Package ‘tipr’

October 14, 2022

Type Package
Title Tipping Point Analyses
Version 1.0.1
Description The strength of evidence provided by epidemiological and observational studies is inherently limited by the potential for unmeasured confounding. We focus on three key quantities: the observed bound of the confidence interval closest to the null, the relationship between an unmeasured confounder and the outcome, for example a plausible residual effect size for an unmeasured continuous or binary confounder, and the relationship between an unmeasured confounder and the exposure, for example a realistic mean difference or prevalence difference for this hypothetical confounder between exposure groups. Building on the methods put forth by Cornfield et al. (1959), Bross (1966), Schlesselman (1978), Rosenbaum & Rubin (1983), Lin et al. (1998), Lash et al. (2009), Rosenbaum (1986), Cinelli & Hazlett (2020), VanderWeele & Ding (2017), and Ding & VanderWeele (2016), we can use these quantities to assess how an unmeasured confounder may tip our result to insignificance.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.1.2

BugReports https://github.com/LucyMcGowan/tipr/issues
Suggests testthat, broom, dplyr, MASS
Imports glue, tibble, purrr, sensemakr
Depends R (>= 2.10)
LazyData true

Author Lucy D’Agostino McGowan [aut, cre]
(MIT Prizes: https://orcid.org/0000-0002-6983-2759)

Maintainer Lucy D’Agostino McGowan <lucydagostino@gmail.com>
Repository CRAN
Date/Publication 2022-09-05 12:50:02 UTC
R topics documented:

adjust_coef . 2
adjust_coef_with_binary . 3
adjust_coef_with_r2 . 4
adjust_hr . 6
adjust_hr_with_binary . 7
adjust_or . 8
adjust_or_with_binary . 9
adjust_rr . 10
adjust_rr_with_binary . 11
exdata_continuous . 12
exdata_rr . 12
e_value . 13
observed_bias_order . 13
observed_bias_tbl . 14
observed_bias_tip . 15
observed_covariate_e_value . 16
r_value . 16
tip . 17
tipr . 19
tip_coef . 19
tip_coef_with_r2 . 21
tip_hr . 22
tip_hr_with_binary . 23
tip_or . 24
tip_or_with_binary . 26
tip_rr . 27
tip_rr_with_binary . 28
tip_with_binary . 29

Index 32

adjust_coef

Adjust an observed regression coefficient for a normally distributed confounder

Description

Adjust an observed regression coefficient for a normally distributed confounder

Usage

adjust_coef(
 effect_observed,
 exposure_confounder_effect,
 confounder_outcome_effect,
 verbose = TRUE
)
adjust_coef_with_binary

adjust_coef_with_continuous(
 effect_observed,
 exposure_confounder_effect,
 confounder_outcome_effect,
 verbose = TRUE
)

Arguments

effect_observed
 Numeric. Observed exposure-outcome effect from a regression model. This can be the beta coefficient, the lower confidence bound of the beta coefficient, or the upper confidence bound of the beta coefficient.

exposure_confounder_effect
 Numeric. Estimated difference in scaled means between the unmeasured confounder in the exposed population and unexposed population.

confounder_outcome_effect
 Numeric. Estimated relationship between the unmeasured confounder and the outcome.

verbose
 Logical. Indicates whether to print informative message. Default: TRUE

Value

Data frame.

Examples

Update an observed coefficient of 0.5 with an unmeasured confounder
with a difference in scaled means between exposure groups of 0.2
and coefficient of 0.3
adjust_coef(0.5, 0.2, 0.3)

adjust_coef_with_binary

Adjust an observed coefficient from a loglinear model with a binary confounder

Description

Adjust an observed coefficient from a loglinear model with a binary confounder.
Usage

```r
adjust_coef_with_binary(
  effect_observed,
  exposed_confounder_prev,
  unexposed_confounder_prev,
  confounder_outcome_effect,
  verbose = TRUE
)
```

Arguments

- `effect_observed`: Numeric. Observed exposure - outcome effect from a loglinear model. This can be the beta coefficient, the lower confidence bound of the beta coefficient, or the upper confidence bound of the beta coefficient.
- `exposed_confounder_prev`: Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population.
- `unexposed_confounder_prev`: Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population.
- `verbose`: Logical. Indicates whether to print informative message. Default: TRUE

Value

Data frame.

