .length_out = "1 year").
 – The number of observations will vary to fit within the end date.

Weekday and Month Inspection
The .inspect_weekdays and .inspect_months arguments apply to "daily" (scale = "day") data (refer to tk_get_timeseries_summary() to get the index scale).
 • The .inspect_weekdays argument is useful in determining missing days of the week that occur on a weekly frequency such as every week, every other week, and so on. It’s recommended to have at least 60 days to use this option.
 • The .inspect_months argument is useful in determining missing days of the month, quarter or year; however, the algorithm can inadvertently select incorrect dates if the pattern is erratic.

Skipping / Inserting Values
The .skip_values and .insert_values arguments can be used to remove and add values into the series of future times. The values must be the same format as the idx class.
 • The .skip_values argument useful for passing holidays or special index values that should be excluded from the future time series.
 • The .insert_values argument is useful for adding values back that the algorithm may have excluded.

Binding with Data
Rowwise binding with the original is so common that I’ve added an argument .bind_data to perform a row-wise bind of the future data and the incoming data.
This replaces the need to do:

```r
df %>%
  future_frame(.length_out = "6 months") %>%
  bind_rows(df, .)
```

Now you can just do:

```r
df %>%
  future_frame(.length_out = "6 months", .bind_data = TRUE)
```

Value
A tibble that has been extended with future date, date-time timestamps.
See Also

- Making Future Time Series: `tk_make_future_timeseries()` (Underlying function)

Examples

library(dplyr)

30-min interval data
taylor_30_min %>%
 future_frame(date, .length_out = "1 week")

Daily Data (Grouped)
m4_daily %>%
 group_by(id) %>%
 future_frame(date, .length_out = "6 weeks")

Specify how many observations to project into the future
m4_daily %>%
 group_by(id) %>%
 future_frame(date, .length_out = 100)

Bind with Original Data
m4_daily %>%
 group_by(id) %>%
 future_frame(date, .length_out = 100, .bind_data = TRUE)

holidays <- tk_make_holiday_sequence(
 start_date = "2017-01-01",
 end_date = "2017-12-31",
 calendar = "NYSE")

weekends <- tk_make_weekend_sequence(
 start_date = "2017-01-01",
 end_date = "2017-12-31"
)

FANG %>%
 group_by(symbol) %>%
 future_frame(
 .length_out = "1 year",
 .skip_values = c(holidays, weekends)
)
Description
Check if an object is a date class

Usage
is_date_class(x)

Arguments
x A vector to check

Value
Logical (TRUE/FALSE)

Examples
library(dplyr)

tk_make_timeseries("2011") %>% is_date_class()

letters %>% is_date_class()

lag_vec
Lag Transformation

Description
lag_vec() applies a Lag Transformation.

Usage
lag_vec(x, lag = 1)

lead_vec(x, lag = -1)

Arguments
x A vector to be lagged.
lag Which lag (how far back) to be included in the differencing calculation. Negative lags are leads.
Details

Benefits:
This function is NA padded by default so it works well with `dplyr::mutate()` operations. The function allows both lags and leads (negative lags).

Lag Calculation
A lag is an offset of lag periods. NA values are returned for the number of lag periods.

Lead Calculation
A negative lag is considered a lead. The only difference between `lead_vec()` and `lag_vec()` is that the `lead_vec()` function contains a starting negative value.

Value
A numeric vector

See Also
Modeling and Advanced Lagging:
• `recipes::step_lag()` - Recipe for adding lags in tidymodels modeling
• `tk_augment_lags()` - Add many lags group-wise to a data.frame (tibble)

Vectorized Transformations:
• Box Cox Transformation: `box_cox_vec()`
• Lag Transformation: `lag_vec()`
• Differencing Transformation: `diff_vec()`
• Rolling Window Transformation: `slidify_vec()`
• Loess Smoothing Transformation: `smooth_vec()`
• Fourier Series: `fourier_vec()`
• Missing Value Imputation for Time Series: `ts_impute_vec(), ts_clean_vec()`

Examples
```r
library(dplyr)

# --- VECTOR ----

# Lag
1:10 %>% lag_vec(lag = 1)

# Lead
1:10 %>% lag_vec(lag = -1)

# --- MUTATE ----

m4_daily %>%
```
log_interval_vec

Log-Interval Transformation for Constrained Interval Forecasting

Description

The `log_interval_vec()` transformation constrains a forecast to an interval specified by an `upper_limit` and a `lower_limit`. The transformation provides similar benefits to `log()` transformation, while ensuring the inverted transformation stays within an upper and lower limit.

Usage

```r
log_interval_vec(
  x,
  limit_lower = "auto",
  limit_upper = "auto",
  offset = 0,
  silent = FALSE
)

log_interval_inv_vec(x, limit_lower, limit_upper, offset = 0)
```

Arguments

- `x` A positive numeric vector.
- `limit_lower` A lower limit. Must be less than the minimum value. If set to "auto", selects zero.
- `limit_upper` An upper limit. Must be greater than the maximum value. If set to "auto", selects a value that is 10% greater than the maximum value.
- `offset` An offset to include in the log transformation. Useful when the data contains values less than or equal to zero.
- `silent` Whether or not to report the parameter selections as a message.

Details

Log Interval Transformation

The Log Interval Transformation constrains values to specified upper and lower limits. The transformation maps limits to a function:

\[
\log((x + \text{offset}) - a)/(b - (x + \text{offset}))
\]

where `a` is the lower limit and `b` is the upper limit.

Inverse Transformation

The inverse transformation:

\[
(b-a)*\exp(x) / (1 + \exp(x)) + a - \text{offset}
\]
Value

A numeric vector of the transformed series.

References

- Forecasting: Principles & Practices: Forecasts constrained to an interval

See Also

- Box Cox Transformation: box_cox_vec()
- Lag Transformation: lag_vec()
- Differencing Transformation: diff_vec()
- Rolling Window Transformation: slidify_vec()
- Loess Smoothing Transformation: smooth_vec()
- Fourier Series: fourier_vec()
- Missing Value Imputation & Anomaly Cleaning for Time Series: ts_impute_vec(), ts_clean_vec()

Other common transformations to reduce variance: log(), log1p() and sqrt()

Examples

```r
library(dplyr)

values_trans <- log_interval_vec(1:10, limit_lower = 0, limit_upper = 11)
values_trans

values_trans_forecast <- c(values_trans, 3.4, 4.4, 5.4)
values_trans_forecast %>%
  log_interval_inv_vec(limit_lower = 0, limit_upper = 11) %>%
  plot()
```

m4_daily Sample of 4 Daily Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The competition included 100,000 time series datasets. This dataset includes a sample of 4 daily time series from the competition.

Usage

m4_daily
Format

A tibble: 9,743 x 3

- id Factor. Unique series identifier (4 total)
- date Date. Timestamp information. Daily format.
- value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 daily data sets from the M4 competition.

Source

- M4 Competition Website

Examples

m4_daily

m4_hourly

Sample of 4 Hourly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The competition included 100,000 time series datasets. This dataset includes a sample of 4 hourly time series from the competition.

Usage

m4_hourly

Format

A tibble: 3,060 x 3

- id Factor. Unique series identifier (4 total)
- date Date-time. Timestamp information. Hourly format.
- value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 hourly data sets from the M4 competition.

Source

- M4 Competition Website
Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The competition included 100,000 time series datasets. This dataset includes a sample of 4 monthly time series from the competition.

Usage

m4_monthly

Format

A tibble: 9,743 x 3

• id Factor. Unique series identifier (4 total)
• date Date. Timestamp information. Monthly format.
• value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Monthly data sets from the M4 competition.

Source

• M4 Competition Website

Examples

m4_monthly
m4_quarterly

Sample of 4 Quarterly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The competition included 100,000 time series datasets. This dataset includes a _sample of 4 quarterly time series from the competition._

Usage

`m4_quarterly`

Format

A tibble: 9,743 x 3

- `id` Factor. Unique series identifier (4 total)
- `date` Date. Timestamp information. Quarterly format.
- `value` Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Quarterly data sets from the M4 competition.

Source

- M4 Competition Website

Examples

`m4_quarterly`

m4_weekly

Sample of 4 Weekly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The competition included 100,000 time series datasets. This dataset includes a _sample of 4 weekly time series from the competition._

Usage

`m4_weekly`

m4_yearly

Format

A tibble: 9,743 x 3

- id Factor. Unique series identifier (4 total)
- date Date. Timestamp information. Weekly format.
- value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Weekly data sets from the M4 competition.

Source

- M4 Competition Website

Examples

m4_weekly

<table>
<thead>
<tr>
<th>m4_yearly</th>
<th>Sample of 4 Yearly Time Series Datasets from the M4 Competition</th>
</tr>
</thead>
</table>

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The competition included 100,000 time series datasets. This dataset includes a sample of 4 yearly time series from the competition.

Usage

m4_yearly

Format

A tibble: 9,743 x 3

- id Factor. Unique series identifier (4 total)
- date Date. Timestamp information. Yearly format.
- value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Yearly data sets from the M4 competition.

Source

- M4 Competition Website
mutate_by_time

Examples

```r
m4_yearly
```

Description

`mutate_by_time()` is a time-based variant of the popular `dplyr::mutate()` function that uses `.date_var` to specify a date or date-time column and `.by` to group the calculation by groups like "5 seconds", "week", or "3 months".

Usage

```r
mutate_by_time(
  .data,
  .date_var,
  .by = "day",
  ...
)
```

Arguments

- `.data` A `tbl` object or `data.frame`
- `.date_var` A column containing date or date-time values to summarize. If missing, attempts to auto-detect date column.
- `.by` A time unit to summarise by. Time units are collapsed using `lubridate::floor_date()` or `lubridate::ceiling_date()`. The value can be:
 - `second`
 - `minute`
 - `hour`
 - `day`
 - `week`
 - `month`
 - `bimonth`
 - `quarter`
 - `season`
 - `halfyear`
 - `year`
Arbitrary unique English abbreviations as in the `lubridate::period()` constructor are allowed.

Name-value pairs. The name gives the name of the column in the output. The value can be:
- A vector of length 1, which will be recycled to the correct length.
- A vector the same length as the current group (or the whole data frame if ungrouped).
- `NULL`, to remove the column.
- A data frame or tibble, to create multiple columns in the output.

`.type` One of "floor", "ceiling", or "round. Defaults to "floor". See `lubridate::round_date`.

Value

A tibble or data.frame

See Also

Time-Based `dplyr` functions:
- `summarise_by_time()` - Easily summarise using a date column.
- `mutate_by_time()` - Simplifies applying mutations by time windows.
- `pad_by_time()` - Insert time series rows with regularly spaced timestamps
- `filter_by_time()` - Quickly filter using date ranges.
- `filter_period()` - Apply filtering expressions inside periods (windows)
- `slice_period()` - Apply slice inside periods (windows)
- `condense_period()` - Convert to a different periodicity
- `between_time()` - Range detection for date or date-time sequences.
- `slidify()` - Turn any function into a sliding (rolling) function

Examples

```r
# Libraries
library(dplyr)

# First value in each month
m4_daily_first_by_month_tbl <- m4_daily %>%
  group_by(id) %>%
  mutate_by_time(
    .date_var = date,
    .by = "month", # Setup for monthly aggregation
    # mutate recycles a single value
    first_value_by_month = first(value)
  )

m4_daily_first_by_month_tbl

# Visualize Time Series vs 1st Value Each Month
m4_daily_first_by_month_tbl %>%
```
tidyr::pivot_longer(value: first_value_by_month) %>%
plot_time_series(date, value, name,
 .facet_scale = "free", .facet_ncol = 2,
 .smooth = FALSE, .interactive = FALSE)

normalize_vec Normalize to Range (0, 1)

Description
Normalization is commonly used to center and scale numeric features to prevent one from dominating in algorithms that require data to be on the same scale.

Usage
normalize_vec(x, min = NULL, max = NULL, silent = FALSE)

normalize_inv_vec(x, min, max)

Arguments
x A numeric vector.
min The population min value in the normalization process.
max The population max value in the normalization process.
silent Whether or not to report the automated min and max parameters as a message.

Details
Standardization vs Normalization
- **Standardization** refers to a transformation that reduces the range to mean 0, standard deviation 1
- **Normalization** refers to a transformation that reduces the min-max range: (0, 1)

Value
A numeric vector with the transformation applied.

See Also
- Normalization/Standardization: `standardize_vec()`, `normalize_vec()`
- Box Cox Transformation: `box_cox_vec()`
- Lag Transformation: `lag_vec()`
- Differencing Transformation: `diff_vec()`
- Rolling Window Transformation: `slidify_vec()`
• Loess Smoothing Transformation: smooth_vec()
• Fourier Series: fourier_vec()
• Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

library(dplyr)

d10_daily <- m4_daily %>% dplyr::filter(id == "D10")

--- VECTOR ----
value_norm <- normalize_vec(d10_daily$value)
value <- normalize_inv_vec(value_norm,
min = 1781.6,
max = 2649.3)

--- MUTATE ----

m4_daily %>%
 group_by(id) %>%
 mutate(value_norm = normalize_vec(value))

pad_by_time

Insert time series rows with regularly spaced timestamps

Description

The easiest way to fill in missing timestamps or convert to a more granular period (e.g. quarter to month). Wraps the padr::pad() function for padding tibbles.

Usage

pad_by_time(
 .data,
 .date_var,
 .by = "auto",
 .pad_value = NA,
 .fill_na_direction = c("none", "down", "up", "downup", "updown"),
 .start_date = NULL,
 .end_date = NULL
)

Arguments

- `.data` A tibble with a time-based column.
- `.date_var` A column containing date or date-time values to pad
- `.by` Either "auto", a time-based frequency like "year", "month", "day", "hour", etc, or a time expression like "5 min", or "7 days". See Details.
- `.pad_value` Fills in padded values. Default is NA.
- `.fill_na_direction` Users can provide an NA fill strategy using `tidyr::fill()`. Possible values: 'none', 'down', 'up', 'downup', 'updown'. Default: 'none'
- `.start_date` Specifies the start of the padded series. If NULL it will use the lowest value of the input variable.
- `.end_date` Specifies the end of the padded series. If NULL it will use the highest value of the input variable.

Details

Padding Missing Observations

The most common use case for `pad_by_time()` is to add rows where timestamps are missing. This could be from sales data that have missing values on weekends and holidays. Or it could be high frequency data where observations are irregularly spaced and should be reset to a regular frequency.

Going from Low to High Frequency

The second use case is going from a low frequency (e.g. day) to high frequency (e.g. hour). This is possible by supplying a higher frequency to `pad_by_time()`.

Interval, `.by`

Padding can be applied in the following ways:

- `.by = "auto"` - `pad_by_time()` will detect the time-stamp frequency and apply padding.
- The eight intervals in are: year, quarter, month, week, day, hour, min, and sec.
- Intervals like 5 minutes, 6 hours, 10 days are possible.

Pad Value, `.pad_value`

A pad value can be supplied that fills in missing numeric data. Note that this is only applied to numeric columns.

Fill NA Direction, `.fill_na_direction`

Uses `tidyr::fill()` to fill missing observations using a fill strategy.

Value

A tibble or `data.frame` with rows containing missing timestamps added.

References

- This function wraps the `padr::pad()` function developed by Edwin Thoen.
See Also

Imputation:

- `ts_impute_vec()` - Impute missing values for time series.

Time-Based dplyr functions:

- `summarise_by_time()` - Easily summarise using a date column.
- `mutate_by_time()` - Simplifies applying mutations by time windows.
- `pad_by_time()` - Insert time series rows with regularly spaced timestamps
- `filter_by_time()` - Quickly filter using date ranges.
- `filter_period()` - Apply filtering expressions inside periods (windows)
- `slice_period()` - Apply slice inside periods (windows)
- `condense_period()` - Convert to a different periodicity
- `between_time()` - Range detection for date or date-time sequences.
- `slidify()` - Turn any function into a sliding (rolling) function

Examples

```r
library(dplyr)

# Create a quarterly series with 1 missing value
missing_data_tbl <- tibble::tibble(
  date = tk_make_timeseries("2014-01-01", "2015-01-01", by = "quarter"),
  value = 1:5
)

# Lose the 4th quarter on purpose
missing_data_tbl

# Detects missing quarter, and pads the missing regularly spaced quarter with NA
missing_data_tbl %>% pad_by_time(date, .by = "quarter")

# Can specify a shorter period. This fills monthly.
missing_data_tbl %>% pad_by_time(date, .by = "month")

# Can let pad_by_time() auto-detect date and period
missing_data_tbl %>% pad_by_time()

# Can specify a .pad_value
missing_data_tbl %>% pad_by_time(date, .by = "quarter", .pad_value = 0)

# Can then impute missing values
missing_data_tbl %>
  pad_by_time(date, .by = "quarter") %>
  mutate(value = ts_impute_vec(value, period = 1))

# Can specify a custom .start_date and .end_date
missing_data_tbl %>
```
pad_by_time(date, .by = "quarter", .start_date = "2013", .end_date = "2015-07-01")

Can specify a tidyr::fill() direction
missing_data_tbl %>%
 pad_by_time(date, .by = "quarter",
 .fill_na_direction = "downup",
 .start_date = "2013", .end_date = "2015-07-01")

--- GROUPS ----

Apply standard NA padding to groups
FANG %>%
 group_by(symbol) %>%
 pad_by_time(.by = "day")

Apply constant pad value
FANG %>%
 group_by(symbol) %>%
 pad_by_time(.by = "day", .pad_value = 0)

Apply filled padding to groups
FANG %>%
 group_by(symbol) %>%
 pad_by_time(.by = "day", .fill_na_direction = "down")

parse_date2

Fast, flexible date and datetime parsing

Description

Significantly faster time series parsing than readr::parse_date, readr::parse_datetime, lubridate::as_date(), and lubridate::as_datetime(). Uses anytime package, which relies on Boost.Date_Time C++ library for date/datetime parsing.

Usage

```r
parse_date2(x, ..., silent = FALSE)
```

```r
parse_datetime2(x, tz = "UTC", tz_shift = FALSE, ..., silent = FALSE)
```

Arguments

- `x` A character vector
- `...` Additional parameters passed to anytime() and anydate()
- `silent` If TRUE, warns the user of parsing failures.
- `tz` Datetime only. A timezone (see OlsenNames()).
- `tz_shift` Datetime only. If FALSE, forces the datetime into the time zone. If TRUE, offsets the datetime from UTC to the new time zone.
Details

Parsing Formats

- Date Formats: Must follow a Year, Month, Day sequence. (e.g. `parse_date2("2011 June")` is OK, `parse_date2("June 2011")` is NOT OK).
- Date Time Formats: Must follow a YMD HMS sequence.

Refer to `lubridate::mdy()` for Month, Day, Year and additional formats.

Time zones (Datetime)

Time zones are handled in a similar way to `lubridate::as_datetime()` in that time zones are forced rather than shifted. This is a key difference between `anytime::anytime()`, which shifts datetimes to the specified timezone by default.

Value

Returns a date or datetime vector from the transformation applied to character timestamp vector.

References

- This function wraps the `anytime::anytime()` and `anytime::anydate()` functions developed by Dirk Eddelbuettel.

Examples

```r
# Fast date parsing
parse_date2("2011")
parse_date2("2011 June 3rd")

# Fast datetime parsing
parse_datetime2("2011")
parse_datetime2("2011 Jan 1 12:35:21")

# Time Zones (datetime only)
parse_datetime2("2011 Jan 1 12:35:21", tz = "Europe/London")
```

Description

Returns the ACF and PACF of a target and optionally CCF’s of one or more lagged predictors in interactive plotly plots. Scales to multiple time series with `group_by()`.
Usage

plot_acf_diagnostics(
 .data,
 .date_var,
 .value,
 .ccf_vars = NULL,
 .lags = 1000,
 .show_ccf_vars_only = FALSE,
 .show_white_noise_bars = TRUE,
 .facet_ncol = 1,
 .facet_scales = "fixed",
 .line_color = "#2c3e50",
 .line_size = 0.5,
 .line_alpha = 1,
 .point_color = "#2c3e50",
 .point_size = 1,
 .point_alpha = 1,
 .x_intercept = NULL,
 .x_intercept_color = "#E31A1C",
 .hline_color = "#2c3e50",
 .white_noise_line_type = 2,
 .white_noise_line_color = "#A6CEE3",
 .title = "Lag Diagnostics",
 .x_lab = "Lag",
 .y_lab = "Correlation",
 .interactive = TRUE,
 .plotly_slider = FALSE
)

Arguments

.data A data frame or tibble with numeric features (values) in descending chronological order
.date_var A column containing either date or date-time values
.value A numeric column with a value to have ACF and PACF calculations performed.
.ccf_vars Additional features to perform Lag Cross Correlations (CCFs) versus the .value. Useful for evaluating external lagged regressors.
.lags A sequence of one or more lags to evaluate.
.show_ccf_vars_only Hides the ACF and PACF plots so you can focus on only CCFs.
.show_white_noise_bars Shows the white noise significance bounds.
.facet_ncol Facets: Number of facet columns. Has no effect if using grouped_dfs.
.facet_scales Facets: Options include "fixed", "free", "free_y", "free_x"
.line_color Line color. Use keyword: "scale_color" to change the color by the facet.
Details

Simplified ACF, PACF, & CCF

We are often interested in all 3 of these functions. Why not get all 3+ at once? Now you can.

- **ACF** - Autocorrelation between a target variable and lagged versions of itself
- **PACF** - Partial Autocorrelation removes the dependence of lags on other lags highlighting key seasonalities.
- **CCF** - Shows how lagged predictors can be used for prediction of a target variable.

Lag Specification

Lags (.lags) can either be specified as:

- A time-based phrase indicating a duration (e.g. 2 months)
- A maximum lag (e.g. .lags = 28)
- A sequence of lags (e.g. .lags = 7:28)

Scales to Multiple Time Series with Groups

The `plot_acf_diagnostics()` works with grouped_df’s, meaning you can group your time series by one or more categorical columns with `dplyr::group_by()` and then apply `plot_acf_diagnostics()` to return group-wise lag diagnostics.

Special Note on Groups
Unlike other plotting utilities, the `.facet_vars` arguments is NOT included. Use `dplyr::group_by()` for processing multiple time series groups.

Calculating the White Noise Significance Bars

The formula for the significance bars is $+2/\sqrt{T}$ and $-2/\sqrt{T}$ where T is the length of the time series. For a white noise time series, 95% of the data points should fall within this range. Those that don’t may be significant autocorrelations.

Value

A static `ggplot2` plot or an interactive `plotly` plot

See Also

- Visualizing ACF, PACF, & CCF: `plot_acf_diagnostics()`
- Visualizing Seasonality: `plot_seasonal_diagnostics()`
- Visualizing Time Series: `plot_time_series()`

Examples

```r
library(dplyr)
library(ggplot2)

# Apply Transformations
# - Differencing transformation to identify ARIMA & SARIMA Orders
m4_hourly %>%
  group_by(id) %>%
  plot_acf_diagnostics(
    date, value,                  # ACF & PACF
    .lags = "7 days",            # 7-Days of hourly lags
    .interactive = FALSE
  )

# Apply Transformations
# - Differencing transformation to identify ARIMA & SARIMA Orders
m4_hourly %>%
  group_by(id) %>%
  plot_acf_diagnostics(
    date,
    diff_vec(value, lag = 1),    # Difference the value column
    .lags = 0:(24*7),            # 7-Days of hourly lags
    .interactive = FALSE
  ) +
  ggtitle("ACF Diagnostics", subtitle = "1st Difference")

# CCFs Too!
walmart_sales_weekly %>%
  select(id, Date, Weekly_Sales, Temperature, Fuel_Price) %>%
  group_by(id) %>%
  plot_acf_diagnostics(
    Date, Weekly_Sales,          # ACF & PACF
  )
```
Description

plot_anomalies() is an interactive and scalable function for visualizing anomalies in time series data. Plots are available in interactive plotly (default) and static ggplot2 format.

plot_anomalies_decomp(): Takes in data from the anomalize() function, and returns a plot of the anomaly decomposition. Useful for interpreting how the anomalize() function is determining outliers from "remainder".

plot_anomalies_cleaned() helps users visualize the before/after of cleaning anomalies.

Usage

plot_anomalies(
 .data,
 .date_var,
 .facet_vars = NULL,
 .facet_ncol = 1,
 .facet_nrow = 1,
 .facet_scales = "free",
 .facet_dir = "h",
 .facet_collapse = FALSE,
 .facet_collapse_sep = " ",
 .facet_strip_remove = FALSE,
 .line_color = "#2c3e50",
 .line_size = 0.5,
 .line_type = 1,
 .anom_color = "#e31a1c",
 .anom_alpha = 1,
 .anom_size = 1.5,
 .ribbon_fill = "grey20",
 .ribbon_alpha = 0.2,
 .legend_show = TRUE,
 .title = "Anomaly Plot",
 .x_lab = "",
 .y_lab = "",
 .color_lab = "Anomaly",
 .interactive = TRUE,
 .trelliscope = FALSE,
plot_anomalies_decomp(
 .data,
 .date_var,
 .facet_vars = NULL,
 .facet_scales = "free",
 .line_color = "#2c3e50",
 .line_size = 0.5,
 .line_type = 1,
 .line_alpha = 1,
 .title = "Anomaly Decomposition Plot",
 .x_lab = "",
 .y_lab = "",
 .interactive = TRUE
)

plot_anomalies_cleaned(
 .data,
 .date_var,
 .facet_vars = NULL,
 .facet_ncol = 1,
 .facet_nrow = 1,
 .facet_scales = "free",
 .facet_dir = "h",
 .facetCollapse = FALSE,
 .facetCollapseSep = "",
 .facet_strip_remove = FALSE,
 .line_color = "#2c3e50",
 .line_size = 0.5,
 .line_type = 1,
 .line_alpha = 1,
 .cleaned_line_color = "#e31a1c",
 .cleaned_line_size = 0.5,
 .cleaned_line_type = 1,
 .cleaned_line_alpha = 1,
 .legend_show = TRUE,
 .title = "Anomalies Cleaned Plot",
 .x_lab = "",
 .y_lab = "",
 .color_lab = "Legend",
 .interactive = TRUE,
 .trelliscope = FALSE,
 .trelliscope_params = list()
)
Arguments

.data A tibble or data.frame that has been anomialized by anomalize()
.date_var A column containing either date or date-time values
.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can be selected using tidyselect() helpers (e.g contains()).
.facet_ncol Number of facet columns.
.facet_nrow Number of facet rows (only used for .trelliscope = TRUE)
.facet_scales Control facet x & y-axis ranges. Options include "fixed", "free", "free_y", "free_x"
.facet_dir The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h".
.facetCollapse Multiple facets included on one facet strip instead of multiple facet strips.
.facetCollapseSep The separator used for collapsing facets.
.facetStripRemove Whether or not to remove the strip and text label for each facet.
.line_color Line color.
.line_size Line size.
.line_type Line type.
.line_alpha Line alpha (opacity). Range: (0, 1).
.anom_color Color for the anomaly dots
.anom_alpha Opacity for the anomaly dots. Range: (0, 1).
.anom_size Size for the anomaly dots
.ribbon_fill Fill color for the acceptable range
.ribbon_alpha Fill opacity for the acceptable range. Range: (0, 1).
.legend_show Toggles on/off the Legend
.title Plot title.
.x_lab Plot x-axis label
.y_lab Plot y-axis label
.color_lab Plot label for the color legend
.interactive If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2 plot.
.trelliscope Returns either a normal plot or a trelliscopejs plot (great for many time series)
.trelliscopeParams Pass parameters to the trelliscopejs::facet_trelliscope() function as a list(). The only parameters that cannot be passed are:
 • ncol: use .facet_ncol
 • nrow: use .facet_nrow
 • scales: use facet_scales
- `as_plotly`: use `.interactive`
 - `.cleaned_line_color`
 - Line color.
 - `.cleaned_line_size`
 - Line size.
 - `.cleaned_line_type`
 - Line type.
 - `.cleaned_line_alpha`
 - Line alpha (opacity). Range: (0, 1).

