Package ‘tongfen’

April 28, 2022

Type Package
Title Make Data Based on Different Geographies Comparable
Version 0.3.5
Description Several functions to allow comparisons of data across different geographies, in particular for Canadian census data from different censuses.
License MIT + file LICENSE
Encoding UTF-8
ByteCompile yes
LazyData true
NeedsCompilation no
Imports dplyr (>= 1.0),
 tidyverse (>= 1.0),
 sf,
 tibble,
 rlang,
 purrr,
 stringr,
 readr,
 utils,
 lifecycle
RoxygenNote 7.1.2
Suggests knitr,
 rmarkdown,
 RColorBrewer,
 ggplot2,
 geojsonsf,
 cancensus,
 tidycensus,
 spelling,
 readxl,
 scales
VignetteBuilder knitr, rmarkdown
BugReports https://github.com/mountainMath/tongfen/issues
Language en-US
RdMacros lifecycle
Depends R (>= 2.10)

R topics documented:

add_census_ca_base_variables ... 2
aggregate_data_with_meta ... 3
check_tongfen_areas .. 4
check_tongfen_single_areas ... 5
estimate_tongfen_correspondence 5
estimate_tongfen_single_correspondence 6
get_correspondence_ca_census_for 7
get_single_correspondence_ca_census_for 8
get_tongfen_ca_census .. 8
get_tongfen_ca_census_ct_from_da 10
get_tongfen_census_ct .. 10
get_tongfen_census_da .. 11
get_tongfen_correspondence_ca_census 12
get_tongfen_us_census .. 13
meta_for_additive_variables .. 14
meta_for_ca_census_vectors .. 15
proportional_reaggregate .. 15
tongfen_aggregate ... 16
tongfen_ca_census_ct ... 17
tongfen_estimate ... 18
tongfen_estimate_ca_census ... 19
tongfen_tag_largest_overlap .. 20
vancouver_elections_data_2015 .. 21
vancouver_elections_data_2019 .. 21
vancouver_elections_geos_2015 .. 21
vancouver_elections_geos_2019 .. 22

Index 23

add_census_ca_base_variables

Generate metadata from Canadian census vectors

Description

[Maturing]
Add Population, Dwellings, and Household counts to metadata

Usage

add_census_ca_base_variables(meta)

Arguments

meta ribble with metadata as for example provided by ‘meta_for_ca_census_vectors’
aggregate_data_with_meta

Value

tibble with metadata

aggregate_data_with_meta

Aggregate variables in grouped data

Description

[Mature]

Aggregate census data up, assumes data is grouped for aggregation. Uses data from meta to determine how to aggregate up.

Usage

```r
aggregate_data_with_meta(data, meta, geo = FALSE, na.rm = TRUE, quiet = FALSE)
```

Arguments

- `data` : census data as obtained from get_census call, grouped by TongfenID
- `meta` : list with variables and aggregation information as obtained from meta_for_vectors
- `geo` : logical, should also aggregate geographic data
- `na.rm` : logical, should NA values be ignored or carried through.
- `quiet` : logical, don’t emit messages if set to ‘TRUE’

Value

data frame with variables aggregated to new common geography

Examples

```r
# Aggregate population from DA level to grouped by CT_UID
## Not run:
geo <- cancensus::get_census("CA06", regions=list(CSD="5015022"), level='DA')
meta <- meta_for_additive_variables("CA06", "Population")
result <- aggregate_data_with_meta(geo %>% group_by(CT_UID), meta)
## End(Not run)
```
check_tongfen_areas

Check geographic integrity

Description

[Maturing]
Sanity check for areas of estimated tongfen correspondence. This is useful if for example the total extent of geo1 and geo2 differ and there are regions at the edges with large difference in overlap.

Usage

check_tongfen_areas(data, correspondence)

Arguments

data a list of geographic data of class sf

correspondence Correspondence table with columns the unique geographic identifiers for each of the geographies and the TongfenID (and optionally TongfenUID and Tongfen-Method) returned by ‘estimate_tongfen_correspondence’.

Value

A table with columns ‘TongfenID’, geo_identifiers, the areas of the aggregated regions corresponding to each geographic identifier column, the tongfen estimation method and the maximum log ratio of the areas.