Examples

```r
adjust_coef_with_binary(1.1, 0.5, 0.3, 1.3)
```

Description

This function wraps the `sensemakr::adjusted_estimate()` and `sensemakr::adjusted_se()` functions.
adjust_coef_with_r2

Usage

adjust_coef_with_r2(
effect_observed,
se,
df,
confounder_exposure_r2,
confounder_outcome_r2,
verbose = TRUE,
alpha = 0.05,
...
)

Arguments

effect_observed
 Numeric. Observed exposure - outcome effect from a regression model. This is the point estimate (beta coefficient)

se
 Numeric. Standard error of the effect_observed in the previous parameter.

df
 Numeric positive value. Residual degrees of freedom for the model used to estimate the observed exposure - outcome effect. This is the total number of observations minus the number of parameters estimated in your model. Often for models estimated with an intercept this is N - k - 1 where k is the number of predictors in the model.

confounder_exposure_r2
 Numeric value between 0 and 1. The assumed partial R2 of the unobserved confounder with the exposure given the measured covariates.

confounder_outcome_r2
 Numeric value between 0 and 1. The assumed partial R2 of the unobserved confounder with the outcome given the exposure and the measured covariates.

verbose
 Logical. Indicates whether to print informative message. Default: TRUE

alpha
 Significance level. Default = 0.05.

... Optional arguments passed to the sensemakr::adjusted_estimate() function.

Value

A data frame.

References

Examples

adjust_coef_with_r2(0.5, 0.1, 102, 0.05, 0.1)
adjust_hr

Adjust an observed hazard ratio for a normally distributed confounder

Description

Adjust an observed hazard ratio for a normally distributed confounder

Usage

adjust_hr(
 effect_observed,
 exposure_confounder_effect,
 confounder_outcome_effect,
 verbose = TRUE,
 hr_correction = FALSE
)

adjust_hr_with_continuous(
 effect_observed,
 exposure_confounder_effect,
 confounder_outcome_effect,
 verbose = TRUE,
 hr_correction = FALSE
)

Arguments

 effect_observed
 Numeric positive value. Observed exposure - outcome hazard ratio. This can be
 the point estimate, lower confidence bound, or upper confidence bound.

 exposure_confounder_effect
 Numeric. Estimated difference in scaled means between the unmeasured con-
 founder in the exposed population and unexposed population

 confounder_outcome_effect
 Numeric. Estimated relationship between the unmeasured confounder and the
 outcome.

 verbose
 Logical. Indicates whether to print informative message. Default: TRUE

 hr_correction
 Logical. Indicates whether to use a correction factor. The methods used for this
 function are based on risk ratios. For rare outcomes, a hazard ratio approximates
 a risk ratio. For common outcomes, a correction factor is needed. If you have a
 common outcome (>15%), set this to TRUE. Default: FALSE.

Value

 Data frame.
adjust_hr_with_binary

Examples

adjust_hr(0.9, -0.9, 1.3)

adjust_hr_with_binary Adjust an observed hazard ratio with a binary confounder

Description

Adjust an observed hazard ratio with a binary confounder

Usage

adjust_hr_with_binary(
 effect_observed,
 exposed_confounder_prev,
 unexposed_confounder_prev,
 confounder_outcome_effect,
 verbose = TRUE,
 hr_correction = FALSE
)

Arguments

effect_observed Numeric positive value. Observed exposure - outcome hazard ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.

exposed_confounder_prev Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population

unexposed_confounder_prev Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population

confounder_outcome_effect Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome

verbose Logical. Indicates whether to print informative message. Default: TRUE

hr_correction Logical. Indicates whether to use a correction factor. The methods used for this function are based on risk ratios. For rare outcomes, a hazard ratio approximates a risk ratio. For common outcomes, a correction factor is needed. If you have a common outcome (>15%), set this to TRUE. Default: FALSE.

Value

Data frame.

