Package ‘tipr’

November 28, 2017

Type Package
Title Tipping Point Analyses
Version 0.1.1
Author Lucy D'Agostino McGowan
Maintainer Lucy D'Agostino McGowan <ld.mcgowan@vanderbilt.edu>
Description The strength of evidence provided by epidemiological and observational studies is inherently limited by the potential for unmeasured confounding. We focus on three key quantities: the observed bound of the confidence interval closest to the null, a plausible residual effect size for an unmeasured continuous or binary confounder, and a realistic mean difference or prevalence difference for this hypothetical confounder. Building on the methods put forth by Lin, Psaty, & Kronmal (1998) <doi:10.2307/2533848>, we can use these quantities to assess how an unmeasured confounder may tip our result to insignificance, rendering the study inconclusive.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Suggests testthat
Imports broom, tibble, purrr
NeedsCompilation no
Repository CRAN
Date/Publication 2017-11-28 18:33:41 UTC

R topics documented:

 tipr ... 2
 tip_with_binary ... 2
 tip_with_continuous ... 3

Index 4
Description

Choose two of the following three to specify, and the third will be estimated:

- \(p_1 \)
- \(p_0 \)
- \(\gamma \)

Alternatively, specify all three and the function will return the number of unmeasured confounders specified needed to tip the analysis.

Usage

```
tip_with_binary(p1 = NULL, p0 = NULL, gamma = NULL, lb = NULL, ub = NULL)
tip_b(p1 = NULL, p0 = NULL, gamma = NULL, lb = NULL, ub = NULL)
```

Arguments

- \(p_1 \): estimated prevalence of the unmeasured confounder in the exposed population
- \(p_0 \): estimated prevalence of the unmeasured confounder in the unexposed population
- \(\gamma \): estimated size of an unmeasured confounder
- \(\text{lb} \): lower bound of your observed effect
- \(\text{ub} \): upper bound of your observed effect

Details

\(\text{tip}_b() \) is an alias for \(\text{tip}_\text{with}_\text{binary}() \).
Examples

```r
# to output the size of an unmeasured confounder needed to tip analysis
tip_with_binary(p1 = .5, p0 = 0, lb = 1.2, ub = 1.5)
```

Description

choose one of the following, and the other will be estimated:

- `mean_diff`
- `gamma`

Usage

```r
tip_with_continuous(mean_diff = NULL, gamma = NULL, lb = NULL, ub = NULL)
tip_c(mean_diff = NULL, gamma = NULL, lb = NULL, ub = NULL)
```

Arguments

- `mean_diff` estimated mean difference of the unmeasured confounder in the exposed population and unexposed population
- `gamma` estimated size of an unmeasured confounder
- `lb` lower bound of your observed effect
- `ub` upper bound of your observed effect

Details

`tip_c()` is an alias for `tip_with_continuous()`.

Value

Numeric. The size of an unmeasured confounder at the given parameters that would tip the observed result.

Examples

```r
# to output the size of an unmeasured confounder needed to tip analysis
tip_with_continuous(mean_diff = -2, lb = 1.2, ub = 1.5)
```
Index

tip_b (tip_with_binary), 2
ip_b(), 2
tip_c (tip_with_continuous), 3
tip_c(), 3
tip_with_binary, 2
tip_with_binary(), 2
tip_with_continuous, 3
tip_with_continuous(), 3
tipr, 2
tipr-package (tipr), 2