Package ‘tinyarray’

Type Package

Title Expression Data Analysis and Visualization

Version 2.4.2

Maintainer Xiaojie Sun <18763899370@163.com>

Description

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports BiocManager, clusterProfiler, dplyr, limma, stringr, tibble, pheatmap, ggplot2, survival, Hmisc, survminer, patchwork

Suggests testthat, AnnoProbe, GEOquery, Biobase, VennDiagram, FactoMineR, factoextra, knitr, rmarkdown, cowplot, ggpubr, ggplotify, tidyr, labeling, Rtsne, scatterplot3d, ComplexHeatmap, circlize, org.Rn.eg.db, org.Mm.eg.db, org.Hs.eg.db

URL https://github.com/xjsun1221/tinyarray

BugReports https://github.com/xjsun1221/tinyarray/issues

Depends R (>= 4.1.0)

RoxygenNote 7.3.1

NeedsCompilation no

Author Xiaojie Sun [aut, cre]

Repository CRAN

Date/Publication 2024-06-13 14:20:02 UTC
Contents

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>box_surv</td>
<td>3</td>
</tr>
<tr>
<td>cod</td>
<td>4</td>
</tr>
<tr>
<td>cor.full</td>
<td>4</td>
</tr>
<tr>
<td>cor.one</td>
<td>5</td>
</tr>
<tr>
<td>corheatmap</td>
<td>6</td>
</tr>
<tr>
<td>corscatterplot</td>
<td>7</td>
</tr>
<tr>
<td>deg</td>
<td>8</td>
</tr>
<tr>
<td>deseq_data</td>
<td>8</td>
</tr>
<tr>
<td>double_enrich</td>
<td>9</td>
</tr>
<tr>
<td>draw_boxplot</td>
<td>10</td>
</tr>
<tr>
<td>draw_heatmap</td>
<td>11</td>
</tr>
<tr>
<td>draw_heatmap2</td>
<td>13</td>
</tr>
<tr>
<td>draw_KM</td>
<td>14</td>
</tr>
<tr>
<td>draw_pca</td>
<td>15</td>
</tr>
<tr>
<td>draw_tsne</td>
<td>17</td>
</tr>
<tr>
<td>draw_venn</td>
<td>18</td>
</tr>
<tr>
<td>draw_volcano</td>
<td>20</td>
</tr>
<tr>
<td>draw_volcano2</td>
<td>21</td>
</tr>
<tr>
<td>dumd</td>
<td>22</td>
</tr>
<tr>
<td>edges_to_nodes</td>
<td>23</td>
</tr>
<tr>
<td>exists_anno_list</td>
<td>24</td>
</tr>
<tr>
<td>exprSet_hub1</td>
<td>24</td>
</tr>
<tr>
<td>exp_boxplot</td>
<td>25</td>
</tr>
<tr>
<td>exp_hub1</td>
<td>26</td>
</tr>
<tr>
<td>exp_surv</td>
<td>26</td>
</tr>
<tr>
<td>find_anno</td>
<td>27</td>
</tr>
<tr>
<td>genes</td>
<td>28</td>
</tr>
<tr>
<td>geo_download</td>
<td>28</td>
</tr>
<tr>
<td>get_cgs</td>
<td>29</td>
</tr>
<tr>
<td>get_count_txt</td>
<td>30</td>
</tr>
<tr>
<td>get_deg</td>
<td>31</td>
</tr>
<tr>
<td>get_deg_all</td>
<td>32</td>
</tr>
<tr>
<td>get_gpl_txt</td>
<td>34</td>
</tr>
<tr>
<td>ggheat</td>
<td>35</td>
</tr>
<tr>
<td>hypertest</td>
<td>36</td>
</tr>
<tr>
<td>interaction_to_edges</td>
<td>37</td>
</tr>
<tr>
<td>intersect_all</td>
<td>38</td>
</tr>
<tr>
<td>lnc_anno</td>
<td>39</td>
</tr>
<tr>
<td>lnc_annov23</td>
<td>39</td>
</tr>
<tr>
<td>make_tcga_group</td>
<td>40</td>
</tr>
<tr>
<td>match_exp_cl</td>
<td>40</td>
</tr>
<tr>
<td>meta1</td>
<td>41</td>
</tr>
<tr>
<td>mRNA_anno</td>
<td>42</td>
</tr>
<tr>
<td>mRNA_annov23</td>
<td>42</td>
</tr>
<tr>
<td>multi_deg</td>
<td>43</td>
</tr>
<tr>
<td>multi_deg_all</td>
<td>44</td>
</tr>
</tbody>
</table>
Description

draw box plot for a hub gene expression matrix

Usage

box_surv(exp_hub, exprSet_hub, meta)

Arguments

exp_hub an expression matrix for hubgenes
exprSet_hub a tumor expression set for hubgenes
meta meta data corresponds to expression set

Value

patchwork result for hub genes boxplot and survival plot

Author(s)

Xiaojie Sun

See Also

exp_boxplot; exp_surv
Examples

```r
if(requireNamespace("ggpubr", quietly = TRUE)) {
  k = box_surv(log2(exp_hub1+1), exprSet_hub1, meta1); k[[1]]
} else {
  warning("Package 'ggpubr' needed for this function to work.
          Please install it by install.packages('ggpubr')")
}
```

Description

An expression matrix form TCGA

Usage

cod

Format

An object of class `matrix` (inherits from `array`) with 100 rows and 512 columns.

Examples

cod

cor.full

cor.test for all variables

Description

cor.test for all variables (each two columns)

Usage

cor.full(x, drop = min(x) - 0.001, min.obs = 10)

Arguments

- `x`: A numeric matrix or data.frame
- `drop`: drop values
- `min.obs`: minimum number of observations after dropping
cor.one

Value

A data.frame with cor.test p.value and estimate

Author(s)

Xiaojie Sun

See Also

cor.one

Examples

```r
x = iris[-5]
cor.full(x)
```

cor.test for one variable with all variables

Description

cor.test for all variables(each two columns)

Usage

```r
cor.one(
  x,
  var,
  drop.var = min(x[, var]) - 0.001,
  drop.other = min(x[, -which(colnames(x) == var)]) - 0.001,
  min.obs = 10
)
```

Arguments

- **x**: A numeric matrix or data.frame
- **var**: your chosen variable, only one.
- **drop.var**: drop values in var
- **drop.other**: drop values in other columns
- **min.obs**: minimum number of observations after dropping

Value

A data.frame with cor.test p.value and estimate
corheatmap

Author(s)
Xiaojie Sun

See Also
cor.full

Examples
x = iris[,,-5]
cor.one(x,"Sepal.Width")

corheatmap

draw cor heatmap

Usage
corheatmap(exp, x, y, color = c("#2fa1dd", "white", "#f87669"))

Arguments

exp A numeric matrix
x genes or cells from exp
y genes or cells from exp
color color for heatmap

Value
a ggplot object

Author(s)
Xiaojie Sun

Examples
x = rownames(exprSet_hub1)[1:3]
y = rownames(exprSet_hub1)[4:7]
corheatmap(exprSet_hub1,x,y)
corscatterplot

draw cor scatter plot with density plot by ggplot2

Usage

corscatterplot(
 dat,
 x,
 y,
 color_cor = "blue",
 fill_cor = "lightgray",
 fill_x = "#ff820e",
 fill_y = "#0000fe",
 type = "density",
 ...
)

Arguments

- **dat**: plot data
- **x**: x
- **y**: y
- **color_cor**: color for cor reg.line
- **fill_cor**: fill for cor reg.line
- **fill_x**: fill for top density plot
- **fill_y**: fill for right density plot
- **type**: whether to use a density plot or a histogram plot for the side panel.
- **...**: other parameters for ggscatter

Value

a ggplot object

Author(s)

Xiaojie Sun
Examples

```r
if(requireNamespace("ggpubr", quietly = TRUE)){
corsscatterplot(iris, "Sepal.Length", "Sepal.Width")
}else{
  warning("Package 'ggpubr' needed for this function to work.
   Please install it by install.packages('ggpubr')")
}
```

<table>
<thead>
<tr>
<th>deg</th>
<th>deg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

limma differential analysis result for GSE42872

Usage
deg
deseq_data

deseq_data
deseq_data

Description

DEseq2 differential analysis result

Usage
deseq_data
deseq_data
deseq_data

Description

DEseq2 differential analysis result
Description

draw enrichment bar plots for both up and down genes, for human only.