Examples

adjust_hr_with_binary(0.8, 0.1, 0.5, 1.8)

adjust_or

Adjust an observed odds ratio for a normally distributed confounder

Description

Adjust an observed odds ratio for a normally distributed confounder

Usage

adjust_or(
 effect_observed,
 exposure_confounder_effect,
 confounder_outcome_effect,
 verbose = TRUE,
 or_correction = FALSE
)

adjust_or_with_continuous(
 effect_observed,
 exposure_confounder_effect,
 confounder_outcome_effect,
 verbose = TRUE,
 or_correction = FALSE
)

Arguments

effect_observed
 Numeric positive value. Observed exposure - outcome odds ratio. This can be
 the point estimate, lower confidence bound, or upper confidence bound.

exposure_confounder_effect
 Numeric. Estimated difference in scaled means between the unmeasured con-
 founder in the exposed population and unexposed population

confounder_outcome_effect
 Numeric. Estimated relationship between the unmeasured confounder and the
 outcome.

verbose
 Logical. Indicates whether to print informative message. Default: TRUE

or_correction
 Logical. Indicates whether to use a correction factor. The methods used for this
 function are based on risk ratios. For rare outcomes, an odds ratio approximates
 a risk ratio. For common outcomes, a correction factor is needed. If you have a
 common outcome (>15%), set this to TRUE. Default: FALSE.

Value

Data frame.
Examples

adjust_or(1.2, 0.9, 1.3)

Description

Adjust an observed odds ratio with a binary confounder

Usage

adjust_or_with_binary(
 effect_observed,
 exposed_confounder_prev,
 unexposed_confounder_prev,
 confounder_outcome_effect,
 verbose = TRUE,
 or_correction = FALSE
)

Arguments

effect_observed
 Numeric positive value. Observed exposure - outcome odds ratio. This can be
 the point estimate, lower confidence bound, or upper confidence bound.

exposed_confounder_prev
 Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder
 in the exposed population

unexposed_confounder_prev
 Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder
 in the unexposed population

confounder_outcome_effect
 Numeric positive value. Estimated relationship between the unmeasured con-
 founder and the outcome

verbose
 Logical. Indicates whether to print informative message. Default: TRUE

or_correction
 Logical. Indicates whether to use a correction factor. The methods used for
 this function are based on risk ratios. For rare outcomes, an odds ratio approximates
 a risk ratio. For common outcomes, a correction factor is needed. If you have a
 common outcome (>15%), set this to TRUE. Default: FALSE.

Value

Data frame.
Examples

adjust_or_with_binary(3, 1, 0, 3)
adjust_or_with_binary(3, 1, 0, 3, or_correction = TRUE)

adjust_rr

Adjust an observed risk ratio for a normally distributed confounder

Description

Adjust an observed risk ratio for a normally distributed confounder

Usage

adjust_rr(
 effect_observed,
 exposure_confounder_effect,
 confounder_outcome_effect,
 verbose = TRUE
)

adjust_rr_with_continuous(
 effect_observed,
 exposure_confounder_effect,
 confounder_outcome_effect,
 verbose = TRUE
)

Arguments

 effect_observed
 Numeric positive value. Observed exposure - outcome risk ratio. This can be
 the point estimate, lower confidence bound, or upper confidence bound.

 exposure_confounder_effect
 Numeric. Estimated difference in scaled means between the unmeasured con-
 founder in the exposed population and unexposed population

 confounder_outcome_effect
 Numeric. Estimated relationship between the unmeasured confounder and the
 outcome.

 verbose
 Logical. Indicates whether to print informative message. Default: TRUE

Value

Data frame.

Examples

adjust_rr(1.2, 0.5, 1.1)
adjust_rr_with_binary
Adjust an observed risk ratio with a binary confounder

Description
Adjust an observed risk ratio with a binary confounder

Usage
```r
adjust_rr_with_binary(
  effect_observed,
  exposed_confounder_prev,
  unexposed_confounder_prev,
  confounder_outcome_effect,
  verbose = TRUE
)
```

Arguments
- **effect_observed**
 Numeric positive value. Observed exposure - outcome risk ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.

- **exposed_confounder_prev**
 Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population

- **unexposed_confounder_prev**
 Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population

- **confounder_outcome_effect**
 Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome

- **verbose**
 Logical. Indicates whether to print informative message. Default: TRUE

Value
Data frame.

Examples
```r
adjust_rr_with_binary(1.1, 0.5, 0.3, 1.3)
```
exdata_continuous Example Data (Continuous Outcome)

Description
A data set simulated with two Normally distributed confounders, one "measured" and one "unmeasured", an exposure, and outcome. The "true" causal effect of the exposure on the outcome, accounting for both the measured and unmeasured confounders, should be 0.

Usage
exdata_continuous

Format
A data frame with 2,000 rows and 4 columns:

- .unmeasured_confounder: A simulated unmeasured confounder
- measured_confounder: A simulated measured confounder
- exposure
- outcome

exdata_rr Example Data (Risk Ratio)

Description
A data set simulated with two Normally distributed confounders, one "measured" and one "unmeasured", an exposure, and outcome. The "true" causal effect of the exposure on the outcome, accounting for both the measured and unmeasured confounders, should be 0.

