Package ‘tldr’

May 24, 2023

Title T Loux Doing R: Functions to Simplify Data Analysis and Reporting

Version 0.3.0

Description Gives a number of functions to aid common data analysis processes and reporting statistical results in an 'RMarkdown' file. Data analysis functions combine multiple base R functions used to describe simple bivariate relationships into a single, easy to use function. Reporting functions will return character strings to report p-values, confidence intervals, and hypothesis test and regression results. Strings will be LaTeX-formatted as necessary and will knit pretty in an 'RMarkdown' document. The package also provides a wrapper for the CreateTableOne() function in the 'tableone' package to make the results knit-able.

Depends R (>= 4.0.0)
Imports tableone, ggplot2, reshape2
Suggests knitr
License GPL-3
Encoding UTF-8
LazyData false
RoxygenNote 7.1.1
NeedsCompilation no
Author Travis Loux [aut, cre]
Maintainer Travis Loux <travis.loux@slu.edu>
Repository CRAN
Date/Publication 2023-05-24 16:40:02 UTC

R topics documented:

as_perc ... 2
cat_compare .. 3
cont_compare ... 4
cutp ... 4
Description

`as_perc` formats a proportion as a percentage to print in an RMarkdown document.

Usage

```r
as_perc(p, digits = 0)
```

Arguments

- `p`: A length-1 numeric to be interpreted as a proportion.
- `digits`: Number of digits to round percentage to (default to 0).

Details

Simply multiplies `p` by 100 and affixes a percent sign to the end after rounding.

Value

Returns a string to report a percentage to the specified number of digits.

Examples

```r
as_perc(0.2345)

as_perc(0.000234)
```
Description

cat_compare gives details about the association between two categorical variables.

Usage

cat_compare(x, y, plot = TRUE)

Arguments

- x: A categorical variable: the predictor or group variable, if appropriate
- y: A categorical variable: the outcome, if appropriate
- plot: Logical. Whether a mosaic plot should be drawn

Details

Strictly, x and y do not need to be factors but will be coerced into factors.

Value

Returns a list including (1) two-way table of counts, (2) chi-squared test for independence, (3) Cramer’s V standardized effect, and (4) ggplot2 column plot of proportions conditional on x, if requested.

The table of counts will include missing values of both variables, but these rows/columns are discarded prior to the chi-squared test and Cramer’s V calculations.

Examples

```r
v1 = rbinom(n=50, size=1, p=0.5)
v2 = rbinom(n=50, size=2, p=0.3 + 0.2*v1)
cat_compare(x=v1, y=v2, plot=TRUE)
```
cont_compare

Compare a numerical variable across levels of a categorical variable

Description

Deprecated. Use `num_compare` instead.

Usage

```r
cont_compare(y, grp, plot = c("density", "boxplot", "none"))
```

Arguments

- `y`: A numerical variable
- `grp`: A categorical variable
- `plot`: Type of plot to produce

Value

Returns a list including (1) group-wise summary statistics, (2) ANOVA decomposition, (3) eta-squared effect size, and (4) ggplot2 object, if requested.

cutp

Cut a numeric vector into quantiles

Description

`cutp` is a wrapper for the base `cut` function. The vector `x` will be categorized using the percentiles provided in `p` to create break values.

Usage

```r
cutp(x, p, ...)
```

Arguments

- `x`: A numeric vector to be discretized
- `p`: A numeric vector of probabilities
- `...`: Arguments passed to `cut`

Details

Within the `cutp` function, `p` is passed to `quantile` as the `probs` input. The computed quantiles are then used as the `breaks` in `cut`.

The values `-Inf` and `Inf` are added to the beginning and end of the breaks vector, respectively, so quantiles for 0 and 1 do not need to be given explicitly.
Value

Returns the output from 'cut'. This is usually a factor unless otherwise specified.

@seealso quantile; cut

Examples

```r
myvals = rnorm(1000)
catx = cutp(x=myvals, p=c(0.25, 0.5, 0.75), labels=c('Q1', 'Q2', 'Q3', 'Q4'))
table(catx)
```

inline_coef

`inline_coef` presents the results of a coefficient from a `lm` or `glm` model in LaTeX format to be reported inline in an RMarkdown document.

