Contents

Overview ... 2
Installation .. 2
Welcome to toolStability 2
Structure overview of toolStability 2
Build-in data set ... 3
Tutorial ... 4
Examples ... 4
Equation of stability indices 8
 adjusted coefficient variation 8
 coefficient of determination 9
 coefficient of regression 10
 deviation mean squares 11
 ecovalence ... 12
 environmental variance 13
 genotypic stability 14
 genotypic superiority measure 15
 safety first index 16
 stability variance 17
 variance of rank 18
Citing toolStability 19
References ... 20
Overview

The package toolStability is a collection of functions which implements various methods for describing the stability of a trait in terms of genotype and environment.

The goal of this vignette is to introduce the users to these functions and get started in describing sequentially recorded germination count data. This document assumes a basic knowledge of R programming language.

Installation

The package can be installed using the following functions:

```r
# Install from CRAN
install.packages('toolStability', dependencies=TRUE)

# Install development version from Github
devtools::install_github("Illustratien/toolStability")
```

Then the package can be loaded using the function

```r
library(toolStability)
```

Welcome to toolStability

This is an R package for calculating parametric, non-parametric, and probabilistic stability indices.

Structure overview of toolStability

toolStability contains different functions to calculate stability indices, including:

1. adjusted coefficient of variation
2. coefficient of determination
3. coefficient of regression
4. deviation mean squares
5. ecovalence
6. environmental variance
7. genotypic stability
8. genotypic superiority measure
9. safety first index
10. stability variance
11. variance of rank
Build-in data set

The default data set Data is the subset of APSIM simulated wheat data set, which includes 5 genotypes in 4 locations for 4 years, with 2 nitrogen application rates, 2 sowing dates, and 2 CO₂ levels of treatments (Casadebaig et al., 2016).

Data in this package is a data frame with 640 observations and 8 variables.

Table 1: Data Structure

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trait</td>
<td></td>
<td>Wheat yield (kg ha⁻¹).</td>
</tr>
<tr>
<td>Genotype</td>
<td>5</td>
<td>varieties.</td>
</tr>
<tr>
<td>Environment</td>
<td>128</td>
<td>unique combination of environments for each genotype.</td>
</tr>
<tr>
<td>Year</td>
<td>4</td>
<td>years.</td>
</tr>
<tr>
<td>Sites</td>
<td>4</td>
<td>locations.</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>2</td>
<td>nitrogen application levels.</td>
</tr>
<tr>
<td>CO₂</td>
<td>2</td>
<td>CO₂ concentration levels.</td>
</tr>
<tr>
<td>Sowing</td>
<td>2</td>
<td>sowing dates.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sites</th>
<th>Wheat yield (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emerald Merredin Narrabri Yanco</td>
<td>2000 4000 6000</td>
</tr>
<tr>
<td>2000 4000 6000</td>
<td>2844 3356 4885</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Nitrogen: high</th>
<th>Nitrogen: low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emerald</td>
<td>1864</td>
<td>164</td>
</tr>
<tr>
<td>Merredin</td>
<td>2757</td>
<td>220</td>
</tr>
<tr>
<td>Narrabri</td>
<td>2844</td>
<td>246</td>
</tr>
<tr>
<td>Yanco</td>
<td>3356</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>4885</td>
<td>379</td>
</tr>
</tbody>
</table>
1. Data preparation

In order to calculate stability index, you will need to prepare a data frame with 3 columns containing trait, genotype, and environment.

- **trait**: numeric and continuous, trait value to be analyzed.
- **genotype**: character or factor, labeling different genotypic varieties.
- **environment**: character or factor, labeling different environments.

2. Input formats of function

Most of the functions in the package work with the following format:

```r
function(data = Data,
           trait = "Trait_Column_Name",
           genotype = "Genotype_Column_Name",
           environment = "Environment_Column_Name")
```

For calculation of probabilistic stability index **safety_first_index**, an additional parameter **lambda** is required.

lambda: minimal acceptable value of **trait** that the user expected from crop across **environment**. **lambda** should between the range of **trait** value.