Value

A plotly or ggplot2 visualization

Examples

```r
# Plot Anomalies
library(dplyr)

walmart_sales_weekly %>%
  filter(id %in% c("1_1", "1_3")) %>%
  group_by(id) %>%
  anomalize(Date, Weekly_Sales) %>%
  plot_anomalies(Date, .facet_ncol = 2, .ribbon_alpha = 0.25, .interactive = FALSE)

# Plot Anomalies Decomposition
library(dplyr)

walmart_sales_weekly %>%
  filter(id %in% c("1_1", "1_3")) %>%
  group_by(id) %>%
  anomalize(Date, Weekly_Sales, .message = FALSE) %>%
  plot_anomalies_decomp(Date, .interactive = FALSE)

# Plot Anomalies Cleaned
library(dplyr)

walmart_sales_weekly %>%
  filter(id %in% c("1_1", "1_3")) %>%
  group_by(id) %>%
  anomalize(Date, Weekly_Sales, .message = FALSE) %>%
  plot_anomalies_cleaned(Date, .facet_ncol = 2, .interactive = FALSE)
```

plot_anomaly_diagnostics

Visualize Anomalies for One or More Time Series
Description

An interactive and scalable function for visualizing anomalies in time series data. Plots are available in interactive plotly (default) and static ggplot2 format.

Usage

```r
plot_anomaly_diagnostics(
  .data,
  .date_var,
  .value,
  .facet_vars = NULL,
  .frequency = "auto",
  .trend = "auto",
  .alpha = 0.05,
  .max_anomalies = 0.2,
  .message = TRUE,
  .facet_ncol = 1,
  .facet_nrow = 1,
  .facet_scales = "free",
  .facet_dir = "h",
  .facet_collapse = FALSE,
  .facet_collapse_sep = " ",
  .facet_strip_remove = FALSE,
  .line_color = "#2c3e50",
  .line_size = 0.5,
  .line_type = 1,
  .line_alpha = 1,
  .anom_color = "#e31a1c",
  .anom_alpha = 1,
  .anom_size = 1.5,
  .ribbon_fill = "grey20",
  .ribbon_alpha = 0.2,
  .legend_show = TRUE,
  .title = "Anomaly Diagnostics",
  .x_lab = "",
  .y_lab = "",
  .color_lab = "Anomaly",
  .interactive = TRUE,
  .trelliscope = FALSE,
  .trelliscope_params = list()
)
```

Arguments

- `.data` A tibble or data.frame with a time-based column
- `.date_var` A column containing either date or date-time values
- `.value` A column containing numeric values
.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can be selected using tidyselect() helpers (e.g contains()).

.frequency Controls the seasonal adjustment (removal of seasonality). Input can be either "auto", a time-based definition (e.g. "2 weeks"), or a numeric number of observations per frequency (e.g. 10). Refer to tk_get_frequency().

.trend Controls the trend component. For STL, trend controls the sensitivity of the LOESS smoother, which is used to remove the remainder. Refer to tk_get_trend().

.alpha Controls the width of the "normal" range. Lower values are more conservative while higher values are less prone to incorrectly classifying "normal" observations.

.max_anomalies The maximum percent of anomalies permitted to be identified.

.message A boolean. If TRUE, will output information related to automatic frequency and trend selection (if applicable).

.facet_ncol Number of facet columns.

.facet_nrow Number of facet rows (only used for .trelliscope = TRUE)

.facet_scales Control facet x & y-axis ranges. Options include "fixed", "free", "free_y", "free_x"

.facet_dir The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h".

.facetCollapse Multiple facets included on one facet strip instead of multiple facet strips.

.facetCollapseSep The separator used for collapsing facets.

.facetStripRemove Whether or not to remove the strip and text label for each facet.

.line_color Line color.

.line_size Line size.

.line_type Line type.

.line_alpha Line alpha (opacity). Range: (0, 1).

.anom_color Color for the anomaly dots

.anom_alpha Opacity for the anomaly dots. Range: (0, 1).

.anom_size Size for the anomaly dots

.ribbon_fill Fill color for the acceptable range

.ribbon_alpha Fill opacity for the acceptable range. Range: (0, 1).

.legendShow Toggles on/off the Legend

.title Plot title.

.x_lab Plot x-axis label

.y_lab Plot y-axis label

.color_lab Plot label for the color legend

.interactive If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2 plot.
 Returns either a normal plot or a trelliscopejs plot (great for many time series) Must have trelliscopejs installed.

Pass parameters to the trelliscopejs::facet_trelliscope() function as a list(). The only parameters that cannot be passed are:

- `ncol`: use .facet_ncol
- `nrow`: use .facet_nrow
- `scales`: use .facet_scales
- `as_plotly`: use .interactive

Details

The plot_anomaly_diagnostics() is a visualization wrapper for tk_anomaly_diagnostics() group-wise anomaly detection, implements a 2-step process to detect outliers in time series.

Step 1: Detrend & Remove Seasonality using STL Decomposition

The decomposition separates the "season" and "trend" components from the "observed" values leaving the "remainder" for anomaly detection.

The user can control two parameters: frequency and trend.

1. `.frequency`: Adjusts the "season" component that is removed from the "observed" values.
2. `.trend`: Adjusts the trend window (t.window parameter from stats::stl() that is used.

The user may supply both `.frequency` and `.trend` as time-based durations (e.g. "6 weeks") or numeric values (e.g. 180) or "auto", which predetermines the frequency and/or trend based on the scale of the time series using the tk_time_scale_template().

Step 2: Anomaly Detection

Once "trend" and "season" (seasonality) is removed, anomaly detection is performed on the "remainder". Anomalies are identified, and boundaries (recomposed_l1 and recomposed_l2) are determined.

The Anomaly Detection Method uses an inner quartile range (IQR) of +/-25 the median.

IQR Adjustment, alpha parameter

With the default `alpha = 0.05`, the limits are established by expanding the 25/75 baseline by an IQR Factor of 3 (3X). The IQR Factor = 0.15 / alpha (hence 3X with alpha = 0.05):

- To increase the IQR Factor controlling the limits, decrease the alpha, which makes it more difficult to be an outlier.
- Increase alpha to make it easier to be an outlier.
- The IQR outlier detection method is used in forecast::tsoutliers().
- A similar outlier detection method is used by Twitter's AnomalyDetection package.
- Both Twitter and Forecast tsoutliers methods have been implemented in Business Science's anomalize package.

Value

A plotly or ggplot2 visualization
References

See Also

- `tk_anomaly_diagnostics()`: Group-wise anomaly detection

Examples

```r
library(dplyr)

walmart_sales_weekly %>%
  group_by(id) %>%
  plot_anomaly_diagnostics(Date, Weekly_Sales,
      .message = FALSE,
      .facet_ncol = 3,
      .ribbon_alpha = 0.25,
      .interactive = FALSE)
```

plot_seasonal_diagnostics

`plot_seasonal_diagnostics`

Visualize Multiple Seasonality Features for One or More Time Series

Description

An interactive and scalable function for visualizing time series seasonality. Plots are available in interactive `plotly` (default) and static `ggplot2` format.

Usage

```r
plot_seasonal_diagnostics(
    .data,
    .date_var,
    .value,
    .facet_vars = NULL,
    .feature_set = "auto",
    .geom = c("boxplot", "violin"),
    .geom_color = "#2c3e50",
    .geom_outlier_color = "#2c3e50",
    .title = "Seasonal Diagnostics",
    .ribbon_color = "#2c3e50",
    .interactive = FALSE
)
```
plot_seasonal_diagnostics

```r
.x_lab = "",
.y_lab = "",
.interactive = TRUE
)
```

Arguments

- `.data` A tibble or data.frame with a time-based column
- `.date_var` A column containing either date or date-time values
- `.value` A column containing numeric values
- `.facet_vars` One or more grouping columns that broken out into ggplot2 facets. These can be selected using tidyselect() helpers (e.g contains()).
- `.feature_set` One or multiple selections to analyze for seasonality. Choices include:
 - "auto" - Automatically selects features based on the time stamps and length of the series.
 - "second" - Good for analyzing seasonality by second of each minute.
 - "minute" - Good for analyzing seasonality by minute of the hour
 - "hour" - Good for analyzing seasonality by hour of the day
 - "wday.lbl" - Labeled weekdays. Good for analyzing seasonality by day of the week.
 - "week" - Good for analyzing seasonality by week of the year.
 - "month.lbl" - Labeled months. Good for analyzing seasonality by month of the year.
 - "quarter" - Good for analyzing seasonality by quarter of the year
 - "year" - Good for analyzing seasonality over multiple years.
- `.geom` Either "boxplot" or "violin"
- `.geom_color` Geometry color. Line color. Use keyword: "scale_color" to change the color by the facet.
- `.geom_outlier_color` Color used to highlight outliers.
- `.title` Plot title.
- `.x_lab` Plot x-axis label
- `.y_lab` Plot y-axis label
- `.interactive` If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2 plot.

Details

Automatic Feature Selection

Internal calculations are performed to detect a sub-range of features to include using the following logic:

- The *minimum* feature is selected based on the median difference between consecutive times-tamps
• The maximum feature is selected based on having 2 full periods.

Example: Hourly timestamp data that lasts more than 2 weeks will have the following features: "hour", "wday.lbl", and "week".

Scalable with Grouped Data Frames
This function respects grouped data.frame and tibbles that were made with dplyr::group_by().

For grouped data, the automatic feature selection returned is a collection of all features within the sub-groups. This means extra features are returned even though they may be meaningless for some of the groups.

Transformations
The .value parameter respects transformations (e.g. .value = log(sales)).

Value
A plotly or ggplot2 visualization

Examples

library(dplyr)

---- MULTIPLE FREQUENCY ----
Taylor 30-minute dataset from forecast package
taylor_30_min

taylor_30_min %>%
 plot_time_series(date, value, .interactive = FALSE)

Visualize seasonality
taylor_30_min %>%
 plot_seasonal_diagnostics(date, value, .interactive = FALSE)

---- GROUPED EXAMPLES ----
m4 hourly dataset
m4_hourly

m4_hourly %>%
 group_by(id) %>%
 plot_time_series(date, value, .facet_scales = "free", .interactive = FALSE)

Visualize seasonality
m4_hourly %>%
 group_by(id) %>%
 plot_seasonal_diagnostics(date, value, .interactive = FALSE)
plot_stl_diagnostics
Visualize STL Decomposition Features for One or More Time Series

Description

An interactive and scalable function for visualizing time series STL Decomposition. Plots are available in interactive plotly (default) and static ggplot2 format.

Usage

```r
plot_stl_diagnostics(
  .data,  
  .date_var,  
  .value,  
  .facet_vars = NULL,  
  .feature_set = c("observed", "season", "trend", "remainder", "seasadj"),  
  .frequency = "auto",  
  .trend = "auto",  
  .message = TRUE,  
  .facet_scales = "free",  
  .line_color = "#2c3e50",  
  .line_size = 0.5,  
  .line_type = 1,  
  .line_alpha = 1,  
  .title = "STL Diagnostics",  
  .x_lab = "",  
  .y_lab = "",  
  .interactive = TRUE
)
```

Arguments

- **.data**
 A tibble or data.frame with a time-based column
- **.date_var**
 A column containing either date or date-time values
- **.value**
 A column containing numeric values
- **.facet_vars**
 One or more grouping columns that broken out into ggplot2 facets. These can be selected using tidyselect() helpers (e.g contains()).
- **.feature_set**
 The STL decompositions to visualize. Select one or more of "observed", "season", "trend", "remainder", "seasadj".
- **.frequency**
 Controls the seasonal adjustment (removal of seasonality). Input can be either "auto", a time-based definition (e.g. "2 weeks"), or a numeric number of observations per frequency (e.g. 10). Refer to tk_get_frequency().
- **.trend**
 Controls the trend component. For STL, trend controls the sensitivity of the lowess smoother, which is used to remove the remainder.
plot_stl_diagnostics

.message A boolean. If TRUE, will output information related to automatic frequency and trend selection (if applicable).
.facet_scales Control facet x & y-axis ranges. Options include "fixed", "free", "free_y", "free_x"
.line_color Line color.
.line_size Line size.
.line_type Line type.
.line_alpha Line alpha (opacity). Range: (0, 1).
.title Plot title.
.x_lab Plot x-axis label
.y_lab Plot y-axis label
.interactive If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2 plot.

Details

The plot_stl_diagnostics() function generates a Seasonal-Trend-Loess decomposition. The function is "tidy" in the sense that it works on data frames and is designed to work with dplyr groups.

STL method:
The STL method implements time series decomposition using the underlying stats::stl(). The decomposition separates the "season" and "trend" components from the "observed" values leaving the "remainder".

Frequency & Trend Selection
The user can control two parameters: .frequency and .trend.

1. The .frequency parameter adjusts the "season" component that is removed from the "observed" values.
2. The .trend parameter adjusts the trend window (t.window parameter from stl()) that is used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or numeric values (e.g. 180) or "auto", which automatically selects the frequency and/or trend based on the scale of the time series.

Value
A plotly or ggplot2 visualization

Examples
library(dplyr)

---- SINGLE TIME SERIES DECOMPOSITION ----
m4_hourly %>%
 filter(id == "H10") %>%
plot_time_series

plot_stl_diagnostics(
 date, value,
 # Set features to return, desired frequency and trend
 .feature_set = c("observed", "season", "trend", "remainder"),
 .frequency = "24 hours",
 .trend = "1 week",
 .interactive = FALSE)

---- GROUPS ----
m4_hourly %>%
 group_by(id) %>%
 plot_stl_diagnostics(
 date, value,
 .feature_set = c("observed", "season", "trend"),
 .interactive = FALSE)

plot_time_series

Interactive Plotting for One or More Time Series

Description

A workhorse time-series plotting function that generates interactive plotly plots, consolidates 20+ lines of ggplot2 code, and scales well to many time series.

Usage

plot_time_series(
 .data, # Data frame
 .date_var, # Column name for the dates
 .value, # Column name for the values
 .color_var = NULL, # Column name for the colors
 .facet_vars = NULL, # Column name for the facet variables
 .facet_ncol = 1, # Number of columns for facetting
 .facet_nrow = 1, # Number of rows for facetting
 .facet_scales = "free_y", # Scales for facetting
 .facet_dir = "h", # Direction for facetting
 .facet_collapse = FALSE, # Collapse facets
 .facet_collapse_sep = " ", # Separator for facet collapse
 .facet_strip_remove = FALSE, # Remove facet strips
 .line_color = "#2c3e50", # Line color
 .line_size = 0.5, # Line size
 .line_type = 1, # Line type
 .line_alpha = 1, # Line alpha
 .y_intercept = NULL, # Y-intercept
 # Additional arguments
 # ...)

---- GROUPS ----
m4_hourly %>%
 group_by(id) %>%
 plot_time_series(
 .data, # Data frame
 .date_var, # Column name for the dates
 .value, # Column name for the values
 .color_var = NULL, # Column name for the colors
 .facet_vars = NULL, # Column name for the facet variables
 .facet_ncol = 1, # Number of columns for facetting
 .facet_nrow = 1, # Number of rows for facetting
 .facet_scales = "free_y", # Scales for facetting
 .facet_dir = "h", # Direction for facetting
 .facet_collapse = FALSE, # Collapse facets
 .facet_collapse_sep = " ", # Separator for facet collapse
 .facet_strip_remove = FALSE, # Remove facet strips
 .line_color = "#2c3e50", # Line color
 .line_size = 0.5, # Line size
 .line_type = 1, # Line type
 .line_alpha = 1, # Line alpha
 .y_intercept = NULL, # Y-intercept
 # Additional arguments
 # ...)}
.y_intercept_color = "#2c3e50",
.x_intercept = NULL,
.x_intercept_color = "#2c3e50",
.smooth = TRUE,
.smooth_period = "auto",
.smooth_message = FALSE,
.smooth_span = NULL,
.smooth_degree = 2,
.smooth_color = "#3366FF",
.smooth_size = 1,
.smooth_alpha = 1,
.legend_show = TRUE,
.title = "Time Series Plot",
.x_lab = "",
.y_lab = "",
.color_lab = "Legend",
.interactive = TRUE,
.plotly_slider = FALSE,
.trelliscope = FALSE,
.trelliscope_params = list()
)

Arguments
.data A tibble or data.frame with a time-based column
.date_var A column containing either date or date-time values
.value A column containing numeric values
.color_var A categorical column that can be used to change the line color
.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can be selected using tidyselect() helpers (e.g contains()).
.facet_ncol Number of facet columns.
.facet_nrow Number of facet rows (only used for .trelliscope = TRUE)
.facet_scales Control facet x & y-axis ranges. Options include "fixed", "free", "free_y", "free_x"
.facet_dir The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h".
.facetCollapse Multiple facets included on one facet strip instead of multiple facet strips.
.facetCollapse_sep The separator used for collapsing facets.
.facetStrip_remove Whether or not to remove the strip and text label for each facet.
.line_color Line color. Overrided if .color_var is specified.
.line_size Line size.
.line_type Line type.
.line_alpha Line alpha (opacity). Range: (0, 1).
.y_intercept Value for a y-intercept on the plot
.y_intercept_color Color for the y-intercept
.x_intercept Value for a x-intercept on the plot
.x_intercept_color Color for the x-intercept
.smooth Logical - Whether or not to include a trendline smoother. Uses See smooth_vec() to apply a LOESS smoother.
.smooth_period Number of observations to include in the Loess Smoother. Set to "auto" by default, which uses tk_get_trend() to determine a logical trend cycle.
.smooth_message Logical. Whether or not to return the trend selected as a message. Useful for those that want to see what .smooth_period was selected.
.smooth_span Percentage of observations to include in the Loess Smoother. You can use either period or span. See smooth_vec().
.smooth_degree Flexibility of Loess Polynomial. Either 0, 1, 2 (0 = lest flexible, 2 = more flexible).
.smooth_color Smoother line color
.smooth_size Smoother line size
.smooth_alpha Smoother alpha (opacity). Range: (0, 1).
.legend_show Toggles on/off the Legend
.title Title for the plot
.x_lab X-axis label for the plot
.y_lab Y-axis label for the plot
.color_lab Legend label if a color_var is used.
.interactive Returns either a static (ggplot2) visualization or an interactive (plotly) visualization
.plotly_slider If TRUE, returns a plotly date range slider.
.trelliscope Returns either a normal plot or a trelliscopejs plot (great for many time series) Must have trelliscopejs installed.
.trelliscope_params Pass parameters to the trelliscopejs::facet_trelliscope() function as a list(). The only parameters that cannot be passed are:
 • ncol: use .facet_ncol
 • nrow: use .facet_nrow
 • scales: use facet_scales
 • as_plotly: use .interactive
Details

plot_time_series() is a scalable function that works with both ungrouped and grouped data.frame objects (and tibbles!).

Interactive by Default

plot_time_series() is built for exploration using:

- **Interactive Plots**: plotly (default) - Great for exploring!
- **Static Plots**: ggplot2 (set .interactive = FALSE) - Great for PDF Reports

By default, an interactive plotly visualization is returned.

Scalable with Facets & Dplyr Groups

plot_time_series() returns multiple time series plots using ggplot2 facets:

- **group_by()** - If groups are detected, multiple facets are returned
- **plot_time_series(.facet_vars)** - You can manually supply facets as well.

Can Transform Values just like ggplot

The .values argument accepts transformations just like ggplot2. For example, if you want to take the log of sales you can use a call like plot_time_series(date, log(sales)) and the log transformation will be applied.

Smother Period / Span Calculation

The .smooth = TRUE option returns a smoother that is calculated based on either:

1. A .smooth_period: Number of observations
2. A .smooth_span: A percentage of observations

By default, the .smooth_period is automatically calculated using 75% of the observations. This is the same as geom_smooth(method = "loess", span = 0.75).

A user can specify a time-based window (e.g. .smooth_period = "1 year") or a numeric value (e.g. smooth_period = 365).

Time-based windows return the median number of observations in a window using tk_get_trend().

Value

A static ggplot2 plot or an interactive plotly plot

Examples

```r
library(dplyr)
library(lubridate)

# Works with individual time series
FANG %>%
  filter(symbol == "FB") %>%
  plot_time_series(date, adjusted, .interactive = FALSE)
```
Works with groups
FANG %>%
group_by(symbol) %>%
plot_time_series(date, adjusted,
 .facet_ncol = 2, # 2-column layout
 .interactive = FALSE)

Can also group inside & use .color_var
FANG %>%
mutate(year = year(date)) %>%
plot_time_series(date, adjusted,
 .facet_vars = c(symbol, year), # add groups/facets
 .color_var = year, # color by year
 .facet_ncol = 4,
 .facet_scales = "free",
 .facet_collapse = TRUE, # combine group strip text into 1 line
 .interactive = FALSE)

Can apply transformations to .value or .color_var
- .value = log(adjusted)
- .color_var = year(date)
FANG %>%
plot_time_series(date, log(adjusted),
 .color_var = year(date),
 .facet_vars = contains("symbol"),
 .facet_ncol = 2,
 .facet_scales = "free",
 .y_lab = "Log Scale",
 .interactive = FALSE)

plot_time_series_boxplot

Interactive Time Series Box Plots

Description

A boxplot function that generates interactive plotly plots for time series.

Usage

```r
plot_time_series_boxplot(
  .data,
  .date_var,
  .value,
  .period,
  .color_var = NULL,
  .facet_vars = NULL,
)```
Arguments

.data A tibble or data.frame with a time-based column
.date_var A column containing either date or date-time values
.value A column containing numeric values
.period A time series unit of aggregation for the boxplot. Examples include:
  - "1 week"
  - "3 years"
  - "30 minutes"
.color_var A categorical column that can be used to change the line color
.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can be selected using tidyselect() helpers (e.g contains()).
.facet_ncol Number of facet columns.
.facet_nrow  Number of facet rows (only used for .trelliscope = TRUE)
.facet_scales  Control x & y-axis ranges. Options include "fixed", "free", "free_y", "free_x"
.facet_dir  The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h".
.facetCollapse  Multiple facets included on one facet strip instead of multiple facet strips.
.facetCollapseSep  The separator used for collapsing facets.
.facetStripRemove  Whether or not to remove the strip and text label for each facet.
.lineColor  Line color. Overrided if .color_var is specified.
.lineSize  Line size.
.lineType  Line type.
.lineAlpha  Line alpha (opacity). Range: (0, 1).
.yIntercept  Value for a y-intercept on the plot
.yInterceptColor  Color for the y-intercept
.smooth  Logical - Whether or not to include a trendline smoother. Uses See smooth_vec() to apply a LOESS smoother.
.smoothFunc  Defines how to aggregate the .value to show the smoothed trendline. The default is ~ mean(.x, na.rm = TRUE), which uses lambda function to ensure NA values are removed. Possible values are:

• A function, e.g. mean.
• A purrr-style lambda, e.g. ~ mean(.x, na.rm = TRUE)
.smoothPeriod  Number of observations to include in the Loess Smoother. Set to "auto" by default, which uses tk_get_trend() to determine a logical trend cycle.
.smoothMessage  Logical. Whether or not to return the trend selected as a message. Useful for those that want to see what .smoothPeriod was selected.
.smoothSpan  Percentage of observations to include in the Loess Smoother. You can use either period or span. See smooth_vec().
.smoothDegree  Flexibility of Loess Polynomial. Either 0, 1, 2 (0 = lest flexible, 2 = more flexible).
.smoothColor  Smoother line color
.smoothSize  Smoother line size
.smoothAlpha  Smoother alpha (opacity). Range: (0, 1).
.legendShow  Toggles on/off the Legend
.title  Title for the plot
.xLab  X-axis label for the plot
.yLab  Y-axis label for the plot
.colorLab  Legend label if a color_var is used.
.interactive Returns either a static (ggplot2) visualization or an interactive (plotly) visualization.
.plotly_slider If TRUE, returns a plotly date range slider.
.trelliscope Returns either a normal plot or a trelliscopejs plot (great for many time series)
Must have trelliscopejs installed.
.trelliscope_params Pass parameters to the trelliscopejs::facet_trelliscope() function as a list(). The only parameters that cannot be passed are:
  • ncol: use .facet_ncol
  • nrow: use .facet_nrow
  • scales: use facet_scales
  • as_plotly: use .interactive

Details

plot_time_series_boxplot() is a scalable function that works with both ungrouped and grouped data.frame objects (and tibbles!).

Interactive by Default

plot_time_series_boxplot() is built for exploration using:
  • Interactive Plots: plotly (default) - Great for exploring!
  • Static Plots: ggplot2 (set .interactive = FALSE) - Great for PDF Reports

By default, an interactive plotly visualization is returned.

Scalable with Facets & Dplyr Groups

plot_time_series_boxplot() returns multiple time series plots using ggplot2 facets:
  • group_by() - If groups are detected, multiple facets are returned
  • plot_time_series_boxplot(.facet_vars) - You can manually supply facets as well.

Can Transform Values just like ggplot

The .values argument accepts transformations just like ggplot2. For example, if you want to take the log of sales you can use a call like plot_time_series_boxplot(date, log(sales)) and the log transformation will be applied.

Smoothe Period / Span Calculation

The .smooth = TRUE option returns a smoother that is calculated based on either:

1. A .smooth_func: The method of aggregation. Usually an aggregation like mean is used. The purrr-style function syntax can be used to apply complex functions.
2. A .smooth_period: Number of observations
3. A .smooth_span: A percentage of observations

By default, the .smooth_period is automatically calculated using 75% of the observations. This is the same as geom_smooth(method = "loess", span = 0.75).

A user can specify a time-based window (e.g. .smooth_period = "1 year") or a numeric value (e.g. smooth_period = 365).

Time-based windows return the median number of observations in a window using tk_get_trend().
**plot_time_series_boxplot**

**Value**

A static ggplot2 plot or an interactive plotly plot

**Examples**

```r
library(dplyr)
library(lubridate)

Works with individual time series
FANG %>%
 filter(symbol == "FB") %>%
 plot_time_series_boxplot(
 date, adjusted,
 .period = "3 month",
 .interactive = FALSE)

Works with groups
FANG %>%
 group_by(symbol) %>%
 plot_time_series_boxplot(
 date, adjusted,
 .period = "3 months",
 .facet_ncol = 2, # 2-column layout
 .interactive = FALSE)

Can also group inside & use .color_var
FANG %>%
 mutate(year = year(date)) %>%
 plot_time_series_boxplot(
 date, adjusted,
 .period = "3 months",
 .facet_vars = c(symbol, year), # add groups/facets
 .color_var = year, # color by year
 .facet_ncol = 4,
 .facet_scales = "free",
 .interactive = FALSE)

Can apply transformations to .value or .color_var
- .value = log(adjusted)
- .color_var = year(date)
FANG %>%
 plot_time_series_boxplot(
 date, log(adjusted),
 .period = "3 months",
 .color_var = year(date),
 .facet_vars = contains("symbol"),
 .facet_ncol = 2,
 .facet_scales = "free",
 .y_lab = "Log Scale",
 .interactive = FALSE)
```
# Can adjust the smoother
FANG %>%
group_by(symbol) %>%
plot_time_series_boxplot(
    date, adjusted,
    .period = "3 months",
    .smooth = TRUE,
    .smooth_func = median, # Smoother function
    .smooth_period = "5 years", # Smoother Period
    .facet_ncol = 2,
    .interactive = FALSE)

```
plot_time_series_cv_plan

Visualize a Time Series Resample Plan

Description

The `plot_time_series_cv_plan()` function provides a visualization for a time series resample specification (`rset`) of either `rolling_origin` or `time_series_cv` class.