Usage
exdata_rr

Format
A data frame with 2,000 rows and 4 columns:

- .unmeasured_confounder: A simulated unmeasured confounder
- measured_confounder: A simulated measured confounder
- exposure
- outcome
e_value
Calculate an E-value

Description

Calculate an E-value

Usage

```
e_value(effect_observed)
```

Arguments

- `effect_observed`

 Numeric positive value. Observed exposure - outcome effect (assumed to be the exponentiated coefficient, so a risk ratio, odds ratio, or hazard ratio). This can be the point estimate, lower confidence bound, or upper confidence bound.

Value

Numeric value

Examples

```
e_value(0.9)
e_value(1.3)
```

observed_bias_order
Order observed bias data frame for plotting

Description

Order observed bias data frame for plotting

Usage

```
observed_bias_order(d, by)
```

Arguments

- `d`

 Observed bias data frame. Must have columns *dropped* and *type*

- `by`

 Character. Variable in `d` to order by.

Value

Data frame in the correct order
observed_bias_tbl
Create a data frame to assist with creating an observed bias plot

Description

Create a data frame to assist with creating an observed bias plot

Usage

observed_bias_tbl(ps_mod, outcome_mod, drop_list = NULL)

Arguments

- `ps_mod`
 Model object for the propensity score model

- `outcome_mod`
 Model object for the outcome model

- `drop_list`
 Named list of covariates or groups of covariates to drop if NULL, will default to dropping each covariate one at a time.

Value

Data frame with the following columns:

- `dropped`
 The covariate or group of covariates that were dropped

- `type`
 Explanation of dropped, whether it refers to a single covariate (covariate) or a group of covariates (group)

- `ps_formula`
 The new formula for the updated propensity score model

- `outcome_formula`
 The new formula for the updated outcome model

- `ps_model`
 The new model object for the updated propensity score model

- `p`
 The updated propensity score

Examples

```r
ps_mod <- glm(am ~ mpg + cyl + I(hp^2), data = mtcars)
outcome_mod <- lm(qsec ~ am + hp + disp + wt, data = mtcars)
observed_bias_tbl(
  ps_mod,
  outcome_mod,
  drop_list = list(
    group_one = c("mpg", "hp"),
    group_two = c("cyl", "wt")
  )
)
```
Create a data frame to combine with an observed bias data frame demonstrating a hypothetical unmeasured confounder

Usage

```r
observed_bias_tip(
  tip,
  point_estimate,
  lb,
  ub,
  tip_desc = "Hypothetical unmeasured confounder"
)
```

Arguments

- `tip` Numeric. Value you would like to tip to.
- `point_estimate` Numeric. Result estimate from the full model.
- `lb` Numeric. Result lower bound from the full model.
- `ub` Numeric. Result upper bound from the full model.
- `tip_desc` Character. A description of the tipping point.

Value

A data frame with five columns:

- `dropped`: the input from `tip_desc`
- `type`: Explanation of dropped, here `tip` to clarify that this was calculated as a tipping point.
- `point_estimate`: the shifted point estimate
- `lb`: the shifted lower bound
- `ub`: the shifted upper bound
observed_covariate_e_value

Calculate the Observed Covariate E-value

Description

Calculate the Observed Covariate E-value

Usage

`observed_covariate_e_value(lb, ub, lb_adj, ub_adj, transform = NULL)`

Arguments

- `lb` Numeric. The lower bound of the full model
- `ub` Numeric. The upper bound of the full model
- `lb_adj` Numeric. The lower bound of the adjusted model
- `ub_adj` Numeric. The upper bound of the adjusted model
- `transform` Character. If your effect is an odds ratio or hazard ratio, this will perform the transformation suggested by VanderWeele and Ding. Allowed values are:
 - "OR"
 - "HR"

Value

The Observed Covariate E-value

r_value

Robustness value

Description

This function wraps the `sensemakr::robustness_value()` function

Usage

`r_value(effect_observed, se, df, ...)`
Arguments

- **effect_observed**: Numeric. Observed exposure - outcome effect from a regression model. This is the point estimate (beta coefficient).
- **se**: Numeric. Standard error of the `effect_observed` in the previous parameter.
- **df**: Numeric positive value. Residual degrees of freedom for the model used to estimate the observed exposure - outcome effect. This is the total number of observations minus the number of parameters estimated in your model. Often for models estimated with an intercept this is \(N - k - 1\) where \(k\) is the number of predictors in the model.
- ... Optional arguments passed to the `sensemakr::robustness_value()` function.