Under the assumption of **trait** is normally distributed, safety first index is calculated based on the probability of trait below **lambda** across the **environment** for each **genotype**.

3. Function Features

Function **table_stability** generates the summary table containing all the stability indices in the package for every genotypes, also including the mean **trait** value and normality check results for the **trait** of each genotype across all the **environment**.

User can specify the interested combination of environments by entering a vector of column names which containing environmental factors. Option **normalize** = TRUE allow user to compare between different stability indices. Option **unit.correct** = TRUE is designed for getting the square root value of stability indices which have the squared unit of **trait**. For function **ecovalence**, option **modify** = TRUE takes the number of environments into account and make modified ecovalence comparable between different number of environments.

Examples

```r
rmls()
library(toolStability)
### load data
data("Data")
### check the structure of sample dataset
### be sure that the trait is numeric!!!
```

4
calculate ecovalence for all genotypes
```
single.index.ecovalence <- ecovalence(
  data = Data,
  trait = 'Yield',
  genotype = 'Genotype',
  environment = 'Environment',
  unit.correct = FALSE,
  modify = FALSE)
```

check the structure of result
```
dplyr::glimpse(single.index.ecovalence)
```

calculate modified ecovalence for all genotypes
```
single.index.ecovalence.modified <- ecovalence(
  data = Data,
  trait = 'Yield',
  genotype = 'Genotype',
  environment = 'Environment',
  unit.correct = FALSE,
  modify = TRUE)
```

check the structure of result
```
dplyr::glimpse(single.index.ecovalence.modified)
```
calculate all stability indices for all genotypes

```r
summary.table <- table_stability(data = Data,
  trait = 'Yield',
  genotype = 'Genotype',
  environment = 'Environment',
  lambda = median(Data$Yield),
  normalize = FALSE,
  unit.correct = FALSE)
```

```r
#> Warning in table_stability(data = Data, trait = "Yield", genotype = "Genotype", :
#> All of your genotypes didn’t pass the Shapiro normality test!
#> Safety_first Index may not be accurate.
```

warning message means your data structure is not distributed as normal distribution

```r
dplyr::glimpse(summary.table)
#> Rows: 5
#> Columns: 15
#> $ Genotype <fct> 1864, 2757, 2844, 3356, 4885
#> $ Mean.Yield <dbl> 2878.070, 1913.365, 2911.395, 3038.4~
#> $ Normality <lgl> FALSE, FALSE, FALSE, FALSE, FALSE
#> $ Safety.first.index <dbl> 0.3523378, 0.6665326, 0.3242059, 0.2~
#> $ Coefficient.of.determination <dbl> 0.9398731, 0.8270000, 0.9485154, 0.9-
#> $ Coefficient.of.regression <dbl> 1.1596475, 0.8552736, 1.0316158, 1.1-
#> $ Deviation.mean.squares <dbl> 108789.28, 193280.79, 73052.65, 8677-
#> $ Environmental.variance <dbl> 1809327, 1117230, 1418923, 1630384, ~
#> $ Genotypic.stability <dbl> 29248135, 24360429, 14583562, 214768-
#> $ Genotypic.superiority.measure <dbl> 89307.69, 1004043.78, 70091.10, 3048~
#> $ Variance.of.rank <dbl> 1.770116, 2.281250, 1.561946, 1.7913~
#> $ Stability.variance <dbl> 173448.30, 303582.09, 62720.42, 1064-
#> $ Adjusted.coefficient.of.variation <dbl> 50.31578, 47.87130, 44.31829, 46.565-
#> $ Ecovalence <dbl> 178027.60, 27718900, 9365241, 1269845~
#> $ Ecovalence.modified <dbl> 139083.63, 216553.91, 73165.94, 9920-
```