Examples

Estimate a common geography for 2006 and 2016 dissemination areas in the City of Vancouver # based on the geographic data and check estimation errors
Not run:
regions <- list(CSD="5915022")
data_06 <- cancensus::get_census("CA06",regions=regions,geo_format="sf",level="DA") %>% rename(GeoUID_06=GeoUID)
data_16 <- cancensus::get_census("CA16",regions=regions,geo_format="sf",level="DA") %>% rename(GeoUID_16=GeoUID)
correspondence <- estimate_tongfen_correspondence(list(data_06, data_16),
c("GeoUID_06","GeoUID_16"))
area_check <- check_tongfen_areas(list(data_06, data_16),correspondence)
End(Not run)
check_tongfen_single_areas

Check geographic integrity

Description

[Deprecated]

Sanity check for areas of estimated tongfen correspondence. This is useful if for example the total extent of geo1 and geo2 differ and there are regions at the edges with large difference in overlap.

Usage

check_tongfen_single_areas(geo1, geo2, correspondence)

Arguments

geo1 input geometry 1 of class sf
geo2 input geometry 2 of class sf
correspondence Correspondence table between ‘geo1’ and ‘geo2’ as e.g. returned by ‘estimate_tongfen_correspondence’.

Value

A table with columns ‘TongfenID’, ‘area1’ and ‘area2’, where each row corresponds to a unique ‘TongfenID’ from them ‘correspondence’ table and the other columns hold the areas of the regions aggregated from ‘geo1’ and ‘geo2’.

estimate_tongfen_correspondence

Generate tongfen correspondence for list of geographies

Description

[Mathuring]

Get correspondence data for arbitrary congruent geometries. Congruent means that one can obtain a common tiling by aggregating several sub-geometries in each of the two input geo data. Worst case scenario the only common tiling is given by unioning all sub-geometries and there is no finer common tiling.

Usage

estimate_tongfen_correspondence(
 data,
 geo_identifiers,
 method = "estimate",
 tolerance = 50,
 computation_crs = NULL
)
estimate_tongfen_single_correspondence

Arguments

- **data**: list of geometries of class `sf`
- **geo_identifiers**: vector of unique geographic identifiers for each list entry in data.
- **method**: aggregation method. Possible values are "estimate" or "identifier". "estimate" estimates the correspondence purely from the geographic data. "identifier" assumes that regions with identical geo_identifiers are the same, and uses the "estimate" method for the remaining regions. Default is "estimate".
- **tolerance**: tolerance (in projected coordinate units of 'computation_crs') for feature matching
- **computation_crs**: optional crs in which the computation should be carried out, defaults to crs of the first entry in the data parameter.

Value

A correspondence table linking geo1_uid and geo2_uid with unique TongfenID and TongfenUID columns that enumerate the common geometry.

Examples

```r
# Estimate a common geography for 2006 and 2016 dissemination areas in the City of Vancouver
# based on the geographic data.
## Not run:
regions <- list(CSD="5915022")
data_06 <- cancensus::get_census("CA06",regions=regions,geo_format="sf",level="DA") %>%
  rename(GeoUID_06=GeoUID)
data_16 <- cancensus::get_census("CA16",regions=regions,geo_format="sf",level="DA") %>%
  rename(GeoUID_16=GeoUID)
correspondence <- estimate_tongfen_correspondence(list(data_06, data_16),
  c("GeoUID_06","GeoUID_16"))
## End(Not run)
```

estimate_tongfen_single_correspondence

Generate tongfen correspondence for two geographies

Description

[Maturing]

Get correspondence data for arbitrary congruent geometries. Congruent means that one can obtain a common tiling by aggregating several sub-geometries in each of the two input geo data. Worst case scenario the only common tiling is given by unioning all sub-geometries and there is no finer common tiling.
Usage

```
estimate_tongfen_single_correspondence(
    geo1,
    geo2,
    geo1_uid,
    geo2_uid,
    tolerance = 1,
    computation_crs = NULL,
    robust = FALSE
)
```

Arguments

- `geo1`: input geometry 1 of class sf
- `geo2`: input geometry 2 of class sf
- `geo1_uid`: (unique) identifier column for `geo1`
- `geo2_uid`: (unique) identifier column for `geo2`
- `tolerance`: tolerance (in projected coordinate units) for feature matching
- `computation_crs`: optional crs in which the computation should be carried out, defaults to crs of `geo1`
- `robust`: boolean parameter, will ensure geometries are valid if set to TRUE

