Package ‘tipr’

Type Package
Title Tipping Point Analyses
Version 0.3.0
Author Lucy D'Agostino McGowan
Maintainer Lucy D'Agostino McGowan <lucydagostino@gmail.com>
Description The strength of evidence provided by epidemiological and observational studies is inherently limited by the potential for unmeasured confounding. We focus on three key quantities: the observed bound of the confidence interval closest to the null, a plausible residual effect size for an unmeasured continuous or binary confounder, and a realistic mean difference or prevalence difference for this hypothetical confounder. Building on the methods put forth by Lin, Psaty, & Kronmal (1998) <doi:10.2307/2533848>, we can use these quantities to assess how an unmeasured confounder may tip our result to insignificance, rendering the study inconclusive.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.1.1
Suggests testthat, broom, dplyr, MASS
Imports glue, tibble, purrr
NeedsCompilation no
Repository CRAN
Date/Publication 2021-09-10 08:00:02 UTC

R topics documented:

 lm_tip .. 2
 observed_bias_order ... 3
 observed_bias_tbl .. 4
 observed_bias_tip ... 5
 observed_covariate_e_value 6
 tip .. 6
 tipr ... 8
 tip_with_binary ... 8
Tip a linear model result with a continuous confounder.

Description

choose one of the following, and the other will be estimated:

- smd
- outcome_association

Usage

```r
lm_tip(
  d,
  smd = NULL,
  outcome_association = NULL,
  verbose = TRUE,
  lb_name = "conf.low",
  ub_name = "conf.high"
)
```

Arguments

d: Data frame. A data frame with the observed effect(s). This should have at least two columns with the lower and upper confidence bounds. These columns are assumed to be called `conf.low` and `conf.high`. If this is not the case, the names can be changed using the `lb_name` and `ub_name` parameters.

smd: Numeric. Estimated scaled mean difference between the unmeasured confounder in the exposed population and unexposed population

outcome_association: Numeric positive value. Estimated association between the unmeasured confounder and the outcome

verbose: Logical. Indicates whether to print informative message. Default: TRUE

lb_name: Character. Column name of `d` that holds the lower confidence bound. Default: `conf.low` based on `broom` defaults.

ub_name: Character. Column name of `d` that holds the upper confidence bound. Default: `conf.high` based on `broom` defaults.

Value

Data frame.
Examples

d <- data.frame(conf.low = 1.2, conf.high = 1.5)
to estimate the association between an unmeasured confounder and outcome
needed to tip analysis
lm_tip(d, smd = -2)

to estimate the number of unmeasured confounders specified needed to tip
the analysis
lm_tip(d, smd = -2, outcome_association = -0.05)

Example with broom
if (requireNamespace("broom", quietly = TRUE) &&
 requireNamespace("dplyr", quietly = TRUE)) {
lm(wt ~ mpg, data = mtcars) %>%
broom::tidy(conf.int = TRUE) %>%
dplyr::filter(term == "mpg") %>%
lm_tip(outcome_association = 2.5)
}

Description

Order observed bias data frame for plotting

Usage

observed_bias_order(d, by)

Arguments

d Observed bias data frame. Must have columns dropped and type
by Character. Variable in d to order by.

Value

Data frame in the correct order
observed_bias_tbl

Create a data frame to assist with creating an observed bias plot

Description

Create a data frame to assist with creating an observed bias plot

Usage

observed_bias_tbl(ps_mod, outcome_mod, drop_list = NULL)

Arguments

- **ps_mod**: Model object for the propensity score model
- **outcome_mod**: Model object for the outcome model
- **drop_list**: Named list of covariates or groups of covariates to drop if NULL, will default to dropping each covariate one at a time.

Value

Data frame with the following columns:

- **dropped**: The covariate or group of covariates that were dropped
- **type**: Explanation of dropped, whether it refers to a single covariate (covariate) or a group of covariates (group)
- **ps_formula**: The new formula for the updated propensity score model
- **outcome_formula**: The new formula for the updated outcome model
- **ps_model**: The new model object for the updated propensity score model
- **p**: The updated propensity score

Examples

```r
ps_mod <- glm(am ~ mpg + cyl + I(hp^2), data = mtcars)
outcome_mod <- lm(qsec ~ am + hp + disp + wt, data = mtcars)
observed_bias_tbl(
  ps_mod,
  outcome_mod,
  drop_list = list(
    group_one = c("mpg", "hp"),
    group_two = c("cyl", "wt")
  )
)
```
observed_bias_tip

Create a data frame to combine with an observed bias data frame demonstrating a hypothetical unmeasured confounder

Description

Create a data frame to combine with an observed bias data frame demonstrating a hypothetical unmeasured confounder

Usage

observed_bias_tip(
 tip,
 point_estimate,
 lb,
 ub,
 tip_desc = "Hypothetical unmeasured confounder"
)

Arguments

tip Numeric. Value you would like to tip to.
point_estimate Numeric. Result estimate from the full model.
lb Numeric. Result lower bound from the full model.
ub Numeric. Result upper bound from the full model.
tip_desc Character. A description of the tipping point.