calculate all stability indices for all genotypes

```r
normalized.summary.table <- table_stability(data = Data,
  trait = 'Yield',
  genotype = 'Genotype',
  environment = 'Environment',
  lambda = median(Data$Yield),
  normalize = TRUE,
  unit.correct = FALSE)
```

```r
#> Warning in table_stability(data = Data, trait = "Yield", genotype = "Genotype", :
#> All of your genotypes didn’t pass the Shapiro normality test!
#> Safety_first Index may not be accurate.
```

warning message means your data structure is not distributed as normal distribution

```r
dplyr::glimpse(normalized.summary.table)
#> Rows: 5
#> Columns: 15
#> $ Genotype <fct> 1864, 2757, 2844, 3356, 4885
#> $ Mean.Yield <dbl> 2878.070, 1913.365, 2911.395, 3038.4~
#> $ Normality <lgl> FALSE, FALSE, FALSE, FALSE, FALSE
```
The `toolStability` Package: A Brief Introduction

Examples

```r
#> $ Safety.first.index <dbl> 0.85683453, 0.00000000, 0.93355270, -
#> $ Coefficient.of.determination <dbl> 0.07112157, 1.00000000, 0.00000000, -
#> $ Coefficient.of.regression <dbl> 0.70275999, 0.00000000, 1.00000000, 0.8-
#> $ Deviation.mean.squares <dbl> 0.00000000, 0.98780725, 0.4116811, 0.1-
#> $ Environmental.variance <dbl> 0.00000000, 0.9389617, 0.5296575, 0.2-
#> $ Genotypic.stability <dbl> 0.00000000, 0.3333003, 1.00000000, 0.5-
#> $ Genotypic.superiority.measure <dbl> 0.9395799, 0.00000000, 0.9593184, 1.0-
#> $ Variance.of.rank <dbl> 0.00000000, 0.3420919, 1.00000000, 0.7-
#> $ Stability.variance <dbl> 0.5402844, 0.00000000, 1.00000000, 0.8-
#> $ Adjusted.coefficient.of.variation <dbl> 0.00000000, 0.4075840, 1.00000000, 0.6-
#> $ Ecovalence <dbl> 0.5402844, 0.00000000, 1.00000000, 0.8-
#> $ Ecovalence.modified <dbl> 0.5402844, 0.00000000, 1.00000000, 0.8-
```

compare the result from `summary.table` and `normalized.summary.table`

calculate the stability indices only based only on CO2 and Nitrogen environments

```r
summary.table2 <- table_stability(
  data = Data,
  trait = 'Yield',
  genotype = 'Genotype',
  environment = c('CO2','Nitrogen'),
  lambda = median(Data$Yield),
  normalize = FALSE,
  unit.correct = FALSE)
```

```r
#> Warning in table_stability(data = Data, trait = "Yield", genotype = "Genotype", :  
#> All of your genotypes didn't pass the Shapiro normality test!  
#> Safety_first Index may not be accurate.
```

check the structure of result

```r
dplyr::glimpse(summary.table2)
```

```r
#> Rows: 5
#> Columns: 15
#> $ Genotype <fct> 1864, 2757, 2844, 3356, 4885
#> $ Mean.Yield <dbl> 2878.070, 1913.365, 2911.395, 3038.408, 2340.109
#> $ Normality <lgl> FALSE, FALSE, FALSE, FALSE, FALSE
#> $ Safety.first.index <dbl> 0.3523378, 0.6665326, 0.3242059, 0.2884474, 0.2940567
#> $ Coefficient.of.determination <dbl> 0.161086973, 0.138169855, 0.286447442, 0.217910032, 0.268197432
#> $ Coefficient.of.regression <dbl> 1.1791003, 0.8614393, 1.3780191, 1.3780191, 1.3780191
#> $ Deviation.mean.squares <dbl> 1517867.6, 962862.6, 1012476.1, 1269501.2, 1269501.2
#> $ Environmental.variance <dbl> 1809327, 1117230, 1418923, 1630384, 1630384
#> $ Genotypic.stability <dbl> 213741097, 130745446, 161091101, 189714658, 189714658
#> $ Genotypic.superiority.measure <dbl> 3688981.6, 6251668.6, 3333615.3, 3180826.2, 3180826.2
#> $ Variance.of.rank <dbl> 2644.454, 1623.286, 2007.764, 2479.208, 2479.208
#> $ Stability.variance <dbl> 2025117, 1102709, 1229740, 1636649, 1636649
#> $ Adjusted.coefficient.of.variation <dbl> 50.31578, 47.87130, 44.31829, 46.56544, 46.56544
#> $ Ecovalence <dbl> 192140367, 121852817, 131532582, 162904297, 162904297
#> $ Ecovalence.modified <dbl> 1501096.6, 951975.1, 1027598.3, 1269501.2, 1269501.2
```