Value

Numeric. Robustness value

References

Examples

```r
r_value(0.5, 0.1, 102)
```

tip
Tip a result with a normally distributed confounder.

Description

choose one of the following, and the other will be estimated:

- `exposure_confounder_effect`
- `confounder_outcome_effect`

Usage

```r
tip(  
effect_observed,  
exposure_confounder_effect = NULL,  
confounder_outcome_effect = NULL,  
verbose = TRUE,  
correction_factor = "none"  
)  
tip_with_continuous(
```
```r
tip_c(
  effect_observed,
  exposure_confounder_effect = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE,
  correction_factor = "none"
)
```

Arguments

effect_observed
Numeric positive value. Observed exposure - outcome effect (assumed to be the exponentiated coefficient, so a risk ratio, odds ratio, or hazard ratio). This can be the point estimate, lower confidence bound, or upper confidence bound.

exposure_confounder_effect
Numeric. Estimated difference in scaled means between the unmeasured confounder in the exposed population and unexposed population

confounder_outcome_effect
Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome

verbose
Logical. Indicates whether to print informative message. Default: `TRUE`

correction_factor
Character string. Options are "none", "hr", "or". For common outcomes (>15%), the odds ratio or hazard ratio is not a good estimate for the risk ratio. In these cases, we can apply a correction factor. If you are supplying a hazard ratio for a common outcome, set this to "hr"; if you are supplying an odds ratio for a common outcome, set this to "or"; if you are supplying a risk ratio or your outcome is rare, set this to "none" (default).

Value
Data frame.

Examples

```r
## to estimate the relationship between an unmeasured confounder and outcome
## needed to tip analysis
tip(1.2, exposure_confounder_effect = -2)

## to estimate the number of unmeasured confounders specified needed to tip
## the analysis
tip(1.2, exposure_confounder_effect = -2, confounder_outcome_effect = .99)
```
```r
## Example with broom
if (requireNamespace("broom", quietly = TRUE) && 
   requireNamespace("dplyr", quietly = TRUE)) {
  glm(am ~ mpg, data = mtcars, family = "binomial") %>%
  broom::tidy(conf.int = TRUE, exponentiate = TRUE) %>%
  dplyr::filter(term == "mpg") %>%
  dplyr::pull(conf.low) %>%
  tip(confounder_outcome_effect = 2.5)
}
```

Description

The tipr package.

References

tip_coef

Tip a linear model coefficient with a continuous confounder.

Description

choose one of the following, and the other will be estimated:

- `exposure_confounder_effect`
- `confounder_outcome_effect`
Usage

```r
tip_coef(
  effect_observed,
  exposure_confounder_effect = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE
)

tip_coef_with_continuous(
  effect_observed,
  exposure_confounder_effect = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE
)
```

Arguments

- `effect_observed` Numeric. Observed exposure - outcome effect from a regression model. This can be the beta coefficient, the lower confidence bound of the beta coefficient, or the upper confidence bound of the beta coefficient.

- `exposure_confounder_effect` Numeric. Estimated scaled mean difference between the unmeasured confounder in the exposed population and unexposed population

- `confounder_outcome_effect` Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome

- `verbose` Logical. Indicates whether to print informative message. Default: TRUE

Value

Data frame.

Examples

```r
## to estimate the relationship between an unmeasured confounder and outcome
## needed to tip analysis
tip_coef(1.2, exposure_confounder_effect = -2)

## to estimate the number of unmeasured confounders specified needed to tip
## the analysis
tip_coef(1.2, exposure_confounder_effect = -2, confounder_outcome_effect = -0.05)

## Example with broom
if (requireNamespace("broom", quietly = TRUE) &&
    requireNamespace("dplyr", quietly = TRUE)) {
  lm(wt ~ mpg, data = mtcars) %>%
    broom::tidy(conf.int = TRUE) %>%
    dplyr::filter(term == "mpg") %>%
```
```r
dplyr::pull(conf.low) %>%
tip_coef(confounder_outcome_effect = 2.5)
}
```

tip_coef_with_r2
Tip a regression coefficient using the partial R2 for an unmeasured confounder-exposure relationship and unmeasured confounder-outcome relationship

Description

Choose one of the following, and the other will be estimated:

- `confounder_exposure_r2`
- `confounder_outcome_r2`

Usage

```r
tip_coef_with_r2(
  effect_observed,
  se,
  df,
  confounder_exposure_r2 = NULL,
  confounder_outcome_r2 = NULL,
  verbose = TRUE,
  alpha = 0.05,
  tip_bound = FALSE,
  ...
)
```

Arguments

- `effect_observed`
 Numeric. Observed exposure-outcome effect from a regression model. This is the point estimate (beta coefficient).