Usage

double_enrich(deg, n = 10, color = c("#2874C5", "#f87669"))

Arguments

deg a data.frame contains at least two columns: "ENTREZID" and "change"
n how many terms will you perform for up and down genes respectively
color color for bar plot

Value
a list with kegg and go bar plot according to up and down genes enrichment result.

Author(s)

Xiaojie Sun

See Also

quick_enrich

Examples

```r
## Not run:
if(requireNamespace("org.Hs.eg.db", quietly = TRUE)&
requireNamespace("labeling", quietly = TRUE)){
double_enrich(deg)
}else{
  if(!requireNamespace("org.Hs.eg.db", quietly = TRUE)) {
    warning("Package 'org.Hs.eg.db' needed for this function to work.
             Please install it by BiocManager::install('org.Hs.eg.db')",call. = FALSE)
  }
  if(!requireNamespace("labeling", quietly = TRUE)) {
    warning("Package 'labeling' needed for this function to work.
             Please install it by install.packages('labeling')",call. = FALSE)
  }
}
## End(Not run)
```
draw_boxplot

Description

draw boxplot for expression

Usage

draw_boxplot(
 exp,
 group_list,
 method = "kruskal.test",
 sort = TRUE,
 drop = FALSE,
 width = 0.5,
 pvalue_cutoff = 0.05,
 xlab = "Gene",
 ylab = "Expression",
 grouplab = "Group",
 p.label = FALSE,
 add_error_bar = FALSE,
 color = c("#2874C5", "#F87669", "#66C2A5", "#FC8D62", "#E5C494", "#B3B3B3"),
 ...
)

Arguments

- **exp** A numeric matrix
- **group_list** A factor with duplicated character or factor
- **method** one of kruskal.test,aov,t.test and wilcox.test
- **sort** whether the boxplot will be sorted
- **drop** whether to discard insignificant values
- **width** width of boxplot and error bar
- **pvalue_cutoff** if drop = TRUE, genes with p-values below the threshold will be drawn
- **xlab** title of the x axis
- **ylab** title of the y axis
- **grouplab** title of group legend
- **p.label** whether to show p value in the plot
- **add_error_bar** whether to add error bar
- **color** color vector
- **...** other parameters from stat_compare_means
draw_heatmap

Value

a boxplot according to `exp` and grouped by `group_list`.

Author(s)

Xiaojie Sun

See Also

draw_heatmap;draw_volcano;draw_venn

Examples

```r
if(requireNamespace("tidyr", quietly = TRUE) & 
   requireNamespace("ggpubr", quietly = TRUE)){
  draw_boxplot(t(iris[,1:4]), iris$Species)
  exp <- matrix(rnorm(60), nrow = 10)
  colnames(exp) <- paste0("sample", 1:6)
  rownames(exp) <- paste0("gene", 1:10)
  exp[1:4, 1:4]
  group_list <- factor(rep(c("A", "B"), each = 3))
  draw_boxplot(exp, group_list)
  draw_boxplot(exp, group_list, color = c("grey", "red"))
} else{
  if(!requireNamespace("ggpubr", quietly = TRUE)) {
    warning("Package 'ggpubr' needed for this function to work.
    Please install it by install.packages('ggpubr')")
  }
  if(!requireNamespace("tidyr", quietly = TRUE)) {
    warning("Package 'tidyr' needed for this function to work.
    Please install it by install.packages('tidyr')")
  }
}
```

draw_heatmap

draw a heatmap plot

Description

warning a heatmap plot for expression matrix and group by `group_list` parameter, `exp` will be scaled.

Usage

```r
draw_heatmap(
  n,
  group_list,
  scale_before = FALSE,
  n_cutoff = 3,
)```

legend = FALSE,  
show_rownames = FALSE,  
annotation_legend = FALSE,  
split_column = FALSE,  
show_column_title = FALSE,  
color = (grDevices::colorRampPalette(c("#2fa1dd", "white", "#f87669")))(100),  
color_an = c("#2fa1dd", "#f87669", "#e6b707", "#868686", "#92c5de", "#f4a582",  
"#66c2a5", "#fc8d62", "#8da0cb", "#e78ac3", "#aad854", "#ffd92f", "#e5c494",  
"#b3b3b3")),  
scale = TRUE,  
main = NA,  
...  
)

Arguments

n A numeric matrix  
group_list A factor with duplicated character or factor  
scale_before deprecated parameter  
n_cutoff 3 by default, scale before plot and set a cutoff, usually 2 or 1.6  
legend logical, show legend or not  
show_rownames logical, show rownames or not  
annotation_legend logical, show annotation legend or not  
split_column split column by group_list  
show_column_title show column title or not  
color color for heatmap  
color_an color for column annotation  
scale logical, scale the matrix or not  
main the title of the plot  
... other parameters from pheatmap

Value

a heatmap plot according to exp and grouped by group.

Author(s)

Xiaojie Sun

See Also

draw_pca; draw_volcano; draw_venn
**Examples**

```r
example data
exp = matrix(abs(rnorm(60, sd = 16)), nrow = 10)
colnames(exp) <- paste0("sample", 1:6)
rownames(exp) <- paste0("gene", 1:10)
exp[1:4, 1:4]

use iris
n = t(iris[, 1:4]); colnames(n) = 1:150

if(requireNamespace("ggplotify", quietly = TRUE)){
 draw_heatmap(exp, group_list)
 draw_heatmap(exp, group_list) # use iris
 n = t(iris[, 1:4]); colnames(n) = 1:150
 group_list = iris$Species
 draw_heatmap(n, group_list)
 draw_heatmap(n, group_list, color = colorRampPalette(c("green", "black", "red"))(100),
 color_an = c("red", "blue", "pink"))
} else{
 warning("Package 'ggplotify' needed for this function to work.
 Please install it by install.packages('ggplotify')")
}
```

---

**draw_heatmap2**

**draw heatmap plots**

**Description**

print heatmap plots for expression matrix and group by group_list parameter

**Usage**

draw_heatmap2(exp, group_list, deg, my_genes = NULL, heat_union = TRUE, ...)

**Arguments**

- **exp**: A numeric matrix
- **group_list**: A factor with duplicated character or factor
- **deg**: A data.frame created by Differential analysis
- **my_genes**: Genes for pheatmap
- **heat_union**: Logical, use union or intersect DEGs for heatmap
- **...**: Other parameters from draw_heatmap

**Value**

A heatmap plot according to exp and grouped by group.

**Author(s)**

Xiaojie Sun
### Draw KM-plot with two or more group

#### Usage

```r
draw_KM(
 meta,
 group_list,
 time_col = "time",
 event_col = "event",
 legend.title = "Group",
 legend.labs = levels(group_list),
 color = c("#2874C5", "#f87669", "#e6b707", "#868686", "#92C5DE", "#F4A582", "#66C2A5",
```
Arguments

- **meta**: survival data with time and event column
- **group_list**: A factor with duplicated character or factor
- **time_col**: colname of time
- **event_col**: colname of event
- **legend.title**: legend title
- **legend.labs**: character vector specifying legend labels
- **color**: color vector
- **...**: other parameters from ggsurvplot

Value

A KM-plot

Author(s)

Xiaojie Sun

Examples