Usage

```r
plot_time_series_cv_plan(
    .data,
    .date_var,
    .value,
    ...,
    .smooth = FALSE,
    .title = "Time Series Cross Validation Plan"
)
```

Arguments

- **.data**: A time series resample specification of of either `rolling_origin` or `time_series_cv` class or a data frame (tibble) that has been prepared using `tk_time_series_cv_plan()`.
- **.date_var**: A column containing either date or date-time values
- **.value**: A column containing numeric values
- **...**: Additional parameters passed to `plot_time_series()`
- **.smooth**: Logical - Whether or not to include a trendline smoother. Uses `smooth_vec()` to apply a LOESS smoother.
- **.title**: Title for the plot
Details

Resample Set

A resample set is an output of the `timetk::time_series_cv()` function or the `rsample::rolling_origin()` function.

Value

Returns a static `ggplot` or interactive `plotly` object depending on whether or not `.interactive` is FALSE or TRUE, respectively.

See Also

- `time_series_cv()` and `rsample::rolling_origin()` - Functions used to create time series resample specifications.
- `plot_time_series_cv_plan()` - The plotting function used for visualizing the time series resample plan.

Examples

```r
library(dplyr)
library(rsample)

FB_tbl <- FANG %>%
  filter(symbol == "FB") %>%
  select(symbol, date, adjusted)

resample_spec <- time_series_cv(
  FB_tbl,
  initial = "1 year",
  assess = "6 weeks",
  skip  = "3 months",
  lag   = "1 month",
  cumulative = FALSE,
  slice_limit = 6
)

resample_spec %>% tk_time_series_cv_plan()

resample_spec %>%
  tk_time_series_cv_plan() %>%
  plot_time_series_cv_plan(
    date, adjusted, # date variable and value variable
    # Additional arguments passed to `plot_time_series()`,
    .facet_ncol = 2,
    .line_alpha = 0.5,
    .interactive = FALSE
  )
```
plot_time_series_regression

Visualize a Time Series Linear Regression Formula

Description
A wrapper for stats::lm() that overlays a linear regression fitted model over a time series, which can help show the effect of feature engineering.

Usage
plot_time_series_regression(
 .data,
 .date_var,
 .formula,
 .show_summary = FALSE,
 ...
)

Arguments
.data A tibble or data.frame with a time-based column
.date_var A column containing either date or date-time values
.formula A linear regression formula. The left-hand side of the formula is used as the y-axis value. The right-hand side of the formula is used to develop the linear regression model. See stats::lm() for details.
.show_summary If TRUE, prints the summary.lm().
... Additional arguments passed to plot_time_series()

Details
plot_time_series_regression() is a scalable function that works with both ungrouped and grouped data.frame objects (and tibbles!).

Time Series Formula
The .formula uses stats::lm() to apply a linear regression, which is used to visualize the effect of feature engineering on a time series.

• The left-hand side of the formula is used as the y-axis value.
• The right-hand side of the formula is used to develop the linear regression model.

Interactive by Default
plot_time_series_regression() is built for exploration using:

• Interactive Plots: plotly (default) - Great for exploring!
• Static Plots: ggplot2 (set .interactive = FALSE) - Great for PDF Reports
By default, an interactive plotly visualization is returned.

Scalable with Facets & Dplyr Groups

`plot_time_series_regression()` returns multiple time series plots using ggplot2 facets:

- `group_by()` - If groups are detected, multiple facets are returned
- `plot_time_series_regression(.facet_vars)` - You can manually supply facets as well.

Value

A static ggplot2 plot or an interactive plotly plot

Examples

```r
library(dplyr)
library(lubridate)

# ---- SINGLE SERIES ----
m4_monthly %>%
  filter(id == "M750") %>%
  plot_time_series_regression(
    .date_var = date,
    .formula = log(value) ~ as.numeric(date) + month(date, label = TRUE),
    .show_summary = TRUE,
    .facet_ncol = 2,
    .interactive = FALSE
  )

# ---- GROUPED SERIES ----
m4_monthly %>%
  group_by(id) %>%
  plot_time_series_regression(
    .date_var = date,
    .formula = log(value) ~ as.numeric(date) + month(date, label = TRUE),
    .facet_ncol = 2,
    .interactive = FALSE
  )
```

set_tk_time_scale_template

Get and modify the Time Scale Template

Description

Get and modify the Time Scale Template
set_tk_time_scale_template

Usage

```r
set_tk_time_scale_template(.data)
get_tk_time_scale_template()
tk_time_scale_template()
```

Arguments

- `.data` A tibble with a "time_scale", "frequency", and "trend" columns.

Details

Used to get and set the time scale template, which is used by `tk_get_frequency()` and `tk_get_trend()` when `period = "auto"`. The predefined template is stored in a function `tk_time_scale_template()`. This is the default used by timetk.

Changing the Default Template

- You can access the current template with `get_tk_time_scale_template()`.
- You can modify the current template with `set_tk_time_scale_template()`.

Value

- `get_tk_time_scale_template()`: Returns tibble containing the time scale template information.
- `set_tk_time_scale_template()`: Returns nothing.

See Also

- Automated Frequency and Trend Calculation: `tk_get_frequency()`, `tk_get_trend()`

Examples

```r
get_tk_time_scale_template()
set_tk_time_scale_template(tk_time_scale_template())
```
slice_period

Apply slice inside periods (windows)

Description

Applies a dplyr slice inside a time-based period (window).

Usage

slice_period(.data, ..., .date_var, .period = "1 day")

Arguments

- **.data**
 A tbl object or data.frame
- **...**
 For slice(): `<data-masking>` Integer row values.
 Provide either positive values to keep, or negative values to drop. The values
 provided must be either all positive or all negative. Indices beyond the number
 of rows in the input are silently ignored.

 For slice_*(), these arguments are passed on to methods.
- **.date_var**
 A column containing date or date-time values. If missing, attempts to auto-
 detect date column.
- **.period**
 A period to slice within. Time units are grouped using lubridate::floor_date()
 or lubridate::ceiling_date().
 The value can be:
 - second
 - minute
 - hour
 - day
 - week
 - month
 - bimonth
 - quarter
 - season
 - halfyear
 - year

 Arbitrary unique English abbreviations as in the lubridate::period() con-
 structor are allowed:
 - "1 year"
 - "2 months"
 - "30 seconds"

Value

A tibble or data.frame
See Also

Time-Based dplyr functions:

- `summarise_by_time()` - Easily summarise using a date column.
- `mutate_by_time()` - Simplifies applying mutations by time windows.
- `pad_by_time()` - Insert time series rows with regularly spaced timestamps
- `filter_by_time()` - Quickly filter using date ranges.
- `filter_period()` - Apply filtering expressions inside periods (windows)
- `slice_period()` - Apply slice inside periods (windows)
- `condense_period()` - Convert to a different periodicity
- `between_time()` - Range detection for date or date-time sequences.
- `slidify()` - Turn any function into a sliding (rolling) function

Examples

```r
# Libraries
library(dplyr)

# First 5 observations in each month
m4_daily %>%
  group_by(id) %>%
  slice_period(1:5, .period = "1 month")

# Last observation in each month
m4_daily %>%
  group_by(id) %>%
  slice_period(n(), .period = "1 month")
```

slidify

Create a rolling (sliding) version of any function

Description

`slidify` returns a rolling (sliding) version of the input function, with a rolling (sliding) `.period` specified by the user.

Usage

```r
slidify(
  .f,
  .period = 1,
  .align = c("center", "left", "right"),
  .partial = FALSE,
  .unlist = TRUE
)
```
Arguments

`.f` A function, formula, or vector (not necessarily atomic).

If a function, it is used as is.

If a formula, e.g. `~ .x + 2`, it is converted to a function. There are three ways to refer to the arguments:

- For a single argument function, use `.`
- For a two argument function, use `.x` and `.y`
- For more arguments, use `.1`, `.2`, `.3` etc

This syntax allows you to create very compact anonymous functions. Note that formula functions conceptually take dots (that's why you can use `.1` etc). They silently ignore additional arguments that are not used in the formula expression.

If character vector, numeric vector, or list, it is converted to an extractor function. Character vectors index by name and numeric vectors index by position; use a list to index by position and name at different levels. If a component is not present, the value of `.default` will be returned.

`.period` The period size to roll over

`.align` One of "center", "left" or "right".

`.partial` Should the moving window be allowed to return partial (incomplete) windows instead of NA values. Set to FALSE by default, but can be switched to TRUE to remove NA's.

`.unlist` If the function returns a single value each time it is called, use `.unlist = TRUE`. If the function returns more than one value, or a more complicated object (like a linear model), use `.unlist = FALSE` to create a list-column of the rolling results.

Details

The `slidify()` function is almost identical to `tibbletime::rollify()` with 3 improvements:

1. Alignment ("center", "left", "right")
2. Partial windows are allowed
3. Uses slider under the hood, which improves speed and reliability by implementing code at C++ level

Make any function a Sliding (Rolling) Function

`slidify()` turns a function into a sliding version of itself for use inside of a call to `dplyr::mutate()`, however it works equally as well when called from `purrr::map()`.

Because of it's intended use with `dplyr::mutate()`, `slidify` creates a function that always returns output with the same length of the input

Alignment

Rolling / Sliding functions generate `.period - 1` fewer values than the incoming vector. Thus, the vector needs to be aligned. Alignment of the vector follows 3 types:

- **center (default)**: NA or `.partial` values are divided and added to the beginning and end of the series to "Center" the moving average. This is common in Time Series applications (e.g. denoising).
• **left**: NA or `.partial` values are added to the end to shift the series to the Left.
• **right**: NA or `.partial` values are added to the beginning to shift the series to the Right. This is common in Financial Applications (e.g. moving average cross-overs).

Allowing Partial Windows

A key improvement over `tibbletime::slidify()` is that `timetk::slidify()` implements `.partial` rolling windows. Just set `.partial = TRUE`.

Value

A function with the rolling/sliding conversion applied.

References

- **The Tibbletime R Package** by Davis Vaughan, which includes the original `rollify()` Function

See Also

- **Transformation Functions**:
 - `slidify_vec()` - A simple vectorized function for applying summary functions to rolling windows.

- **Augmentation Functions (Add Rolling Multiple Columns)**:
 - `tk_augment_slidify()` - For easily adding multiple rolling windows to your data

Slider R Package:

- `slider::pslide()` - The workhorse function that powers `timetk::slidify()`

Examples

```r
library(dplyr)

FB <- FANG %>% dplyr::filter(symbol == "FB")

# --- ROLLING MEAN (SINGLE ARG EXAMPLE) ---

# Turn the normal mean function into a rolling mean with a 5 row .period
mean_roll_5 <- slidify(mean, .period = 5, .align = "right")

FB %>%
  mutate(rolling_mean_5 = mean_roll_5(adjusted))

# Use 'partial = TRUE' to allow partial windows (those with less than the full .period)
mean_roll_5_partial <- slidify(mean, .period = 5, .align = "right", .partial = TRUE)

FB %>%
  mutate(rolling_mean_5 = mean_roll_5_partial(adjusted))
```
There's nothing stopping you from combining multiple rolling functions with different `.period` sizes in the same mutate call

```r
mean_roll_10 <- slidify(mean, .period = 10, .align = "right")
```

```r
FB %>%
select(symbol, date, adjusted) %>%
mutate(
  rolling_mean_5 = mean_roll_5(adjusted),
  rolling_mean_10 = mean_roll_10(adjusted)
)
```

For summary operations like rolling means, we can accomplish large-scale multi-rolls with `tk_augment_slidify()`

```r
FB %>%
select(symbol, date, adjusted) %>%
tk_augment_slidify(
  adjusted, .period = 5:10, .f = mean, .align = "right",
  .names = stringr::str_c("MA_", 5:10)
)
```

--- GROUPS AND ROLLING ----

One of the most powerful things about this is that it works with groups since `mutate` is being used

```r
mean_roll_3 <- slidify(mean, .period = 3, .align = "right")
```

```r
FANG %>%
group_by(symbol) %>%
mutate(mean_roll = mean_roll_3(adjusted)) %>%
slice(1:5)
```

--- ROLLING CORRELATION (MULTIPLE ARG EXAMPLE) ---

With 2 args, use the purrr syntax of ~ and `.x`, `.y`

```r
cor_roll <- slidify(~cor(.x, .y), .period = 5, .align = "right")
```

```r
FB %>%
mutate(running_cor = cor_roll(adjusted, open))
```

With >2 args, create an anonymous function with >2 args or use the purrr convention of `.1`, `.2`, `.3` to refer to the arguments

```r
avg_of_avgs <- slidify(
  function(x, y, z) (mean(x) + mean(y) + mean(z)) / 3,
  .period = 10,
  .align = "right"
)
```
Or
avg_of_avgs <- slidify(~(mean(., .1) + mean(., .2) + mean(., .3)) / 3,
 .period = 10,
 .align = "right"
)

FB %>%
 mutate(avg_of_avgs = avg_of_avgs(open, high, low))

Optional arguments MUST be passed at the creation of the rolling function
Only data arguments that are "rolled over" are allowed when calling the
rolling version of the function
FB$adjusted[1] <- NA

roll_mean_na_rm <- slidify(~mean(.x, na.rm = TRUE), .period = 5, .align = "right")

FB %>%
 mutate(roll_mean = roll_mean_na_rm(adjusted))

--- ROLLING REGRESSIONS ----
Rolling regressions are easy to implement using `.unlist = FALSE`

lm_roll <- slidify(~lm(.x ~ .y), .period = 90, .unlist = FALSE, .align = "right")

FB %>%
 tidyr::drop_na() %>%
 mutate(numeric_date = as.numeric(date)) %>%
 mutate(rolling_lm = lm_roll(adjusted, numeric_date)) %>%
 filter(!is.na(rolling_lm))

slidify_vec

Rolling Window Transformation

Description

slidify_vec() applies a summary function to a rolling sequence of windows.

Usage

slidify_vec(
 .x,
 .f,
 ...,
 .period = 1,
Arguments

.x A vector to have a rolling window transformation applied.
.f A summary [function / formula]
 • If a function, e.g. mean, the function is used with any additional arguments,

 • If a formula, e.g. ~ mean(., na.rm = TRUE), it is converted to a function.
 This syntax allows you to create very compact anonymous functions.
... Additional arguments passed on to the .f function.
.period The number of periods to include in the local rolling window. This is effectively
 the "window size".
.align One of "center", "left" or "right".
.partial Should the moving window be allowed to return partial (incomplete) windows
 instead of NA values. Set to FALSE by default, but can be switched to TRUE to
 remove NA's.

Details

The slidify_vec() function is a wrapper for slider::slide_vec() with parameters simplified
"center", "left", "right" alignment.

Vector Length In == Vector Length Out

NA values or .partial values are always returned to ensure the length of the return vector is the
same length of the incoming vector. This ensures easier use with dplyr::mutate().

Alignment

Rolling functions generate .period - 1 fewer values than the incoming vector. Thus, the vector
needs to be aligned. Alignment of the vector follows 3 types:

• Center: NA or .partial values are divided and added to the beginning and end of the se-
 ries to "Center" the moving average. This is common for de-noising operations. See also
 [smooth_vec()] for LOESS without NA values.
• Left: NA or .partial values are added to the end to shift the series to the Left.
• Right: NA or .partial values are added to the beginning to shift the series to the Right. This
 is common in Financial Applications such as moving average cross-overs.

Partial Values

• The advantage to using .partial values vs NA padding is that the series can be filled (good
 for time-series de-noising operations).
• The downside to partial values is that the partials can become less stable at the regions where
 incomplete windows are used.

If instability is not desirable for de-noising operations, a suitable alternative is smooth_vec(),
which implements local polynomial regression.
Value

A numeric vector

References

- **Slider R Package** by Davis Vaughan

See Also

Modeling and More Complex Rolling Operations:

- `step_slidify()` - Roll apply for tidymodels modeling
- `tk_augment_slidify()` - Add many rolling columns group-wise
- `slidify()` - Turn any function into a rolling function. Great for rolling cor, rolling regression, etc.
- For more complex rolling operations, check out the slider R package.

Vectorized Transformation Functions:

- Box Cox Transformation: `box_cox_vec()`
- Lag Transformation: `lag_vec()`
- Differencing Transformation: `diff_vec()`
- Rolling Window Transformation: `slidify_vec()`
- Loess Smoothing Transformation: `smooth_vec()`
- Fourier Series: `fourier_vec()`
- Missing Value Imputation for Time Series: `ts_impute_vec()`

Examples

```r
library(dplyr)
library(ggplot2)

# Training Data
FB_tbl <- FANG %>%
  filter(symbol == "FB") %>%
  select(symbol, date, adjusted)

# ---- FUNCTION FORMAT ----
# - The `/grave.Var`.f = mean `/grave.Var` function is used. Argument `na.rm = TRUE` is passed as ...
FB_tbl %>%
  mutate(adjusted_30_ma = slidify_vec(
    .x = adjusted,
    .period = 30,
    .f = mean,
    na.rm = TRUE,
    .align = "center")) %>%
  ggplot(aes(date, adjusted)) +
  geom_line() +
```
smoooth_vec

geom_line(aes(y = adjusted_30_ma), color = "blue", na.rm = TRUE)

---- FORMULA FORMAT ----
- Anonymous function `f = ~ mean(. , na.rm = TRUE)` is used
FB_tbl %>%
 mutate(adjusted_30_ma = slidify_vec(
 .x = adjusted,
 .period = 30,
 .f = ~ mean(. , na.rm = TRUE),
 .align = "center")
) %>%
 ggplot(aes(date, adjusted)) +
 geom_line() +
 geom_line(aes(y = adjusted_30_ma), color = "blue", na.rm = TRUE)

---- PARTIAL VALUES ----
- set `.partial = TRUE`
FB_tbl %>%
 mutate(adjusted_30_ma = slidify_vec(
 .x = adjusted,
 .f = ~ mean(. , na.rm = TRUE),
 .period = 30,
 .align = "center",
 .partial = TRUE)
) %>%
 ggplot(aes(date, adjusted)) +
 geom_line() +
 geom_line(aes(y = adjusted_30_ma), color = "blue")

---- Loess vs Moving Average ----
- Loess: Using `.degree = 0` to make less flexible. Comparable to a moving average.
FB_tbl %>%
 mutate(
 adjusted_loess_30 = smooth_vec(adjusted, period = 30, degree = 0),
 adjusted_ma_30 = slidify_vec(adjusted, .f = mean,
 .period = 30, .partial = TRUE)
) %>%
 ggplot(aes(date, adjusted)) +
 geom_line() +
 geom_line(aes(y = adjusted_loess_30), color = "red") +
 geom_line(aes(y = adjusted_ma_30), color = "blue") +
 labs(title = "Loess vs Moving Average")

smooth_vec

Smoothing Transformation using Loess

Description

smooth_vec() applies a LOESS transformation to a numeric vector.
smooth_vec

Usage

smooth_vec(x, period = 30, span = NULL, degree = 2)

Arguments

x A numeric vector to have a smoothing transformation applied.
period The number of periods to include in the local smoothing. Similar to window size for a moving average. See details for an explanation period vs span specification.
span The span is a percentage of data to be included in the smoothing window. Period is preferred for shorter windows to fix the window size. See details for an explanation period vs span specification.
degree The degree of the polynomials to be used. Acceptable values (least to most flexible): 0, 1, 2. Set to 2 by default for 2nd order polynomial (most flexible).

Details

Benefits:

• When using period, the effect is similar to a moving average without creating missing values.
• When using span, the effect is to detect the trend in a series using a percentage of the total number of observations.

Loess Smoother Algorithm This function is a simplified wrapper for the stats::loess() with a modification to set a fixed period rather than a percentage of data points via a span.

Why Period vs Span? The period is fixed whereas the span changes as the number of observations change.

When to use Period? The effect of using a period is similar to a Moving Average where the Window Size is the Fixed Period. This helps when you are trying to smooth local trends. If you want a 30-day moving average, specify period = 30.

When to use Span? Span is easier to specify when you want a Long-Term Trendline where the window size is unknown. You can specify span = 0.75 to locally regress using a window of 75% of the data.

Value

A numeric vector

See Also

Loess Modeling Functions:

• step_smooth() - Recipe for tidymodels workflow

Additional Vector Functions:

• Box Cox Transformation: box_cox_vec()
- Lag Transformation: `lag_vec()`
- Differencing Transformation: `diff_vec()`
- Rolling Window Transformation: `slidify_vec()`
- Loess Smoothing Transformation: `smooth_vec()`
- Fourier Series: `fourier_vec()`
- Missing Value Imputation for Time Series: `ts_impute_vec()`

Examples

```r
library(dplyr)
library(ggplot2)

# Training Data
FB_tbl <- FANG %>%
  filter(symbol == "FB") %>%
  select(symbol, date, adjusted)

# ---- PERIOD ----
FB_tbl %>%
  mutate(adjusted_30 = smooth_vec(adjusted, period = 30, degree = 2)) %>%
  ggplot(aes(date, adjusted)) +
  geom_line() +
  geom_line(aes(y = adjusted_30), color = "red")

# ---- SPAN ----
FB_tbl %>%
  mutate(adjusted_30 = smooth_vec(adjusted, span = 0.75, degree = 2)) %>%
  ggplot(aes(date, adjusted)) +
  geom_line() +
  geom_line(aes(y = adjusted_30), color = "red")

# ---- Loess vs Moving Average ----
# - Loess: Using `degree = 0` to make less flexible. Comparable to a moving average.
FB_tbl %>%
  mutate(
    adjusted_loess_30 = smooth_vec(adjusted, period = 30, degree = 0),
    adjusted_ma_30 = slidify_vec(adjusted, .period = 30,
    .f = mean, .partial = TRUE)
  ) %>%
  ggplot(aes(date, adjusted)) +
  geom_line() +
  geom_line(aes(y = adjusted_loess_30), color = "red") +
  geom_line(aes(y = adjusted_ma_30), color = "blue") +
  labs(title = "Loess vs Moving Average")
```
standardize_vec \hspace{1cm} \textit{Standardize to Mean 0, Standard Deviation 1 (Center & Scale)}

Description

Standardization is commonly used to center and scale numeric features to prevent one from dominating in algorithms that require data to be on the same scale.

Usage

standardize_vec(x, mean = NULL, sd = NULL, silent = FALSE)

standardize_inv_vec(x, mean, sd)

Arguments

- **x** A numeric vector.
- **mean** The mean used to invert the standardization
- **sd** The standard deviation used to invert the standardization process.
- **silent** Whether or not to report the automated mean and sd parameters as a message.

Details

Standardization vs Normalization

- **Standardization** refers to a transformation that reduces the range to mean 0, standard deviation 1
- **Normalization** refers to a transformation that reduces the min-max range: (0, 1)

Value

Returns a numeric vector with the standardization transformation applied.

See Also

- Normalization/Standardization: `standardize_vec()`, `normalize_vec()`
- Box Cox Transformation: `box_cox_vec()`
- Lag Transformation: `lag_vec()`
- Differencing Transformation: `diff_vec()`
- Rolling Window Transformation: `slidify_vec()`
- Loess Smoothing Transformation: `smooth_vec()`
- Fourier Series: `fourier_vec()`
- Missing Value Imputation for Time Series: `ts_impute_vec()`, `ts_clean_vec()`
Examples

```r
library(dplyr)

d10_daily <- m4_daily %>% dplyr::filter(id == "D10")

# --- VECTOR ----
value_std <- standardize_vec(d10_daily$value)
value <- standardize_inv_vec(value_std, mean = 2261.60682492582, sd = 175.603721730477)

# --- MUTATE ----

m4_daily %>%
  group_by(id) %>%
  mutate(value_std = standardize_vec(value))
```

Description

`step_box_cox` creates a specification of a recipe step that will transform data using a Box-Cox transformation. This function differs from `recipes::step_BoxCox` by adding multiple methods including Guerrero lambda optimization and handling for negative data used in the Forecast R Package.

Usage

```r
step_box_cox(
  recipe,
  ..., 
  method = c("guerrero", "loglik"),
  limits = c(-1, 2),
  role = NA,
  trained = FALSE,
  lambdas_trained = NULL,
  skip = FALSE,
  id = rand_id("box_cox")
)
```

S3 method for class 'step_box_cox'
tidy(x, ...)

Arguments

- **recipe**: A recipe object. The step will be added to the sequence of operations for this recipe.
- **...**: One or more selector functions to choose which variables are affected by the step. See `selections()` for more details. For the tidy method, these are not currently used.
- **method**: One of "guerrero" or "loglik"
- **limits**: A length 2 numeric vector defining the range to compute the transformation parameter lambda.
- **role**: Not used by this step since no new variables are created.
- **trained**: A logical to indicate if the quantities for preprocessing have been estimated.
- **lambdas_trained**: A numeric vector of transformation values. This is NULL until computed by `prep()`.
- **skip**: A logical. Should the step be skipped when the recipe is baked by `bake.recipe()`? While all operations are baked when `prep.recipe()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.
- **id**: A character string that is unique to this step to identify it.
- **x**: A step_box_cox object.

Details

The `step_box_cox()` function is designed specifically to handle time series using methods implemented in the Forecast R Package.

Negative Data

This function can be applied to Negative Data.

Lambda Optimization Methods

This function uses 2 methods for optimizing the lambda selection from the Forecast R Package:

1. **method = "guerrero"**: Guerrero’s (1993) method is used, where lambda minimizes the coefficient of variation for subseries of x.
2. **method = loglik**: the value of lambda is chosen to maximize the profile log likelihood of a linear model fitted to x. For non-seasonal data, a linear time trend is fitted while for seasonal data, a linear time trend with seasonal dummy variables is used.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns `terms` (the selectors or variables selected) and `value` (the lambda estimate).
References

See Also

Time Series Analysis:

- Engineered Features: `step_timeseries_signature()`, `step_holiday_signature()`, `step_fourier()`
- Diffs & Lags `step_diff()`, `recipes::step_lag()`
- Smoothing: `step_slidify()`, `step_smooth()`
- Variance Reduction: `step_box_cox()`
- Imputation: `step_ts_impute()`, `step_ts_clean()`
- Padding: `step_ts_pad()`

Transformations to reduce variance:

- `recipes::step_log()` - Log transformation
- `recipes::step_sqrt()` - Square-Root Power Transformation

Recipe Setup and Application:

- `recipes::recipe()`
- `recipes::prep()`
- `recipes::bake()`

Examples

```r
library(dplyr)
library(recipes)

FANG_wide <- FANG %>%
  select(symbol, date, adjusted) %>%
  tidyr::pivot_wider(names_from = symbol, values_from = adjusted)

recipe_box_cox <- recipe(~ ., data = FANG_wide) %>%
  step_box_cox(FB, AMZN, NFLX, GOOG) %>%
  prep()

recipe_box_cox %>% bake(FANG_wide)

recipe_box_cox %>% tidy(1)
```
Create a differenced predictor

Description

step_diff creates a specification of a recipe step that will add new columns of differenced data. Differenced data will include NA values where a difference was induced. These can be removed with step_naomit().