Value

A data frame with five columns:

- dropped: the input from tip_desc
- type: Explanation of dropped, here tip to clarify that this was calculated as a tipping point.
- point_estimate: the shifted point estimate
- lb: the shifted lower bound
- ub: the shifted upper bound
observed_covariate_e_value

Calculate the Observed Covariate E-value

Description

Calculate the Observed Covariate E-value

Usage

```r
observed_covariate_e_value(lb, ub, lb_adj, ub_adj, transform = NULL)
```

Arguments

- `lb` Numeric. The lower bound of the full model
- `ub` Numeric. The upper bound of the full model
- `lb_adj` Numeric. The lower bound of the adjusted model
- `ub_adj` Numeric. The upper bound of the adjusted model
- `transform` Character. If your effect is an odds ratio or hazard ratio, this will perform the transformation suggested by VanderWeele and Ding. Allowed values are:
 - "OR"
 - "HR"

Value

The Observed Covariate E-value

tip

Tip a result with a continuous confounder.

Description

choose one of the following, and the other will be estimated:

- `smd`
- `outcome_association`
Usage

```r
tip(
  d,
  smd = NULL,
  outcome_association = NULL,
  verbose = TRUE,
  lb_name = "conf.low",
  ub_name = "conf.high"
)

tip_with_continuous(
  d,
  smd = NULL,
  outcome_association = NULL,
  verbose = TRUE,
  lb_name = "conf.low",
  ub_name = "conf.high"
)

tip_c(
  d,
  smd = NULL,
  outcome_association = NULL,
  verbose = TRUE,
  lb_name = "conf.low",
  ub_name = "conf.high"
)
```

Arguments

- **d** Data frame. A data frame with the observed effect(s). This should have at least two columns with the lower and upper confidence bounds. These columns are assumed to be called `conf.low` and `conf.high`. If this is not the case, the names can be changed using the `lb_name` and `ub_name` parameters.

- **smd** Numeric. Estimated scaled mean difference between the unmeasured confounder in the exposed population and unexposed population

- **outcome_association** Numeric positive value. Estimated association between the unmeasured confounder and the outcome

- **verbose** Logical. Indicates whether to print informative message. Default: `TRUE`

- **lb_name** Character. Column name of `d` that holds the lower confidence bound. Default: `conf.low` based on `broom` defaults.

- **ub_name** Character. Column name of `d` that holds the upper confidence bound. Default: `conf.high` based on `broom` defaults.

Value

Data frame.
Examples

d <- data.frame(conf.low = 1.2, conf.high = 1.5)
to estimate the association between an unmeasured confounder and outcome
needed to tip analysis
.tip(d, smd = -2)

to estimate the number of unmeasured confounders specified needed to tip
the analysis
.tip(d, smd = -2, outcome_association = .99)

Example with broom
if (requireNamespace("broom", quietly = TRUE) &&
requireNamespace("dplyr", quietly = TRUE)) {
 glm(am ~ mpg, data = mtcars, family = "binomial") %>%
broom::tidy(conf.int = TRUE, exponentiate = TRUE) %>%
dplyr::filter(term == "mpg") %>%
tip(outcome_association = 2.5)
}

Description

The tipr package.

References

Tip a result with a binary confounder.
Description

Choose two of the following three to specify, and the third will be estimated:

- `exposed_p`
- `unexposed_p`
- `outcome_association`

Alternatively, specify all three and the function will return the number of unmeasured confounders specified needed to tip the analysis.

Usage

```r
 tip_with_binary(  
  d,  
  exposed_p = NULL,  
  unexposed_p = NULL,  
  outcome_association = NULL,  
  verbose = TRUE,  
  lb_name = "conf.low",  
  ub_name = "conf.high"  
)  
```

```r
 tip_b(  
  d,  
  exposed_p = NULL,  
  unexposed_p = NULL,  
  outcome_association = NULL,  
  verbose = TRUE,  
  lb_name = "conf.low",  
  ub_name = "conf.high"  
)  
```

Arguments

- **d** Data frame. A data frame with the observed effect(s). This should have at least two columns with the lower and upper confidence bounds. These columns are assumed to be called `conf.low` and `conf.high`. If this is not the case, the names can be changed using the `lb_name` and `ub_name` parameters.
- **exposed_p** Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population
- **unexposed_p** Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population
- **outcome_association** Numeric positive value. Estimated association between the unmeasured confounder and the outcome
- **verbose** Logical. Indicates whether to print informative message. Default: TRUE
tip_with_binary

- **lb_name**: Character. Column name of d that holds the lower confidence bound. Default: conf.low based on broom defaults.

- **ub_name**: Character. Column name of d that holds the upper confidence bound. Default: conf.high based on broom defaults.

Details

`tip_b()` is an alias for `tip_with_binary()`.

Examples

```r
d <- data.frame(conf.low = 1.2, conf.high = 1.5)
## to estimate the association between an unmeasured confounder and outcome
## needed to tip analysis
tip_with_binary(d, exposed_p = 0.5, unexposed_p = 0)

## to estimate the number of unmeasured confounders specified needed to tip
## the analysis
tip_with_binary(d, exposed_p = 0.5, unexposed_p = 0, outcome_association = 1.1)

## Example with broom
if (requireNamespace("broom", quietly = TRUE) &
    requireNamespace("dplyr", quietly = TRUE)) {
  glm(am ~ mpg, data = mtcars, family = "binomial") %>%
  broom::tidy(conf.int = TRUE, exponentiate = TRUE) %>%
  dplyr::filter(term == "mpg") %>%
  tip_with_binary(exposed_p = 1, outcome_association = 1.15)
}
```
Index

lm_tip, 2
observed_bias_order, 3
observed_bias_tbl, 4
observed_bias_tip, 5
observed_covariate_e_value, 6

tip, 6
tip_b(tip_with_binary), 8
tip_b(), 10
tip_c(tip), 6
tip_with_binary, 8
tip_with_binary(), 10
tip_with_continuous(tip), 6
tipr, 8