```r
require("survival")
x = survival::lung
draw_KM(meta = x,
 group_list = x$sex, event_col = "status")
```

draw_pca

**draw PCA plots**

draw PCA plots

do PCA analysis and warning a PCA plot

Usage

```r
draw_pca(
 exp,
 group_list,
 color = c("#2874C5", "#f87669", "#e6b707", "#868686", "#92c5de", "#f4a582", "#66c2a5",
 "#f8d3c6", "#80a0cb", "#e78ac3", "#a6d854", "#ff92f", "#e5c494", "#b3b3b3"),
 addEllipses = TRUE,
 style = "default",
)```
```r
color.label = "Group",
title = "",
...
)

Arguments

exp A numeric matrix
group_list A factor with duplicated character or factor
color color vector
addEllipses logical, add ellipses or not
style plot style, "default", "ggplot2" and "3D"
color.label color legend label
title plot title
... other parameters from fviz_pca_ind

Value

a pca plot according to exp and grouped by group.

Author(s)

Xiaojie Sun

See Also

draw_heatmap; draw_volcano; draw_venn

Examples

if(requireNamespace("FactoMineR", quietly = TRUE) &
requireNamespace("factoextra", quietly = TRUE)){
  draw_pca(t(iris[,1:4]), iris$Species)
  draw_pca(t(iris[,1:4]), iris$Species, style = "ggplot2")
  # change color
  draw_pca(t(iris[,1:4]), iris$Species, color = c("#E78AC3", "#A6D854", "#FFD92F"))
} else{
  if(!requireNamespace("FactoMineR", quietly = TRUE)){
    warning("Package 'FactoMineR' needed for this function to work.
              Please install it by install.packages('FactoMineR')")
  }
  if(!requireNamespace("factoextra", quietly = TRUE)){
    warning("Package 'factoextra' needed for this function to work.
              Please install it by install.packages('factoextra')")
  }
}

if(requireNamespace("scatterplot3d", quietly = TRUE) &
requireNamespace("FactoMineR", quietly = TRUE)){

```
draw_pca(t(iris[,1:4]), iris$Species, style = "3D")

if(!requireNamespace("scatterplot3d", quietly = TRUE)){
 warning("Package 'scatterplot3d' needed for this function to work. Please install it by install.packages('scatterplot3d')")
}

if(!requireNamespace("FactoMineR", quietly = TRUE)){
 warning("Package 'FactoMineR' needed for this function to work. Please install it by install.packages('FactoMineR')")
}

draw_tsne

Description

draw tsne plot with annotation by ggplot2

Usage

draw_tsne(
 exp,
 group_list,
 perplexity = 30,
 color = c("#2874C5", "#f87669", "#e6b707", "#868686", "#92C5DE", "#F4A582", "#66C2A5",
 "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3"),
 color.label = "group",
 addEllipses = TRUE
)

Arguments

- **exp**: A numeric matrix
- **group_list**: A factor with duplicated character or factor
- **perplexity**: numeric; perplexity parameter for Rtsne
- **color**: color vector
- **color.label**: color legend label
- **addEllipses**: logical, add ellipses or not

Value

- a ggplot object

Author(s)

Xiaojie Sun
Examples

```r
exp <- matrix(rnorm(10000), nrow = 50)
colnames(exp) <- paste0("sample", 1:200)
rownames(exp) <- paste0("gene", 1:50)
exp[1:4, 1:4]
exp[, 1:100] = exp[, 1:100] + 10
group_list <- factor(rep(c("A", "B"), each = 100))
if(requireNamespace("Rtsne", quietly = TRUE)){
draw_tsne(exp, group_list)
} else{
  warning("Package 'Rtsne' needed for this function to work.
           Please install it by install.packages('Rtsne')")
}
```

Description

Warning a Venn plot for deg result created by three packages

Usage

draw_venn(
 x,
 main,
 color = c("#2874C5", "#f87669", "#e6b707", "#868686", "#66C2A5", "#FC8D62", "#8DA0CB",
 "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3"),
 imagetype = "png",
 filename = NULL,
 lwd = 1,
 lty = 1,
 col = color[1:length(x)],
 fill = color[1:length(x)],
 cat.col = color[1:length(x)],
 cat.cex = 1,
 cat.dist = -0.15,
 rotation.degree = 0,
 main.cex = 1,
 cex = 1,
 alpha = 0.1,
 reverse = TRUE,
 ...
)
Arguments

- **x**: A list for plot
- **main**: Character giving the main title of the diagram
- **color**: Color vector
- **imagetype**: Specification of the image format (e.g. tiff, png or svg)
- **filename**: Filename for image output, or if NULL returns the grid object itself
- **lwd**: Width of the circle's circumference
- **lty**: Dash pattern of the circle's circumference
- **col**: Colour of the circle's circumference
- **fill**: Colour of the circle's area
- **cat.col**: Colour of the category name
- **cat.cex**: Size of the category name
- **cat.dist**: The distance (in npc units) of the category name from the edge of the circle (can be negative)
- **rotation.degree**: Number of degrees to rotate the entire diagram
- **main.cex**: Number giving the cex (font size) of the main title
- **cex**: Size of the area label
- **alpha**: Alpha transparency of the circle’s area
- **reverse**: Logical, reflect the three-set Venn diagram along its central vertical axis of symmetry. Use in combination with rotation to generate all possible set orders
- ... other parameters from venn.diagram

Value

A venn plot according to x, y and z named "name" parameter

Author(s)

Xiaojie Sun

See Also

draw_pca; draw_volcano; draw_heatmap

Examples

```r
if(requireNamespace("VennDiagram", quietly = TRUE) &
  requireNamespace("ggplotify", quietly = TRUE) &
  requireNamespace("cowplot", quietly = TRUE)){
  x = list(Deseq2=sample(1:100,30),edgeR = sample(1:100,30),limma = sample(1:100,30))
  draw_venn(x,"test")
  draw_venn(x,"test",color = c("darkgreen", "darkblue", "#B2182B"))
} else{
```
draw_volcano

draw volcano

draw a volcano plot

Description

Warning a volcano plot for Differential analysis result in data.frame format.

Usage

draw_volcano(
 deg,
 lab = NA,
 xlab.package = TRUE,
 pvalue_cutoff = 0.05,
 logFC_cutoff = 1,
 pkg = 1,
 adjust = FALSE,
 symmetry = FALSE,
 color = c("#2874C5", "grey", "#f87669")
)

Arguments

deg a data.frame created by Differential analysis
lab label for x axis in volcano plot, if NA, x axis names by package
xlab.package whether to use the package name as the x axis name
pvalue_cutoff Cutoff value of pvalue, 0.05 by default.
logFC_cutoff Cutoff value of logFC, 1 by default.
pkg a integer, means which Differential analysis packages you used, we support three packages by now, 1, 2, 3, 4 respectively means "DESeq2", "edgeR", "limma(voom)", "limma"
adjust a logical value, would you like to use adjusted pvalue to draw this plot, FALSE by default.
symmetry a logical value, would you like to get your plot symmetrical
color color vector
Value

a volcano plot according to logFC and P.value(or adjust P.value)

Author(s)

Xiaojie Sun

See Also

draw_heatmap; draw_pca; draw_venn

Examples

head(deseq_data)
draw_volcano(deseq_data)
draw_volcano(deseq_data,pvalue_cutoff = 0.01,logFC_cutoff = 2)
draw_volcano(deseq_data,color = c("darkgreen", "darkgrey", "#B2182B"))

draw_volcano2
draw_volcano2

Description

print one or more volcano plot for Differential analysis result in data.frame format.

Usage

draw_volcano2(deg, pkg = 4, lab, ...)