Usage

step_diff(
 recipe,
 ...,
 role = "predictor",
 trained = FALSE,
 lag = 1,
 difference = 1,
 log = FALSE,
 prefix = "diff_",
 columns = NULL,
 skip = FALSE,
 id = rand_id("diff")
)

S3 method for class 'step_diff'
tidy(x, ...)

Arguments

- **recipe**: A recipe object. The step will be added to the sequence of operations for this recipe.
- **...**: One or more selector functions to choose which variables are affected by the step. See selections() for more details.
- **role**: Defaults to "predictor"
- **trained**: A logical to indicate if the quantities for preprocessing have been estimated.
- **lag**: A vector of positive integers identifying which lags (how far back) to be included in the differencing calculation.
- **difference**: The number of differences to perform.
- **log**: Calculates log differences instead of differences.
- **prefix**: A prefix for generated column names, default to "diff_".
- **columns**: A character string of variable names that will be populated (eventually) by the terms argument.
skip A logical. Should the step be skipped when the recipe is baked by \texttt{bake.recipe()}? While all operations are baked when \texttt{prep.recipe()} is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using \texttt{skip = TRUE} as it may affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A \texttt{step_diff} object.

Details

The step assumes that the data are already in the proper sequential order for lagging.

Value

An updated version of \texttt{recipe} with the new step added to the sequence of existing steps (if any).

See Also

Time Series Analysis:

- Engineered Features: \texttt{step_timeseries_signature()}, \texttt{step_holiday_signature()}, \texttt{step_fourier()}
- Diffs & Lags \texttt{step_diff()}, \texttt{recipes::step_lag()}
- Smoothing: \texttt{step_slidify()}, \texttt{step_smooth()}
- Variance Reduction: \texttt{step_box_cox()}
- Imputation: \texttt{step_ts_impute()}, \texttt{step_ts_clean()}
- Padding: \texttt{step_ts_pad()}

Remove NA Values:

- \texttt{recipes::step_naomit()}

Main Recipe Functions:

- \texttt{recipes::recipe()}
- \texttt{recipes::prep()}
- \texttt{recipes::bake()}

Examples

\begin{verbatim}
library(recipes)

FANG_wide <- FANG %>%
 dplyr::select(symbol, date, adjusted) %>%
 tidyr::pivot_wider(names_from = symbol, values_from = adjusted)

Make and apply recipe ----
\end{verbatim}
recipe_diff <- recipe(~ ., data = FANG_wide) %>%
 step_diff(FB, AMZN, NFLX, GOOG, lag = 1:3, difference = 1) %>%
 prep()

recipe_diff %>% bake(FANG_wide)

Get information with tidy ----

recipe_diff %>% tidy()

recipe_diff %>% tidy(1)

step_fourier

Fourier Features for Modeling Seasonality

Description

`step_fourier` creates a a specification of a recipe step that will convert a Date or Date-time column into a Fourier series

Usage

```r
step_fourier(
  recipe, ...
  period,
  K,
  role = "predictor",
  trained = FALSE,
  columns = NULL,
  scale_factor = NULL,
  skip = FALSE,
  id = rand_id("fourier")
)
```

```
## S3 method for class 'step_fourier'
 tidy(x, ...)
```

Arguments

- `recipe`: A recipe object. The step will be added to the sequence of operations for this recipe.
- `...`: A single column with class Date or POSIXct. See `recipes::selections()` for more details. For the tidy method, these are not currently used.
- `period`: The numeric period for the oscillation frequency. See details for examples of `period` specification.
step_fourier

K
The number of orders to include for each sine/cosine fourier series. More orders increase the number of fourier terms and therefore the variance of the fitted model at the expense of bias. See details for examples of K specification.

role
For model terms created by this step, what analysis role should they be assigned?. By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.

trained
A logical to indicate if the quantities for preprocessing have been estimated.

columns
A character string of variables that will be used as inputs. This field is a placeholder and will be populated once recipes::prep() is used.

scale_factor
A factor for scaling the numeric index extracted from the date or date-time feature. This is a placeholder and will be populated once recipes::prep() is used.

skip
A logical. Should the step be skipped when the recipe is baked by bake.recipe()? While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id
A character string that is unique to this step to identify it.

x
A step_fourier object.

Details

Date Variable
Unlike other steps, step_fourier does not remove the original date variables. recipes::step_rm() can be used for this purpose.

Period Specification
The period argument is used to generate the distance between peaks in the fourier sequence. The key is to line up the peaks with unique seasonalities in the data.

For Daily Data, typical period specifications are:
- Yearly frequency is 365
- Quarterly frequency is 365 / 4 = 91.25
- Monthly frequency is 365 / 12 = 30.42

K Specification
The K argument specifies the maximum number of orders of Fourier terms. Examples:
- Specifying period = 365 and K = 1 will return a cos365_K1 and sin365_K1 fourier series
- Specifying period = 365 and K = 2 will return a cos365_K1, cos365_K2, sin365_K1 and sin365_K2 sequence, which tends to increase the models ability to fit vs the K = 1 specification (at the expense of possibly overfitting).

Multiple values of period and K
It’s possible to specify multiple values of period in a single step such as step_fourier(period = c(91.25, 365), K = 2. This returns 8 Fouriers series:
- cos91.25_K1, sin91.25_K1, cos91.25_K2, sin91.25_K2
- cos365_K1, sin365_K1, cos365_K2, sin365_K2
Value

For `step_fourier`, an updated version of recipe with the new step added to the sequence of existing steps (if any). For the `tidy` method, a tibble with columns `terms` (the selectors or variables selected), `value` (the feature names).

See Also

Time Series Analysis:

- Engineered Features: `step_timeseries_signature()`, `step_holiday_signature()`, `step_fourier()`
- Diffs & Lags `step_diff()`, `recipes::step_lag()`
- Smoothing: `step_slidify()`, `step_smooth()`
- Variance Reduction: `step_box_cox()`
- Imputation: `step_ts_impute()`, `step_ts_clean()`
- Padding: `step_ts_pad()`

Main Recipe Functions:

- `recipes::recipe()`
- `recipes::prep()`
- `recipes::bake()`

Examples

```r
library(recipes)
library(dplyr)

FB_tbl <- FANG %>%
  filter(symbol == "FB") %>%
  select(symbol, date, adjusted)

# Create a recipe object with a timeseries signature step
# - 252 Trade days per year
# - period = c(252/4, 252): Adds quarterly and yearly fourier series
# - K = 2: Adds 1st and 2nd fourier orders
rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%
  step_fourier(date, period = c(252/4, 252), K = 2)

# View the recipe object
rec_obj

# Prepare the recipe object
prep(rec_obj)

# Bake the recipe object - Adds the Fourier Series
bake(prep(rec_obj), FB_tbl)

# Tidy shows which features have been added during the 1st step
```
in this case, step 1 is the step_timeseries_signature step
tidy(prep(rec_obj))
tidy(prep(rec_obj), number = 1)

step_holiday_signature

Holiday Feature (Signature) Generator

Description

`step_holiday_signature` creates a specification of a recipe step that will convert date or date-time data into many holiday features that can aid in machine learning with time-series data. By default, many features are returned for different holidays, locales, and stock exchanges.

Usage

```r
step_holiday_signature(
  recipe,
  ..., 
  holiday_pattern = ".", 
  locale_set = "all", 
  exchange_set = "all", 
  role = "predictor", 
  trained = FALSE, 
  columns = NULL, 
  features = NULL, 
  skip = FALSE, 
  id = rand_id("holiday_signature")
)
```

```r
## S3 method for class 'step_holiday_signature'
tidy(x, ...)
```

Arguments

- **recipe** A recipe object. The step will be added to the sequence of operations for this recipe.
- **...** One or more selector functions to choose which variables that will be used to create the new variables. The selected variables should have class Date or POSIXct. See ```recipes::selections()``` for more details. For the tidy method, these are not currently used.
- **holiday_pattern** A regular expression pattern to search the "Holiday Set".
step_holiday_signature

exchange_set Return binary holidays based on Stock Exchange Calendars. One of: "all", "none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH".

details

role For model terms created by this step, what analysis role should they be assigned? By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a placeholder and will be populated once recipes::prep() is used.

features A character string of features that will be generated. This field is a placeholder and will be populated once recipes::prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()? While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_holiday_signature object.

Details

Use Holiday Pattern and Feature Sets to Pare Down Features By default, you’re going to get A LOT of Features. This is a good thing because many machine learning algorithms have regularization built in. But, in many cases you will still want to reduce the number of unnecessary features. Here’s how:

- **Holiday Pattern**: This is a Regular Expression pattern that can be used to filter. Try `holiday_pattern = "(US_Christ)|(US_Thanks)"` to return just Christmas and Thanksgiving features.

- **Locale Sets**: This is a logical as to whether or not the locale has a holiday. For locales outside of US you may want to combine multiple locales. For example, `locale_set = c("World", "GB")` returns both World Holidays and Great Britain.

- **Exchange Sets**: This is a logical as to whether or not the Business is off due to a holiday. Different Stock Exchanges are used as a proxy for business holiday calendars. For example, `exchange_set = "NYSE"` returns business holidays for New York Stock Exchange.

Removing Unnecessary Features By default, many features are created automatically. Unnecessary features can be removed using `recipes::step_rm()` and `recipes::selections()` for more details.

Value

For step_holiday_signature, an updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the feature names).
See Also

Time Series Analysis:

- Engineered Features: `step_timeseries_signature()`, `step_holiday_signature()`, `step_fourier()`
- Diffs & Lags: `step_diff()`, `recipes::step_lag()`
- Smoothing: `step_slidify()`, `step_smooth()`
- Variance Reduction: `step_box_cox()`
- Imputation: `step_ts_impute()`, `step_ts_clean()`
- Padding: `step_ts_pad()`

Main Recipe Functions:

- `recipes::recipe()`
- `recipes::prep()`
- `recipes::bake()`

Examples

```r
library(recipes)
library(dplyr)

# Sample Data
dates_in_2017_tbl <- tibble::tibble(
  index = tk_make_timeseries("2017-01-01", "2017-12-31", by = "day")
)

# Add US holidays and Non-Working Days due to Holidays
# - Physical Holidays are added with holiday pattern (individual) and locale_set
rec_holiday <- recipe(~ ., dates_in_2017_tbl) %>%
  step_holiday_signature(index,
    holiday_pattern = "^US_",
    locale_set = "US",
    exchange_set = "NYSE")

# Not yet prep'ed - just returns parameters selected
rec_holiday %>% tidy()

# Prep the recipe
rec_holiday_prep <- prep(rec_holiday)

# Now prep'ed - returns new features that will be created
rec_holiday_prep %>% tidy()

# Apply the recipe to add new holiday features!
bake(rec_holiday_prep, dates_in_2017_tbl)
```
Description

step_log_interval creates a specification of a recipe step that will transform data using a Log-Interval transformation. This function provides a recipes interface for the log_interval_vec() transformation function.

Usage

step_log_interval(
 recipe,
 ...,
 limit_lower = "auto",
 limit_upper = "auto",
 offset = 0,
 role = NA,
 trained = FALSE,
 limit_lower_trained = NULL,
 limit_upper_trained = NULL,
 skip = FALSE,
 id = rand_id("log_interval")
)

S3 method for class 'step_log_interval'
 tidy(x, ...)

Arguments

- **recipe**: A recipe object. The step will be added to the sequence of operations for this recipe.
- **...**: One or more selector functions to choose which variables are affected by the step. See selections() for more details. For the tidy method, these are not currently used.
- **limit_lower**: A lower limit. Must be less than the minimum value. If set to "auto", selects zero.
- **limit_upper**: An upper limit. Must be greater than the maximum value. If set to "auto", selects a value that is 10% greater than the maximum value.
- **offset**: An offset to include in the log transformation. Useful when the data contains values less than or equal to zero.
- **role**: Not used by this step since no new variables are created.
- **trained**: A logical to indicate if the quantities for preprocessing have been estimated.
- **limit_lower_trained**: A numeric vector of transformation values. This is NULL until computed by prep().
step_log_interval

limit_upper_trained
 A numeric vector of transformation values. This is NULL until computed by prep().

skip
 A logical. Should the step be skipped when the recipe is baked by bake.recipe()? While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id
 A character string that is unique to this step to identify it.

x
 A step_log_interval object.

Details

The step_log_interval() function is designed specifically to handle time series using methods implemented in the Forecast R Package.

Positive Data
If data includes values of zero, use offset to adjust the series to make the values positive.

Implementation
Refer to the log_interval_vec() function for the transformation implementation details.

Value
An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected) and value (the lambda estimate).

See Also
Time Series Analysis:

- Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
- Diffs & Lags step_diff(), recipes::step_lag()
- Smoothing: step_slidify(), step_smooth()
- Variance Reduction: step_log_interval()
- Imputation: step_ts_impute(), step_ts_clean()
- Padding: step_ts_pad()

Transformations to reduce variance:

- recipes::step_log() - Log transformation
- recipes::step_sqrt() - Square-Root Power Transformation

Recipe Setup and Application:

- recipes::recipe()
- recipes::prep()
- recipes::bake()
Examples

```r
library(dplyr)
library(recipes)

FANG_wide <- FANG %>%
  select(symbol, date, adjusted) %>%
  tidyr::pivot_wider(names_from = symbol, values_from = adjusted)

recipe_log_interval <- recipe(~ ., data = FANG_wide) %>%
  step_log_interval(FB, AMZN, NFLX, GOOG, offset = 1) %>%
  prep()

recipe_log_interval %>%
  bake(FANG_wide) %>%
  tidyr::pivot_longer(-date) %>%
  plot_time_series(date, value, name, .smooth = FALSE, .interactive = FALSE)

recipe_log_interval %>% tidy()
```

step_slidify
Slidify Rolling Window Transformation

Description

`step_slidify` creates a specification of a recipe step that will apply a function to one or more numeric columns.

Usage

```r
step_slidify(
  recipe,
  ..., period, .f,
  align = c("center", "left", "right"),
  partial = FALSE,
  names = NULL,
  role = "predictor",
  trained = FALSE,
  columns = NULL,
  f_name = NULL,
  skip = FALSE,
  id = rand_id("slidify")
)
```

S3 method for class 'step_slidify'
tidy(x, ...)

Arguments

recipe
A recipe object. The step will be added to the sequence of operations for this recipe.

... One or more numeric columns to be smoothed. See `recipes::selections()` for more details. For the tidy method, these are not currently used.

period
The number of periods to include in the local rolling window. This is effectively the "window size".

.f
A summary formula in one of the following formats:

- `mean` with no arguments
- `function(x) mean(x, na.rm = TRUE)`
- `~ mean(.x, na.rm = TRUE)`, it is converted to a function.

align
Rolling functions generate `period - 1` fewer values than the incoming vector. Thus, the vector needs to be aligned. Alignment of the vector follows 3 types:

- **Center**: NA or .partial values are divided and added to the beginning and end of the series to "Center" the moving average. This is common for de-noising operations. See also `[smooth_vec()]` for LOESS without NA values.
- **Left**: NA or .partial values are added to the end to shift the series to the Left.
- **Right**: NA or .partial values are added to the beginning to shift the series to the Right. This is common in Financial Applications such as moving average cross-overs.

partial
Should the moving window be allowed to return partial (incomplete) windows instead of NA values. Set to FALSE by default, but can be switched to TRUE to remove NA's.

names
An optional character string that is the same length of the number of terms selected by terms. These will be the names of the new columns created by the step.

- If `NULL`, existing columns are transformed.
- If not `NULL`, new columns will be created.

role
For model terms created by this step, what analysis role should they be assigned?. By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.

trained
A logical to indicate if the quantities for preprocessing have been estimated.

columns
A character string of variables that will be used as inputs. This field is a placeholder and will be populated once `recipes::prep()` is used.

f_name
A character string for the function being applied. This field is a placeholder and will be populated during the `tidy()` step.

skip
A logical. Should the step be skipped when the recipe is baked by `bake.recipe()`? While all operations are baked when `prep.recipe()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.

id
A character string that is unique to this step to identify it.

x
A `step_slidify` object.
Details

Alignment
Rolling functions generate period - 1 fewer values than the incoming vector. Thus, the vector needs to be aligned. Alignment of the vector follows 3 types:

- **Center**: NA or partial values are divided and added to the beginning and end of the series to "Center" the moving average. This is common for de-noising operations. See also `smooth_vec()` for LOESS without NA values.
- **Left**: NA or partial values are added to the end to shift the series to the Left.
- **Right**: NA or partial values are added to the beginning to shift the series to the Right. This is common in Financial Applications such as moving average cross-overs.

Partial Values

- The advantage to using partial values vs NA padding is that the series can be filled (good for time-series de-noising operations).
- The downside to partial values is that the partials can become less stable at the regions where incomplete windows are used.

If instability is not desirable for de-noising operations, a suitable alternative is `step_smooth()`, which implements local polynomial regression.

Value

For `step_slidify`, an updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns `terms` (the selectors or variables selected), `value` (the feature names).

See Also

Time Series Analysis:

- Engineered Features: `step_timeseries_signature()`, `step_holiday_signature()`, `step_fourier()`
- Diffs & Lags `step_diff()`, `recipes::step_lag()`
- Smoothing: `step_slidify()`, `step_smooth()`
- Variance Reduction: `step_box_cox()`
- Imputation: `step_ts_impute()`, `step_ts_clean()`
- Padding: `step_ts_pad()`

Main Recipe Functions:

- `recipes::recipe()`
- `recipes::prep()`
- `recipes::bake()`
Examples

library(recipes)
library(dplyr)
library(ggplot2)

Training Data
FB_tbl <- FANG %>%
 filter(symbol == "FB") %>%
 select(symbol, date, adjusted)

New Data - Make some fake new data next 90 time stamps
new_data <- FB_tbl %>%
 tail(90) %>%
 mutate(date = date %>% tk_make_future_timeseries(length_out = 90))

OVERWRITE EXISTING COLUMNS -----

Create a recipe object with a step_slidify
rec_ma_50 <- recipe(adjusted ~ ., data = FB_tbl) %>%
 step_slidify(adjusted, period = 50, .f = ~ mean(.x))

Bake the recipe object - Applies the Moving Average Transformation
training_data_baked <- bake(prep(rec_ma_50), FB_tbl)

Apply to New Data
new_data_baked <- bake(prep(rec_ma_50), new_data)

Visualize effect
training_data_baked %>%
 ggplot(aes(date, adjusted)) +
 geom_line() +
 geom_line(color = "red", data = new_data_baked)

---- NEW COLUMNS -----

Use the 'names' argument to create new columns instead of overwriting existing columns
rec_ma_30_names <- recipe(adjusted ~ ., data = FB_tbl) %>%
 step_slidify(adjusted, period = 30, .f = mean, names = "adjusted_ma_30")

bake(prep(rec_ma_30_names), FB_tbl) %>%
 ggplot(aes(date, adjusted)) +
 geom_line(alpha = 0.5) +
 geom_line(aes(y = adjusted_ma_30), color = "red", size = 1)
Description

step_slidify_augment creates a specification of a recipe step that will "augment" (add multiple new columns) that have had a sliding function applied.

Usage

step_slidify_augment(
 recipe,
 ...,
 period,
 .f,
 align = c("center", "left", "right"),
 partial = FALSE,
 prefix = "slidify_",
 role = "predictor",
 trained = FALSE,
 columns = NULL,
 f_name = NULL,
 skip = FALSE,
 id = rand_id("slidify_augment")
)

S3 method for class 'step_slidify_augment'
tidy(x, ...)

Arguments

recipe
A recipe object. The step will be added to the sequence of operations for this recipe.

... One or more numeric columns to be smoothed. See recipes::selections() for more details. For the tidy method, these are not currently used.

period The number of periods to include in the local rolling window. This is effectively the "window size".

.f A summary formula in one of the following formats:
 • mean with no arguments
 • function(x) mean(x, na.rm = TRUE)
 • ~ mean(.x, na.rm = TRUE), it is converted to a function.

align Rolling functions generate period - 1 fewer values than the incoming vector. Thus, the vector needs to be aligned. Alignment of the vector follows 3 types:
 • Center: NA or .partial values are divided and added to the beginning and end of the series to "Center" the moving average. This is common for de-noising operations. See also [smooth_vec()] for LOESS without NA values.
 • Left: NA or .partial values are added to the end to shift the series to the Left.
• **Right:** NA or partial values are added to the beginning to shift the series to the Right. This is common in Financial Applications such as moving average cross-overs.

`partial` Should the moving window be allowed to return partial (incomplete) windows instead of NA values. Set to `FALSE` by default, but can be switched to `TRUE` to remove NA's.

`prefix` A prefix for generated column names, default to "slidify_".

`role` For model terms created by this step, what analysis role should they be assigned to? By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.

`trained` A logical to indicate if the quantities for preprocessing have been estimated.

`columns` A character string of variable names that will be populated (eventually) by the `terms` argument.

`f_name` A character string for the function being applied. This field is a placeholder and will be populated during the `tidy()` step.

`skip` A logical. Should the step be skipped when the recipe is baked by `bake.recipe()`? While all operations are baked when `prep.recipe()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.

`id` A character string that is unique to this step to identify it.

`x` A `step_slidify_augment` object.

Details

Alignment

Rolling functions generate `period - 1` fewer values than the incoming vector. Thus, the vector needs to be aligned. Alignment of the vector follows 3 types:

• **Center:** NA or partial values are divided and added to the beginning and end of the series to "Center" the moving average. This is common for de-noising operations. See also `smooth_vec()` for LOESS without NA values.

• **Left:** NA or partial values are added to the end to shift the series to the Left.

• **Right:** NA or partial values are added to the beginning to shift the series to the Right. This is common in Financial Applications such as moving average cross-overs.

Partial Values

• The advantage to using partial values vs NA padding is that the series can be filled (good for time-series de-noising operations).

• The downside to partial values is that the partials can become less stable at the regions where incomplete windows are used.

If instability is not desirable for de-noising operations, a suitable alternative is `step_smooth()`, which implements local polynomial regression.
Value

For `step_slidify_augment`, an updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns `terms` (the selectors or variables selected), `value` (the feature names).

See Also

Time Series Analysis:

- Engineered Features: `step_timeseries_signature()`, `step_holiday_signature()`, `step_fourier()`
- Diffs & Lags `step_diff()`, `recipes::step_lag()`
- Smoothing: `step_slidify()`, `step_smooth()`
- Variance Reduction: `step_box_cox()`
- Imputation: `step_ts_impute()`, `step_ts_clean()`
- Padding: `step_ts_pad()`

Main Recipe Functions:

- `recipes::recipe()`
- `recipes::prep()`
- `recipes::bake()`

Examples

```r
# library(tidymodels)
library(dplyr)
library(recipes)
library(parsnip)

m750 <- m4_monthly %>%
  filter(id == "M750") %>%
  mutate(value_2 = value / 2)

m750_splits <- time_series_split(m750, assess = "2 years", cumulative = TRUE)

# Make a recipe
recipe_spec <- recipe(value ~ date + value_2, rsample::training(m750_splits)) %>%
  step_slidify_augment(
    value, value_2,
    period = c(6, 12, 24),
    .f = ~ mean(.x),
    align = "center",
    partial = FALSE
  )

recipe_spec %>% prep() %>% juice()

bake(prep(recipe_spec), rsample::testing(m750_splits))
```
Description

`step_smooth` creates a specification of a recipe step that will apply local polynomial regression to one or more numeric column(s). The effect is smoothing the time series similar to a moving average without creating missing values or using partial smoothing.

Usage

```r
step_smooth(
  recipe,
  ..., 
  period = 30,
  span = NULL,
  degree = 2,
  names = NULL,
  role = "predictor",
  trained = FALSE,
  columns = NULL,
  skip = FALSE,
  id = rand_id("smooth")
)
```

S3 method for class 'step_smooth'

```r
tidy(x, ...)
```

Arguments

- **recipe**: A recipe object. The step will be added to the sequence of operations for this recipe.
- **...**: One or more numeric columns to be smoothed. See `recipes::selections()` for more details. For the tidy method, these are not currently used.
- **period**: The number of periods to include in the local smoothing. Similar to window size for a moving average. See details for an explanation period vs span specification.
- **span**: The span is a percentage of data to be included in the smoothing window. Period is preferred for shorter windows to fix the window size. See details for an explanation period vs span specification.
- **degree**: The degree of the polynomials to be used. Set to 2 by default for 2nd order polynomial.
- **names**: An optional character string that is the same length of the number of terms selected by `terms`. These will be the names of the new columns created by the step.
• If NULL, existing columns are transformed.
• If not NULL, new columns will be created.

role
For model terms created by this step, what analysis role should they be assigned?. By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.

trained
A logical to indicate if the quantities for preprocessing have been estimated.

columns
A character string of variables that will be used as inputs. This field is a placeholder and will be populated once recipes::prep() is used.

skip
A logical. Should the step be skipped when the recipe is baked by bake.recipe()? While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g., processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id
A character string that is unique to this step to identify it.

x
A step_smooth object.

Details
Smother Algorithm
This function is a recipe specification that wraps the stats::loess() with a modification to set a fixed period rather than a percentage of data points via a span.

Why Period vs Span?
The period is fixed whereas the span changes as the number of observations change.

When to use Period?
The effect of using a period is similar to a Moving Average where the Window Size is the Fixed Period. This helps when you are trying to smooth local trends. If you want a 30-day moving average, specify period = 30.

When to use Span?
Span is easier to specify when you want a Long-Term Trendline where the window size is unknown. You can specify span = 0.75 to locally regress using a window of 75% of the data.

Warning - Using Span with New Data
When using span on New Data, the number of observations is likely different than what you trained with. This means the trendline / smoother can be vastly different than the smoother you trained with.

Solution to Span with New Data
Don’t use span. Rather, use period to fix the window size. This ensures that new data includes the same number of observations in the local polynomial regression (loess) as the training data.

Value
For step_smooth, an updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the feature names).