Value

A correspondence table linking `geo1_uid` and `geo2_uid` with unique TongfenID and TongfenUID columns that enumerate the common geometry.

get_correspondence_ca_census_for

Get StatCan DA or DB level correspondence file

Description

[Deprecated] Joins the StatCan correspondence files for several census years

Usage

```
get_correspondence_ca_census_for(years, level, refresh = FALSE)
```

Arguments

- `years`: list of census years
- `level`: geographic level, DA or DB
- `refresh`: reload the correspondence files, default is ‘FALSE’

Value

tibble with correspondence table spanning all years
get_single_correspondence_ca_census_for

Get StatCan DA or DB level correspondence file

Description

[Maturing]

Usage

get_single_correspondence_ca_census_for(
 year,
 level = c("DA", "DB"),
 refresh = FALSE
)

Arguments

year census year, only 2006 through 2021 are supported
level geographic level, DA or DB
refresh reload the correspondence files, default is ‘FALSE’

Value

tibble with correspondence table

get_tongfen_ca_census

Togfen data from several Canadian censuses

Description

[Maturing]

Get data from several Canadian censuses on a common geography. Requires sf and cancensus package to be available

Usage

gtongfen_ca_census(
 regions,
 meta,
 level = "CT",
 method = "statcan",
 base_geo = NULL,
 na.rm = FALSE,
 tolerance = 50,
 area_mismatch_cutoff = 0.1,
 quiet = FALSE,
 refresh = FALSE,
 crs = NULL,
 data_transform = function(d) d
)
get_tongfen_ca_census

Arguments

regions census region list, should be inclusive list of GeoUIDs across censuses
meta metadata for the census veraiables to aggregate, for example as returned by meta_for_ca_census_vectors.
level aggregation level to return data on (default is "CT")
method tongfen method, options are "statcan" (the default), "estimate", "identifier". * "statcan" method builds up the common geography using Statistics Canada correspondence files, at this point this method only works for "DB", "DA" and "CT" levels. * "estimate" uses 'estimate_tongfen_correspondence' to build up the common geography from scratch based on geographies. * "identifier" assumes regions with identical geographic identifier are identical, and builds up the the correspondence for regions with unmatched geographic identifiers.
base_geo base census year to build up common geography from, ‘NULL’ (the default) to not return any geographi data
na.rm logical, determines how NA values should be treated when aggregating variables
tolerance tolerance for 'estimate_tongfen_correspondence' in metres, default value is 50 metres, only used when method is ‘estimate’ or ‘identifier’
area_mismatch_cutoff discard areas returned by 'estimate_tongfen_correspondence' with area mismatch (log ratio) greater than cutoff, only used when method is ‘estimate’ or ‘identifier’
quiet suppress download progress output, default is ‘FALSE’
refresh optional character, refresh data cache for this call, (default ‘FALSE’)
crs optional CRS to transform data to, and use for spatial intersections if method is ‘identifier’ or ‘estimate’
data_transform optional transform function to be applied to census data after being returned from cancensus

Value

dataframe with variables on common geography

Examples

Get rent data for census years 2001 through 2016
Not run:
rent_variables <- c(rent_2001="v_CA01_1667",rent_2016="v_CA16_4901",
rent_2011="v_CA11N_2292",rent_2006="v_CA06_2050")
meta <- meta_for_ca_census_vectors(rent_variables)
regions=list(CMA="59933")
rent_data <- get_tongfen_ca_census(regions=regions, meta=meta, quiet=TRUE,
method="estimate", level="CT", base_geo = "CA16")

End(Not run)
get_tongfen_ca_census_ct_from_da
Canadian census CT level tongfen via DA correspondence

Description

[Deprecated]

Grab variables from several censuses on a common geography. Requires sf package to be available
Will return CT level data

Usage

```r
get_tongfen_ca_census_ct_from_da(
  regions,
  vectors,
  geo_format = NA,
  use_cache = TRUE,
  na.rm = TRUE,
  quiet = TRUE
)
```