Arguments

deg a data.frame created by Differential analysis
pkg a integer ,means which Differential analysis packages you used, we support three
packages by now, 1,2,3,4 respectively means "DESeq2","edgeR","limma(voom)","limma"
lab label for x axis in volcano plot, if NA , x axis names by package
... other parameters from draw_volcano

Value

one or more volcano plot

Author(s)

Xiaojie Sun

See Also

gap_download; draw_volcano; draw_venn
Examples

```r
## Not run:
if(requireNamespace("Biobase", quietly = TRUE) & requireNamespace("AnnoProbe", quietly = TRUE)){
  # two group
gse = "GSE42872"
geo = geo_download(gse, destdir=tempdir())
group_list = rep(c("A","B"), each = 3)
ids = AnnoProbe::idmap('GPL6244', destdir = tempdir())
deg = get_deg(geo$exp, group_list, ids)
draw_volcano2(deg)
# multigroup
gse = "GSE474"
geo = geo_download(gse, destdir=tempdir())
geo$exp[1:4,1:4]
geo$exp=log2(geo$exp+1)
group_list=ifelse(stringr::str_detect(geo$pd$title,"MObese"),"MObese",
ifelse(stringr::str_detect(geo$pd$title,"NonObese"),"NonObese","Obese"))
group_list=factor(group_list, levels = c("NonObese","Obese","MObese"))
find_anno(geo$gpl)
ids <- AnnoProbe::idmap(geo$gpl, destdir = tempdir())
deg = multi_deg(geo$exp, group_list, ids, adjust = FALSE, entriz = FALSE)
draw_volcano2(deg)
draw_volcano2(deg, color = c("darkgreen","grey","darkred"))
} else{
  if(!requireNamespace("AnnoProbe", quietly = TRUE)) {
    warning("Package 'AnnoProbe' needed for this function to work.
            Please install it by install.packages('AnnoProbe')", call. = FALSE)
  }
  if(!requireNamespace("Biobase", quietly = TRUE)) {
    warning("Package 'Biobase' needed for this function to work.
            Please install it by BiocManager::install('Biobase')", call. = FALSE)
  }
}
## End(Not run)
```

dumd

count unique values in every columns for data.frame

Description

In GEO analysis, this function can help you simplify p-data, delete columns with unique values, which can’t be used as group vector.

Usage

```r
dumd(x)
```
edges_to_nodes

Arguments

x A data.frame.

Value

The simple data.frame of columns unique values count in x

Examples

dumd(iris)
data(ToothGrowth)
x = ToothGrowth
dumd(ToothGrowth)

data.frame

Description

get nodes from edges

Usage

edges_to_nodes(edges)

Arguments

edges data.frame

Value

nodes data.frame

Author(s)

Xiaojie Sun

See Also

interaction_to_edges

Examples

df = data.frame(a = c("gene1","gene2","gene3"),
b = c("d,f,a,b",
"c,e,g",
"a,b,d"))
edges = interaction_to_edges(df)
nodes = edges_to_nodes(edges)
Description

AnnoProbe supported GPLs

Usage

`exists_anno_list`

Format

An object of class `character` of length 175.

Examples

`exists_anno_list`

Description

An cpm expression matrix from TCGA,tumor samples only

Usage

`exprSet_hub1`

Format

An object of class `matrix` (inherits from `array`) with 8 rows and 177 columns.

Examples

`exprSet_hub1[1:4,1:4]`
exp_boxplot

Description

draw box plot for a hub gene expression matrix

Usage

exp_boxplot(exp_hub, color = c("#2fa1dd", "#f87669"))

Arguments

exp_hub an expression matrix for hubgenes
color color for boxplot

Value

box plots list for all genes in the matrix

Author(s)

Xiaojie Sun

See Also

exp_surv; box_surv

Examples

if(requireNamespace("ggpubr", quietly = TRUE)) {
 k = exp_boxplot(log2(exp_hub1+1));k[[1]]
} else{
 warning("Package 'ggpubr' needed for this function to work.
 Please install it by install.packages('ggpubr')")
}
exp_hub1

Description
An expression matrix from TCGA and Gtex

Usage
exp_hub1

Format
An object of class `matrix` (inherits from `array`) with 8 rows and 350 columns.

Examples
exp_hub1[1:4,1:4]

exp_surv

Description
Draw surv plot for a hub gene expression matrix for tumor samples

Usage
exp_surv(exprSet_hub, meta, cut.point = FALSE, color = c("#2874C5", "#f87669"))

Arguments
- exprSet_hub: a tumor expression set for hubgenes
- meta: meta data corresponds to expression set
- cut.point: logical, use cut_point or not, if FALSE, use median by default
- color: color for boxplot

Value
survival plots list for all genes

Author(s)
Xiaojie Sun
find_anno

See Also

exp_boxplot; box_surv; draw_venn

Examples

tmp = exp_surv(exprSet_hub1, meta1)
patchwork::wrap_plots(tmp)+patchwork::plot_layout(guides = "collect")
tmp2 = exp_surv(exprSet_hub1, meta1, cut.point = TRUE)
patchwork::wrap_plots(tmp2)+patchwork::plot_layout(guides = "collect")

find_anno

find annotation package or files

Description

find gpl annotation package or files

Usage

find_anno(gpl, install = FALSE, update = FALSE)

Arguments

gpl a gpl accession
install whether to install and library the package
update whether to update the package

Value

a list with deg data.frame, volcano plot and a list with DEGs.

Author(s)

Xiaojie Sun

See Also

geo_download

Examples

find_anno("GPL570")
genes

description
some gene entriz ids

usage
genes

format
An object of class character of length 511.

eXamples
genes

description
download gse data and get informations

usage
geo_download(
gse,
by_annoprobe = TRUE,
simpd = TRUE,
colon_remove = FALSE,
destdir = getwd(),
n = 1
)

arguments
gse gse assesion number
by_annoprobe download data by geoquery or annoprobe
simpd get simplified pdata,drop out columns with all same values
colon_remove whether to remove duplicated columns with colons
destdir The destination directory for data downloads.
n For data with more than one ExpressionSet, specify which one to analyze
get_cgs

Value
a list with exp, pd and gpl

Author(s)
Xiaojie Sun

See Also
find_anno

Examples
Not run:
if(requireNamespace("Biobase", quietly = TRUE) &
 requireNamespace("AnnoProbe", quietly = TRUE)){
 gse = "GSE42872"
 a = geo_download(gse, destdir=tempdir())
} else{
 if(!requireNamespace("AnnoProbe", quietly = TRUE)) {
 print("Package 'AnnoProbe' needed for this function to work.
 Please install it by install.packages('AnnoProbe')")
 }
 if(!requireNamespace("Biobase", quietly = TRUE)) {
 print("Package 'Biobase' needed for this function to work.
 Please install it by BiocManager::install('Biobase')")
 }
}

End(Not run)

get_cgs

Description
extract DEGs from deg data.frame

Usage
get_cgs(deg)

Arguments
deg a data.frame created by Differential analysis

Value
a list with upgenes, downgenes, diffgenes.
Author(s)
Xiaojie Sun

See Also

geo_download; draw_volcano; draw_venn

Examples

Not run:
#two group
gse = "GSE42872"
geo = geo_download(gse, destdir = tempdir())
group_list = rep(c("A", "B"), each = 3)
ids = AnnoProbe::idmap('GPL6244', destdir = tempdir())
deg = get_deg(geo$exp, group_list, ids)
cgs = get_cgs(deg)
#mutigroup
gse = "GSE474"
geo = geo_download(gse, destdir = tempdir())
geo$exp[1:4,1:4]
geo$exp = log2(geo$exp + 1)
group_list = ifelse(stringr::str_detect(geopdtitle, "MObese"), "MObese",
ifelse(stringr::str_detect(geopdtitle, "NonObese"), "NonObese", "Obese"))
group_list = factor(group_list, levels = c("NonObese", "Obese", "MObese"))
find_anno(geo$gpl)
ids = AnnoProbe::idmap(geo$gpl, destdir = tempdir())
deg = multi_deg(geo$exp, group_list, ids, adjust = FALSE)
cgs = get_cgs(deg)
End(Not run)

description
get RNA-seq count file from GEO database

Usage

get_count_txt(gse, destdir = getwd(), download = FALSE)

Arguments

gse gse assesion number
destdir The destination directory for data downloads.
download download the txt file or not
Value

a list with deg data.frame, volcano plot and a list with DEGs.