See Also
Time Series Analysis:
• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
step_smooth

- Diffs & Lags `step_diff()`, `recipes::step_lag()`
- Smoothing: `step_slidify()`, `step_smooth()`
- Variance Reduction: `step_box_cox()`
- Imputation: `step_ts_impute()`, `step_ts_clean()`
- Padding: `step_ts_pad()`

Main Recipe Functions:

- `recipes::recipe()`
- `recipes::prep()`
- `recipes::bake()`

Examples

```r
library(recipes)
library(dplyr)
library(ggplot2)

# Training Data
FB_tbl <- FANG %>%
  filter(symbol == "FB") %>%
  select(symbol, date, adjusted)

# New Data - Make some fake new data next 90 time stamps
new_data <- FB_tbl %>%
  tail(90) %>%
  mutate(date = date %>%
         tk_make_future_timeseries(length_out = 90))

# ---- PERIOD ----
# Create a recipe object with a step_smooth()
rec_smooth_period <- recipe(adjusted ~ ., data = FB_tbl) %>%
  step_smooth(adjusted, period = 30)

# Bake the recipe object - Applies the Loess Transformation
training_data_baked <- bake(prep(rec_smooth_period), FB_tbl)

# "Period" Effect on New Data
new_data_baked <- bake(prep(rec_smooth_period), new_data)

# Smoother's fit on new data is very similar because
# 30 days are used in the new data regardless of the new data being 90 days
training_data_baked %>%
  ggplot(aes(date, adjusted)) +
  geom_line() +
  geom_line(color = "red", data = new_data_baked)

# ---- SPAN ----

# Create a recipe object with a step_smooth
rec_smooth_span <- recipe(adjusted ~ ., data = FB_tbl) %>%
```
step_smooth(adjusted, span = 0.03)

Bake the recipe object - Applies the Loess Transformation
training_data_baked <- bake(prep(rec_smooth_span), FB_tbl)

"Period" Effect on New Data
new_data_baked <- bake(prep(rec_smooth_span), new_data)

Smoother's fit is not the same using span because new data is only 90 days
and 0.03 x 90 = 2.7 days
training_data_baked %>%
 ggplot(aes(date, adjusted)) +
 geom_line() +
 geom_line(color = "red", data = new_data_baked)

---- NEW COLUMNS ----
Use the 'names' argument to create new columns instead of overwriting existing
rec_smooth_names <- recipe(adjusted ~ ., data = FB_tbl) %>%
 step_smooth(adjusted, period = 30, names = "adjusted_smooth_30") %>%
 step_smooth(adjusted, period = 180, names = "adjusted_smooth_180") %>%
 step_smooth(adjusted, span = 0.75, names = "long_term_trend")

bake(prep(rec_smooth_names), FB_tbl) %>%
 ggplot(aes(date, adjusted)) +
 geom_line(alpha = 0.5) +
 geom_line(aes(y = adjusted_smooth_30), color = "red", size = 1) +
 geom_line(aes(y = adjusted_smooth_180), color = "blue", size = 1) +
 geom_line(aes(y = long_term_trend), color = "orange", size = 1)

step_timeseries_signature

Time Series Feature (Signature) Generator

Description

`step_timeseries_signature` creates a a specification of a recipe step that will convert date or date-time data into many features that can aid in machine learning with time-series data.

Usage

```r
step_timeseries_signature(
  recipe,
  ..., 
  role = "predictor",
  trained = FALSE,
)```

step_timeseries_signature

```r
columns = NULL,
skip = FALSE,
id = rand_id("timeseries_signature")
}

S3 method for class 'step_timeseries_signature'
tidy(x, ...)

Arguments

- **recipe**: A recipe object. The step will be added to the sequence of operations for this recipe.
- **...**: One or more selector functions to choose which variables that will be used to create the new variables. The selected variables should have class Date or POSIXct. See `recipes::selections()` for more details. For the `tidy` method, these are not currently used.
- **role**: For model terms created by this step, what analysis role should they be assigned? By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.
- **trained**: A logical to indicate if the quantities for preprocessing have been estimated.
- **columns**: A character string of variables that will be used as inputs. This field is a placeholder and will be populated once `recipes::prep()` is used.
- **skip**: A logical. Should the step be skipped when the recipe is baked by `bake.recipe()`? While all operations are baked when `prep.recipe()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.
- **id**: A character string that is unique to this step to identify it.
- **x**: A `step_timeseries_signature` object.

Details

- **Date Variable**: Unlike other steps, `step_timeseries_signature` does not remove the original date variables. `recipes::step_rm()` can be used for this purpose.
- **Scaling index.num**: The `index.num` feature created has a large magnitude (number of seconds since 1970-01-01). It's a good idea to scale and center this feature (e.g. use `recipes::step_normalize()`).
- **Removing Unnecessary Features**: By default, many features are created automatically. Unnecessary features can be removed using `recipes::step_rm()`.

Value

For `step_timeseries_signature`, an updated version of `recipe` with the new step added to the sequence of existing steps (if any). For the `tidy` method, a tibble with columns `terms` (the selectors or variables selected), `value` (the feature names).
See Also

Time Series Analysis:

- Engineered Features: `step_timeseries_signature()`, `step_holiday_signature()`, `step_fourier()`
- Diffs & Lags: `step_diff()`, `recipes::step_lag()`
- Smoothing: `step_slidify()`, `step_smooth()`
- Variance Reduction: `step_box_cox()`
- Imputation: `step_ts_impute()`, `step_ts_clean()`
- Padding: `step_ts_pad()`

Main Recipe Functions:

- `recipes::recipe()`
- `recipes::prep()`
- `recipes::bake()`

Examples

```r
library(recipes)
library(dplyr)

FB_tbl <- FANG %>% dplyr::filter(symbol == "FB")

# Create a recipe object with a timeseries signature step
rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%
  step_timeseries_signature(date)

# View the recipe object
rec_obj

# Prepare the recipe object
prep(rec_obj)

# Bake the recipe object - Adds the Time Series Signature
bake(prep(rec_obj), FB_tbl)

# Tidy shows which features have been added during the 1st step
# in this case, step 1 is the step_timeseries_signature step
tidy(rec_obj)
tidy(rec_obj, number = 1)
```
step_ts_clean

Clean Outliers and Missing Data for Time Series

Description

`step_ts_clean` creates a specification of a recipe step that will clean outliers and impute time series data.

Usage

```r
step_ts_clean(
  recipe,
  ..., 
  period = 1,
  lambda = "auto",
  role = NA,
  trained = FALSE,
  lambdas_trained = NULL,
  skip = FALSE,
  id = rand_id("ts_clean")
)
```

S3 method for class 'step_ts_clean'
tidy(x, ...)

Arguments

- **recipe**: A recipe object. The step will be added to the sequence of operations for this recipe.
- **...**: One or more selector functions to choose which variables are affected by the step. See `selections()` for more details. For the tidy method, these are not currently used.
- **period**: A seasonal period to use during the transformation. If `period = 1`, linear interpolation is performed. If `period > 1`, a robust STL decomposition is first performed and a linear interpolation is applied to the seasonally adjusted data.
- **lambda**: A box cox transformation parameter. If set to "auto", performs automated lambda selection.
- **role**: Not used by this step since no new variables are created.
- **trained**: A logical to indicate if the quantities for preprocessing have been estimated.
- **lambdas_trained**: A named numeric vector of lambdas. This is NULL until computed by `recipes::prep()`. Note that, if the original data are integers, the mean will be converted to an integer to maintain the same a data type.
skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_ts_clean object.

Details

The step_ts_clean() function is designed specifically to handle time series using seasonal outlier detection methods implemented in the Forecast R Package.

Cleaning Outliers

Outliers are replaced with missing values using the following methods:

1. Non-Seasonal (period = 1): Uses stats::supsmu()
2. Seasonal (period > 1): Uses forecast::mstl() with robust = TRUE (robust STL decomposition) for seasonal series.

Imputation using Linear Interpolation

Three circumstances cause strictly linear interpolation:

1. Period is 1: With period = 1, a seasonality cannot be interpreted and therefore linear is used.
2. Number of Non-Missing Values is less than 2-periods: Insufficient values exist to detect seasonality.
3. Number of Total Values is less than 3-periods: Insufficient values exist to detect seasonality.

Seasonal Imputation using Linear Interpolation

For seasonal series with period > 1, a robust Seasonal Trend Loess (STL) decomposition is first computed. Then a linear interpolation is applied to the seasonally adjusted data, and the seasonal component is added back.

Box Cox Transformation

In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative meaning the variance grows exponentially. A Box Cox transformation can be automated by setting lambda = "auto" or can be specified by setting lambda = numeric value.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected) and value (the lambda estimate).

References

- Forecast R Package
- Forecasting Principles & Practices: Dealing with missing values and outliers
Description

`step_ts_impute` creates a specification of a recipe step that will impute time series data.

Examples

```r
library(dplyr)
library(tidyr)
library(recipes)

# Get missing values
FANG_wide <- FANG %>%
  select(symbol, date, adjusted) %>%
  pivot_wider(names_from = symbol, values_from = adjusted) %>%
  pad_by_time()

FANG_wide

# Apply Imputation
recipe_box_cox <- recipe(~ ., data = FANG_wide) %>%
  step_ts_clean(FB, AMZN, NFLX, GOOG, period = 252) %>%
  prep()

recipe_box_cox %>% bake(FANG_wide)

# Lambda parameter used during imputation process
recipe_box_cox %>% tidy()
```
step_ts_impute

Usage

step_ts_impute(
 recipe,
 ...,
 period = 1,
 lambda = NULL,
 role = NA,
 trained = FALSE,
 lambdas_trained = NULL,
 skip = FALSE,
 id = rand_id("ts_impute")
)

S3 method for class 'step_ts_impute'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this recipe.

... One or more selector functions to choose which variables are affected by the step. See selections() for more details. For the tidy method, these are not currently used.

period A seasonal period to use during the transformation. If period = 1, linear interpolation is performed. If period > 1, a robust STL decomposition is first performed and a linear interpolation is applied to the seasonally adjusted data.

lambda A box cox transformation parameter. If set to "auto", performs automated lambda selection.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

lambdas_trained A named numeric vector of lambdas. This is NULL until computed by recipes::prep(). Note that, if the original data are integers, the mean will be converted to an integer to maintain the same a data type.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()? While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_ts_impute object.

Details

The step_ts_impute() function is designed specifically to handle time series
Imputation using Linear Interpolation

Three circumstances cause strictly linear interpolation:

1. **Period is 1**: With period = 1, a seasonality cannot be interpreted and therefore linear is used.
2. **Number of Non-Missing Values is less than 2-Periods**: Insufficient values exist to detect seasonality.
3. **Number of Total Values is less than 3-Periods**: Insufficient values exist to detect seasonality.

Seasonal Imputation using Linear Interpolation

For seasonal series with period > 1, a robust Seasonal Trend Loess (STL) decomposition is first computed. Then a linear interpolation is applied to the seasonally adjusted data, and the seasonal component is added back.

Box Cox Transformation

In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative meaning the variance grows exponentially. A Box Cox transformation can be automated by setting lambda = "auto" or can be specified by setting lambda = numeric value.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected) and value (the lambda estimate).

References

- Forecast R Package

- Forecasting Principles & Practices: Dealing with missing values and outliers

See Also

Time Series Analysis:

- Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
- Diffs & Lags step_diff(), recipes::step_lag()
- Smoothing: step_slidify(), step_smooth()
- Variance Reduction: step_box_cox()
- Imputation: step_ts_impute(), step_ts_clean()
- Padding: step_ts_pad()

Recipe Setup and Application:

- recipes::recipe()
- recipes::prep()
- recipes::bake()
Examples

```r
library(dplyr)
library(recipes)

# Get missing values
FANG_wide <- FANG %>%
  select(symbol, date, adjusted) %>%
  tidyr::pivot_wider(names_from = symbol, values_from = adjusted) %>%
  pad_by_time()

FANG_wide

# Apply Imputation
recipe_box_cox <- recipe(~ ., data = FANG_wide) %>%
  step_ts_impute(FB, AMZN, NFLX, GOOG, period = 252, lambda = "auto") %>%
  prep()

recipe_box_cox %>% bake(FANG_wide)

# Lambda parameter used during imputation process
recipe_box_cox %>% tidy(1)
```

step_ts_pad

Pad: Add rows to fill gaps and go from low to high frequency

Description

`step_ts_pad` creates a specification of a recipe step that will analyze a Date or Date-time column adding rows at a specified interval.

Usage

```r
step_ts_pad(
  recipe, 
  ..., 
  by = "day", 
  pad_value = NA, 
  role = "predictor", 
  trained = FALSE, 
  columns = NULL, 
  skip = FALSE, 
  id = rand_id("ts_padding")
)
```

`## S3 method for class 'step_ts_pad'
 tidy(x, ...)`
step_ts_pad

Arguments

- **recipe**: A recipe object. The step will be added to the sequence of operations for this recipe.
- **by**: Either "auto", a time-based frequency like "year", "month", "day", "hour", etc, or a time expression like "5 min", or "7 days". See Details.
- **pad_value**: Fills in padded values. Default is \texttt{NA}.
- **role**: For model terms created by this step, what analysis role should they be assigned?. By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.
- **trained**: A logical to indicate if the quantities for preprocessing have been estimated.
- **columns**: A character string of variables that will be used as inputs. This field is a placeholder and will be populated once \texttt{recipes::prep()} is used.
- **skip**: A logical. Should the step be skipped when the recipe is baked by \texttt{bake.recipe()}. While all operations are baked when \texttt{prep.recipe()} is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using \texttt{skip = TRUE} as it may affect the computations for subsequent operations.
- **id**: A character string that is unique to this step to identify it.
- **x**: A \texttt{step_ts_pad} object.

Details

Date Variable

- Only one date or date-time variable may be supplied.
- \texttt{step_ts_pad()} does not remove the original date variables.

Interval Specification (by)

Padding can be applied in the following ways:

- The eight intervals in are: year, quarter, month, week, day, hour, min, and sec.
- Intervals like 30 minutes, 1 hours, 14 days are possible.

Imputing Missing Values

The generic \texttt{pad_value} defaults to \texttt{NA}, which typically requires imputation. Some common strategies include:

- **Numeric data**: The \texttt{step_ts_impute()} preprocessing step can be used to impute numeric time series data with or without seasonality
- **Nominal data**: The \texttt{step_mode_impute()} preprocessing step can be used to replace missing values with the most common value.
Value

For `step_ts_pad`, an updated version of recipe with the new step added to the sequence of existing steps (if any). For the `tidy` method, a tibble with columns `terms` (the selectors or variables selected), `value` (the feature names).

See Also

Padding & Imputation:
- Pad Time Series: `step_ts_pad()`
- Impute missing values with these: `step_ts_impute()`, `step_ts_clean()`

Time Series Analysis:
- Engineered Features: `step_timeseries_signature()`, `step_holiday_signature()`, `step_fourier()`
- Diffs & Lags `step_diff()`, `recipes::step_lag()`
- Smoothing: `step_slidify()`, `step_smooth()`
- Variance Reduction: `step_box_cox()`

Main Recipe Functions:
- `recipes::recipe()`
- `recipes::prep`
- `recipes::bake`

Examples

```r
library(recipes)
library(dplyr)

FB_tbl <- FANG %>%
  filter(symbol == "FB") %>%
  select(symbol, date, adjusted)

rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%
  step_ts_pad(date, by = "day", pad_value = NA)

# View the recipe object
rec_obj

# Prepare the recipe object
prep(rec_obj)

# Bake the recipe object - Adds the padding
bake(prep(rec_obj), FB_tbl)

# Tidy shows which features have been added during the 1st step
# in this case, step 1 is the step_timeseries_signature step
tidy(prep(rec_obj))
  tidy(prep(rec_obj), number = 1)
```
summarise_by_time

summarise_by_time Summarise (for Time Series Data)

Description

`summarise_by_time()` is a time-based variant of the popular `dplyr::summarise()` function that uses `.date_var` to specify a date or date-time column and `.by` to group the calculation by groups like "5 seconds", "week", or "3 months".

`summarise_by_time()` and `summarize_by_time()` are synonyms.

Usage

```r
summarise_by_time(
  .data,  
  .date_var,  
  .by = "day",  
  ...,  
  .type = c("floor", "ceiling", "round"),  
  .week_start = NULL
)
```

```
summarize_by_time(
  .data,  
  .date_var,  
  .by = "day",  
  ...,  
  .type = c("floor", "ceiling", "round"),  
  .week_start = NULL
)
```

Arguments

- `.data` A `tbl` object or `data.frame`
- `.date_var` A column containing date or date-time values to summarize. If missing, attempts to auto-detect date column.
- `.by` A time unit to summarise by. Time units are collapsed using `lubridate::floor_date()` or `lubridate::ceiling_date()`.

The value can be:
- second
- minute
- hour
- day
- week
- month
- bimonth
• quarter
• season
• halfyear
• year

Arbitrary unique English abbreviations as in the lubridate::period() constructor are allowed.

Name-value pairs of summary functions. The name will be the name of the variable in the result.
The value can be:
• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A vector of length n, e.g. quantile().
• A data frame, to add multiple columns from a single expression.

.type One of "floor", "ceiling", or "round. Defaults to "floor". See lubridate::round_date.

.week_start when unit is weeks, specify the reference day. 7 represents Sunday and 1 represents Monday.

Value

A tibble or data.frame

Useful summary functions

• Sum: sum()
• Center: mean(), median()
• Spread: sd(), var()
• Range: min(), max()
• Count: dplyr::n(), dplyr::n_distinct()
• Position: dplyr::first(), dplyr::last(), dplyr::nth()
• Correlation: cor(), cov()

See Also

Time-Based dplyr functions:

• summarise_by_time() - Easily summarise using a date column.
• mutate_by_time() - Simplifies applying mutations by time windows.
• filter_by_time() - Quickly filter using date ranges.
• filter_period() - Apply filtering expressions inside periods (windows)
• between_time() - Range detection for date or date-time sequences.
• pad_by_time() - Insert time series rows with regularly spaced timestamps
• condense_period() - Convert to a different periodicity
• slidify() - Turn any function into a sliding (rolling) function
Examples

```r
# Libraries
library(dplyr)

# First value in each month
m4_daily %>%
  group_by(id) %>%
  summarise_by_time(
    .date_var = date,
    .by = "month", # Setup for monthly aggregation
    # Summarization
    value = first(value)
  )

# Last value in each month (day is first day of next month with ceiling option)
m4_daily %>%
  group_by(id) %>%
  summarise_by_time(
    .by = "month",
    value = last(value),
    .type = "ceiling"
  ) %>%
  # Shift to the last day of the month
  mutate(date = date %-time% "1 day")

# Total each year (.by is set to "year" now)
m4_daily %>%
  group_by(id) %>%
  summarise_by_time(
    .by = "year",
    value = sum(value)
  )
```

taylor_30_min

Half-hourly electricity demand

Description

Usage

taylor_30_min
Format

A tibble: 4,032 x 2

- date: A date-time variable in 30-minute increments
- value: Electricity demand in Megawatts

Source

James W Taylor

References

Examples

taylor_30_min

time_arithmetic Add / Subtract (For Time Series)

Description

The easiest way to add / subtract a period to a time series date or date-time vector.

Usage

add_time(index, period)
subtract_time(index, period)
index %+time% period
index %-time% period

Arguments

<table>
<thead>
<tr>
<th>index</th>
<th>A date or date-time vector. Can also accept a character representation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td>A period to add. Accepts character strings like "5 seconds", "2 days", and complex strings like "1 month 4 days 34 minutes".</td>
</tr>
</tbody>
</table>
Details
A convenient wrapper for lubridate::period(). Adds and subtracts a period from a time-based index. Great for:

- Finding a timestamp n-periods into the future or past
- Shifting a time-based index. Note that NA values may be present where dates don’t exist.

Period Specification
The period argument accepts complex strings like:

- "1 month 4 days 43 minutes"
- "second = 3, minute = 1, hour = 2, day = 13, week = 1"

Value
A date or datetime (POSIXct) vector the same length as index with the time values shifted +/- a period.

See Also
Other Time-Based vector functions:

- between_time() - Range detection for date or date-time sequences.

Underlying function:

- lubridate::period()

Examples

---- LOCATING A DATE N-PERIODS IN FUTURE / PAST ----
Forward (Plus Time)
"2021" %+time% "1 hour 34 seconds"
"2021" %+time% "3 months"
"2021" %+time% "1 year 3 months 6 days"

Backward (Minus Time)
"2021" %-time% "1 hour 34 seconds"
"2021" %-time% "3 months"
"2021" %-time% "1 year 3 months 6 days"

---- INDEX SHIFTING ----
index_daily <- tk_make_timeseries("2016", "2016-02-01")

ADD TIME
- Note 'NA' values created where a daily dates aren't possible
(e.g. Feb 29 & 30, 2016 doesn't exist).
index_daily %+time% "1 month"
Subtracting Time

index_daily %time% "1 month"

time_series_cv

Time Series Cross Validation

Description

Create rsample cross validation sets for time series. This function produces a sampling plan starting with the most recent time series observations, rolling backwards. The sampling procedure is similar to rsample::rolling_origin(), but places the focus of the cross validation on the most recent time series data.

Usage

time_series_cv(
 data,
 date_var = NULL,
 initial = 5,
 assess = 1,
 skip = 1,
 lag = 0,
 cumulative = FALSE,
 slice_limit = n(),
 point_forecast = FALSE,
 ...
)

Arguments

data A data frame.
date_var A date or date-time variable.
initial The number of samples used for analysis/modeling in the initial resample.
assess The number of samples used for each assessment resample.
skip A integer indicating how many (if any) additional resamples to skip to thin the total amount of data points in the analysis resample. See the example below.
lag A value to include an lag between the assessment and analysis set. This is useful if lagged predictors will be used during training and testing.
cumulative A logical. Should the analysis resample grow beyond the size specified by initial at each resample?.
slice_limit The number of slices to return. Set to dplyr::n(), which returns the maximum number of slices.

point_forecast Whether or not to have the testing set be a single point forecast or to be a forecast horizon. The default is to be a forecast horizon. Default: FALSE

... These dots are for future extensions and must be empty.

Details

Time-Based Specification
The initial, assess, skip, and lag variables can be specified as:

- Numeric: initial = 24
- Time-Based Phrases: initial = "2 years", if the data contains a date_var (date or date-time)

Initial (Training Set) and Assess (Testing Set)
The main options, initial and assess, control the number of data points from the original data that are in the analysis (training set) and the assessment (testing set), respectively.

Skip
skip enables the function to not use every data point in the resamples. When skip = 1, the resampling data sets will increment by one position.

Example: Suppose that the rows of a data set are consecutive days. Using skip = 7 will make the analysis data set operate on weeks instead of days. The assessment set size is not affected by this option.

Lag
The Lag parameter creates an overlap between the Testing set. This is needed when lagged predictors are used.

Cumulative vs Sliding Window
When cumulative = TRUE, the initial parameter is ignored and the analysis (training) set will grow as resampling continues while the assessment (testing) set size will always remain static.

When cumulative = FALSE, the initial parameter fixes the analysis (training) set and resampling occurs over a fixed window.

Slice Limit
This controls the number of slices. If slice_limit = 5, only the most recent 5 slices will be returned.

Point Forecast
A point forecast is sometimes desired such as if you want to forecast a value "4-weeks" into the future. You can do this by setting the following parameters:

- assess = "4 weeks"
- point_forecast = TRUE
Panel Data / Time Series Groups / Overlapping Timestamps

Overlapping timestamps occur when your data has more than one time series group. This is sometimes called Panel Data or Time Series Groups.

When timestamps are duplicated (as in the case of "Panel Data" or "Time Series Groups"), the resample calculation applies a sliding window of fixed length to the dataset. See the example using `walmart_sales_weekly` dataset below.

Value

An tibble with classes `time_series_cv`, `rset`, `tbl_df`, `tbl`, and `data.frame`. The results include a column for the data split objects and a column called `id` that has a character string with the resample identifier.

See Also

- `time_series_cv()` and `rsample::rolling_origin()` - Functions used to create time series resample specifications.
- `plot_time_series_cv_plan()` - The plotting function used for visualizing the time series resample plan.
- `time_series_split()` - A convenience function to return a single time series split containing a training/testing sample.

Examples

```r
library(dplyr)

# DATA ----
m750 <- m4_monthly %>% dplyr::filter(id == "M750")

# RESAMPLE SPEC ----
resample_spec <- time_series_cv(data = m750, 
                               initial  = "6 years",
                               assess   = "24 months",
                               skip     = "24 months",
                               cumulative = FALSE,
                               slice_limit = 3)
resample_spec

# VISUALIZE CV PLAN ----

# Select date and value columns from the tscv diagnostic tool
resample_spec %>% tk_time_series_cv_plan()

# Plot the date and value columns to see the CV Plan
resample_spec %>%
  plot_time_series_cv_plan(date, value, .interactive = FALSE)
```
PANEL DATA / TIME SERIES GROUPS ----
- Time Series Groups are processed using an *ungrouped* data set
- The data has sliding windows applied starting with the beginning of the series
- The seven groups of weekly time series are
processed together for <split [358/78]> dimensions

walmart_tscv <- walmart_sales_weekly %>%
 time_series_cv(
 date_var = Date,
 initial = "12 months",
 assess = "3 months",
 skip = "3 months",
 slice_limit = 4
)

walmart_tscv

walmart_tscv %>%
 plot_time_series_cv_plan(Date, Weekly_Sales, .interactive = FALSE)

time_series_split Simple Training/Test Set Splitting for Time Series

description

time_series_split creates resample splits using time_series_cv() but returns only a single split. This is useful when creating a single train/test split.

Usage

time_series_split(
 data,
 date_var = NULL,
 initial = 5,
 assess = 1,
 skip = 1,
 lag = 0,
 cumulative = FALSE,
 slice = 1,
 point_forecast = FALSE,
 ...
)

Arguments

data A data frame.
date_var A date or date-time variable.
initial The number of samples used for analysis/modeling in the initial resample.
assess The number of samples used for each assessment resample.
skip A integer indicating how many (if any) additional resamples to skip to thin the total amount of data points in the analysis resample. See the example below.
lag A value to include an lag between the assessment and analysis set. This is useful if lagged predictors will be used during training and testing.
cumulative A logical. Should the analysis resample grow beyond the size specified by initial at each resample?.
slice Returns a single slice from time_series_cv
point_forecast Whether or not to have the testing set be a single point forecast or to be a forecast horizon. The default is to be a forecast horizon. Default: FALSE

Details

Time-Based Specification
The initial, assess, skip, and lag variables can be specified as:

• Numeric: initial = 24
• Time-Based Phrases: initial = "2 years", if the data contains a date_var (date or date-time)

Initial (Training Set) and Assess (Testing Set)
The main options, initial and assess, control the number of data points from the original data that are in the analysis (training set) and the assessment (testing set), respectively.

Skip
skip enables the function to not use every data point in the resamples. When skip = 1, the resampling data sets will increment by one position.

Example: Suppose that the rows of a data set are consecutive days. Using skip = 7 will make the analysis data set operate on weeks instead of days. The assessment set size is not affected by this option.

Lag
The Lag parameter creates an overlap between the Testing set. This is needed when lagged predictors are used.

Cumulative vs Sliding Window
When cumulative = TRUE, the initial parameter is ignored and the analysis (training) set will grow as resampling continues while the assessment (testing) set size will always remain static.

When cumulative = FALSE, the initial parameter fixes the analysis (training) set and resampling occurs over a fixed window.

Slice
This controls which slice is returned. If slice = 1, only the most recent slice will be returned.
tk_acf_diagnostics

Value

An `rsplit` object that can be used with the training and testing functions to extract the data in each split.

See Also

- `time_series_cv()` and `rsample::rolling_origin()` - Functions used to create time series resample specifications.