Arguments

- `regions`
 census region list, should be inclusive list of GeoUIDs across censuses
- `vectors`
 List of cancensus vectors, can come from different census years
- `geo_format`
 ‘NA’ to only get the variables or ‘sf’ to also get geographic data
- `use_cache`
 logical, passed to `cancensus::get_census` to regulate caching
- `na.rm`
 logical, determines how NA values should be treated when aggregating variables
- `quiet`
 suppress download progress output, default is ‘TRUE’

Value

dataframe with variables on common geography

get_tongfen_census_ct
Canadian census CT level tongfen

Description

[Deprecated]

Grab variables from several censuses on a common geography. Requires sf package to be available
Will return CT level data
Usage

\texttt{get_tongfen_census_ct(}
\texttt{ regions,}
\texttt{ vectors,}
\texttt{ geo_format = NA,}
\texttt{ na.rm = TRUE,}
\texttt{ quiet = TRUE,}
\texttt{ refresh = FALSE}
\texttt{)}

Arguments

\begin{itemize}
 \item \texttt{regions} \hspace{1cm} census region list, should be inclusive list of GeoUIDs across censuses
 \item \texttt{vectors} \hspace{1cm} List of cancensus vectors, can come from different census years
 \item \texttt{geo_format} \hspace{1cm} geographic format for returned data, \texttt{‘sf’} for \texttt{sf} format and \texttt{‘NA’}
 \item \texttt{na.rm} \hspace{1cm} remove NA values when aggregating up values, default is \texttt{‘TRUE’}
 \item \texttt{quiet} \hspace{1cm} suppress download progress output, default is \texttt{‘FALSE’}
 \item \texttt{refresh} \hspace{1cm} optional character, refresh data cache for this call
\end{itemize}

Value

dataframe with census variables on common geography

\texttt{get_tongfen_census_da \hspace{1cm} Canadian Census DA level tongfen}

Description

\texttt{[Deprecated]}

Grab variables from several censuses on a common geography. Requires \texttt{sf} package to be available
Will return CT level data

Usage

\texttt{get_tongfen_census_da(}
\texttt{ regions,}
\texttt{ vectors,}
\texttt{ geo_format = NA,}
\texttt{ use_cache = TRUE,}
\texttt{ na.rm = TRUE,}
\texttt{ quiet = TRUE}
\texttt{)}

Arguments

\begin{itemize}
 \item \texttt{regions} \hspace{1cm} census region list, should be inclusive list of GeoUIDs across censuses
 \item \texttt{vectors} \hspace{1cm} List of cancensus vectors, can come from different census years
 \item \texttt{geo_format} \hspace{1cm} \texttt{‘NA’} to only get the variables or \texttt{‘sf’} to also get geographic data
 \item \texttt{use_cache} \hspace{1cm} logical, passed to \texttt{‘cancensus::get_census’} to regulate caching
 \item \texttt{na.rm} \hspace{1cm} logical, determines how NA values should be treated when aggregating variables
 \item \texttt{quiet} \hspace{1cm} suppress download progress output, default is \texttt{‘TRUE’}
\end{itemize}
Value
dataframe with variables on common geography

get_tongfen_correspondence_ca_census

Description

[Maturing]
Get correspondence file for several Canadian censuses on a common geography. Requires sf and cancensus package to be available

Usage

get_tongfen_correspondence_ca_census(
 geo_datasets,
 regions,
 level = "CT",
 method = "statcan",
 tolerance = 50,
 area_mismatch_cutoff = 0.1,
 quiet = FALSE,
 refresh = FALSE
)

Arguments

geo_datasets vector of census geography dataset identifiers
regions census region list, should be inclusive list of GeoUIDs across censuses
level aggregation level to return data on (default is "CT")
method tongfen method, options are "statcan" (the default), "estimate", "identifier". * "statcan" method builds up the common geography using Statistics Canada correspondence files, at this point this method only works for "DB", "DA" and "CT" levels. * "estimate" uses 'estimate_tongfen_correspondence' to build up the common geography from scratch based on geographies. * "identifier" assumes regions with identical geographic identifier are identical, and builds up the the correspondence for regions with unmatched geographic identifiers.
tolerance tolerance for 'estimate_tongen_correspondence' in metres, default value is 50 metres.
area_mismatch_cutoff discard areas returned by 'estimate_tongfen_correspondence' with area mismatch (log ratio) greater than cutoff.
quiet suppress download progress output, default is 'FALSE'
refresh optional character, refresh data cache for this call, (default 'FALSE')