Author(s)

Xiaojie Sun

See Also

geo_download

Examples

get_count_txt("GSE162550",destdir = tempdir())

get_deg

do differential analysis according to expression set and group information

Usage

get_deg(
 exp,
 group_list,
 ids,
 logFC_cutoff = 1,
 pvalue_cutoff = 0.05,
 adjust = FALSE,
 entriz = TRUE,
 species = "human"
)

Arguments

exp A numeric matrix

group_list A factor with duplicated character or factor

ids a data.frame with 2 columns, including probe_id and symbol

logFC_cutoff Cutoff value of logFC, 1 by default.

pvalue_cutoff Cutoff value of pvalue, 0.05 by default.

adjust a logical value, would you like to use adjusted pvalue to draw this plot, FALSE by default.

entriz whether convert symbols to entriz ids

species choose human or mouse, or rat, default: human
Value

A deg data.frame with 10 columns.

Author(s)

Xiaojie Sun

See Also

multi_deg, get_deg_all

Examples

```r
## Not run:
if(requireNamespace("Biobase", quietly = TRUE) &
   requireNamespace("AnnoProbe", quietly = TRUE)) {
  gse = "GSE42872"
  a = geo_download(gse, destdir = tempdir())
  find_annos(geo$gpl)
  ids <- AnnoProbe::idmap(geo$gpl, destdir = tempdir())
  Group = rep(c("control","treat"), each = 3)
  Group = factor(Group)
  deg = get_deg(geo$exp, Group, ids, entriz = FALSE)
  head(deg)
} else {
  if(!requireNamespace("AnnoProbe", quietly = TRUE)) {
    warning("Package 'AnnoProbe' needed for this function to work.
             Please install it by install.packages('AnnoProbe')", call. = FALSE)
  }
  if(!requireNamespace("Biobase", quietly = TRUE)) {
    warning("Package 'Biobase' needed for this function to work.
             Please install it by BiocManager::install('Biobase')", call. = FALSE)
  }
}

## End(Not run)
```

Description

Do differential analysis according to expression set and group information.
get_deg_all

Usage

get_deg_all(
 exp,
 group_list,
 ids,
 symmetry = TRUE,
 my_genes = NULL,
 show_rownames = FALSE,
 cluster_cols = TRUE,
 color_volcano = c("#2874C5", "grey", "#f87669"),
 logFC_cutoff = 1,
 pvalue_cutoff = 0.05,
 adjust = FALSE,
 entriz = TRUE,
 n_cutoff = 2,
 annotation_legend = FALSE,
 lab = NA,
 species = "human"
)

Arguments

exp A numeric matrix

 group_list A factor with duplicated character or factor

 ids a data.frame with 2 columns, including probe_id and symbol

 symmetry a logical value, would you like to get your plot symmetrical

 my_genes genes for heatmap

 show_rownames logical, show rownames or not

 cluster_cols boolean values determining if columns should be clustered or hclust object.

 color_volcano color for volcano

 logFC_cutoff Cutoff value of logFC, 1 by default.

 pvalue_cutoff Cutoff value of pvalue, 0.05 by default.

 adjust a logical value, would you like to use adjusted pvalue to draw this plot, FALSE by default.

 entriz logical, if TRUE, convert symbol to entriz id.

 n_cutoff 3 by default, scale before plot and set a cutoff, usually 2 or 1.6

 annotation_legend logical, show annotation legend or not

 lab label for x axis in volcano plot, if NA, x axis names by package

 species choose human or mouse, or rat, default: human

Value

a list with deg data.frame, volcano plot, pca plot, heatmap and a list with DEGs.
get_gpl_txt

get gpl txt from GEO

Description

get gpl annotation txt file from GEO database

Usage

get_gpl_txt(gpl, destdir = getwd(), download = FALSE)

Arguments

gpl gpl accession from GEO database
destdir The destination directory for data downloads.
download download the txt file or not
"ggheat"

Value

a list with deg data.frame, volcano plot and a list with DEGs.

Author(s)

Xiaojie Sun

See Also

geo_download

Examples

get_gpl_txt("GPL23270",destdir = tempdir())

description

draw heatmap plot with annotation by ggplot2

Usage

ggheat(
 dat,
 group,
 cluster = FALSE,
 color = c("#2874C5", "white", "#f87669"),
 legend_color = c("#2874C5", "#f87669", "#e6b707", "#868686", "#66C2A5", "#FC8D62",
 "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3"),
 show_rownames = TRUE,
 show_colnames = TRUE,
 cluster_rows = FALSE,
 cluster_cols = FALSE,
 groupname = "group",
 expname = "exp",
 fill_mid = TRUE
)

Arguments

dat expression matrix for plot

group group for expression colnames

cluster logical, cluster in both rows and column or not, default F, now replaced by cluster_rows and cluster_cols.
color
color for heatmap
legend_color
color for legend
show_rownames
logical, show rownames in plot or not, default T
show_colnames
logical, show colnames in plot or not, default T
cluster_rows
logical, if rows (on the plot) should be clustered, default F
cluster_cols
logical, if column (on the plot) should be clustered, default F
groupname
name of group legend
expname
name of exp legend
fill_mid
use median value as geom_tile fill midpoint

Value
a ggplot object

Author(s)
Xiaojie Sun

Examples

exp_dat = matrix(sample(100:1000,40),ncol = 4)
exp_dat[1:(nrow(exp_dat)/2),] = exp_dat[1:(nrow(exp_dat)/2),]-1000
rownames(exp_dat) = paste0("sample",1:nrow(exp_dat))
colnames(exp_dat) = paste0("gene",1:ncol(exp_dat))
group = rep(c("A","B"),each = nrow(exp_dat)/2)
group = factor(group,levels = c("A","B"))
ggheat(exp_dat,group)
ggheat(exp_dat,group,cluster_rows = TRUE)
ggheat(exp_dat,group,cluster_rows = TRUE,show_rownames = FALSE,
 show_colnames = FALSE,groupname = "risk",expname = "expression")

Description
make hypertest for given lncRNA and mRNA common miRNAs

Usage

hypertest(lnc, pc, deMIR = NULL, lnctarget, pctarget)
interaction_to_edges

Arguments

- **inc**
 - lncRNA names
- **pc**
 - mRNA names
- **deMIR**
 - miRNA names, default NULL
- **lnctarget**
 - a data.frame with two column, lncRNA in the first column, miRNA in the second column
- **pctarget**
 - a data.frame with two column, mRNA in the first column, miRNA in the second column

Value

- a data.frame with hypertest result

Author(s)

Xiaojie Sun

See Also

- **plcortest**

Examples

```r
# to update
interaction_to_edges
```

Description

- split interactions by sep parameter, return edges data.frame

Usage

```r
interaction_to_edges(df, a = 1, b = 2, sep =",")
```

Arguments

- **df**
 - interactions data.frame
- **a**
 - column to replicate
- **b**
 - column to split
- **sep**
 - a character string to separate b column

Value

- a new data.frame with two column, one interaction by one rows
Author(s)
Xiaojie Sun

See Also
edges_to_nodes

Examples
```
df = data.frame(a = c("gene1", "gene2", "gene3"), b = c("d,f,a,b", "c,e,g", "a,b,d"))
interaction_to_edges(df)
```

Description
calculate intersect set for two or more elements

Usage
```
intersect_all(...)  
```

Arguments
```
...  
```
some vectors or a list with some vectors

Value
vector

Author(s)
Xiaojie Sun

See Also
union_all

Examples
```
x1 = letters[1:4]
x2 = letters[3:6]
x3 = letters[3:4]
re = intersect_all(x1,x2,x3)
re2 = intersect_all(list(x1,x2,x3))
re3 = union_all(x1,x2,x3)
```
Description

annotation for TCGA expression matrix(lncRNA), form genecode v22 gtf file.