compare the result from `summary.table` and `summary.table2`

see how the choice of environments affect the data
Equation of stability indices

adjusted coefficient variation

Adjusted coefficient of variation (Döring & Reckling, 2018) is calculated based on regression function. Variety with low adjusted coefficient of variation is considered as stable. Under the linear model

\[v_i = a + b m_i \]

where \(v_i \) is the \(\log_{10} \) of phenotypic variance and \(m_i \) is the \(\log_{10} \) of phenotypic mean.

\[\tilde{c}_i = \frac{1}{\tilde{\mu}_i} \left[10^{(2-b) m_i + (b-2) \bar{m} + v_i} \right]^{0.5} \times 100\% \]
Coefficient of determination

Coefficient of determination (Pinthus, 1973) is calculated based on regression function. Variety with low coefficient of determination is considered as stable. Under the linear model

\[Y = \mu + \beta_i e_j + g_i + d_{ij} \]

where \(Y \) is the predicted phenotypic values, \(g_i, e_j \) and \(\mu \) denoting genotypic, environmental and overall population mean, respectively.

The effect of GE-interaction may be expressed as:

\[(ge)_{ij} = \beta_i e_j + d_{ij} \]

where \(\beta_i \) is the coefficient of regression and \(d_{ij} \) a deviation.

\[s^2_{d_{ij}}, \text{ see deviation mean squares for formula.} \]

Environmental variance can be expressed as:

\[S^2_{xi} = \sum_j \frac{(X_{ij} - \bar{X}_i)^2}{E - 1} \]

Coefficient of determination may be expressed as:

\[r^2_i = 1 - \frac{s^2_{d_{ij}}}{S^2_{xi}} \]

where \(X_{ij} \) is the observed phenotypic mean value of genotype \(i \) \((i = 1, \ldots, G)\) in environment \(j \) \((j = 1, \ldots, E)\), with \(\bar{X}_i \) and \(\bar{X}_j \) denoting marginal means of genotype \(i \) and environment \(j \), respectively. \(\bar{X} \) denote the overall mean of \(X \).
Coefficient of regression (Finlay & Wilkinson, 1963) is calculated based on regression function. Variety with low coefficient of regression is considered as stable. Under the linear model

\[Y = \mu + \beta_i e_j + g_i + d_{ij} \]

where \(Y \) is the predicted phenotypic values, \(g_i, e_j \) and \(\mu \) denoting genotypic, environmental and overall population mean, respectively.

The effect of GE-interaction may be expressed as:

\[(ge)_{ij} = \beta_i e_j + d_{ij} \]

where \(\beta_i \) is the coefficient of regression and \(d_{ij} \) a deviation.