Value
dataframe with the multi-census correspondence file
get_tongfen_us_census

Examples

Get correspondance files between CTs in 2006 and 2016 censuses in Vancouver CMA
Not run:
correspondence <- get_tongfen_correspondence_ca_census(geo_datasets=c('CA06', 'CA16'),
regions=list(CMA="59933"), level="CT")
End(Not run)

describe_tongfen_us_census

Get US census data for 2000 and 2010 censuses on common census tract
based geography

Description

[Maturing]
This wraps data acquisition via the tidycensus package and tongfen on a common geography into a
single convenience function.

Usage

get_tongfen_us_census(
 regions,
 meta,
 level = "tract",
 survey = "census",
 base_geo = NULL
)

Arguments

regions list with regions to query the data for. At this stage, the only valid list is a vector
of states, i.e. 'regions = list(state=c("CA","OR"))'
meta metadata for variables to retrieve
level aggregation level to return the data on. At this stage, the only valid levels are
'tract' and 'county subdivision'.
survey survey to get data for, supported options is "census"
base_geo census year to use as base geography, default is '2010'.

Value

sf object with (wide form) census variables with census year as suffix (separated by underdcore
"_").

Examples

Get US census data on population and households for 2000 and 2010 censuses on a uniform geography
based on census tracts.
Not run:
variables=c(population="H011001", households="H013001")
```r
meta <- c(2000,2010) %>%
  lapply(function(year){
    v <- variables %>% setNames(paste0(names(.),"_",year))
    meta_for_additive_variables(paste0("dec",year),v)
  }) %>%
  bind_rows()
census_data <- get_tongfen_us_census(regions = list(state="CA"), meta=meta, level="tract") %>%
  mutate(change=population_2010/households_2010-population_2000/households_2000)

## End(Not run)
```

meta_for_additive_variables

Generate tongfen metadata for additive variables

Description

[Maturing]

Generates metadata to be used in `tongfen_aggregate`. Variables need to be additive like counts.

Usage

```r
meta_for_additive_variables(dataset, variables)
```

Arguments

- `dataset` identifier for the dataset containing the variable
- `variables` (named) vector with additive variables

Value

- a tibble to be used in `tongfen_aggregate`

Examples

```r
# Get metadata for additive variable Population for the CA16 and CA06 datasets
## Not run:
meta <- meta_for_additive_variables(c("CA06","CA16"),"Population")
## End(Not run)
```
meta_for_ca_census_vectors

Generate metadata from Canadian census vectors

Description

[Maturing]
Build tibble with information on how to aggregate variables given vectors. Queries `list_census_variables` to obtain needed information and add in vectors needed for aggregation.

Usage

```r
meta_for_ca_census_vectors(vectors)
```

Arguments

- `vectors` list of variables to query

Value

Tidy dataframe with metadata information for requested variables and additional variables needed for tongfen operations.

Examples

```r
# Build metadata for vectors
## Not run:
meta <- meta_for_ca_census_vectors("v_CA16_4836","v_CA16_4838","v_CA16_4899")
## End(Not run)
```

proportional_reaggregate

Dasymetric downsampling

Description

[Maturing]
Proportionally re-aggregate hierarchical data to lower-level w.r.t. values of the *base* variable. Also handles cases where lower level data may be available but blinded at times by filling in data from higher level.

Data at lower aggregation levels may not add up to the more accurate aggregate counts. This function distributes the aggregate level counts proportionally (by population) to the containing lower level geographic regions.
Usage

proportional_reaggregate(
 data,
 parent_data,
 geo_match,
 categories,
 base = "Population"
)

Arguments

data The base geographic data
parent_data Higher level geographic data
geo_match A named string informing on what column names to match data and parent_data
categories Vector of column names to re-aggregate
base Column name to use for proportional weighting when re-aggregating

Value
dataframe with downsampled variables from parent_data

Examples

Proportionally reaggregate visible minority data from dissemination area 2016
census data to dissemination block geography, proportionally based on dissemination
census block population

Not run:
regions <- list(CSD="5915022")
variables <- cancensus::child_census_vectors("v_CA16_3954")
da_data <- cancensus::get_census("CA16", regions=regions,
 vectors=setNames(variables$vector,variables$label),
 level="DA")
geo_data <- cancensus::get_census("CA16", regions=regions, geo_format="sf", level="DB")
db_data <- geo_data %>% proportional_reaggregate(da_data,c("DA_UID"="GeoUID"),variables$label)

End(Not run)

tongfen_aggregate

Perform tongfen according to correspondence

Description

[Maturing]
Aggregate variables specified in meta for several datasets according to correspondence.