Usage

lnc_anno

Format

An object of class data.frame with 14826 rows and 3 columns.

Examples

head(lnc_anno)

Description

annotation for TCGA and gtex expression matrix(lncRNA), form genecode v23 gtf file.

Usage

lnc_annov23

Format

An object of class data.frame with 14852 rows and 3 columns.

Examples

head(lnc_annov23)
Description
make tcga group for given tcga expression matrix

Usage
make_tcga_group(exp)

Arguments
exp TCGA or TCGA_Gtex expression set from gdc or xena

Value
a group factor with normal and tumor, correspond to colnames for expression matrix

Author(s)
Xiaojie Sun

See Also
sam_filter; match_exp_cl

Examples
k = make_tcga_group(exp_hub1); table(k)

Description
match exp and clinical data from TCGA

Usage
match_exp_cl(exp, cl, id_column = "id", sample_centric = TRUE)
Arguments

- **exp**: TCGA expression set
- **cl**: TCGA clinical data.frame
- **id_column**: which column contains patient ids, column number or column name.
- **sample_centric**: logical, default T, keep all samples from the same patients. If FALSE, keep only one tumor sample for one patient.

Value

A transformed clinical data.frame with sample ids.

Author(s)

Xiaojie Sun

See Also

- `make_tcgagroup`
- `sam_filter`

Examples

```r
a = match_exp_cl(exp_hub1, meta1[, 2:4], "X_PATIENT")
expmatched = a[[1]]
c1matched = a[[2]]
b = match_exp_cl(exp_hub1, meta1[, 2:4], "X_PATIENT", sample_centric = FALSE)
expmatched = b[[1]]
c1matched = b[[2]]
```

Description

Clinical messages for some TCGA patients, correspond to exprSet_hub1

Usage

`meta1`

Format

An object of class `data.frame` with 177 rows and 4 columns.

Examples

```r
head(meta1)
```
Description
annotation for TCGA and gtex expression matrix(mRNA), form genecode v22 gtf file.

Usage
mRNA_anno

Format
An object of class data.frame with 19814 rows and 3 columns.

Examples
head(mRNA_anno)

mRNA_annov23

Description
annotation for TCGA and gtx expression matrix(mRNA), form genecode v23 gtf file.

Usage
mRNA_annov23

Format
An object of class data.frame with 19797 rows and 3 columns.

Examples
head(mRNA_annov23)
Description

do differential analysis according to expression set and group information

Usage

multi_deg(
 exp,
 group_list,
 ids,
 logFC_cutoff = 1,
 pvalue_cutoff = 0.05,
 adjust = FALSE,
 species = "human",
 entriz = TRUE
)

Arguments

exp A numeric matrix

 group_list A factor with duplicated character or factor

 ids a data.frame with 2 columns, including probe_id and symbol

 logFC_cutoff Cutoff value of logFC, 1 by default.

 pvalue_cutoff Cutoff value of pvalue, 0.05 by default.

 adjust a logical value, would you like to use adjusted pvalue to draw this plot, FALSE by default.

 species choose human or mouse, or rat, default: human

 entriz whether convert symbols to entriz ids

Value

 a deg data.frame with 10 columns

Author(s)

 Xiaojie Sun

See Also

gget_deg; multi_deg_all
Examples

```r
## Not run:
if(requireNamespace("Biobase", quietly = TRUE) &
  requireNamespace("AnnoProbe", quietly = TRUE)){
  gse = "GSE474"
  geo = geo_download(gse, destdir = tempdir())
  geo$exp[1:4, 1:4]
  geo$exp = log2(geo$exp + 1)
  group_list = ifelse(stringr::str_detect(geo$pd$title, "MObese"),
    "MObese", ifelse(stringr::str_detect(geo$pd$title, "NonObese"),
    "NonObese", "Obese"))
  group_list = factor(group_list, levels = c("NonObese", "Obese", "MObese"))
  find_anno(geo$gpl)
  ids <- AnnoProbe::idmap(geo$gpl, destdir = tempdir())
  deg = multi_deg(geo$exp, group_list, ids, adjust = FALSE, entriz = FALSE)
  names(deg)
  head(deg[[1]])
  head(deg[[2]])
  head(deg[[3]])
} else{
  if(!requireNamespace("AnnoProbe", quietly = TRUE)) {
    warning("Package 'AnnoProbe' needed for this function to work."
    "Please install it by install.packages('AnnoProbe'), call. = FALSE")
  }
  if(!requireNamespace("Biobase", quietly = TRUE)) {
    warning("Package 'Biobase' needed for this function to work."
    "Please install it by BiocManager::install('Biobase'), call. = FALSE")
  }
}
## End(Not run)
```

multi_deg_all

Description

Do differential analysis according to expression set and group information

Usage

```
multi_deg_all(
  exp,
  group_list,
  ids,
  symmetry = TRUE,
  my_genes = NULL,
  show_rownames = FALSE,
  cluster_cols = TRUE,
)```
multi_deg_all

color_volcano = c("#2874C5", "grey", "#f87669"),
pvalue_cutoff = 0.05,
logFC_cutoff = 1,
adjust = FALSE,
entriz = TRUE,
annotation_legend = FALSE,
lab = NA,
species = "human"
)

Arguments

exp A numeric matrix
group_list A factor with duplicated character or factor
gene_id a data.frame with 2 columns, including probe_id and symbol
show_rownames boolean specifying if column names are shown
cluster_cols boolean values determining if columns should be clustered or hclust object.
color_volcano color for volcano
pvalue_cutoff Cutoff value of pvalue, 0.05 by default.
logFC_cutoff Cutoff value of logFC, 1 by default.
adjust a logical value, would you like to use adjusted pvalue to draw this plot, FALSE by default.
entriz whether convert symbols to entriz ids
annotation_legend boolean value showing if the legend for annotation tracks should be drawn.
lab label for x axis in volcano plot, if NA, x axis names by package
species choose human or mouse, or rat, default: human

Value

a list with deg data.frame, volcano plot and a list with DEGs.

Author(s)

Xiaojie Sun

See Also

geo_download; draw_volcano; draw_venn
Examples