Description

`inline_coef` presents the results of a coefficient from a `lm` or `glm` model in LaTeX format to be reported inline in an RMarkdown document.

Usage

```r
inline_coef(model, variable, coef = TRUE, stat = TRUE, pval = TRUE, digits = 2)
inline_coef_p(model, variable, digits = 2)
```

Arguments

- `model`: A regression model
- `variable`: A character string giving the name of the variable to be reported
- `coef`: Logical, whether the coefficient value is to be reported (default TRUE)
- `stat`: Logical, whether the test statistic for the coefficient should be reported (default TRUE)
- `pval`: Logical, whether the p-value for the coefficient should be reported (default TRUE)
- `digits`: Number of digits to round to (default to 2)

Details

This function currently only supports `lm` and `glm` objects. Suggestions and requests are welcomed.

`inline_coef_p` is a wrapper for `inline_coef` to report only the p-value (sets all non-p-value logicals to FALSE).

Value

Returns a LaTeX-formatted result for use in RMarkdown document.
Examples

```r
x1 = rnorm(20)
x2 = rnorm(20)
y = x1 + x2 + rnorm(20)
model1 = lm(y ~ x1 + x2)
inline_coef(model1, 'x1')
inline_coef_p(model1, 'x1')
```

Description

`inline_reg` presents the fit of a coefficient from a `lm` or `glm` model in LaTeX format to be reported inline in an RMarkdown document.

Usage

```r
inline_reg(model, fit = TRUE, stat = TRUE, pval = TRUE, digits = 2)
inline_reg_p(model, digits = 2)
inline_anova(model, stat = TRUE, pval = TRUE, digits = 2)
```

Arguments

- `model`: A regression model
- `fit`: Logical, whether the regression fit is to be reported (default TRUE, only applicable to `lm` objects)
- `stat`: Logical, whether the test statistic for the coefficient should be reported (default TRUE)
- `pval`: Logical, whether the p-value for the coefficient should be reported (default TRUE)
- `digits`: Number of digits to round to (default to 2)

Details

For `lm` objects, results include R-squared, the F statistic, and the p-value. For `glm` objects, results include the chi-squared statistic and the p-value.

This function currently only supports `lm` and `glm` objects. Suggestions and requests are welcomed.

`inline_reg_p` is a wrapper for `inline_reg` to report only the p-value (sets all non-p-value logicals to FALSE). `inline_anova` is a wrapper to report a one-way ANOVA result in which `fit` is set to FALSE and other logical inputs (`stat`, `pval`, and `digits`) are allowed to be user-defined.

Value

Returns a LaTeX-formatted result for use in RMarkdown document.
Examples

```r
x1 = rnorm(20)
y1 = x1 + rnorm(20)
model1 = lm(y1 ~ x1)
inline_reg(model1)

x2 = rnorm(20)
y2 = rbinom(n=20, size=1, prob=pnorm(x2))
model2 = glm(y2 ~ x2, family=binomial('logit'))
inline_reg(model2)
```

Description

`inline_test` formats the results of an htest object into LaTeX to be presented inline in an RMarkdown document.

Usage

```r
inline_test(test, stat = TRUE, pval = TRUE, digits = 2)
inline_test_p(test, digits = 2)
```

Arguments

- `test` An htest object
- `stat` Logical, whether to report test statistic (default TRUE)
- `pval` Logical, whether to report p-value (default TRUE)
- `digits` Number of digits to round to (default to 2)

Details

This function currently only supports t tests and chi-squared tests. Suggestions and requests are welcomed.

`inline_test_p` is a wrapper for `inline_test` to report only the p-value (sets all non-p-value logicals to FALSE).

Value

Returns a LaTeX-formatted hypothesis test result for use in RMarkdown document.
Examples

```r
x = rnorm(20)
test1 = t.test(x)
inline_test(test1)
inline_test_p(test1)
```

KreateTableOne

Create a table of descriptive statistics formatted for knitr::kable

Description

KreateTableOne is a wrapper for *tableone::CreateTableOne* which formats the original plain text table as a data.frame of character columns. *KnitableTableOne* is a wrapper for *tableone::print.TableOne* which allows for more versatility in printing options. The output of both functions can be printed in an RMarkdown document in a number of ways, e.g., using *knitr::kable*. *svyKreateTableOne* does the same with *tableone::svyCreateTableOne* for complex survey data.