Usage

tongfen_aggregate(data, correspondence, meta = NULL, base_geo = NULL)
Arguments

data
list of datasets to be aggregated

correspondence
correspondence data for gluing up the datasets

meta
metadata containing aggregation rules as for example returned by ‘meta_for_ca_census_vectors’

base_geo
identifier for which data element to base the final geography on, uses the first data element if ‘NULL’ (default), expects that ‘base_geo’ is an element of ‘names(data)’.

Value

aggregated dataset of class sf if base_geo is not NULL and data is of type sf or tibble otherwise.

Examples

aggregate census tract level 2006 population data on common geography build through
correspondence from 2006 and 2016 census tracts in the City of Vancouver.
Not run:
regions <- list(CSD="5915022")
geo1 <- cancensus::get_census("CA06",regions=regions,geo_format="sf",level='CT')
geo2 <- cancensus::get_census("CA16",regions=regions,geo_format="sf",level='CT')
meta <- meta_for_additive_variables("CA06","Population")
correspondence <- get_tongfen_correspondence_ca_census(geo_datasets=c('CA06','CA16'),
regions=regions,level='CT')
result <- tongfen_aggregate(list(geo1 %>% rename(GeoUIDCA06=GeoUID),
geo2 %>% rename(GeoUIDCA16=GeoUID)),correspondence,meta)

End(Not run)
tongfen_estimate

Arguments

data1 cancensus CT level dataset for year1 < year2 to serve as base for common geography
data2 cancensus CT level dataset for year2 to be aggregated to common geography
data2_sum_vars vector of variable names to by summed up when aggregating geographies
data2_group_vars optional vector of grouping variables
na.rm optional parameter to remove NA values when summing, default = 'TRUE'

Description

[Maturing]
Estimates data from source geometry onto target geometry

Usage

tongfen_estimate(target, source, meta, na.rm = FALSE)

Arguments

target custom geography to estimate values for
source input geography with values
meta metadata for variable aggregation
na.rm remove NA values when aggregating, default is FALSE

Value

'target' with estimated quantities from 'source' as specified by 'meta'

Examples

Estimate 2006 Population in the City of Vancouver dissemination areas on 2016 census geographies
Not run:
geo1 <- cancensus::get_census("CA06", regions=list(CSD="5915022"), geo_format='sf', level='DA')
geo2 <- cancensus::get_census("CA16", regions=list(CSD="5915022"), geo_format='sf', level='DA')
meta <- meta_for_additive_variables("CA06", "Population")
result <- tongfen_estimate(geo2 %>% rename(Population_2016=Population), geo1, meta)
End(Not run)
tongfen_estimate_ca_census

Tongfen estimate data for given geometry

Description

[Maturing]

Estimates values for the given census vectors for the given geometry using data from the specified level range

Usage

tongfen_estimate_ca_census(
 geometry,
 meta,
 level,
 intersection_level = level,
 downsample_level = NULL,
 na.rm = FALSE,
 quiet = FALSE
)

Arguments

geometry
game

meta
metadata for the census variables to aggregate, for example as returned by 'meta_for_ca_census_vectors'.

At this point this function only accepts variables from the same census geography year. We will expand this to also allow estimates across multiple census geography years, but this requires further attention to detail. It is recommended to apply due caution when running this function separately across several census geography years with the purpose of comparing data across time as a naive application can lead to systematic biases.

level
t level to use for tongfen

intersection_level
level to use for geometry intersection, if different from tongfen level by meta_for_ca_census_vectors.