- `se`
 Numeric. Standard error of the `effect_observed` in the previous parameter.

- `df`
 Numeric positive value. Residual degrees of freedom for the model used to estimate the observed exposure-outcome effect. This is the total number of observations minus the number of parameters estimated in your model. Often for models estimated with an intercept this is N - k - 1 where k is the number of predictors in the model.

- `confounder_exposure_r2`
 Numeric value between 0 and 1. The assumed partial R2 of the unobserved confounder with the exposure given the measured covariates.

- `confounder_outcome_r2`
 Numeric value between 0 and 1. The assumed partial R2 of the unobserved confounder with the outcome given the exposure and the measured covariates.
verbose Logical. Indicates whether to print informative message. Default: TRUE
alpha Significance level. Default = 0.05.
tip_bound Do you want to tip at the bound? Default = FALSE, will tip at the point estimate
...
Optional arguments passed to the `sensemakr::adjusted_estimate()` function.

Value

A data frame.

Examples

```r
tip_coef_with_r2(0.5, 0.1, 102, 0.5)
```

tip_hr

Tip an observed hazard ratio with a normally distributed confounder.

Description

choose one of the following, and the other will be estimated:

- `exposure_confounder_effect`
- `confounder_outcome_effect`

Usage

```r
tip_hr(
  effect_observed,
  exposure_confounder_effect = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE,
  hr_correction = FALSE
)
```

```r
tip_hr_with_continuous(
  effect_observed,
  exposure_confounder_effect = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE,
  hr_correction = FALSE
)
```
Arguments

effect_observed
 Numeric positive value. Observed exposure - outcome hazard ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.

exposure_confounder_effect
 Numeric. Estimated difference in scaled means between the unmeasured confounder in the exposed population and unexposed population

confounder_outcome_effect
 Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome

verbose
 Logical. Indicates whether to print informative message. Default: TRUE

hr_correction
 Logical. Indicates whether to use a correction factor. The methods used for this function are based on risk ratios. For rare outcomes, a hazard ratio approximates a risk ratio. For common outcomes, a correction factor is needed. If you have a common outcome (>15%), set this to TRUE. Default: FALSE.

Value

 Data frame.

Examples

 ## to estimate the relationship between an unmeasured confounder and outcome
 ## needed to tip analysis
 tip_hr(1.2, exposure_confounder_effect = -2)

 ## to estimate the number of unmeasured confounders specified needed to tip
 ## the analysis
 tip_hr(1.2, exposure_confounder_effect = -2, confounder_outcome_effect = .99)

tip_hr_with_binary

Tip an observed hazard ratio with a binary confounder.

Description

Choose two of the following three to specify, and the third will be estimated:

- exposed_confounder_prev
- unexposed_confounder_prev
- confounder_outcome_effect

Alternatively, specify all three and the function will return the number of unmeasured confounders specified needed to tip the analysis.
Usage

```r
tip_hr_with_binary(
    effect_observed,
    exposed_confounder_prev = NULL,
    unexposed_confounder_prev = NULL,
    confounder_outcome_effect = NULL,
    verbose = TRUE,
    hr_correction = FALSE
)
```

Arguments

- `effect_observed`: Numeric positive value. Observed exposure-outcome hazard ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.
- `exposed_confounder_prev`: Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population.
- `unexposed_confounder_prev`: Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population.
- `confounder_outcome_effect`: Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome.
- `hr_correction`: Logical. Indicates whether to use a correction factor. The methods used for this function are based on risk ratios. For rare outcomes, a hazard ratio approximates a risk ratio. For common outcomes, a correction factor is needed. If you have a common outcome (>15%), set this to `TRUE`. Default: `FALSE`.

Value

Data frame.