Usage

```r
KreateTableOne(...)  
svyKreateTableOne(...)  
KnitableTableOne(x, ...)
```

Arguments

- `...`: Parameters to be passed to *tableone::CreateTableOne* (*KreateTableOne*) or *tableone::print.TableOne* (*KnitableTableOne*).
- `x`: A *TableOne* object created from *tableone::CreateTableOne*.

Details

These are very hacky functions. If used within an RMarkdown document, *KreateTableOne* and *KnitableTableOne* should be called in a code chunk with `results='hide'` to hide the plain text results printed from *tableone::CreateTableOne*. The resulting data frame should be saved as an object and used in a second code chunk for formatted printing. Suggestions for improvement are welcomed.

The function is written to work with *knitr::kable*, but should be able to work with other functions such as *xtable::xtable*.

Value

Returns a data frame of character columns.
See Also

CreateTableOne print.TableOne

Examples

```r
table1 = KreateTableOne(data=mtcars, strata='am', factorVars='vs')
table1
knitr::kable(table1)
```

```r
v1 = rbinom(n=50, size=1, p=0.5)
v2 = rnorm(50)
um_compare(y=v2, grp=v1, plot='density')
```

\[
\text{num_compare} \quad \text{Compare a numerical variable across levels of a categorical variable}
\]

Description

num_compare gives details about the distribution of a numeric variable across subsets of the dataset

Usage

```r
num_compare(y, grp, plot = c("density", "boxplot", "none"))
```

Arguments

- `y` A numerical variable
- `grp` A categorical variable
- `plot` Type of plot to produce

Value

Returns a list including (1) group-wise summary statistics, (2) ANOVA decomposition, (3) eta-squared effect size, and (4) ggplot2 object, if requested.

Examples

```r
v1 = rbinom(n=50, size=1, p=0.5)
v2 = rnorm(50)
um_compare(y=v2, grp=v1, plot='density')
```
write_int

Format an interval for display

Description
write_int formats a numeric input into an interval to be printed, e.g., in an RMarkdown document.

Usage
write_int(x, delim = "\(\)", digits = 2)

Arguments
- **x**: A length-2 numeric vector consisting of the endpoints of the interval or an n-row by 2-column matrix of endpoints.
- **delim**: The bracket delimiters to surround the interval. Must be either a round bracket, square bracket, curly bracket, or angled bracket.
- **digits**: Number of digits to round to (default to 2). Will keep trailing zeros.

Details
If a matrix is provided, the values in each row will be used to create a formatted interval.

Value
Returns a character string of the form "(x[1], x[2])" (or supplied bracket delimiter).

Examples
write_int(x=c(1.2, 2.345))
write_int(x=c(1.2, 2.345), delim='[')

write_p

Format a p-value for display

Description
write_p formats a p-value for display in an RMarkdown document.

Usage
write_p(x, digits = 2)
write_p

Arguments

x A length-1 numeric or a list-like object with element named p.value (such as an htest object)
digits Number of digits to round to (default to 2)

Details

If x < 10^{\text{-digits}}, then the result is the string p < 10^{\text{-digits}} in decimal notation.

Value

Returns a \LaTeX\-formatted string to report a p-value to the specified number of digits.

Examples

\texttt{write_p(0.2345)}

\texttt{write_p(0.000234)}

\texttt{x = rnorm(10)}
\texttt{test1 = t.test(x)}
\texttt{write_p(test1)}
Index

as_perc, 2

cat_compare, 3
cont_compare, 4
CreateTableOne, 9
cut, 5
cutp, 4

inline_anova(inline_reg), 6
inline_coef, 5
inline_coef_p(inline_coef), 5
inline_reg, 6
inline_reg_p(inline_reg), 6
inline_test, 7
inline_test_p(inline_test), 7

KnitableTableOne(KreateTableOne), 8
KreateTableOne, 8

num_compare, 4, 9

print.TableOne, 9

quantile, 5

svyKreateTableOne(KreateTableOne), 8

write_int, 10
write_p, 10