Package ‘topicdoc’

October 14, 2022

Type Package

Title Topic-Specific Diagnostics for LDA and CTM Topic Models

Version 0.1.1

Description Calculates topic-specific diagnostics (e.g. mean token length, exclusivity) for Latent Dirichlet Allocation and Correlated Topic Models fit using the 'topicmodels' package. For more details, see Chapter 12 in Airoldi et al. (2014, ISBN:9781466504080), pp 262-272 Mimno et al. (2011, ISBN:9781937284114), and Bischof et al. (2014) <arXiv:1206.4631v1>.

License MIT + file LICENSE

URL https://github.com/doug-friedman/topicdoc

BugReports https://github.com/doug-friedman/topicdoc/issues

Depends R (>= 3.5.0)

Imports slam, topicmodels

Suggests knitr, rmarkdown, stm, testthat (>= 2.1.0)

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.0

NeedsCompilation no

Author Doug Friedman [aut, cre]

Maintainer Doug Friedman <doug.nhp@gmail.com>

Repository CRAN

Date/Publication 2022-07-17 00:30:02 UTC

R topics documented:

coherence ... 2
contain_equal_docs .. 2
dist_from_corpus ... 3
doc_prominence .. 4
mean_token_length .. 5
n_topics ... 5
tf_df_dist ... 6
tf_df_dist_diff ... 7
topic_coherence ... 7
topic_diagnostics .. 8
topic_exclusivity .. 9
topic_size ... 10

Index 11

coherence
Helper function for calculating coherence for a single topic’s worth of terms

Description
Helper function for calculating coherence for a single topic’s worth of terms

Usage
coherence(dtm_data, top_terms, smoothing_beta)

Arguments
- dtm_data: a document-term matrix of token counts coercible to simple_triplet_matrix
- top_terms: a character vector of the top terms for a given topic
- smoothing_beta: a numeric indicating the value to use to smooth the document frequencies in order avoid log zero issues, the default is 1

Value
a numeric indicating coherence for the topic

contain_equal_docs
Helper function to check that a topic model and a dtm contain the same number of documents

Description
Helper function to check that a topic model and a dtm contain the same number of documents

Usage
contain_equal_docs(topic_model, dtm_data)
dist_from_corpus

Arguments

- topic_model: a fitted topic model object from one of the following: \texttt{tm-class}
- dtm_data: a document-term matrix of token counts coercible to \texttt{simple_triplet_matrix}

Value

A logical indicating whether or not the two objects contain the same number of documents

Description

The Hellinger distance between the token probabilities or betas for each topic and the overall probability for the word in the corpus is calculated.

Usage

\texttt{dist_from_corpus(topic_model, dtm_data)}

Arguments

- topic_model: a fitted topic model object from one of the following: \texttt{tm-class}
- dtm_data: a document-term matrix of token counts coercible to \texttt{simple_triplet_matrix}

Value

A vector of distances with length equal to the number of topics in the fitted model

References

Examples

```r
# Using the example from the LDA function
library(topicmodels)
data("AssociatedPress", package = "topicmodels")
lda <- LDA(AssociatedPress[1:20,], control = list(alpha = 0.1), k = 2)
dist_from_corpus(lda, AssociatedPress[1:20,])
```
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>topic_model</code></td>
<td>A fitted topic model object from one of the following: <code>tm-class</code></td>
</tr>
<tr>
<td><code>method</code></td>
<td>A string indicating which method to use - "gamma_threshold" or "largest_gamma", the default is "gamma_threshold"</td>
</tr>
<tr>
<td><code>gamma_threshold</code></td>
<td>A number between 0 and 1 indicating the gamma threshold to be used when using the gamma threshold method, the default is 0.2</td>
</tr>
</tbody>
</table>

Value

A vector of document prominences with length equal to the number of topics in the fitted model

References

Examples

```r
# Using the example from the LDA function
library(topicmodels)
data("AssociatedPress", package = "topicmodels")
lda <- LDA(AssociatedPress[1:20,], control = list(alpha = 0.1), k = 2)
doc_prominence(lda)
```
mean_token_length

Description
Using the the N highest probability tokens for each topic, calculate the average token length for each topic.

Usage
```
mean_token_length(topic_model, top_n_tokens = 10)
```

Arguments
- `topic_model`: a fitted topic model object from one of the following: `tm-class`
- `top_n_tokens`: an integer indicating the number of top words to consider, the default is 10

Value
A vector of average token lengths with length equal to the number of topics in the fitted model.

References

Examples
```
# Using the example from the LDA function
library(topicmodels)
data("AssociatedPress", package = "topicmodels")
lda <- LDA(AssociatedPress[1:20,], control = list(alpha = 0.1), k = 2)
mean_token_length(lda)
```

n_topics

Description
Helper function to determine the number of topics in a topic model.