```r
Not run:
if(requireNamespace("Biobase", quietly = TRUE) &
 requireNamespace("AnnoProbe", quietly = TRUE)){
 gse = "GSE474"
 geo = geo_download(gse, destdir = tempdir())
 geo$exp[1:4,1:4]
 geo$exp=log2(geo$exp+1)
 group_list=ifelse(stringr::str_detect(geopdtitle,"MObese"),"MObese",
 ifelse(stringr::str_detect(geopdtitle,"NonObese"),"NonObese","Obese"))
 group_list=factor(group_list,levels = c("NonObese","Obese","MObese"))
 find_anno(geo$gpl)
 ids = AnnoProbe::idmap(geo$gpl, destdir = tempdir())
 dcp = multi_deg_all(geo$exp, group_list, ids, adjust = FALSE, entriz = FALSE)
 dcp[[3]]}
else{
 if(!requireNamespace("AnnoProbe", quietly = TRUE)) {
 warning("Package 'AnnoProbe' needed for this function to work.
 Please install it by install.packages('AnnoProbe'),call. = FALSE)
 }
 if(!requireNamespace("Biobase", quietly = TRUE)) {
 warning("Package 'Biobase' needed for this function to work.
 Please install it by BiocManager::install('Biobase'),call. = FALSE)
 }
}
End(Not run)
```

Description

bioconductor annotation packages for GPLs

Usage

`pkg_all`

Format

An object of class `data.frame` with 82 rows and 3 columns.

Examples

`head(pkg_all)`
plcortest

Description
make cor.test for given lncRNA and mRNA

Usage
plcortest(lnc_exp, mRNA_exp, cor_cutoff = 0)

Arguments
lnc_exp lncRNA expression set
mRNA_exp mRNA expression set which nrow equal to lncRNA_exp
cor_cutoff cor estimate cut_off, default 0

Value
a list with cor.test result, names are lncRNAs, element are mRNAs

Author(s)
Xiaojie Sun

See Also
hypertest

Examples
# to update

plot_deg

Description
plot pca plot, volcano plot, heatmap, and venn plot for Differential analysis result
plot_deg

Usage

plot_deg(exp, group_list, deg, symmetry = TRUE, my_genes = NULL, show_rownames = FALSE, cluster_cols = TRUE, color_volcano = c("#2874C5", "grey", "#f87669"), pvalue_cutoff = 0.05, logFC_cutoff = 1, adjust = FALSE, annotation_legend = FALSE, lab = NA, species = "human")

Arguments

exp A numeric matrix

group_list A factor with duplicated character or factor

deg result of multi_deg or get_deg function

symmetry a logical value, would you like to get your plot symmetrical

my_genes genes for heatmap

show_rownames boolean specifying if column names are be shown.

cluster_cols boolean values determining if columns should be clustered or hclust object.

color_volcano color for volcano

pvalue_cutoff Cutoff value of pvalue, 0.05 by default.

logFC_cutoff Cutoff value of logFC, 1 by default.

adjust a logical value, would you like to use adjusted pvalue to draw this plot, FALSE by default.

annotation_legend boolean value showing if the legend for annotation tracks should be drawn.

lab label for x axis in volcano plot, if NA, x axis names by package

species choose human or mouse, or rat, default: human

Value

plots

Author(s)

Xiaojie Sun
Examples

```r
Not run:
if(requireNamespace("Biobase", quietly = TRUE) &
 requireNamespace("AnnoProbe", quietly = TRUE)){
 gse = "GSE474"
 geo = geo_download(gse, destdir=tempdir())
 geo$exp[1:4,1:4] = log2(geo$exp+1)
 group_list = ifelse(stringr::str_detect(geopdtitle,"MObese"),"MObese",
 ifelse(stringr::str_detect(geopdtitle,"NonObese"),"NonObese","Obese"))
 group_list = factor(group_list, levels = c("NonObese","Obese","MObese"))
 find_anno(geo$gpl)
 ids = AnnoProbe::idmap(geo$gpl, destdir = tempdir())
 deg = get_deg(geo$exp, group_list, ids, adjust = FALSE, entriz = FALSE)
 plot_deg(geo$exp, group_list, deg)
} else{
 if(!requireNamespace("AnnoProbe", quietly = TRUE)) {
 warning("Package 'AnnoProbe' needed for this function to work.
 Please install it by install.packages('AnnoProbe')", call. = FALSE)
 }
 if(!requireNamespace("Biobase", quietly = TRUE)) {
 warning("Package 'Biobase' needed for this function to work.
 Please install it by BiocManager::install('Biobase')", call. = FALSE)
 }
}
End(Not run)
```

### Description

`point_cut` is a function that calculates cut points for multiple genes.

#### Usage

```r
point_cut(exprSet_hub, meta)
```

#### Arguments

- `exprSet_hub`: a tumor expression set for hubgenes
- `meta`: meta data corresponds to expression set

#### Value

- a vector with cutpoint for genes
Author(s)
Xiaojie Sun

See Also
surv_KM; surv_cox

Examples
point_cut(exprSet_hub1, meta1)

Description
do differential analysis according to expression set and group information, for human only

Usage
quick_enrich(
genesis,
kkgo_file = "kkgo_file.Rdata",
destdir = getwd(),
species = "human"
)

Arguments
genesis a gene symbol or entridid vector
kkgo_file Rdata filename for kegg and go result
destdir destdir to save kkgo_file
species choose human or mouse, or rat, default: human

Value
enrichment results and dotplots

Author(s)
Xiaojie Sun

See Also
double_enrich
### Examples

```r
Not run:
if(requireNamespace("org.Hs.eg.db", quietly = TRUE)){
 head(genes)
 g = quick_enrich(genes, destdir = tempdir())
 names(g)
 g[[1]][1:4, 1:4]
 g[[3]]
 g[[4]]
} else{
 warning("Package 'org.Hs.eg.db' needed for this function to work.
 Please install it by BiocManager::install('org.Hs.eg.db')", call. = FALSE)
}
End(Not run)
```

### Description

Draw risk plot

### Usage

```r
risk_plot(exprSet_hub, meta, riskscore, cut.point = FALSE, color = c("#2fa1dd", "#f87669"), n_cutoff = 3)
```

### Arguments

- `exprSet_hub`: a tumor expression set for hubgenes
- `meta`: meta data corresponds to expression set
- `riskscore`: a numeric vector of riskscore
- `cut.point`: logical, use cut_point or not, if FALSE, use median by defult
- `color`: color for boxplot
- `n_cutoff`: 3 by defalut, scale before plot and set a cutoff, usually 2 or 1.6

### Value

risk plot
Author(s)
Xiaojie Sun

See Also
exp_boxplot; box_surv; draw_venn

Examples
risk_plot(exprSet_hub1,meta1,riskscore = rnorm(nrow(meta1)))

drop duplicated samples from the same patients

Usage
sam_filter(exp)

Arguments
exp TCGA or TCGA_Gtex expression set from gdc or xena

Value
a transformed expression set without duplicated samples

Author(s)
Xiaojie Sun

See Also
make_tcga_group; match_exp_cl

Examples
cod[1:4,1:4]
dim(cod)
cod2 = sam_filter(cod)
dim(cod2)
g = make_tcga_group(cod); table(g)
library(stringr)
table(!duplicated(str_sub(colnames(cod[,g=="tumor"]),1,12)))
Description

calculate cox p values and HR for genes

Usage

```r
surv_cox(
 exprSet_hub,
 meta,
 cut.point = FALSE,
 pvalue_cutoff = 0.05,
 HRkeep = "all",
 continuous = FALSE,
 min_gn = 0.1
)
```

Arguments

- `exprSet_hub`: a tumor expression set for hubgenes
- `meta`: meta data corresponds to expression set
- `cut.point`: logical, use cut_point or not, if FALSE, use median by default
- `pvalue_cutoff`: p value cut off, 0.05 by default
- `HRkeep`: one of "all", "protect" or "risk"
- `continuous`: logical, gene expression or gene expression group
- `min_gn`: Depending on the expression of a gene, there may be a large difference in the number of samples between the two groups, and if a smaller group of samples is less than 10 percent (default) of all, the gene will be discarded

Value

- a matrix with gene names, cox p value and HR

Author(s)

Xiaojie Sun

See Also

`point_cut`, `surv_KM`

Examples

```r
surv_cox(exprSet_hub1, meta1)
surv_cox(exprSet_hub1, meta1, cut.point = TRUE, continuous = TRUE)
surv_cox(exprSet_hub1, meta1, cut.point = TRUE, continuous = TRUE, pvalue_cutoff = 1)
```
Description

calculate log_rank test p values for genes

Usage

```r
surv_KM(
 exprSet_hub,
 meta,
 cut.point = FALSE,
 pvalue_cutoff = 0.05,
 min_gn = 0.1
)
```

Arguments

- `exprSet_hub`: a tumor expression set for hubgenes
- `meta`: meta data corresponds to expression set
- `cut.point`: logical, use cut_point or not, if FALSE, use median by default
- `pvalue_cutoff`: p value cut off, 0.05 by default
- `min_gn`: Depending on the expression of a gene, there may be a large difference in the number of samples between the two groups, and if a smaller group of samples is less than 10 percent (default) of all, the gene will be discarded

Value

- a vector with gene names and log_rank p value

Author(s)

Xiaojie Sun

See Also

- `point_cut`
- `surv_cox`

Examples