Coefficient of regression may be expressed as:

\[b_i = 1 + \frac{\sum_j (X_{ij} - \bar{X}_i - \bar{X}_j + \bar{X}_{..}) (\bar{X}_j - \bar{X}_{..})}{\sum_j (\bar{X}_j - \bar{X}_{..})^2} \]

where \(X_{ij} \) is the observed phenotypic mean value of genotype \(i (i = 1, \ldots, G) \) in environment \(j (j = 1, \ldots, E) \), with \(\bar{X}_i \) and \(\bar{X}_j \) denoting marginal means of genotype \(i \) and environment \(j \), respectively. \(\bar{X}_{..} \) denote the overall mean of \(X \). \(b_i \) is the estimation of \(\beta_i \).
deviation mean squares

Deviation mean squares (Eberhart & Russell, 1966) is calculated based on regression function. Variety with low stability variance is considered as stable.

Deviation mean squares may be expressed as:

\[
s^2_{di} = \frac{1}{E-2} \left[\sum_j (X_{ij} - \bar{X}_i - \bar{X}_j + X^* - \bar{X}^*)^2 - (b_i - 1)^2 (\bar{X}_j - \bar{X})^2 \right]
\]

where \(X_{ij}\) is the observed phenotypic mean value of genotype \(i\) \((i = 1, \ldots, G)\) in environment \(j\) \((j = 1, \ldots, E)\), with \(\bar{X}_i\) and \(\bar{X}_j\) denoting marginal means of genotype \(i\) and environment \(j\), respectively. \(\bar{X}^*\) denote the overall mean of \(X\). \(b_i\) is the estimation of coefficient of regression.
Ecovalence (Wricke, 1962) is calculated based on square and sum up the genotype–environment interaction all over the environment. Variety with low ecovalence is considered as stable. Ecovalence is expressed as:

\[W_i = \sum_j (X_{ij} - \bar{X}_i - \bar{X}_j + \bar{X}_{..})^2 \]

To let \(W_i \) comparable between experiments, we also provide the modified ecovalence (\(W'_i \)), which take the number of environments into account. User can get (\(W'_i \)) by setting \texttt{modify = TRUE}.

\[W'_i = \frac{\sum_j (X_{ij} - \bar{X}_i - \bar{X}_j + \bar{X}_{..})^2}{E - 1} \]

where \(X_{ij} \) is the observed phenotypic mean value of genotype \(i (i = 1, \ldots, G) \) in environment \(j (j = 1, \ldots, E) \), with \(\bar{X}_i \) denoting marginal means of genotype \(i \).
Environmental variance

Environmental variance (Römer, 1917) is calculated by squared and summing up all deviation from genotypic mean for each genotype. The larger the environmental variance of one genotype is, the lower the stability.

\[S_{xi}^2 = \frac{\sum_j (X_{ij} - \overline{X_i})^2}{E - 1} \]

where \(X_{ij} \) is the observed phenotypic mean value of genotype \(i \) (\(i = 1, \ldots, G \)) in environment \(j \) (\(j = 1, \ldots, E \)), with \(\overline{X_i} \) denoting marginal means of genotype \(i \).
genotypic stability

Genotypic stability (Hanson, 1970) is calculated based on regression function. Variety with low stability variance is considered as stable. Under the linear model

\[Y = \mu + \beta_i \epsilon_j + g_i + d_{ij} \]

where \(Y \) is the predicted phenotypic values, \(g_i \), \(\epsilon_j \) and \(\mu \) denoting genotypic, environmental and overall population mean, respectively.

The effect of GE-interaction may be expressed as:

\[(ge)_{ij} = \beta_i \epsilon_j + d_{ij}\]

where \(\beta_i \) is the coefficient of regression and \(d_{ij} \) a deviation.

Genotypic stability:

\[D_i^2 = \sum_j (X_{ij} - \bar{X}_i - b_{\min} \bar{X}_j + b_{\min} \bar{X}_.)^2 \]

where \(X_{ij} \) is the observed phenotypic mean value of genotype \(i \) \((i = 1, \ldots, G)\) in environment \(j \) \((j = 1, \ldots, E)\), with \(\bar{X}_i \) and \(\bar{X}_j \) denoting marginal means of genotype \(i \) and environment \(j \), respectively. \(\bar{X}_. \) denote the overall mean of \(X \).