Examples

```r
library(dplyr)

# DATA ----
m750 <- m4_monthly %>% dplyr::filter(id == "M750")

# Get the most recent 3 years as testing, and previous 10 years as training
m750 %>%
  time_series_split(initial = "10 years", assess = "3 years")

# Skip the most recent 3 years
m750 %>%
  time_series_split(
    initial = "10 years",
    assess = "3 years",
    skip = "3 years",
    slice = 2  # <- Returns 2nd slice, 3-years back
  )

# Add 1 year lag for testing overlap
m750 %>%
  time_series_split(
    initial = "10 years",
    assess = "3 years",
    skip = "3 years",
    slice = 2,
    lag = "1 year"  # <- Overlaps training/testing by 1 year
  )
```


tk_acf_diagnostics Group-wise ACF, PACF, and CCF Data Preparation

Description

The `tk_acf_diagnostics()` function provides a simple interface to detect Autocorrelation (ACF), Partial Autocorrelation (PACF), and Cross Correlation (CCF) of Lagged Predictors in one tibble. This function powers the `plot_acf_diagnostics()` visualization.
Usage

`tk_acf_diagnostics(.data, .date_var, .value, .ccf_vars = NULL, .lags = 1000)`

Arguments

- `.data` A data frame or tibble with numeric features (values) in descending chronological order
- `.date_var` A column containing either date or date-time values
- `.value` A numeric column with a value to have ACF and PACF calculations performed.
- `.ccf_vars` Additional features to perform Lag Cross Correlations (CCFs) versus the `.value`. Useful for evaluating external lagged regressors.
- `.lags` A sequence of one or more lags to evaluate.

Details

Simplified ACF, PACF, & CCF

We are often interested in all 3 of these functions. Why not get all 3 at once? Now you can!

- **ACF** - Autocorrelation between a target variable and lagged versions of itself
- **PACF** - Partial Autocorrelation removes the dependence of lags on other lags highlighting key seasonalities.
- **CCF** - Shows how lagged predictors can be used for prediction of a target variable.

Lag Specification

Lags (`.lags`) can either be specified as:

- A time-based phrase indicating a duration (e.g. 2 months)
- A maximum lag (e.g. `.lags = 28`)
- A sequence of lags (e.g. `.lags = 7:28`)

Scales to Multiple Time Series with Groups

The `tk_acf_diagnostics()` works with grouped_df’s, meaning you can group your time series by one or more categorical columns with `dplyr::group_by()` and then apply `tk_acf_diagnostics()` to return group-wise lag diagnostics.

Special Note on Dots (...)

Unlike other plotting utilities, the ... arguments is NOT used for group-wise analysis. Rather, it’s used for processing Cross Correlations (CCFs).

Use `dplyr::group_by()` for processing multiple time series groups.

Value

A tibble or data.frame containing the autocorrelation, partial autocorrelation and cross correlation data.
tk_anomaly_diagnostics

Automatic group-wise Anomaly Detection by STL Decomposition

Description

tk_anomaly_diagnostics() is the preprocessor for plot_anomaly_diagnostics(). It performs automatic anomaly detection for one or more time series groups.

Usage

tk_anomaly_diagnostics(
 .data,
tk_anomaly_diagnostics

```r
date_var, 
value, 
frequency = "auto", 
trend = "auto", 
alpha = 0.05, 
max_anomalies = 0.2, 
message = TRUE 
)
```

Arguments

- `.data` A tibble or data.frame with a time-based column
- `.date_var` A column containing either date or date-time values
- `.value` A column containing numeric values
- `.frequency` Controls the seasonal adjustment (removal of seasonality). Input can be either "auto", a time-based definition (e.g. "2 weeks"), or a numeric number of observations per frequency (e.g. 10). Refer to `tk_get_frequency()`.
- `.trend` Controls the trend component. For STL, trend controls the sensitivity of the LOESS smoother, which is used to remove the remainder. Refer to `tk_get_trend()`.
- `.alpha` Controls the width of the "normal" range. Lower values are more conservative while higher values are less prone to incorrectly classifying "normal" observations.
- `.max_anomalies` The maximum percent of anomalies permitted to be identified.
- `.message` A boolean. If TRUE, will output information related to automatic frequency and trend selection (if applicable).

Details

The `tk_anomaly_diagnostics()` method for anomaly detection that implements a 2-step process to detect outliers in time series.

Step 1: Detrend & Remove Seasonality using STL Decomposition

The decomposition separates the "season" and "trend" components from the "observed" values leaving the "remainder" for anomaly detection.

The user can control two parameters: frequency and trend.

1. `.frequency`: Adjusts the "season" component that is removed from the "observed" values.
2. `.trend`: Adjusts the trend window (t.window parameter from `stats::stl()`) that is used.

The user may supply both `.frequency` and `.trend` as time-based durations (e.g. "6 weeks") or numeric values (e.g. 180) or "auto", which predetermines the frequency and/or trend based on the scale of the time series using the `tk_time_scale_template()`.

Step 2: Anomaly Detection

Once "trend" and "season" (seasonality) is removed, anomaly detection is performed on the "remainder". Anomalies are identified, and boundaries (recomposed_l1 and recomposed_l2) are determined.
The Anomaly Detection Method uses an inner quartile range (IQR) of +/-25 the median.

IQR Adjustment, alpha parameter

With the default alpha = 0.05, the limits are established by expanding the 25/75 baseline by an IQR Factor of 3 (3X). The *IQR Factor = 0.15 / alpha* (hence 3X with alpha = 0.05):

- To increase the IQR Factor controlling the limits, decrease the alpha, which makes it more difficult to be an outlier.
- Increase alpha to make it easier to be an outlier.
- The IQR outlier detection method is used in `forecast::tsoutliers()`.
- A similar outlier detection method is used by Twitter’s `AnomalyDetection` package.
- Both Twitter and Forecast tsoutliers methods have been implemented in Business Science’s `anomalize` package.

Value

A tibble or data.frame with STL Decomposition Features (observed, season, trend, remainder, seasadj) and Anomaly Features (remainder_l1, remainder_l2, anomaly, recomposed_l1, and recomposed_l2)

References

See Also

- `plot_anomaly_diagnostics()`: Visual anomaly detection

Examples

```r
library(dplyr)

walmart_sales_weekly %>%
  filter(id %in% c("1_1", "1_3")) %>%
  group_by(id) %>%
  tk_anomaly_diagnostics(Date, Weekly_Sales)
```
tk_augment_differences

Add many differenced columns to the data

Description

A handy function for adding multiple lagged difference values to a data frame. Works with dplyr groups too.

Usage

```r
tk_augment_differences(
  .data,
  .value,
  .lags = 1,
  .differences = 1,
  .log = FALSE,
  .names = "auto"
)
```

Arguments

- `.data` A tibble.
- `.value` One or more column(s) to have a transformation applied. Usage of tidyselect functions (e.g. `contains()`) can be used to select multiple columns.
- `.lags` One or more lags for the difference(s)
- `.differences` The number of differences to apply.
- `.log` If TRUE, applies log-differences.
- `.names` A vector of names for the new columns. Must be of same length as the number of output columns. Use "auto" to automatically rename the columns.

Details

Benefits

This is a scalable function that is:

- Designed to work with grouped data using `dplyr::group_by()`
- Add multiple differences by adding a sequence of differences using the `.lags` argument (e.g. `.lags = 1:20`)

Value

Returns a tibble object describing the timeseries.
See Also

Augment Operations:

- `tk_augment_timeseries_signature()` - Group-wise augmentation of timestamp features
- `tk_augment_holiday_signature()` - Group-wise augmentation of holiday features
- `tk_augment_slidify()` - Group-wise augmentation of rolling functions
- `tk_augment_lags()` - Group-wise augmentation of lagged data
- `tk_augment_differences()` - Group-wise augmentation of differenced data
- `tk_augment_fourier()` - Group-wise augmentation of fourier series

Underlying Function:

- `diff_vec()` - Underlying function that powers `tk_augment_differences()`

Examples

```r
library(dplyr)

m4_monthly %>%
  group_by(id) %>%
  tk_augment_differences(value, .lags = 1:20)
```

tk_augment_fourier Add many fourier series to the data

Description

A handy function for adding multiple fourier series to a data frame. Works with `dplyr` groups too.

Usage

```r
tk_augment_fourier(.data, .date_var, .periods, .K = 1, .names = "auto")
```

Arguments

- `.data` A tibble.
- `.date_var` A date or date-time column used to calculate a fourier series
- `.periods` One or more periods for the fourier series
- `.K` The maximum number of fourier orders.
- `.names` A vector of names for the new columns. Must be of same length as the number of output columns. Use "auto" to automatically rename the columns.
tk_augment_holiday

Details

Benefits
This is a scalable function that is:

• Designed to work with grouped data using dplyr::group_by()
• Add multiple differences by adding a sequence of differences using the .periods argument (e.g. lags = 1:20)

Value
Returns a tibble object describing the timeseries.

See Also
Augment Operations:

• tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features
• tk_augment_holiday_signature() - Group-wise augmentation of holiday features
• tk_augment_slidify() - Group-wise augmentation of rolling functions
• tk_augment_lags() - Group-wise augmentation of lagged data
• tk_augment_differences() - Group-wise augmentation of differenced data
• tk_augment_fourier() - Group-wise augmentation of fourier series

Underlying Function:

• fourier_vec() - Underlying function that powers tk_augment_fourier()

Examples

library(dplyr)

m4_monthly %>%
group_by(id) %>%
tk_augment_fourier(date, .periods = c(6, 12), .K = 2)

tk_augment_holiday Add many holiday features to the data

Description
Quickly add the "holiday signature" - sets of holiday features that correspond to calendar dates. Works with dplyr groups too.
tk_augment_holiday

Usage

tk_augment_holiday_signature(
 .data,
 .date_var = NULL,
 .holiday_pattern = ".",
 .exchange_set = c("all", "none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH")
)

Arguments

.data A time-based tibble or time-series object.
.date_var A column containing either date or date-time values. If NULL, the time-based column will interpret from the object (tibble).
.holiday_pattern A regular expression pattern to search the "Holiday Set".
.exchange_set Return binary holidays based on Stock Exchange Calendars. One of: "all", "none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH".

Details

tk_augment_holiday_signature adds the holiday signature features. See tk_get_holiday_signature() (powers the augment function) for a full description and examples for how to use.

1. Individual Holidays

These are single holiday features that can be filtered using a pattern. This helps in identifying which holidays are important to a machine learning model. This can be useful for example in e-commerce initiatives (e.g. sales during Christmas and Thanksgiving).

2. Locale-Based Summary Sets

Locale-based holiday sets are useful for e-commerce initiatives (e.g. sales during Christmas and Thanksgiving). Filter on a locale to identify all holidays in that locale.

3. Stock Exchange Calendar Summary Sets

Exchange-based holiday sets are useful for identifying non-working days. Filter on an index to identify all holidays that are commonly non-working.

Value

Returns a tibble object describing the holiday timeseries.

See Also

Augment Operations:

* tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features
* tk_augment_holiday_signature() - Group-wise augmentation of holiday features
tk_augment_lags

- **tk_augment_slidify()** - Group-wise augmentation of rolling functions
- **tk_augment_lags()** - Group-wise augmentation of lagged data
- **tk_augment_differences()** - Group-wise augmentation of differenced data
- **tk_augment_fourier()** - Group-wise augmentation of fourier series

Underlying Function:
- **tk_get_holiday_signature()** - Underlying function that powers holiday feature generation

Examples

```r
library(dplyr)

dates_in_2017_tbl <- tibble(index = tk_make_timeseries("2017-01-01", "2017-12-31", by = "day"))

# Non-working days in US due to Holidays using NYSE stock exchange calendar
dates_in_2017_tbl %>%
  tk_augment_holiday_signature(
    index,
    .holiday_pattern = "\$", # Returns nothing on purpose
    .locale_set = "none",
    .exchange_set = "NYSE")

# All holidays in US
dates_in_2017_tbl %>%
  tk_augment_holiday_signature(
    index,
    .holiday_pattern = "US_",
    .locale_set = "US",
    .exchange_set = "none")

# All holidays for World and Italy-specific Holidays
# - Note that Italy celebrates specific holidays in addition to many World Holidays
dates_in_2017_tbl %>%
  tk_augment_holiday_signature(
    index,
    .holiday_pattern = "(World)|(IT)_",
    .locale_set = c("World", "IT"),
    .exchange_set = "none")
```

tk_augment_lags
Add many lags to the data

Description

A handy function for adding multiple lagged columns to a data frame. Works with dplyr groups too.
tk_augment_lags

Usage

```r
tk_augment_lags(.data, .value, .lags = 1L, .names = "auto")

tk_augment_leads(.data, .value, .lags = -1L, .names = "auto")
```

Arguments

- `.data` A tibble.
- `.value` One or more column(s) to have a transformation applied. Usage of tidyselect functions (e.g., `contains()`) can be used to select multiple columns.
- `.lags` One or more lags for the difference(s)
- `.names` A vector of names for the new columns. Must be of same length as `.lags`.

Details

Lags vs Leads

A negative lag is considered a lead. The `tk_augment_leads()` function is identical to `tk_augment_lags()` with the exception that the automatic naming convention (`.names = 'auto'`) will convert column names with negative lags to leads.

Benefits

This is a scalable function that is:

- Designed to work with grouped data using `dplyr::group_by()`
- Add multiple lags by adding a sequence of lags using the `.lags` argument (e.g., `.lags = 1:20`)

Value

Returns a tibble object describing the timeseries.

See Also

Augment Operations:

- `tk_augment_timeseries_signature()` - Group-wise augmentation of timestamp features
- `tk_augment_holiday_signature()` - Group-wise augmentation of holiday features
- `tk_augment_slidify()` - Group-wise augmentation of rolling functions
- `tk_augment_lags()` - Group-wise augmentation of lagged data
- `tk_augment_differences()` - Group-wise augmentation of differenced data
- `tk_augment_fourier()` - Group-wise augmentation of fourier series

Underlying Function:

- `lag_vec()` - Underlying function that powers `tk_augment_lags()`
Examples

library(dplyr)

Lags
m4_monthly %>%
 group_by(id) %>%
 tk_augment_lags(contains("value"), .lags = 1:20)

Leads
m4_monthly %>%
 group_by(id) %>%
 tk_augment_leads(value, .lags = 1:-20)

tk_augment_slidify

Add many rolling window calculations to the data

Description

Quickly use any function as a rolling function and apply to multiple `.periods`. Works with `dplyr` groups too.

Usage

```
tk_augment_slidify(
  .data,  
  .value,  
  .period,  
  .f,  
  ...,  
  .align = c("center", "left", "right"),  
  .partial = FALSE,  
  .names = "auto"
)
```

Arguments

- `.data` A tibble.
- `.value` One or more column(s) to have a transformation applied. Usage of tidyselect functions (e.g. `contains()`) can be used to select multiple columns.
- `.period` One or more periods for the rolling window(s)
- `.f` A summary `[function / formula]`,

 ...

 Optional arguments for the summary function
- `.align` Rolling functions generate `.period - 1` fewer values than the incoming vector. Thus, the vector needs to be aligned. Select one of "center", "left", or "right".
.partial Should the moving window be allowed to return partial (incomplete) windows instead of NA values. Set to FALSE by default, but can be switched to TRUE to remove NA’s.

.names A vector of names for the new columns. Must be of same length as .period. Default is "auto".

Details

tk_augment_slidify() scales the slidify_vec() function to multiple time series .periods. See slidify_vec() for examples and usage of the core function arguments.

Value

Returns a tibble object describing the timeseries.

See Also

Augment Operations:

• tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features
• tk_augment_holiday_signature() - Group-wise augmentation of holiday features
• tk_augment_slidify() - Group-wise augmentation of rolling functions
• tk_augment_lags() - Group-wise augmentation of lagged data
• tk_augment_differences() - Group-wise augmentation of differenced data
• tk_augment_fourier() - Group-wise augmentation of fourier series

Underlying Function:

• slidify_vec() - The underlying function that powers tk_augment_slidify()

Examples

library(dplyr)

Single Column | Multiple Rolling Windows
FANG %>%
 select(symbol, date, adjusted) %>%
 group_by(symbol) %>%
 tk_augment_slidify(
 .value = contains("adjust"),
 # Multiple rolling windows
 .period = c(10, 30, 60, 90),
 .f = mean,
 .partial = TRUE,
 .names = stringr::str_c("MA_", c(10, 30, 60, 90))
) %>%
 ungroup()

Multiple Columns | Multiple Rolling Windows
FANG %>%
```r
select(symbol, date, adjusted, volume) %>%
group_by(symbol) %>%
tk_augment_slidify(
  .value = c(adjusted, volume),
  .period = c(10, 30, 60, 90),
  .f = mean,
  .partial = TRUE
) %>%
ungroup()
```

tk_augment_timeseries
Add many time series features to the data

Description

Add many time series features to the data

Usage

```r
tk_augment_timeseries_signature(.data, .date_var = NULL)
```

Arguments

- `.data`
 A time-based tibble or time-series object.
- `.date_var`
 For tibbles, a column containing either date or date-time values. If NULL, the time-based column will interpret from the object (tibble, xts, zoo, etc).

Details

`tk_augment_timeseries_signature()` adds 25+ time series features including:

- **Trend in Seconds Granularity**: index.num
- **Yearly Seasonality**: Year, Month, Quarter
- **Weekly Seasonality**: Week of Month, Day of Month, Day of Week, and more
- **Daily Seasonality**: Hour, Minute, Second
- **Weekly Cyclic Patterns**: 2 weeks, 3 weeks, 4 weeks

Value

Returns a tibble object describing the timeseries.
tk_get_frequency

See Also

Augment Operations:

- `tk_augment_timeseries_signature()` - Group-wise augmentation of timestamp features
- `tk_augment_holiday_signature()` - Group-wise augmentation of holiday features
- `tk_augment_slidify()` - Group-wise augmentation of rolling functions
- `tk_augment_lags()` - Group-wise augmentation of lagged data
- `tk_augment_differences()` - Group-wise augmentation of differenced data
- `tk_augment_fourier()` - Group-wise augmentation of fourier series

Underlying Function:

- `tk_get_timeseries_signature()` - Returns timeseries features from an index

Examples

```r
library(dplyr)

m4_daily %>%
  group_by(id) %>%
  tk_augment_timeseries_signature(date)
```

tk_get_frequency
Automatic frequency and trend calculation from a time series index

Description

Automatic frequency and trend calculation from a time series index

Usage

```r
tk_get_frequency(idx, period = "auto", message = TRUE)

tk_get_trend(idx, period = "auto", message = TRUE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>idx</td>
<td>A date or datetime index.</td>
</tr>
<tr>
<td>period</td>
<td>Either "auto", a time-based definition (e.g. "2 weeks"), or a numeric number of observations per frequency (e.g. 10).</td>
</tr>
<tr>
<td>message</td>
<td>A boolean. If message = TRUE, the frequency or trend is output as a message along with the units in the scale of the data.</td>
</tr>
</tbody>
</table>
Details

A *frequency* is loosely defined as the number of observations that comprise a cycle in a data set. The *trend* is loosely defined as time span that can be aggregated across to visualize the central tendency of the data. It’s often easiest to think of frequency and trend in terms of the time-based units that the data is already in. **This is what tk_get_frequency() and time_trend() enable: using time-based periods to define the frequency or trend.**

Frequency:

As an example, a weekly cycle is often 5-days (for working days) or 7-days (for calendar days). Rather than specify a frequency of 5 or 7, the user can specify *period = "1 week"*, and tk_get_frequency() will detect the scale of the time series and return 5 or 7 based on the actual data.

The *period* argument has three basic options for returning a frequency. Options include:

- "auto": A target frequency is determined using a pre-defined template (see template below).
- time-based duration: (e.g. "1 week" or "2 quarters" per cycle)
- numeric number of observations: (e.g. 5 for 5 observations per cycle)

When *period = "auto"*, the tk_time_scale_template() is used to calculate the frequency.

Trend:

As an example, the trend of daily data is often best aggregated by evaluating the moving average over a quarter or a month span. Rather than specify the number of days in a quarter or month, the user can specify "1 quarter" or "1 month", and the time_trend() function will return the correct number of observations per trend cycle. In addition, there is an option, *period = "auto"*, to auto-detect an appropriate trend span depending on the data. The template is used to define the appropriate trend span.

Time Scale Template

The tk_time_scale_template() is a Look-Up Table used by the trend and period to find the appropriate time scale. It contains three features: `time_scale`, `frequency`, and `trend`.

The algorithm will inspect the scale of the time series and select the best frequency or trend that matches the scale and number of observations per target frequency. A frequency is then chosen on be the best match.

The predefined template is stored in a function tk_time_scale_template(). You can modify the template with set_tk_time_scale_template().

Value

Returns a scalar numeric value indicating the number of observations in the frequency or trend span.

See Also

- Time Scale Template Modifiers: get_tk_time_scale_template(), set_tk_time_scale_template()

Examples

library(dplyr)
```r
idx_FB <- FANG %>%
  filter(symbol == "FB") %>%
  pull(date)

# Automated Frequency Calculation
tk_get_frequency(idx_FB, period = "auto")

# Automated Trend Calculation
tk_get_trend(idx_FB, period = "auto")

# Manually Override Trend
tk_get_trend(idx_FB, period = "1 year")
```

tk_get_holiday

Get holiday features from a time-series index

Usage

```r
tk_get_holiday_signature(
  idx,
  holiday_pattern = ".",
  exchange_set = c("all", "none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH")
)
```

```r
tk_get_holidays_by_year(years = year(today()))
```

Arguments

- `idx` A time-series index that is a vector of dates or datetimes.
- `holiday_pattern` A regular expression pattern to search the "Holiday Set".
- `exchange_set` Return binary holidays based on Stock Exchange Calendars. One of: "all", "none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH".
- `years` One or more years to collect holidays for.
Details

Feature engineering holidays can help identify critical patterns for machine learning algorithms. `tk_get_holidaySignature()` helps by providing feature sets for 3 types of features:

1. Individual Holidays

These are single holiday features that can be filtered using a pattern. This helps in identifying which holidays are important to a machine learning model. This can be useful for example in e-commerce initiatives (e.g. sales during Christmas and Thanksgiving).

2. Locale-Based Summary Sets

Locale-based holiday sets are useful for e-commerce initiatives (e.g. sales during Christmas and Thanksgiving). Filter on a locale to identify all holidays in that locale.

3. Stock Exchange Calendar Summary Sets

Exchange-based holiday sets are useful for identifying non-working days. Filter on an index to identify all holidays that are commonly non-working.

Value

Returns a tibble object describing the timeseries holidays.

See Also

- `tk_augment_holiday_signature()` - A quick way to add holiday features to a data.frame
- `step_holiday_signature()` - Preprocessing and feature engineering steps for use with recipes

Examples

```r
library(dplyr)
library(stringr)

# Works with time-based tibbles
idx <- tk_make_timeseries("2017-01-01", "2017-12-31", by = "day")

# --- BASIC USAGE ----

# Get all holidays
tk_get_holiday_signature(idx)

# --- FILTERING WITH PATTERNS & SETS ----

# List available holidays - see patterns
# tk_get_holidays_by_year(2020) %>%
#   filter(holiday_name %>% str_detect("US_"))

# Filter using holiday patterns
# - Get New Years, Christmas and Thanksgiving Features in US
tk_get_holiday_signature(idx,
    holiday_pattern = "(US_NewYears)|(US_Christmas)|(US_Thanks)",
    locale_set = "none",
    exchange_set = "none")
```
tk_get_timeseries

Get date features from a time-series index

Description

Get date features from a time-series index

Usage

tk_get_timeseries_signature(idx)

tk_get_timeseries_summary(idx)

Arguments

idx A time-series index that is a vector of dates or datetimes.

Details

tk_get_timeseries_signature decomposes the timeseries into commonly needed features such as numeric value, differences, year, month, day, day of week, day of month, day of year, hour, minute, second.

tk_get_timeseries_summary returns the summary returns the start, end, units, scale, and a "summary" of the timeseries differences in seconds including the minimum, 1st quartile, median, mean, 3rd quartile, and maximum frequency. The timeseries differences give the user a better picture of the index frequency so the user can understand the level of regularity or irregularity. A perfectly regular time series will have equal values in seconds for each metric. However, this is not often the case.

Important Note: These functions only work with time-based indexes in datetime, date, yearmon, and yearqtr values. Regularized dates cannot be decomposed.
Value

Returns a tibble object describing the timeseries.

See Also

`tk_index()`, `tk_augment_timeseries_signature()`, `tk_make_future_timeseries()`

Examples

```r
library(dplyr)
library(lubridate)
library(zoo)

# Works with time-based tibbles
FB_tbl <- FANG %>% dplyr::filter(symbol == "FB")
FB_idx <- tk_index(FB_tbl)

tk_get_timeseries_signature(FB_idx)
tk_get_timeseries_summary(FB_idx)

# Works with dates in any periodicity
idx_weekly <- seq.Date(from = lubridate::ymd("2016-01-01"), by = 'week', length.out = 6)

tk_get_timeseries_signature(idx_weekly)
tk_get_timeseries_summary(idx_weekly)

# Works with zoo yearmon and yearqtr classes
idx_yearmon <- seq.Date(from = lubridate::ymd("2016-01-01"),
                          by = "month",
                          length.out = 12) %>%
                         zoo::as.yearmon()

tk_get_timeseries_signature(idx_yearmon)
tk_get_timeseries_summary(idx_yearmon)
```

Description

Get the timeseries unit frequency for the primary time scales

Usage

`tk_get_timeseries_unit_frequency()`
tk_get_timeseries_variables

Value
tk_get_timeseries_unit_frequency returns a tibble containing the timeseries frequencies in seconds for the primary time scales including "sec", "min", "hour", "day", "week", "month", "quarter", and "year".

Examples
tk_get_timeseries_unit_frequency()

tk_get_timeseries_variables

Get date or datetime variables (column names)

Description
Get date or datetime variables (column names)

Usage

tk_get_timeseries_variables(data)

Arguments

data An object of class data.frame

Details
tk_get_timeseries_variables returns the column names of date or datetime variables in a data frame. Classes that meet criteria for return include those that inherit POSIXt, Date, zoo::yearmon, zoo::yearqtr. Function was adapted from padr::get_date_variables(). See padr helpers.R

Value
tk_get_timeseries_variables returns a vector containing column names of date-like classes.

Examples

```r
library(dplyr)
FANG %>%
  tk_get_timeseries_variables()
```
tk_index

Extract an index of date or datetime from time series objects, models, forecasts

Description

Extract an index of date or datetime from time series objects, models, forecasts

Usage

\[\text{tk_index}(\text{data}, \text{timetk_idx} = \text{FALSE}, \text{silent} = \text{FALSE}) \]

\[\text{has_timetk_idx}(\text{data}) \]

Arguments

data
A time-based tibble, time-series object, time-series model, or forecast object.

timetk_idx
If timetk_idx is TRUE a timetk time-based index attribute is attempted to be returned. If FALSE the default index is returned. See discussion below for further details.

silent
Used to toggle printing of messages and warnings.

Details

tk_index() is used to extract the date or datetime index from various time series objects, models and forecasts. The method can be used on tbl, xts, zoo, zooReg, and ts objects. The method can additionally be used on forecast objects and a number of objects generated by modeling functions such as Arima, ets, and HoltWinters classes to get the index of the underlying data.

The boolean timetk_idx argument is applicable to regularized time series objects such as ts and zooReg classes that have both a regularized index and potentially a "timetk index" (a time-based attribute). When set to FALSE the regularized index is returned. When set to TRUE the time-based timetk index is returned if present.

has_timetk_idx() is used to determine if the object has a "timetk index" attribute and can thus benefit from the tk_index(timetk_idx = TRUE). TRUE indicates the "timetk index" attribute is present. FALSE indicates the "timetk index" attribute is not present. If FALSE, the tk_index() function will return the default index for the data type.

Important Note: To gain the benefit of timetk_idx the time series must have a timetk index. Use has_timetk_idx to determine if the object has a timetk index. This is particularly important for ts objects, which by default do not contain a time-based index and therefore must be coerced from time-based objects such as tbl, xts, or zoo using the tk_ts() function in order to get the "timetk index" attribute. Refer to tk_ts() for creating persistent date / datetime index during coercion to ts.

Value

Returns a vector of date or date times
tk_make_future_timeseries

See Also

\[\text{tk_ts(), tk_tbl(), tk_xts(), tk_zoo(), tk_zooreg()} \]

Examples