Usage
```
n_topics(topic_model)
```
tf_df_dist

Arguments

 topic_model a fitted topic model object from one of the following: \texttt{tm-class}

Value

 an integer indicating the number of topics in the topic model

Description

 Using the \(N \) highest probability tokens for each topic, calculate the Hellinger distance between
 the token frequencies and the document frequencies

Usage

 \texttt{tf_df_dist(topic_model, dtm_data, top_n_tokens = 10)}

Arguments

 topic_model a fitted topic model object from one of the following: \texttt{tm-class}
 dtm_data a document-term matrix of token counts coercible to \texttt{simple_triplet_matrix}
 top_n_tokens an integer indicating the number of top words to consider, the default is 10

Value

 A vector of distances with length equal to the number of topics in the fitted model

References

Examples

 # Using the example from the LDA function
 library(topicmodels)
 data("AssociatedPress", package = "topicmodels")
 lda <- LDA(AssociatedPress[1:20,], control = list(alpha = 0.1), k = 2)
 tf_df_dist(lda, AssociatedPress[1:20,])
tf_df_dist_diff

Helper function to calculate the Hellinger distance between the token frequencies and document frequencies for a specific topic’s top N tokens

Description

Helper function to calculate the Hellinger distance between the token frequencies and document frequencies for a specific topic’s top N tokens

Usage

tf_df_dist_diff(dtm_data, top_terms)

Arguments

dtm_data a document-term matrix of token counts coercible to simple_triplet_matrix
top_terms - a character vector of the top N tokens

Value

a single value representing the Hellinger distance

topic_coherence

Calculate the topic coherence for each topic in a topic model

Description

Using the the N highest probability tokens for each topic, calculate the topic coherence for each topic

Usage

topic_coherence(topic_model, dtm_data, top_n_tokens = 10, smoothing_beta = 1)

Arguments

topic_model a fitted topic model object from one of the following: tm-class
dtm_data a document-term matrix of token counts coercible to simple_triplet_matrix
top_n_tokens an integer indicating the number of top words to consider, the default is 10
smoothing_beta a numeric indicating the value to use to smooth the document frequencies in order avoid log zero issues, the default is 1

Value

A vector of topic coherence scores with length equal to the number of topics in the fitted model
References

See Also

semanticCoherence

Examples

Using the example from the LDA function
library(topicmodels)
data("AssociatedPress", package = "topicmodels")
lda <- LDA(AssociatedPress[1:20,], control = list(alpha = 0.1), k = 2)
topic_coherence(lda, AssociatedPress[1:20,])

topic_diagnostics

Calculate diagnostics for each topic in a topic model

Description

Generate a dataframe containing the diagnostics for each topic in a topic model

Usage

```
topic_diagnostics(
  topic_model,
  dtm_data,
  top_n_tokens = 10,
  method = c("gamma_threshold", "largest_gamma"),
  gamma_threshold = 0.2
)
```

Arguments

- `topic_model`: a fitted topic model object from one of the following: `tm-class`
- `dtm_data`: a document-term matrix of token counts coercible to `slam_triplet_matrix` where each row is a document, each column is a token, and each entry is the frequency of the token in a given document
- `top_n_tokens`: an integer indicating the number of top words to consider for mean token length
- `method`: a string indicating which method to use - "gamma_threshold" or "largest_gamma"
- `gamma_threshold`: a number between 0 and 1 indicating the gamma threshold to be used when using the gamma threshold method, the default is 0.2
topic_exclusivity

Value

A dataframe where each row is a topic and each column contains the associated diagnostic values

References

Examples

```r
# Using the example from the LDA function
library(topicmodels)
data("AssociatedPress", package = "topicmodels")
lda <- LDA(AssociatedPress[1:20,], control = list(alpha = 0.1), k = 2)
topic_diagnostics(lda, AssociatedPress[1:20,])
```

topic_exclusivity
Calculate the exclusivity of each topic in a topic model

Description

Using the the N highest probability tokens for each topic, calculate the exclusivity for each topic.

Usage

```r
topic_exclusivity(topic_model, top_n_tokens = 10, excl_weight = 0.5)
```

Arguments

- `topic_model`: a fitted topic model object from one of the following: `tm-class`
- `top_n_tokens`: an integer indicating the number of top words to consider, the default is 10
- `excl_weight`: a numeric between 0 and 1 indicating the weight to place on exclusivity versus frequency in the calculation, 0.5 is the default

Value

A vector of exclusivity values with length equal to the number of topics in the fitted model

References

See Also

 exclusivity

Examples

```r
# Using the example from the LDA function
library(topicmodels)
data("AssociatedPress", package = "topicmodels")
lda <- LDA(AssociatedPress[1:20,], control = list(alpha = 0.1), k = 2)
topic_size(lda)
```

Description

Calculate the size of each topic in a topic model based on the number of fractional tokens found in each topic.

Usage

```r
topic_size(topic_model)
```

Arguments

- **topic_model**: a fitted topic model object from one of the following: `tm-class`

Value

A vector of topic sizes with length equal to the number of topics in the fitted model

References

Examples

```r
# Using the example from the LDA function
library(topicmodels)
data("AssociatedPress", package = "topicmodels")
lda <- LDA(AssociatedPress[1:20,], control = list(alpha = 0.1), k = 2)
topic_size(lda)
```
Index

coherence, 2
contain_equal_docs, 2

dist_from_corpus, 3
doc_prominence, 4

exclusivity, 10

mean_token_length, 5

n_topics, 5

semanticCoherence, 8

tf_df_dist, 6
tf_df_dist_diff, 7
topic_coherence, 7
topic_diagnostics, 8
topic_exclusivity, 9
topic_size, 10