```r
surv_KM(exprSet_hub1, meta1)
surv_KM(exprSet_hub1, meta1, pvalue_cutoff = 1)
surv_KM(exprSet_hub1, meta1, cut_point = TRUE)
```
trans_array

Description

transform rownames for microarray or rnaseq expression matrix

Usage

trans_array(exp, ids, from = "probe_id", to = "symbol")

Arguments

exp microarray expression matrix with probe_id as rownames
ids data.frame with original rownames and new rownames
from colname for original rownames
to colname for new rownames

Value

a transformed expression set with new rownames

Author(s)

Xiaojie Sun

See Also

trans_exp

Examples

exp = matrix(1:50,nrow = 10)
rownames(exp) = paste0("g",1:10)
ids = data.frame(probe_id = paste0("g",1:10),
                 symbol = paste0("G",c(1:9,9)))
trans_array(exp,ids)
trans_entrezexp

Description
transform rownames of expression set from "entrez" to "symbol", according to the bitr function.

Usage
trans_entrezexp(entrezexp, species = "human")

Arguments
entrezexp expression set with entrezid as rownames
species choose human or mouse, or rat, default: human

Value
a transformed expression set with symbol

Author(s)
Xiaojie Sun

See Also
trans_exp

Examples
exp = matrix(rnorm(200), ncol = 10)
rownames(exp) = c("79691", "56271", "8662", "10394", "55630", "159162", "23541",
                  "79723", "54413", "22927", "92342", "23787", "5550", "8924",
                  "55274", "866", "8844", "353299", "587", "1473")
colnames(exp) = paste0("s", 1:10)
if(requireNamespace("org.Hs.eg.db", quietly = TRUE)){
  exp2 = trans_entrezexp(exp)
} else{
  warning("Package "org.Hs.eg.db" needed for this function to work.
        Please install it by BiocManager::install('org.Hs.eg.db'), call. = FALSE)
}
Description

transform rownames of TCGA or TCGA_Gtex expression set from gdc or xena, from ensembl id to gene symbol

Usage

trans_exp(exp, mrna_only = FALSE, lncrna_only = FALSE, gtex = FALSE)

Arguments

exp TCGA or TCGA_Gtex expression set from gdc or xena
mrna_only only keep mrna rows in result
lncrna_only only keep lncrna rows in result
gtex logical, whether including Gtex data

Value

a transformed expression set with symbol

Author(s)

Xiaojie Sun

See Also

trans_array

Examples

exp = matrix(rnorm(1000), ncol = 10)
rownames(exp) = sample(mRNA_annov23$gene_id, 100)
colnames(exp) = c(paste0("TCGA", 1:5), paste0("GTEX", 1:5))
k = trans_exp(exp)
trans_exp_new

Description

transform rownames of expression set from "ensembl" to "symbol", according to the new information from ensembl database.

Usage

trans_exp_new(exp, mrna_only = FALSE, lncrna_only = FALSE, species = "human")

Arguments

- **exp**: expression set with ensembl as rownames
- **mrna_only**: only keep mrna rows in result
- **lncrna_only**: only keep lncrna rows in result
- **species**: choose human or mouse, or rat, default: human

Value

a transformed expression set with symbol

Author(s)

Xiaojie Sun

See Also

trans_exp

Examples

```r
exp = matrix(rnorm(1000), ncol = 10)
rownames(exp) = sample(mRNA_annov23$gene_id, 100)
colnames(exp) = c(paste0("TCGA", 1:5), paste0("GTEX", 1:5))
if(requireNamespace("AnnoProbe")){
k = trans_exp_new(exp)
}else{
 warning("Package \"AnnoProbe\" needed for this function to work. Please install it by install.packages('AnnoProbe')")
}
```
Description

choose differential expressed genes by simple t.test

Usage

t_choose(
  genes,
  exp,
  group_list,
  up_only = FALSE,
  down_only = FALSE,
  pvalue_cutoff = 0.05
)

Arguments

genes a vector with some genes
exp A numeric matrix
group_list A factor with duplicated character or factor
up_only keep up genes in the result only
down_only keep down genes in the result only
pvalue_cutoff p value cut off, 0.05 by default

Value

a vector with differential expressed genes

Author(s)

Xiaojie Sun

Examples

ex = matrix(rnorm(1000), ncol = 10)
rownames(ex) = sample(mRNA_annov23$gene_id, 100)
colnames(ex) = c(paste0("TCGA", 1:5), paste0("GTEX", 1:5))
ex2 = trans_exp(ex)
ex2[, 1:5] = ex2[, 1:5] + 10
group_list = rep(c("A", "B"), each = 5)
genes = sample(rownames(ex2), 5)
t_choose(genes, ex2, group_list)
Description

calculate union set for two or more elements

Usage

union_all(...) 

Arguments

... some vectors or a list with some vectors

Value

vector

Author(s)

Xiaojie Sun

See Also

intersect_all

Examples

x1 = letters[1:4]
x2 = letters[3:6]
x3 = letters[3:4]
re = intersect_all(x1, x2, x3)
re2 = intersect_all(list(x1, x2, x3))
re3 = union_all(x1, x2, x3)
Index

* datasets
  - cod, 4
  - deg, 8
  - deseq_data, 8
  - exists_anno_list, 24
  - exp_hub1, 26
  - exprSet_hub1, 24
  - genes, 28
  - lnc_anno, 39
  - lnc_annov23, 39
  - meta1, 41
  - mRNA_anno, 42
  - mRNA_annov23, 42
  - pkg_all, 46

  box_surv, 3, 25, 27, 52
  - cod, full, 4, 6
  - cor.one, 5, 5
  - corheatmap, 6
  - corscatterplot, 7
  - deg, 8
  - deseq_data, 8
  - double_enrich, 9, 50
  - draw_boxplot, 10
  - draw_heatmap, 11, 16, 19, 21
  - draw_heatmap2, 13
  - draw_KM, 14
  - draw_pca, 12, 14, 15, 19, 21
  - draw_tsne, 17
  - draw_venn, 11, 12, 14, 16, 18, 21, 27, 30, 45, 52
  - draw_volcano, 11, 12, 14, 16, 19, 20, 21, 30, 45
  - draw_volcano2, 21
  - dumd, 22

  edges_to_nodes, 23, 38
  - exists_anno_list, 24
  - exp_boxplot, 3, 25, 27, 52
  - exp_hub1, 26
  - exp_surv, 3, 25, 26
  - exprSet_hub1, 24
  - find_anno, 27, 29
  - genes, 28
  - geo_download, 21, 27, 28, 30, 31, 35, 45
  - get_cgs, 29
  - get_count_txt, 30
  - get_deg, 31, 34, 43
  - get_deg_all, 32, 32
  - get_gpl_txt, 34
  - ggheat, 35
  - hypertest, 36, 47
  - interaction_to_edges, 23, 37
  - intersect_all, 38, 60
  - lnc_anno, 39
  - lnc_annov23, 39
  - make_tcga_group, 40, 41, 52
  - match_exp_cl, 40, 40, 52
  - meta1, 41
  - mRNA_anno, 42
  - mRNA_annov23, 42
  - multi_deg, 32, 43
  - multi_deg_all, 34, 43, 44
  - pkg_all, 46
  - plcortest, 37, 47
  - plot_deg, 47
  - point_cut, 49, 53, 54
  - quick_enrich, 9, 50
  - risk_plot, 51
sam_filter, 40, 41, 52
surv_cox, 50, 53, 54
surv_KM, 50, 53, 54

t_choose, 59
trans_array, 55, 57
trans_entrezexp, 56
trans_exp, 55, 56, 57, 58
trans_exp_new, 58

union_all, 38, 60