This can be set at a higher aggregation level to conserve API points for the 'get_intersecting_geometries' call.

downsample_level
default 'NULL', can be a geographic level lower than 'level', in which case the data is downsamples to that geography level proportionally using the value of the 'downsample' column (must be supplied) in the 'meta' argument before intersecting the geometries. This can lead to more accurate results. At this point the only allowed variables for the 'downsample' column in 'meta' are "Population", "Households" or "Dwellings", and it can only be one of these for all variables.

na.rm
how to deal with NA values, default is FALSE.

quiet
suppress progress messages
Examples

```r
# Estimate a common geography for 2006 and 2016 dissemination areas in the City of Vancouver
# based on the geographic data and check estimation errors
## Not run:
toronto_city_hall <- sf::st_point(c(-79.3839,43.6534)) %>%
   sf::st_sfc(crs=4326) %>%
   sf::st_transform(3348) %>%
   sf::st_buffer(1000) %>%
   sf::st_sf()
meta <- meta_for_additive_variables("CA16","Population")
data <- tongfen_estimate_ca_census(toronto_city_hall,meta,level="DA",intersection_level="CT")
print(paste0("Approximately ",scales::comma(data$Population,accuracy=100),
   " people live within a 1 km radius of Toronto City."))
## End(Not run)
```

tongfen_tag_largest_overlap

Tag regions by largest overlap

Description

[Maturing]

Tags regions in `source` by `target_id` of region in `target` with the largest overlap

Usage

`tongfen_tag_largest_overlap(source, target, target_id)`

Arguments

- `source` input geography
- `target` custom geography
- `target_id` name of the column in `target` table with unique id (character)

Value

`source` with extra column with name `'target_id'` and column `...overlap_fraction` with the proportion of overlap of the target geometry with the respective `target_id`

Examples

```r
# Estimate 2006 Population in the City of Vancouver dissemination areas on 2016 census geographies
## Not run:
geo1 <- cancensus::get_census("CA06",regions=list(CSD="5915022"),geo_format='sf',level='DA')
geo2 <- cancensus::get_census("CA16",regions=list(CSD="5915022"),geo_format='sf',level='DA')
meta <- meta_for_additive_variables("CA06","Population")
result <- tongfen_estimate(geo2 %>% rename(Population_2016=Population),geo1,meta)
## End(Not run)
```
vancouver_elections_data_2015

Description
A dataset with polling station votes data from the 2015 federal election in the Vancouver area

Author(s)
Elections Canada

References
https://www.elections.ca/content.aspx?section=res&dir=rep/off&document=index&lang=e#42GE

vancouver_elections_data_2019

Description
A dataset with polling station votes data from the 2019 federal election in the Vancouver area

Author(s)
Elections Canada

References
https://www.elections.ca/content.aspx?section=res&dir=rep/off&document=index&lang=e#43GE

vancouver_elections_geos_2015

Description
A dataset with polling district geographies from the 2015 federal election in the Vancouver area

Author(s)
Elections Canada
A dataset with polling district geographies from the 2019 federal election in the Vancouver area

Author(s)
Elections Canada

References
https://www.elections.ca/content.aspx?section=res&dir=rep/off&document=index&lang=e#43GE
Index

* base
 proportional_reaggregate, 15

* data
 vancouver_elections_data_2015, 21
 vancouver_elections_data_2019, 21
 vancouver_elections_geos_2015, 21
 vancouver_elections_geos_2019, 22

* proportionally
 proportional_reaggregate, 15

* reaggregate
 proportional_reaggregate, 15

* variable
 proportional_reaggregate, 15

* wrt
 proportional_reaggregate, 15

case_census_base_variables, 2
aggregate_data_with_meta, 3
check_tongfen_areas, 4
check_tongfen_single_areas, 5

estimate_tongfen_correspondence, 5
estimate_tongfen_single_correspondence, 6

get_correspondence_ca_census_for, 7
get_single_correspondence_ca_census_for, 8
get_tongfen_ca_census, 8
get_tongfen_ca_census_ct_from_da, 10
get_tongfen_census_ct, 10
get_tongfen_census_da, 11
get_tongfen_correspondence_ca_census, 12
get_tongfen_us_census, 13

meta_for_additive_variables, 14
meta_for_ca_census_vectors, 15

proportional_reaggregate, 15

tongfen_aggregate, 16
tongfen_ca_census_ct, 17
tongfen_estimate, 18

vancouver_elections_data_2015, 21
vancouver_elections_data_2019, 21
vancouver_elections_geos_2015, 21
vancouver_elections_geos_2019, 22

23