```r
# Create time-based tibble
data_tbl <- tibble::tibble(
  date = seq.Date(from = as.Date("2000-01-01"), by = 1, length.out = 5),
  x = rnorm(5) * 10,
  y = 5:1
)
tk_index(data_tbl) # Returns time-based index vector

# Coerce to ts using tk\_ts(): Preserves time-basis
data_ts <- tk_ts(data_tbl)
tk_index(data_ts, timetk_idx = FALSE) # Returns regularized index
tk_index(data_ts, timetk_idx = TRUE) # Returns original time-based index vector

# Coercing back to tbl
tk_tbl(data_ts, timetk_idx = FALSE) # Returns regularized tbl
tk_tbl(data_ts, timetk_idx = TRUE) # Returns time-based tbl
```

tk_make_future_timeseries

Make future time series from existing

Description

Make future time series from existing

Usage

```r
tk_make_future_timeseries(
  idx,
  length_out,
  inspect_weekdays = FALSE,
  inspect_months = FALSE,
  skip_values = NULL,
  insert_values = NULL,
  n_future = NULL
)
```
Arguments

- **idx**: A vector of dates
- **length_out**: Number of future observations. Can be numeric number or a phrase like "1 year".
- **inspect_weekdays**: Uses a logistic regression algorithm to inspect whether certain weekdays (e.g. weekends) should be excluded from the future dates. Default is FALSE.
- **inspect_months**: Uses a logistic regression algorithm to inspect whether certain days of months (e.g. last two weeks of year or seasonal days) should be excluded from the future dates. Default is FALSE.
- **skip_values**: A vector of same class as idx of timeseries values to skip.
- **insert_values**: A vector of same class as idx of timeseries values to insert.
- **n_future**: (DEPRECATED) Number of future observations. Can be numeric number or a phrase like "1 year".

Details

Future Sequences

tk_make_future_timeseries returns a time series based on the input index frequency and attributes.

Specifying Length of Future Observations

The argument length_out determines how many future index observations to compute. It can be specified as:

- A **numeric value** - the number of future observations to return.
 - The number of observations returned is *always* equal to the value the user inputs.
 - The **end date can vary** based on the number of timestamps chosen.
- A **time-based phrase** - The duration into the future to include (e.g. "6 months" or "30 minutes").
 - The **duration** defines the **end date** for observations.
 - The **end date will not change** and those timestamps that fall within the end date will be returned (e.g. a quarterly time series will return 4 quarters if length_out = "1 year").
 - The number of observations will vary to fit within the end date.

Weekday and Month Inspection

The inspect_weekdays and inspect_months arguments apply to "daily" (scale = "day") data (refer to tk_get_timeseries_summary() to get the index scale).

- The **inspect_weekdays** argument is useful in determining missing days of the week that occur on a weekly frequency such as every week, every other week, and so on. It’s recommended to have at least 60 days to use this option.
- The **inspect_months** argument is useful in determining missing days of the month, quarter or year; however, the algorithm can inadvertently select incorrect dates if the pattern is erratic.
Skipping / Inserting Values

The `skip_values` and `insert_values` arguments can be used to remove and add values into the series of future times. The values must be the same format as the `idx` class.

- The `skip_values` argument useful for passing holidays or special index values that should be excluded from the future time series.
- The `insert_values` argument is useful for adding values back that the algorithm may have excluded.

Value

A vector containing future index of the same class as the incoming index `idx`

See Also

- Making Time Series: `tk_make_timeseries()`
- Working with Holidays & Weekends: `tk_make_holiday_sequence()`, `tk_make_weekend_sequence()`, `tk_make_weekday_sequence()`
- Working with Timestamp Index: `tk_index()`, `tk_get_timeseries_summary()`, `tk_get_timeseries_signature()`

Examples

```r
library(dplyr)

# Basic example - By 3 seconds
idx <- tk_make_timeseries("2016-01-01 00:00:00", by = "3 sec", length_out = 3)
idx

# Make next three timestamps in series
idx %>% tk_make_future_timeseries(length_out = 3)

# Make next 6 seconds of timestamps from the next timestamp
idx %>% tk_make_future_timeseries(length_out = "6 sec")

# Basic Example - By 1 Month
idx <- tk_make_timeseries("2016-01-01", by = "1 month",
                        length_out = "12 months")
idx

# Make 12 months of timestamps from the next timestamp
idx %>% tk_make_future_timeseries(length_out = "12 months")

# --- APPLICATION ---
# - Combine holiday sequences with future sequences
# Create index of days that FB stock will be traded in 2017 based on 2016 + holidays
FB_tbl <- FANG %>% dplyr::filter(symbol == "FB")
```
holidays <- tk_make_holiday_sequence(
 start_date = "2017-01-01",
 end_date = "2017-12-31",
 calendar = "NYSE")

Remove holidays with skip_values, and remove weekends with inspect_weekdays = TRUE
FB_tbl %>%
 tk_index() %>%
 tk_make_future_timeseries(length_out = "1 year",
 inspect_weekdays = TRUE,
 skip_values = holidays)

tk_make_holiday_sequence

Make daily Holiday and Weekend date sequences

Description

Make daily Holiday and Weekend date sequences

Usage

tk_make_holiday_sequence(
 start_date,
 end_date,
 calendar = c("NYSE", "LONDON", "NERC", "TSX", "ZURICH"),
 skip_values = NULL,
 insert_values = NULL
)

tk_make_weekend_sequence(start_date, end_date)

tk_make_weekday_sequence(
 start_date,
 end_date,
 remove_weekends = TRUE,
 remove_holidays = FALSE,
 calendar = c("NYSE", "LONDON", "NERC", "TSX", "ZURICH"),
 skip_values = NULL,
 insert_values = NULL
)
Arguments

start_date Used to define the starting date for date sequence generation. Provide in "YYYY-MM-DD" format.
end_date Used to define the ending date for date sequence generation. Provide in "YYYY-MM-DD" format.
calendar The calendar to be used in Date Sequence calculations for Holidays from the timeDate package. Acceptable values are: "NYSE", "LONDON", "NERC", "TSX", "ZURICH".
skip_values A daily date sequence to skip
insert_values A daily date sequence to insert
remove_weekends A logical value indicating whether or not to remove weekends (Saturday and Sunday) from the date sequence
remove_holidays A logical value indicating whether or not to remove common holidays from the date sequence

Details

Start and End Date Specification

- Accept shorthand notation (i.e. tk_make_timeseries() specifications apply)
- Only available in Daily Periods.

Holiday Sequences

tk_make_holiday_sequence() is a wrapper for various holiday calendars from the timeDate package, making it easy to generate holiday sequences for common business calendars:

- New York Stock Exchange: calendar = "NYSE"
- Londo Stock Exchange: "LONDON"
- North American Reliability Council: "NERC"
- Toronto Stock Exchange: "TSX"
- Zurich Stock Exchange: "ZURICH"

Weekend and Weekday Sequences

These simply populate

Value

A vector containing future dates

See Also

- Intelligent date or date-time sequence creation: tk_make_timeseries()
- Holidays and weekends: tk_make_holiday_sequence(), tk_make_weekend_sequence(), tk_make_weekday_sequence()
- Make future index from existing: tk_make_future_timeseries()
library(dplyr)

Set max.print to 50
options_old <- options()$$max.print
options(max.print = 50)

---- HOLIDAYS & WEEKENDS ----

Business Holiday Sequence
tk_make_holiday_sequence("2017-01-01", "2017-12-31", calendar = "NYSE")
tk_make_holiday_sequence("2017", calendar = "NYSE") # Same thing as above (just shorter)

Weekday Sequence
tk_make_weekday_sequence("2017", "2018", remove_holidays = TRUE)

Weekday Sequence + Removing Business Holidays
tk_make_weekday_sequence("2017", "2018", remove_holidays = TRUE)

---- COMBINE HOLIDAYS WITH MAKE FUTURE TIMESERIES FROM EXISTING ----
A common machine learning application is creating a future time series data set
from an existing

Create index of days that FB stock will be traded in 2017 based on 2016 + holidays
FB_tbl <- FANG %>% dplyr::filter(symbol == "FB")

holidays <- tk_make_holiday_sequence(
 start_date = "2016",
 end_date = "2017",
 calendar = "NYSE")

weekends <- tk_make_weekend_sequence(
 start_date = "2016",
 end_date = "2017")

Remove holidays and weekends with skip_values
We could also remove weekends with inspect_weekdays = TRUE
FB_tbl %>%
 tk_index() %>%
 tk_make_future_timeseries(length_out = 366,
 skip_values = c(holidays, weekends))

options(max.print = options_old)
tk_make_timeseries

Description

Improves on the seq.Date() and seq.POSIXt() functions by simplifying into 1 function tk_make_timeseries(). Intelligently handles character dates and logical assumptions based on user inputs.

Usage

```r
tk_make_timeseries(
  start_date,
  end_date,
  by,
  length_out = NULL,
  include_endpoints = TRUE,
  skip_values = NULL,
  insert_values = NULL
)
```

Arguments

- **start_date**: Used to define the starting date for date sequence generation. Provide in "YYYY-MM-DD" format.
- **end_date**: Used to define the ending date for date sequence generation. Provide in "YYYY-MM-DD" format.
- **by**: A character string, containing one of "sec", "min", "hour", "day", "week", "month", "quarter" or "year". You can create regularly spaced sequences using phrases like by = "10 min". See Details.
- **length_out**: Optional length of the sequence. Can be used instead of one of: start_date, end_date, or by. Can be specified as a number or a time-based phrase.
- **include_endpoints**: Logical. Whether or not to keep the last value when length_out is a time-based phrase. Default is TRUE (keep last value).
- **skip_values**: A sequence to skip
- **insert_values**: A sequence to insert

Details

The `tk_make_timeseries()` function handles both date and date-time sequences automatically.

- Parses date and date times from character
- Intelligently guesses the sequence desired based on arguments provided
- Handles spacing intelligently
- When both by and length_out are missing, guesses either second or day sequences
- Can skip and insert values if needed.

Start and End Date Specification

Start and end dates can be specified in reduced time-based phrases:
• start_date = "2014": Is converted to "2014-01-01" (start of period)
• end_date = "2014": Is converted to "2014-12-31" (end of period)
• start_date = "2014-03": Is converted to "2014-03-01" (start of period)
• end_date = "2014-03": Is converted to "2014-03-31" (end of period)

A similar process can be used for date-times.

By: Daily Sequences
Make a daily sequence with tk_make_timeseries(by). Examples:
• Every Day: by = "day"
• Every 2-Weeks: by = "2 weeks"
• Every 6-months: by = "6 months"

If missing, will guess by = "day"

By: Sub-Daily Sequences
Make a sub-daily sequence with tk_make_timeseries(by). Examples:
• Every minute: by = "min"
• Every 30-seconds: by = "30 sec"
• Every 2-hours: by = "2 hours"

If missing, will guess by = "sec" if the start or end date is a date-time specification.

Length Out
The length_out can be specified by number of observation or complex time-based expressions. The following examples are all possible.
• length_out = 12 Creates 12 evenly spaced observations.
• length_out = "12 months" Adjusts the end date so it falls on the 12th month.

Include Endpoint
Sometimes the last date is not desired. For example, if the user specifies length_out = 12 months, the user may want the last value to be the 12th month and not the 13th. Just toggle, include_endpoint = FALSE to obtain this behavior.

Skip / Insert Timestamps
Skips and inserts are performed after the sequence is generated. This means that if you use the length_out parameter, the length may differ than the length_out.

Value
A vector containing date or date-times

See Also
• Intelligent date or date-time sequence creation: tk_make_timeseries()
• Holidays and weekends: tk_make_holiday_sequence(), tk_make_weekend_sequence(), tk_make_weekday_sequence()
• Make future index from existing: tk_make_future_timeseries()
Examples

library(dplyr)

Set max.print to 50
options_old <- options()$max.print
options(max.print = 50)

----- DATE -----

Start + End, Guesses by = "day"
tk_make_timeseries("2017-01-01", "2017-12-31")

Just Start
tk_make_timeseries("2017") # Same result

Only dates in February, 2017
tk_make_timeseries("2017-02")

Start + Length Out, Guesses by = "day"
tk_make_timeseries("2012", length_out = 6) # Guesses by = "day"

Start + By + Length Out, Spacing 6 observations by monthly interval
tk_make_timeseries("2012", by = "1 month", length_out = 6)

Start + By + Length Out, Phrase "1 year 6 months"
tk_make_timeseries("2012", by = "1 month", length_out = "1 year 6 months", include_endpoints = FALSE)

Going in Reverse, End + Length Out
tk_make_timeseries(end_date = "2012-01-01", by = "1 month", length_out = "1 year 6 months", include_endpoints = FALSE)

----- DATE-TIME -----

Start + End, Guesses by second
tk_make_timeseries("2016-01-01 01:01:02", "2016-01-01 01:01:04")

Date-Time Sequence - By 10 Minutes
- Converts to date-time automatically & applies 10-min interval
tk_make_timeseries("2017-01-01", "2017-01-02", by = "10 min")

--- REMOVE / INCLUDE ENDPOINTS ----

Last value in this case is desired
tk_make_timeseries("2017-01-01", by = "30 min", length_out = "6 hours")

Last value in monthly case is not wanted
tk_make_timeseries("2012-01-01", by = "1 month", length_out = "12 months", include_endpoints = FALSE) # Removes unnecessary last value
---- SKIP & INSERT VALUES ----

```
tk_make_timeseries(
    "2011-01-01", length_out = 5,
    skip_values = "2011-01-05",
    insert_values = "2011-01-06"
)
```

```r
options(max.print = options_old)
```

tk_seasonal_diagnostics

Group-wise Seasonality Data Preparation

Description

`tk_seasonal_diagnostics()` is the preprocessor for `plot_seasonal_diagnostics()`. It helps by automating feature collection for time series seasonality analysis.

Usage

```
tk_seasonal_diagnostics(.data, .date_var, .value, .feature_set = "auto")
```

Arguments

- `.data` A tibble or `data.frame` with a time-based column
- `.date_var` A column containing either date or date-time values
- `.value` A column containing numeric values
- `.feature_set` One or multiple selections to analyze for seasonality. Choices include:
 - "auto" - Automatically selects features based on the time stamps and length of the series.
 - "second" - Good for analyzing seasonality by second of each minute.
 - "minute" - Good for analyzing seasonality by minute of the hour
 - "hour" - Good for analyzing seasonality by hour of the day
 - "wday.lbl" - Labeled weekdays. Good for analyzing seasonality by day of the week.
 - "week" - Good for analyzing seasonality by week of the year.
 - "month.lbl" - Labeled months. Good for analyzing seasonality by month of the year.
 - "quarter" - Good for analyzing seasonality by quarter of the year
 - "year" - Good for analyzing seasonality over multiple years.
Details

Automatic Feature Selection
Internal calculations are performed to detect a sub-range of features to include using the following logic:

- The *minimum* feature is selected based on the median difference between consecutive timestamps
- The *maximum* feature is selected based on having 2 full periods.

Example: Hourly timestamp data that lasts more than 2 weeks will have the following features: "hour", "wday.lbl", and "week".

Scalable with Grouped Data Frames
This function respects grouped data.frame and tibbles that were made with dplyr::group_by(). For grouped data, the automatic feature selection returned is a collection of all features within the sub-groups. This means extra features are returned even though they may be meaningless for some of the groups.

Transformations
The .value parameter respects transformations (e.g. .value = log(sales)).

Value
A tibble or data.frame with seasonal features

Examples

```r
library(dplyr)

# ---- GROUPED EXAMPLES ----

# Hourly Data
m4_hourly %>%
  group_by(id) %>%
  tk_seasonal_diagnostics(date, value)

# Monthly Data
m4_monthly %>%
  group_by(id) %>%
  tk_seasonal_diagnostics(date, value)

# ---- TRANSFORMATION ----

m4_weekly %>%
  group_by(id) %>%
  tk_seasonal_diagnostics(date, log(value))

# ---- CUSTOM FEATURE SELECTION ----

m4_hourly %>%
```
group_by(id) %>%
tk_seasonal_diagnostics(date, value, .feature_set = c("hour", "week"))

tk_stl_diagnostics
Group-wise STL Decomposition (Season, Trend, Remainder)

Description

`tk_stl_diagnostics()` is the preprocessor for `plot_stl_diagnostics()`. It helps by automating frequency and trend selection.

Usage

```r
tk_stl_diagnostics(
  .data,
  .date_var,
  .value,
  .frequency = "auto",
  .trend = "auto",
  .message = TRUE
)
```

Arguments

- `.data`
 A tibble or data.frame with a time-based column
- `.date_var`
 A column containing either date or date-time values
- `.value`
 A column containing numeric values
- `.frequency`
 Controls the seasonal adjustment (removal of seasonality). Input can be either "auto", a time-based definition (e.g. "2 weeks"), or a numeric number of observations per frequency (e.g. 10). Refer to `tk_get_frequency()`.
- `.trend`
 Controls the trend component. For STL, trend controls the sensitivity of the lowess smoother, which is used to remove the remainder.
- `.message`
 A boolean. If TRUE, will output information related to automatic frequency and trend selection (if applicable).

Details

The `tk_stl_diagnostics()` function generates a Seasonal-Trend-Loess decomposition. The function is "tidy" in the sense that it works on data frames and is designed to work with dplyr groups.

STL method:

The STL method implements time series decomposition using the underlying `stats::stl()`. The decomposition separates the "season" and "trend" components from the "observed" values leaving the "remainder".
Frequency & Trend Selection

The user can control two parameters: .frequency and .trend.

1. The .frequency parameter adjusts the "season" component that is removed from the "observed" values.
2. The .trend parameter adjusts the trend window (t.window parameter from stl()) that is used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or numeric values (e.g. 180) or "auto", which automatically selects the frequency and/or trend based on the scale of the time series.

Value

A tibble or data.frame with Observed, Season, Trend, Remainder, and Seasonally-Adjusted features

Examples

library(dplyr)

---- GROUPS & TRANSFORMATION ----
m4_daily %>%
 group_by(id) %>%
 tk_stl_diagnostics(date, box_cox_vec(value))

---- CUSTOM TREND ----
m4_weekly %>%
 group_by(id) %>%
 tk_stl_diagnostics(date, box_cox_vec(value), .trend = "2 quarters")
tk_tbl

Coerce time-series objects to tibble.

Description

Coerce time-series objects to tibble.
Usage

```r
tk_tbl(
  data,
  preserve_index = TRUE,
  rename_index = "index",
  timetk_idx = FALSE,
  silent = FALSE,
  ...
)
```

Arguments

- **data**: A time-series object.
- **preserve_index**: Attempts to preserve a time series index. Default is TRUE.
- **rename_index**: Enables the index column to be renamed.
- **timetk_idx**: Used to return a date / datetime index for regularized objects that contain a timetk "index" attribute. Refer to `tk_index()` for more information on returning index information from regularized timeseries objects (i.e. ts).
- **silent**: Used to toggle printing of messages and warnings.
- **...**: Additional parameters passed to the `tibble::as_tibble()` function.

Details

tk_tbl is designed to coerce time series objects (e.g. xts, zoo, ts, timeSeries, etc) to tibble objects. The main advantage is that the function keeps the date / date-time information from the underlying time-series object.

When `preserve_index = TRUE` is specified, a new column, `index`, is created during object coercion, and the function attempts to preserve the date or date-time information. The date / date-time column name can be changed using the `rename_index` argument.

The `timetk_idx` argument is applicable when coercing ts objects that were created using `tk_ts()` from an object that had a time base (e.g. tbl, xts, zoo). Setting `timetk_idx = TRUE` enables returning the timetk "index" attribute if present, which is the original (non-regularized) time-based index.

Value

Returns a tibble object.

See Also

`tk_xts()`, `tk_zoo()`, `tk_zooreg()`, `tk_ts()`

Examples

```r
library(dplyr)

data_tbl <- tibble(
```
```r
date = seq.Date(from = as.Date("2010-01-01"), by = 1, length.out = 5),
    x    = seq(100, 120, by = 5)
)

### ts to tibble: Comparison between as.data.frame() and tk_tbl()
data_ts <- tk_ts(data_tbl, start = c(2010,1), freq = 365)

# No index
as.data.frame(data_ts)

# Default index returned is regularized numeric index
tk_tbl(data_ts)

# Original date index returned (Only possible if original data has time-based index)
tk_tbl(data_ts, timetk_idx = TRUE)

### xts to tibble: Comparison between as.data.frame() and tk_tbl()
data_xts <- tk_xts(data_tbl)

# Dates are character class stored in row names
as.data.frame(data_xts)

# Dates are appropriate date class and within the data frame
tk_tbl(data_xts)

### zooreg to tibble: Comparison between as.data.frame() and tk_tbl()
data_zooreg <- tk_zooreg(1:8, start = zoo::yearqtr(2000), frequency = 4)

# Dates are character class stored in row names
as.data.frame(data_zooreg)

# Dates are appropriate zoo yearqtr class within the data frame
tk_tbl(data_zooreg)

### zoo to tibble: Comparison between as.data.frame() and tk_tbl()
data_zoo <- zoo::zoo(1:12, zoo::yearmon(2016 + seq(0, 11)/12))

# Dates are character class stored in row names
as.data.frame(data_zoo)

# Dates are appropriate zoo yearmon class within the data frame
tk_tbl(data_zoo)```
Description

The `tk_time_series_cv_plan()` function provides a simple interface to prepare a time series resample specification (rset) of either `rolling_origin` or `time_series_cv` class.

Usage

```r
tk_time_series_cv_plan(.data)
```

Arguments

- `.data` A time series resample specification of either `rolling_origin` or `time_series_cv` class.

Details

Resample Set

A resample set is an output of the `timetk::time_series_cv()` function or the `rsample::rolling_origin()` function.

Value

A tibble containing the time series crossvalidation plan.

See Also

- `time_series_cv()` and `rsample::rolling_origin()` - Functions used to create time series resample specifications.
- `plot_time_series_cv_plan()` - The plotting function used for visualizing the time series resample plan.

Examples

```r
library(dplyr)
library(rsample)

FB_tbl <- FANG %>%
 filter(symbol == "FB") %>%
 select(symbol, date, adjusted)

resample_spec <- time_series_cv(
 FB_tbl,
 initial = 150, assess = 50, skip = 50,
 cumulative = FALSE,
 lag = 30,
 slice_limit = n())
```
tk_ts

Coerce time series objects and tibbles with date/date-time columns to ts.

Description

Coerce time series objects and tibbles with date/date-time columns to ts.

Usage

```r
tk_ts(
 data,
 select = NULL,
 start = 1,
 end = numeric(),
 frequency = 1,
 deltat = 1,
 ts.eps = getOption("ts.eps"),
 silent = FALSE
)
```

```r
tk_ts_(
 data,
 select = NULL,
 start = 1,
 end = numeric(),
 frequency = 1,
 deltat = 1,
 ts.eps = getOption("ts.eps"),
 silent = FALSE
)
```

Arguments

- **data**  A time-based tibble or time-series object.
- **select**  **Applicable to tibbles and data frames only.** The column or set of columns to be coerced to ts class.
- **start**  the time of the first observation. Either a single number or a vector of two numbers (the second of which is an integer), which specify a natural time unit and a (1-based) number of samples into the time unit. See the examples for the use of the second form.
- **end**  the time of the last observation, specified in the same way as start.
frequency

deltat

ts.eps

silent

Details
tk_ts() is a wrapper for stats::ts() that is designed to coerce tibble objects that have a "time-base" (meaning the values vary with time) to ts class objects. There are two main advantages:

1. Non-numeric columns get removed instead of being populated by NA's.
2. The returned ts object retains a "timetk index" (and various other attributes) if detected. The "timetk index" can be used to coerce between tbl, xts, zoo, and ts data types.

The select argument is used to select subsets of columns from the incoming data.frame. Only columns containing numeric data are coerced. At a minimum, a frequency and a start should be specified.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using stats::ts().

tk_ts_ is a nonstandard evaluation method.

Value

Returns a ts object.

See Also

tk_index(), tk_tbl(), tk_xts(), tk_zoo(), tk_zooreg()

Examples

```r
library(dplyr)

tibble to ts: Comparison between tk_ts() and stats::ts()
data_tbl <- tibble::tibble(
date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),
x = rep("chr values", 5),
y = cumsum(1:5),
z = cumsum(11:15) * rnorm(1))

as.ts: Character columns introduce NA's; Result does not retain index
stats::ts(data_tbl[, -1], start = 2016)

tk_ts: Only numeric columns get coerced; Result retains index in numeric format
data_ts <- tk_ts(data_tbl, start = 2016)
data_ts

timetk index
```
tk_index(data_ts, timetk_idx = FALSE)  # Regularized index returned

tk_index(data_ts, timetk_idx = TRUE)   # Original date index returned

# Coerce back to tibble
data_ts %>% tk_tbl(timetk_idx = TRUE)

### Using select

tk_ts(data_tbl, select = y)

### NSE: Enables programming

select <- "y"
tk_ts_(data_tbl, select = select)

---

**tk_tsfeatures**

*Time series feature matrix (Tidy)*

**Description**

`tk_tsfeatures()` is a tidyverse compliant wrapper for `tsfeatures::tsfeatures()`. The function computes a matrix of time series features that describes the various time series. It’s designed for groupwise analysis using `dplyr` groups.

**Usage**

```r
tk_tsfeatures(
 .data, # A tibble or data.frame with a time-based column
 .date_var, # A column containing either date or date-time values
 .value, # A column containing numeric values
 .period = "auto", # The period to use for some features
 .features = c("frequency", "stl_features", "entropy", "acf_features"),
 .scale = TRUE,
 .trim = FALSE,
 .trim_amount = 0.1,
 .parallel = FALSE,
 .na_action = na.pass,
 .prefix = "ts_",
 .silent = TRUE,
 ... # Additional arguments
)
```

**Arguments**

- `.data` A tibble or data.frame with a time-based column
- `.date_var` A column containing either date or date-time values
- `.value` A column containing numeric values
The periodicity (frequency) of the time series data. Values can be provided as follows:

- "auto" (default) Calculates using `tk_get_frequency()`
- "2 weeks": Would calculate the median number of observations in a 2-week window.
- 7 (numeric): Would interpret the ts frequency as 7 observations per cycle (common for weekly data)

Passed to `features` in the underlying `tsfeatures()` function. A vector of function names that represent a feature aggregation function. Examples:

1. Use one of the function names from the `tsfeatures` R package e.g. ("lumpiness", "stl_features").
2. Use a function name (e.g. "mean" or "median")
3. Create your own function and provide the function name

If TRUE, time series are scaled to mean 0 and sd 1 before features are computed.