\(b_{\min} \) is the minimum value of coefficient of regression over all environments.
genotypic superiority measure

Genotypic superiority measure (Lin & Binns, 1988) is calculated based on means square distance between maximum value of environment j and genotype i. Variety with low genotypic superiority measure is considered as stable.

\[P_i = \sum_{j}^{n} \frac{(X_{ij} - M_j)^2}{2n} \]

where \(X_{ij} \) stands for observed trait and \(M_j \) stands for maximum response among all genotypes in the \(j^{th} \) location.
safety first index

Safety-first index (Eskridge, 1990) is calculated based on the normality assumption of trait over the environments. Among different environments, trait below a given critical level \(\lambda \) is defined as failure of trait. Safety-first index calculating the probability of trait failure over the environment. Variety with low safety first index is considered as stable.

\[
Pr (Y_{ij} < \lambda) = \Phi \left[\frac{(\lambda - \mu_i)}{\sqrt{\sigma_{ii}}} \right]
\]

where \(\lambda \) is the minimal acceptable value of trait that the user expected from crop across environments. Lambda should between the range of trait value. \(\Phi \) is the cumulative distribution function of the standard normal distribution. \(\mu_i \) and \(\sigma_{ii} \) is the mean and variance of the system i. Under the assumption of trait is normally distributed, safety first index is calculated based on the probability of trait below lambda across the environments for each genotype.
stability variance

Stability variance (Shukla, 1972) is calculated based on linear combination of ecovalence and mean square of genotype-environment interaction. Variety with low stability variance is considered as stable.

\[
\sigma_i^2 = \frac{1}{(G-1)(G-2)(E-1)} \left[G (G-1) \sum_j (X_{ij} - X_i. - X_j. + X..)^2 - \sum_i \sum_j (X_{ij} - X_i. - X_j. + X..)^2 \right]
\]

where \(X_{ij} \) is the observed phenotypic mean value of genotype \(i \) (\(i = 1, \ldots, G \)) in environment \(j \) (\(j = 1, \ldots, E \)), with \(X_i. \) and \(X_j. \) denoting marginal means of genotype \(i \) and environment \(j \), respectively. \(X.. \) denote the overall mean of \(X \).

Negative values of stability variance is replaced with 0.
variance of rank

Variance of rank (Nassar & Hühn, 1987) is calculated based on regression function. Variety with low variance of rank is considered as stable.

Correction for each genotype i was done by subtraction of marginal genotypic mean \bar{X}_i and the addition of overall mean \bar{X}.

$$X_{\text{corrected}ij} = X_{ij} - \bar{X}_i + \bar{X}$$

Then calculated the rank all genotypes for each environment j

$$r_{ij} = \text{rank} \left(X_{\text{corrected}ij} \right)$$

Variance of rank is calculated as the following equation.

$$S_4 = \frac{\sum_j (r_{ij} - \bar{r}_i)^2}{E - 1}$$

where r_{ij} is the rank of genotype i in environment j and \bar{r}_i is the marginal rank of genotype i over environment, based on the corrected X_{ij} values.
Citing toolStability

```r
#> To cite the R package 'toolStability' in publications use:
#>
#> stability indices calculation. R package version 0.1.1,  
#> https://github.com/Illustratien/toolStability/
#> https://cran.r-project.org/package=toolStability.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> title = {toolStability: Tool for Stability Indices Calculation},
#> author = {T.-C. Wang and T.-W. Chen},
#> year = {2022},
#> note = {R package version 0.1.1},
#> note = {https://github.com/Illustratien/toolStability/},
#> note = {https://cran.r-project.org/package=toolStability},
#> }
#>
#> This free and open-source software implements academic research by the
#> authors and co-workers. If you use it, please support the project by
#> citing the package.
```
The toolStability Package: A Brief Introduction

References

20