Examples

```r
tip_hr_with_binary(0.9, 0.9, 0.1)
```

tip_or

Tip an observed odds ratio with a normally distributed confounder.

Description

Choose one of the following, and the other will be estimated:

- `exposure_confounder_effect`
- `confounder_outcome_effect`
Usage

```r
tip_or(
  effect_observed,
  exposure_confounder_effect = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE,
  or_correction = FALSE
)

tip_or_with_continuous(
  effect_observed,
  exposure_confounder_effect = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE,
  or_correction = FALSE
)
```

Arguments

- **effect_observed**: Numeric positive value. Observed exposure - outcome odds ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.
- **exposure_confounder_effect**: Numeric. Estimated difference in scaled means between the unmeasured confounder in the exposed population and unexposed population
- **confounder_outcome_effect**: Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome
- **verbose**: Logical. Indicates whether to print informative message. Default: TRUE
- **or_correction**: Logical. Indicates whether to use a correction factor. The methods used for this function are based on risk ratios. For rare outcomes, an odds ratio approximates a risk ratio. For common outcomes, a correction factor is needed. If you have a common outcome (>15%), set this to TRUE. Default: FALSE.

Value

Data frame.

Examples

```r
## to estimate the relationship between an unmeasured confounder and outcome
## needed to tip analysis
tip_or(1.2, exposure_confounder_effect = -2)

## to estimate the number of unmeasured confounders specified needed to tip
## the analysis
tip_or(1.2, exposure_confounder_effect = -2, confounder_outcome_effect = .99)
```
```r
## Example with broom
if (requireNamespace("broom", quietly = TRUE) &&
    requireNamespace("dplyr", quietly = TRUE)) {
  glm(am ~ mpg, data = mtcars, family = "binomial") %>%
  broom::tidy(conf.int = TRUE, exponentiate = TRUE) %>%
  dplyr::filter(term == "mpg") %>%
  dplyr::pull(conf.low) %>%
  tip_or(confounder_outcome_effect = 2.5, or_correction = TRUE)
}
```

tip_or_with_binary
Tip an observed odds ratio with a binary confounder.

Description

Choose two of the following three to specify, and the third will be estimated:

- `exposed_confounder_prev`
- `unexposed_confounder_prev`
- `confounder_outcome_effect`

Alternatively, specify all three and the function will return the number of unmeasured confounders specified needed to tip the analysis.

Usage

```r
tip_or_with_binary(
  effect_observed,
  exposed_confounder_prev = NULL,
  unexposed_confounder_prev = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE,
  or_correction = FALSE
)
```

Arguments

- `effect_observed`
 Numeric positive value. Observed exposure - outcome odds ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.

- `exposed_confounder_prev`
 Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population

- `unexposed_confounder_prev`
 Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population
Tip an observed risk ratio with a normally distributed confounder.

Description

choose one of the following, and the other will be estimated:

- exposure_confounder_effect
- confounder_outcome_effect

Usage

tip_rr(
 effect_observed,
 exposure_confounder_effect = NULL,
 confounder_outcome_effect = NULL,
 verbose = TRUE
)

tip_rr_with_continuous(
 effect_observed,
 exposure_confounder_effect = NULL,
 confounder_outcome_effect = NULL,
 verbose = TRUE
)
Arguments

effect_observed
 Numeric positive value. Observed exposure - outcome risk ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.

exposure_confounder_effect
 Numeric. Estimated difference in scaled means between the unmeasured confounder in the exposed population and unexposed population

confounder_outcome_effect
 Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome

verbose
 Logical. Indicates whether to print informative message. Default: TRUE

Value
 Data frame.

Examples

to estimate the relationship between an unmeasured confounder and outcome
needed to tip analysis
tip_rr(1.2, exposure_confounder_effect = -2)

to estimate the number of unmeasured confounders specified needed to tip
the analysis
tip_rr(1.2, exposure_confounder_effect = -2, confounder_outcome_effect = .99)

tip_rr_with_binary
Tip an observed risk ratio with a binary confounder.