If TRUE, time series are trimmed by `trim_amount` before features are computed. Values larger than `trim_amount` in absolute value are set to NA.

Default level of trimming if `trim==TRUE`. Default: 0.1.

If TRUE, multiple cores (or multiple sessions) will be used. This only speeds things up when there are a large number of time series.

When `parallel = TRUE`, the `multiprocess = future::multisession`. This can be adjusted by setting `multiprocess` parameter. See the `tsfeatures::tsfeatures()` function for more details.

A function to handle missing values. Use `na.interp` to estimate missing values.

A prefix to prefix the feature columns. Default: "ts_".

Whether or not to show messages and warnings.

Other arguments get passed to the feature functions.

Details

The `timetk::tk_tsfeatures()` function implements the `tsfeatures` package for computing aggregated feature matrix for time series that is useful in many types of analysis such as clustering time series.

The `timetk` version ports the `tsfeatures::tsfeatures()` function to a tidyverse-compliant format that uses a tidy data frame containing grouping columns (optional), a date column, and a value column. Other columns are ignored.

It then becomes easy to summarize each time series by group-wise application of `.features`, which are simply functions that evaluate a time series and return single aggregated value. (Example: "mean" would return the mean of the time series (note that values are scaled to mean 1 and sd 0 first))

Function Internals:

Internally, the time series are converted to `ts` class using `tk_ts(.period)` where the period is the frequency of the time series. Values can be provided for `.period`, which will be used prior to conversion to `ts` class.

The function then leverages `tsfeatures::tsfeatures()` to compute the feature matrix of summarized feature values.
Value

A tibble or data.frame with aggregated features that describe each time series.

References


Examples

```r
library(dplyr)

walmart_sales_weekly %>%
 group_by(id) %>%
 tk_tsfeatures(
 .date_var = Date,
 .value = Weekly_Sales,
 .period = 52,
 .features = c("frequency", "stl_features", "entropy", "acf_features", "mean"),
 .scale = TRUE,
 .prefix = "ts_"
)
```

```
tk_xts(data, select = NULL, date_var = NULL, silent = FALSE, ...)
```

---

**tk_xts**  
Coerce time series objects and tibbles with date/date-time columns to xts.

Description

Coerce time series objects and tibbles with date/date-time columns to xts.

Usage

```r
tk_xts(data, select = NULL, date_var = NULL, silent = FALSE, ...)

tk_xts_(data, select = NULL, date_var = NULL, silent = FALSE, ...)
```

Arguments

data  
A time-based tibble or time-series object.

select  
*Applicable to tibbles and data frames only.* The column or set of columns to be coerced to ts class.

date_var  
*Applicable to tibbles and data frames only.* Column name to be used to order.by. NULL by default. If NULL, function will find the date or date-time column.

silent  
Used to toggle printing of messages and warnings.

...  
Additional parameters to be passed to `xts::xts()`. Refer to `xts::xts()`.
Details

`tk_xts` is a wrapper for `xts::xts()` that is designed to coerce tibble objects that have a "time-base" (meaning the values vary with time) to xts class objects. There are three main advantages:

1. Non-numeric columns that are not removed via `select` are dropped and the user is warned. This prevents an error or coercion issue from occurring.
2. The date column is auto-detected if not specified by `date_var`. This takes the effort off the user to assign a date vector during coercion.
3. ts objects are automatically coerced if a "timetk index" is present. Refer to `tk_ts()`.

The select argument can be used to select subsets of columns from the incoming data.frame. Only columns containing numeric data are coerced. The `date_var` can be used to specify the column with the date index. If `date_var = NULL`, the date / date-time column is interpreted. Optionally, the `order.by` argument from the underlying `xts::xts()` function can be used. The user must pass a vector of dates or date-times if `order.by` is used.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using `xts::xts()`.

`tk_xts_` is a nonstandard evaluation method.

Value

Returns a xts object.

See Also

`tk_tbl()`, `tk_zoo()`, `tk_zooreg()`, `tk_ts()`

Examples

```r
library(dplyr)

tibble to xts: Comparison between `tk_xts()` and `xts::xts()`
data_tbl <- tibble::tibble(
 date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),
 x = rep("chr values", 5),
 y = cumsum(1:5),
 z = cumsum(11:15) * rnorm(1))

xts: Character columns cause coercion issues; order.by must be passed a vector of dates
xts::xts(data_tbl[,-1], order.by = data_tbl$date)

tk_xts: Non-numeric columns automatically dropped; No need to specify date column
tk_xts(data_tbl)

ts can be coerced back to xts
data_tbl %>%
 tk_ts(start = 2016, freq = 365) %>%
 tk_xts()

Using select and date_var
tk_xts(data_tbl, select = y, date_var = date)

NSE: Enables programming
date_var <- "date"
select <- "y"
tk_xts_(data_tbl, select = select, date_var = date_var)

tk_zoo

Coerce time series objects and tibbles with date/date-time columns to xts.

Description
Coerce time series objects and tibbles with date/date-time columns to xts.

Usage

 tk_zoo(data, select = NULL, date_var = NULL, silent = FALSE, ...)

 tk_zoo_(data, select = NULL, date_var = NULL, silent = FALSE, ...)

Arguments

 data A time-based tibble or time-series object.
 select Applicable to tibbles and data frames only. The column or set of columns to be coerced to ts class.
 date_var Applicable to tibbles and data frames only. Column name to be used to order.by. NULL by default. If NULL, function will find the date or date-time column.
 silent Used to toggle printing of messages and warnings.
 ... Additional parameters to be passed to xts::xts(). Refer to xts::xts().

Details

 tk_zoo is a wrapper for zoo::zoo() that is designed to coerce tibble objects that have a "time-base" (meaning the values vary with time) to zoo class objects. There are three main advantages:

 1. Non-numeric columns that are not removed via select are dropped and the user is warned. This prevents an error or coercion issue from occurring.

 The date column is auto-detected if not specified by date_var. This takes the effort off the user to assign a date vector during coercion.

 3. ts objects are automatically coerced if a "timetk index" is present. Refer to tk_ts().
The select argument can be used to select subsets of columns from the incoming data.frame. Only columns containing numeric data are coerced. The date_var can be used to specify the column with the date index. If date_var = NULL, the date / date-time column is interpreted. Optionally, the order.by argument from the underlying zoo::zoo() function can be used. The user must pass a vector of dates or date-times if order.by is used. Important Note: The ... arguments are passed to xts::xts(), which enables additional information (e.g. time zone) to be an attribute of the zoo object.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using zoo::zoo().

tk_zoo_ is a nonstandard evaluation method.

Value

Returns a zoo object.

See Also

tk_tbl(), tk_xts(), tk_zooreg(), tk_ts()

Examples

library(dplyr)

tibble to zoo: Comparison between tk_zoo() and zoo::zoo()
data_tbl <- dplyr::tibble(
 date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),
 x = rep("chr values", 5),
 y = cumsum(1:5),
 z = cumsum(11:15) * rnorm(1))

zoo: Characters will cause error; order.by must be passed a vector of dates
zoo::zoo(data_tbl[, -c(1, 2)], order.by = data_tbl$date)

tk_zoo: Character columns dropped with a warning; No need to specify dates (auto detected)
tk_zoo(data_tbl)

ts can be coerced back to zoo
data_tbl %>%
 tk_ts(start = 2016, freq = 365) %>%
 tk_zoo()

Using select and date_var

tk_zoo(data_tbl, select = y, date_var = date)

NSE: Enables programming
date_var <- "date"
select <- "y"
tk_zoo_(data_tbl, select = select, date_var = date_var)
tk_zooreg

Coerce time series objects and tibbles with date/date-time columns to ts.

Description

Coerce time series objects and tibbles with date/date-time columns to ts.

Usage

```r
tk_zooreg(
  data,
  select = NULL,
  date_var = NULL,
  start = 1,
  end = numeric(),
  frequency = 1,
  deltat = 1,
  ts.eps = getOption("ts.eps"),
  order.by = NULL,
  silent = FALSE
)

tk_zooreg_(
  data,
  select = NULL,
  date_var = NULL,
  start = 1,
  end = numeric(),
  frequency = 1,
  deltat = 1,
  ts.eps = getOption("ts.eps"),
  order.by = NULL,
  silent = FALSE
)
```

Arguments

- **data**: A time-based tibble or time-series object.
- **select**: *Applicable to tibbles and data frames only*. The column or set of columns to be coerced to zooreg class.
- **date_var**: *Applicable to tibbles and data frames only*. Column name to be used to order.by. NULL by default. If NULL, function will find the date or date-time column.
- **start**: the time of the first observation. Either a single number or a vector of two integers, which specify a natural time unit and a (1-based) number of samples into the time unit.
end the time of the last observation, specified in the same way as start.
frequency the number of observations per unit of time.
deltat the fraction of the sampling period between successive observations; e.g., 1/12 for monthly data. Only one of frequency or deltat should be provided.
ts.eps time series comparison tolerance. Frequencies are considered equal if their absolute difference is less than ts.eps.
order.by a vector by which the observations in x are ordered. If this is specified the arguments start and end are ignored and zoo(data, order.by, frequency) is called. See zoo for more information.
silent Used to toggle printing of messages and warnings.

Details
tk_zooreg() is a wrapper for zoo::zooreg() that is designed to coerce tibble objects that have a "time-base" (meaning the values vary with time) to zooreg class objects. There are two main advantages:
1. Non-numeric columns get removed instead causing coercion issues.
2. If an index is present, the returned zooreg object retains an index retrievable using tk_index().

The select argument is used to select subsets of columns from the incoming data.frame. The date_var can be used to specify the column with the date index. If date_var = NULL, the date / date-time column is interpreted. Optionally, the order.by argument from the underlying xts::xts() function can be used. The user must pass a vector of dates or date-times if order.by is used. Only columns containing numeric data are coerced. At a minimum, a frequency and a start should be specified.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using zoo::zooreg().
tk_zooreg_ is a nonstandard evaluation method.

Value
Returns a zooreg object.

See Also
tk_tbl(), tk_xts(), tk_zoo(), tk_ts()

Examples
tibble to zooreg: Comparison between tk_zooreg() and zoo::zooreg()
data_tbl <- tibble::tibble(
 date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),
 x = rep("chr values", 5),
 y = cumsum(1:5),
 z = cumsum(11:15) * rnorm(1))

zoo::zooreg: Values coerced to character; Result does not retain index
data_zooreg <- zoo::zooreg(data_tbl[, -1], start = 2016, freq = 365)
data_zooreg # Numeric values coerced to characterrownames(data_zooreg) # NULL, no dates retained

tk_zooreg: Only numeric columns get coerced; Result retains index as rownames
data_tk_zooreg <- tk_zooreg(data_tbl, start = 2016, freq = 365)
data_tk_zooreg # No inadvertent coercion to character class

data_tk_zooreg <- tk_zooreg(data_tbl, start = 2016, freq = 365)
data_tk_zooreg # No inadvertent coercion to character class

timetk index
tk_index(data_tk_zooreg, timetk_idx = FALSE) # Regularized index returned
tk_index(data_tk_zooreg, timetk_idx = TRUE) # Original date index returned

Using select and date_var
tk_zooreg(data_tbl, select = y, date_var = date, start = 2016, freq = 365)

NSE: Enables programming
select <- "y"
date_var <- "date"
tk_zooreg_(data_tbl, select = select, date_var = date_var, start = 2016, freq = 365)

ts_clean_vec
Replace Outliers & Missing Values in a Time Series

Description

This is mainly a wrapper for the outlier cleaning function, tsclean(), from the forecast R package. The ts_clean_vec() function includes arguments for applying seasonality to numeric vector (non-ts) via the period argument.

Usage

```r
ts_clean_vec(x, period = 1, lambda = NULL)
```

Arguments

- **x**: A numeric vector.
- **period**: A seasonal period to use during the transformation. If `period = 1`, seasonality is not included and supsmu() is used to fit a trend. If `period > 1`, a robust STL decomposition is first performed and a linear interpolation is applied to the seasonally adjusted data.
- **lambda**: A box cox transformation parameter. If set to "auto", performs automated lambda selection.
Details

Cleaning Outliers

1. Non-Seasonal (period = 1): Uses stats::supsmu()
2. Seasonal (period > 1): Uses forecast::mstl() with robust = TRUE (robust STL decomposition) for seasonal series.

To estimate missing values and outlier replacements, linear interpolation is used on the (possibly seasonally adjusted) series. See forecast::tsoutliers() for the outlier detection method.

Box Cox Transformation

In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative meaning the variance grows exponentially. A Box Cox transformation can be automated by setting lambda = "auto" or can be specified by setting lambda = numeric value.

Value

A numeric vector with the missing values and/or anomalies transformed to imputed values.

References

- Forecast R Package
- Forecasting Principles & Practices: Dealing with missing values and outliers

See Also

- Box Cox Transformation: box_cox_vec()
- Lag Transformation: lag_vec()
- Differencing Transformation: diff_vec()
- Rolling Window Transformation: slidify_vec()
- Loess Smoothing Transformation: smooth_vec()
- Fourier Series: fourier_vec()
- Missing Value Imputation for Time Series: ts_impute_vec()
- Outlier Cleaning for Time Series: ts_clean_vec()

Examples

```r
library(dplyr)

# --- VECTOR ----
values <- c(1,2,3, 4*2, 5,6,7, NA, 9,10,11, 12*2)
values

# Linear interpolation + Outlier Cleansing
ts_clean_vec(values, period = 1, lambda = NULL)
```
Seasonal Interpolation: set period = 4
	ts_clean_vec(values, period = 4, lambda = NULL)

Seasonal Interpolation with Box Cox Transformation (internal)
	ts_clean_vec(values, period = 4, lambda = "auto")

ts_impute_vec
Missing Value Imputation for Time Series

Description
This is mainly a wrapper for the Seasonally Adjusted Missing Value using Linear Interpolation function, `na.interp()`, from the `forecast` R package. The `ts_impute_vec()` function includes arguments for applying seasonality to numeric vector (non-ts) via the `period` argument.

Usage
```r
ts_impute_vec(x, period = 1, lambda = NULL)
```

Arguments
- `x`
 A numeric vector.
- `period`
 A seasonal period to use during the transformation. If `period = 1`, linear interpolation is performed. If `period > 1`, a robust STL decomposition is first performed and a linear interpolation is applied to the seasonally adjusted data.
- `lambda`
 A box cox transformation parameter. If set to "auto", performs automated lambda selection.

Details

Imputation using Linear Interpolation

Three circumstances cause strictly linear interpolation:

1. **Period is 1**: With `period = 1`, a seasonality cannot be interpreted and therefore linear is used.
2. **Number of Non-Missing Values is less than 2-Periods**: Insufficient values exist to detect seasonality.
3. **Number of Total Values is less than 3-Periods**: Insufficient values exist to detect seasonality.

Seasonal Imputation using Linear Interpolation

For seasonal series with `period > 1`, a robust Seasonal Trend Loess (STL) decomposition is first computed. Then a linear interpolation is applied to the seasonally adjusted data, and the seasonal component is added back.

Box Cox Transformation

In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative meaning the variance grows exponentially. A Box Cox transformation can be automated by setting `lambda = "auto"` or can be specified by setting `lambda = numeric value`.
Value

A numeric vector with the missing values imputed.

References

- Forecast R Package
- Forecasting Principles & Practices: Dealing with missing values and outliers

See Also

- Box Cox Transformation: box_cox_vec()
- Lag Transformation: lag_vec()
- Differencing Transformation: diff_vec()
- Rolling Window Transformation: slidify_vec()
- Loess Smoothing Transformation: smooth_vec()
- Fourier Series: fourier_vec()
- Missing Value Imputation for Time Series: ts_impute_vec()

Examples

library(dplyr)

--- VECTOR ----

values <- c(1,2,3, 4*2, 5,6,7, NA, 9,10,11, 12*2)
values

Linear interpolation
ts_impute_vec(values, period = 1, lambda = NULL)

Seasonal Interpolation: set period = 4
ts_impute_vec(values, period = 4, lambda = NULL)

Seasonal Interpolation with Box Cox Transformation (internal)
ts_impute_vec(values, period = 4, lambda = "auto")
Description

The Kaggle "Walmart Recruiting - Store Sales Forecasting" Competition used retail data for combinations of stores and departments within each store. The competition began February 20th, 2014 and ended May 5th, 2014. The competition included data from 45 retail stores located in different regions. The dataset included various external features including Holiday information, Temperature, Fuel Price, and Markdown. This dataset includes a Sample of 7 departments from the Store ID 1 (7 total time series).

Usage

```r
walmart_sales_weekly
```

Format

A tibble: 9,743 x 3

- `id` Factor. Unique series identifier (4 total)
- `Store` Numeric. Store ID.
- `Dept` Numeric. Department ID.
- `Date` Date. Weekly timestamp.
- `Weekly_Sales` Numeric. Sales for the given department in the given store.
- `IsHoliday` Logical. Whether the week is a "special" holiday for the store.
- `Type` Character. Type identifier of the store.
- `Size` Numeric. Store square-footage
- `Temperature` Numeric. Average temperature in the region.
- `MarkDown1`, `MarkDown2`, `MarkDown3`, `MarkDown4`, `MarkDown5` Numeric. Anonymized data related to promotional markdowns that Walmart is running. MarkDown data is only available after Nov 2011, and is not available for all stores all the time. Any missing value is marked with an NA.
- `CPI` Numeric. The consumer price index.
- `Unemployment` Numeric. The unemployment rate in the region.

Details

This is a sample of 7 Weekly data sets from the Kaggle Walmart Recruiting Store Sales Forecasting competition.

Holiday Features

The four holidays fall within the following weeks in the dataset (not all holidays are in the data):

- **Super Bowl**: 12-Feb-10, 11-Feb-11, 10-Feb-12, 8-Feb-13
- **Labor Day**: 10-Sep-10, 9-Sep-11, 7-Sep-12, 6-Sep-13
- **Thanksgiving**: 26-Nov-10, 25-Nov-11, 23-Nov-12, 29-Nov-13
- **Christmas**: 31-Dec-10, 30-Dec-11, 28-Dec-12, 27-Dec-13
Source

- Kaggle Competition Website

Examples

walmart_sales_weekly

Sample Daily Time Series Data from the Web Traffic Forecasting (Wikipedia) Competition

Description

The Kaggle "Web Traffic Forecasting" (Wikipedia) Competition used Google Analytics Web Traffic Data for 145,000 websites. Each of these time series represent a number of daily views of a different Wikipedia articles. The competition began July 13th, 2017 and ended November 15th, 2017. This dataset includes a Sample of 10 article pages (10 total time series).

Usage

wikipedia_traffic_daily

Format

A tibble: 9,743 x 3

- Page Character. Page information.
- date Date. Daily timestamp.
- value Numeric. Daily views of the wikipedia article.

Details

This is a sample of 10 Daily data sets from the Kaggle Web Traffic Forecasting (Wikipedia) Competition

Source

- Kaggle Competition Website

Examples

wikipedia_traffic_daily
Index

* datagen
 step_fourier, 88
 step_holiday_signature, 91
 step_slidify, 96
 step_slidify_augment, 99
 step_smooth, 103

* datasets
 bike_sharing_daily, 9
 FANG, 16
 m4_daily, 29
 m4_hourly, 30
 m4_monthly, 31
 m4_quarterly, 32
 m4_weekly, 32
 m4_yearly, 33
 taylor_30_min, 119
 walmart_sales_weekly, 179
 wikipedia_traffic_daily, 181

* dates
 step_fourier, 88
 step_holiday_signature, 91
 step_ts_pad, 114

* model specification
 step_fourier, 88
 step_holiday_signature, 91
 step_ts_pad, 114

* moving windows
 step_slidify, 96
 step_slidify_augment, 99
 step_smooth, 103

* preprocessing
 step_fourier, 88
 step_holiday_signature, 91
 step_slidify, 96
 step_slidify_augment, 99
 step_smooth, 103
 step_ts_pad, 114

* variable encodings
 step_fourier, 88
 step_holiday_signature, 91
 %+time%(time_arithmetic), 120
 %-time%(time_arithmetic), 120
 add_time(time_arithmetic), 120
 anomalize, 4
 anydate(), 40
 anytime(), 40
 auto_lambda(box_cox_vec), 10
 between_time, 7
 between_time(), 8, 13, 18, 20, 35, 39, 72, 118, 121
 bike_sharing_daily, 9
 box_cox_inv_vec(box_cox_vec), 10
 box_cox_vec, 10
 box_cox_vec(), 11, 15, 22, 27, 29, 36, 78, 80, 82, 177, 179
 condense_period, 12
 condense_period(), 8, 13, 18, 20, 35, 39, 72, 118
 cor(), 118
 cov(), 118
 diff_inv_vec(diff_vec), 14
 diff_vec, 14
 diff_vec(), 11, 15, 22, 27, 29, 36, 78, 81, 82, 133, 177, 179
dplyr::mutate(), 73
 FANG, 16
 filter_by_time, 17
 filter_by_time(), 7, 8, 13, 18–20, 35, 39, 72, 118
 filter_period, 19
 filter_period(), 8, 13, 17, 18, 20, 35, 39, 72, 118
 fourier_vec, 20
 fourier_vec(), 11, 15, 22, 27, 29, 37, 78, 81, 82, 134, 177, 179
step_fourier(), 22, 85, 87, 90, 93, 95, 98, 102, 104, 108, 111, 113, 116
step_holiday_signature, 91
step_holiday_signature(), 85, 87, 90, 93, 95, 98, 102, 104, 108, 111, 113, 116, 144
step_log_interval, 94
step_log_interval(), 95
step_naomit(), 86
step_slidify, 96
step_slidify(), 78, 85, 87, 90, 93, 95, 98, 102, 105, 108, 111, 113, 116
step_slidify_augment, 99
step_smooth, 103
step_smooth(), 80, 85, 87, 90, 93, 95, 98, 101, 102, 105, 108, 111, 113, 116
step_timeseries_signature, 106
step_timeseries_signature(), 85, 87, 90, 93, 95, 98, 102, 105, 108, 111, 113, 116
step_ts_clean, 109
step_ts_clean(), 85, 87, 90, 93, 95, 98, 102, 105, 108, 111, 113, 116
step_ts_impute, 111
step_ts_impute(), 85, 87, 90, 93, 95, 98, 102, 105, 108, 111, 113, 116
step_ts_pad, 114
step_ts_pad(), 85, 87, 90, 93, 95, 98, 102, 105, 108, 111, 113, 116
subtract_time (time_arithmetic), 120
sum(), 118
summarise_by_time, 117
summarise_by_time(), 8, 13, 18, 20, 35, 39, 72, 118
summarize_by_time (summarise_by_time), 117
taylor_30_min, 119
tibble::as_tibble(), 163
tidy.step_box_cox (step_box_cox), 83
tidy.step_diff (step_diff), 86
tidy.step_fourier (step_fourier), 88
tidy.step_holiday_signature (step_holiday_signature), 91
tidy.step_log_interval (step_log_interval), 94
tidy.step_slidify (step_slidify), 96
tidy.step_slidify_augment (step_slidify_augment), 99
tidy.step_smooth (step_smooth), 103
tidy.step_timeseries_signature (step_timeseries_signature), 106
tidy.step_ts_clean (step_ts_clean), 109
tidy.step_ts_impute (step_ts_impute), 111
tidy.step_ts_pad (step_ts_pad), 114
time_arithmetic, 120
time_series_cv, 122, 126
time_series_cv(), 67, 124, 125, 127, 165
time_series_split, 125
time_series_split(), 124
timetk (timetk-package), 4
timetk-package, 4
tk_acf_diagnostics, 127
tk_anomaly_diagnostics, 129
tk_anomaly_diagnostics(), 52
tk_augment_differences, 132
tk_augment_differences(), 15, 133, 134, 136, 137, 139, 141
tk_augment_fourier, 133
tk_augment_fourier(), 22, 133, 134, 136, 137, 139, 141
tk_augment_holiday, 134
tk_augment_holiday_signature (tk_augment_holiday), 134
tk_augment_holiday_signature(), 133–135, 137, 139, 141, 144
tk_augment_lags, 136
tk_augment_lags(), 27, 133, 134, 136, 137, 139, 141
tk_augment_leads (tk_augment_lags), 136
tk_augment_slidify, 138
tk_augment_slidify(), 74, 78, 133, 134, 136, 137, 139, 141
tk_augment_timeseries, 140
tk_augment_timeseries_signature (tk_augment_timeseries), 140
tk_augment_timeseries_signature(), 133–135, 137, 139, 141, 146
tk_get_frequency, 141
tk_get_frequency(), 5, 50, 55, 70, 130, 160
tk_get_holiday, 143
tk_get_holiday_signature (tk_get_holiday), 143
tk_get_holiday_signature(), 135, 136
tk_get_holidays_by_year
tk_get_holiday(), 143
tk_get_timeseries, 145
tk_get_timeseries_signature
 (tk_get_timeseries), 145
tk_get_timeseries_signature(), 141, 151
tk_get_timeseries_summary
 (tk_get_timeseries), 145
tk_get_timeseries_summary(), 151, 162
tk_get_timeseries_unit_frequency, 146
tk_get_timeseries_variables, 147
tk_get_trend(tk_get_frequency), 141
tk_get_trend(), 5, 50, 70, 130
tk_index, 148
tk_index(), 146, 151, 163, 167, 175
tk_make_future_timeseries, 149
tk_make_future_timeseries(), 23, 25, 146, 153, 156
tk_make_holiday_sequence, 152
tk_make_holiday_sequence(), 151, 153, 156
tk_make_timeseries, 154
tk_make_timeseries(), 151, 153, 156
tk_make_weekday_sequence
 (tk_make_holiday_sequence), 152
tk_make_weekday_sequence(), 151, 153, 156
tk_make_weekend_sequence
 (tk_make_holiday_sequence), 152
tk_make_weekend_sequence(), 151, 153, 156
tk_seasonal_diagnostics, 158
tk_stl_diagnostics, 160
tk_summary_diagnostics, 161
tk_tbl, 162
tk_tbl(), 149, 167, 171, 173, 175
tk_time_scale_template
 (set_tk_time_scale_template), 69
tk_time_scale_template(), 6, 51, 130
tk_time_series_cv_plan, 164
tk_time_series_cv_plan(), 66
tk_ts, 166
tk_ts(), 148, 149, 163, 171–173, 175
tk_ts_(tk_ts), 166
tk_tsfeatures, 168
tk_xts, 170
tk_xts(), 149, 163, 167, 173, 175
tk_xts_(tk_xts), 170
tk_zoo, 172
tk_zoo(), 149, 163, 167, 171, 175
tk_zoo_(tk_zoo), 172
tk_zooreg, 174
tk_zooreg(), 149, 163, 167, 171, 173
tk_zooreg_(tk_zooreg), 174
ts_clean_vec, 176
ts_clean_vec(), 11, 15, 22, 27, 29, 37, 82, 177
ts_impute_vec, 178
ts_impute_vec(), 11, 15, 22, 27, 29, 37, 39, 78, 81, 82, 177, 179
var(), 118
walmart_sales_weekly, 179
wikipedia_traffic_daily, 181
zoo, 175