Description

Choose two of the following three to specify, and the third will be estimated:

- exposed_confounder_prev
- unexposed_confounder_prev
- confounder_outcome_effect

Alternatively, specify all three and the function will return the number of unmeasured confounders specified needed to tip the analysis.
tip_with_binary

Usage

```r
tip_rr_with_binary(
  effect_observed,
  exposed_confounder_prev = NULL,
  unexposed_confounder_prev = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE
)
```

Arguments

- **effect_observed**
 Numeric positive value. Observed exposure - outcome risk ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.
- **exposed_confounder_prev**
 Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population
- **unexposed_confounder_prev**
 Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population
- **confounder_outcome_effect**
 Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome
- **verbose**
 Logical. Indicates whether to print informative message. Default: TRUE

Description

Choose two of the following three to specify, and the third will be estimated:

- `exposed_confounder_prev`
- `unexposed_confounder_prev`
- `confounder_outcome_effect`

Alternatively, specify all three and the function will return the number of unmeasured confounders specified needed to tip the analysis.

Usage

```r
tip_with_binary(
  effect_observed,
  exposed_confounder_prev = NULL,
  unexposed_confounder_prev = NULL,
  confounder_outcome_effect = NULL,
)```
### Arguments

#### effect_observed
- Numeric positive value. Observed exposure - outcome effect (assumed to be the exponentiated coefficient, so a risk ratio, odds ratio, or hazard ratio). This can be the point estimate, lower confidence bound, or upper confidence bound.

#### exposed_confounder_prev
- Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population.

#### unexposed_confounder_prev
- Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population.

#### confounder_outcome_effect
- Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome.

#### verbose
- Logical. Indicates whether to print informative message. Default: TRUE

#### correction_factor
- Character string. Options are "none", "hr", "or". For common outcomes (>15%), the odds ratio or hazard ratio is not a good estimate for the risk ratio. In these cases, we can apply a correction factor. If you are supplying a hazard ratio for a common outcome, set this to "hr"; if you are supplying an odds ratio for a common outcome, set this to "or"; if you are supplying a risk ratio or your outcome is rare, set this to "none" (default).

### Details

`tip_b()` is an alias for `tip_with_binary()`.

### Examples

```r
to estimate the relationship between an unmeasured confounder and outcome
needed to tip analysis
tip_with_binary(1.2, exposed_confounder_prev = 0.5, unexposed_confounder_prev = 0)

to estimate the number of unmeasured confounders specified needed to tip
the analysis
```
```
tip_with_binary(1.2,
 exposed_confounder_prev = 0.5,
 unexposed_confounder_prev = 0,
 confounder_outcome_effect = 1.1)

Example with broom
if (requireNamespace("broom", quietly = TRUE) &&
 requireNamespace("dplyr", quietly = TRUE)) {
 glm(am ~ mpg, data = mtcars, family = "binomial") %>%
 broom::tidy(conf.int = TRUE, exponentiate = TRUE) %>%
 dplyr::filter(term == "mpg") %>%
 dplyr::pull(conf.low) %>%
 tip_with_binary(exposed_confounder_prev = 1, confounder_outcome_effect = 1.15)
}
```
Index

* datasets
  exdata_continuous, 12
  exdata_rr, 12
  adjust_coef, 2
  adjust_coef_with_binary, 3
  adjust_coef_with_continuous (adjust_coef), 2
  adjust_coef_with_r2, 4
  adjust_hr, 6
  adjust_hr_with_binary, 7
  adjust_hr_with_continuous (adjust_hr), 6
  adjust_or, 8
  adjust_or_with_binary, 9
  adjust_or_with_continuous (adjust_or), 8
  adjust_rr, 10
  adjust_rr_with_binary, 11
  adjust_rr_with_continuous (adjust_rr), 10
  e_value, 13
  exdata_continuous, 12
  exdata_rr, 12
  observed_bias_order, 13
  observed_bias_tbl, 14
  observed_bias_tip, 15
  observed_covariate_e_value, 16
  r_value, 16
  sensemakr::adjusted_estimate(), 4, 5, 22
  sensemakr::adjusted_se(), 4
  sensemakr::robustness_value(), 16, 17
  tip, 17
  tip_b (tip_with_binary), 29
  tip_b(), 30
  tip_c (tip), 17
  tip_coef, 19
  tip_coef_with_continuous (tip_coef), 19
  tip_coef_with_r2, 21
  tip_hr, 22
  tip_hr_with_binary, 23
  tip_hr_with_continuous (tip_hr), 22
  tip_or, 24
  tip_or_with_binary, 26
  tip_or_with_continuous (tip_or), 24
  tip_rr, 27
  tip_rr_with_binary, 28
  tip_rr_with_continuous (tip_rr), 27
  tip_with_binary, 29
  tip_with_binary(), 30
  tip_with_continuous (tip), 17
  tipr, 19