Package ‘torch’

August 17, 2021

Type Package

Title Tensors and Neural Networks with 'GPU' Acceleration

Version 0.5.0

Description Provides functionality to define and train neural networks similar to 'PyTorch' by Paszke et al (2019) <arXiv:1912.01703> but written entirely in R using the 'libtorch' library. Also supports low-level tensor operations and 'GPU' acceleration.

License MIT + file LICENSE

BugReports https://github.com/mlverse/torch/issues

Encoding UTF-8

SystemRequirements C++11, LibTorch (https://pytorch.org/)

LinkingTo Rcpp

Imports Rcpp, R6, withr, rlang, methods, utils, stats, bit64,
 magrittr, tools, coro, callr, cli, ellipsis

RoxygenNote 7.1.1

Suggests testthat (>= 3.0.0), covr, knitr, markdown, glue,
 palmerpenguins, mvtnorm, numDeriv, katex

VignetteBuilder knitr

Collate 'R7.R' 'RcppExports.R' 'tensor.R' 'autograd.R' 'backends.R'
 'codegen-utils.R' 'compat-purrr.R' 'compilation_unit.R'
 'conditions.R' 'contrib.R' 'creation-ops.R' 'cuda.R' 'device.R'
 'dimname_list.R' 'utils.R' 'distributions-constraints.R'
 'distributions-utils.R' 'distributions-exp-family.R'
 'distributions.R' 'distributions-bernoulli.R'
 'distributions-categorical.R' 'distributions-gamma.R'
 'distributions-chi2.R' 'distributions-mixture_same_family.R'
 'distributions-multivariate_normal.R' 'distributions-normal.R'
 'distributions-poisson.R' 'dtype.R' 'gen-method.R'
 'gen-namespace-docs.R' 'gen-namespace-examples.R'
 'gen-namespace.R' 'generator.R' 'help.R' 'indexing.R'
R topics documented:

- `install.R`
- `ivalue.R`
- `jit-compile.R`
- `lantern_load.R`
- `utils-data.R`
- `nn.R`
- `nn-activation.R`
- `nn-batchnorm.R`
- `nn-conv.R`
- `nn-distance.R`
- `nn-dropout.R`
- `nn-init.R`
- `nn-linear.R`
- `nn-loss.R`
- `nn-normalization.R`
- `nn-pooling.R`
- `nn-rnn.R`
- `nn-sparse.R`
- `nn-utils-clip-grad.R`
- `nn-utils-rnn.R`
- `nn-utils.R`
- `nn_adaptive.R`
- `nnf-activation.R`
- `nnf-batchnorm.R`
- `nnf-conv.R`
- `nnf-distance.R`
- `nnf-dropout.R`
- `nnf-embedding.R`
- `nnf-fold.R`
- `nnf-instancenorm.R`
- `nnf-linear.R`
- `nnf-loss.R`
- `nnf-normalization.R`
- `nnf-padding.R`
- `nnf-pixelshuffle.R`
- `nnf-pooling.R`
- `optim.R`
- `optim-adadelta.R`
- `optim-adagrad.R`
- `optim-adam.R`
- `optim-asgd.R`
- `optim-lbfgs.R`
- `optim-lr_scheduler.R`
- `optim-rmsprop.R`
- `optim-rprop.R`
- `optim-sgd.R`
- `package.R`
- `qscheme.R`
- `quantization.R`
- `reduction.R`
- `save.R`
- `script_module.R`
- `stack.R`
- `storage.R`
- `tensor_options.R`
- `threads.R`
- `trace.R`
- `type-info.R`
- `utils-data-collate.R`
- `utils-data-dataloader.R`
- `utils-data-enum.R`
- `utils-data-fetcher.R`
- `utils-data-sampler.R`
- `utils-pipe.R`
- `variable_list.R`
- `with-indices.R`
- `wrappers.R`

NeedsCompilation: yes

Author: Daniel Falbel [aut, cre, cph],
 Javier Luraschi [aut],
 Dmitriy Selivanov [ctb],
 Athos Damiani [ctb],
 Christophe Regouby [ctb],
 Krzysztof Joachimiak [ctb],
 RStudio [cph]

Maintainer: Daniel Falbel <daniel@rstudio.com>

Repository: CRAN

Date/Publication: 2021-08-17 16:30:02 UTC

R topics documented:

- `as_array` ... 16
- `AutogradContext` .. 16
- `autograd_backward` .. 18
- `autograd_function` .. 19
- `autograd_grad` .. 20
- `autograd_set_grad_mode` ... 22
- `backends_mkldnn_is_available` 22
- `backends_mkl_is_available` .. 22
- `backends_openmp_is_available` 23
- `broadcast_all` .. 23
- `Constraint` .. 24
topics documented:

contrib_sort_vertices .. 25
cuda_current_device ... 25
cuda_device_count ... 26
cuda_is_available .. 26
dataloader ... 26
dataloader_make_iter ... 28
dataloader_next ... 28
dataset .. 29
dataset_subset ... 30
Distribution .. 30
distr_bernoulli ... 33
distr_categorical ... 34
distr_chi2 ... 35
distr_gamma ... 36
distr_mixture_same_family 36
distr_multivariate_normal 37
distr_normal ... 38
distr_poisson ... 39
enumerate ... 40
enumerate.dataloader .. 40
get_install_libs_url ... 41
install_torch ... 41
install_torch_from_file ... 42
is_dataloader ... 43
is_nn_buffer ... 43
is_nn_module ... 43
is_nn_parameter ... 44
is_optimizer ... 44
is_torch_device ... 44
is_torch_dtype .. 45
is_torch_layout ... 45
is_torch_memory_format ... 45
is_torch_qscheme .. 46
is_undefined_tensor .. 46
jit_compile ... 46
jit_load .. 47
jit_save .. 47
jit_scalar .. 48
jit_trace .. 48
jit_trace_module ... 50
jit_tuple .. 51
linalg_cholesky ... 51
linalg_cholesky_ex ... 52
linalg_cond .. 53
linalg_det .. 55
linalg_eig .. 56
linalg_eigh .. 57
linalg_eigvals ... 59
R topics documented:

linalg_eigvalsh .. 60
linalg_householder_product 61
linalg_inv .. 62
linalg_inv_ex .. 63
linalg_lstsq .. 64
linalg_matrix_norm .. 66
linalg_matrix_power ... 68
linalg_matrix_rank ... 69
linalg_multi_dot ... 70
linalg_norm .. 71
linalg_pinv .. 72
linalg_qr .. 74
linalg_slogdet .. 75
linalg_solve .. 76
linalg_svd .. 77
linalg_svdvals ... 79
linalg_tensorinv .. 80
linalg_tensorsolve .. 81
load_state_dict ... 83
lr_lambda ... 84
lr_multiplicative ... 85
lr_one_cycle .. 86
lr_scheduler .. 88
lr_step ... 89
nnf_adaptive_avg_pool1d .. 90
nnf_adaptive_avg_pool2d .. 90
nnf_adaptive_avg_pool3d .. 91
nnf_adaptive_max_pool1d .. 91
nnf_adaptive_max_pool2d .. 92
nnf_adaptive_max_pool3d .. 92
nnf_affine_grid ... 93
nnf_alpha_dropout .. 93
nnf_avg_pool1d .. 94
nnf_avg_pool2d .. 94
nnf_avg_pool3d .. 95
nnf_batch_norm ... 96
nnf_bilinear .. 97
nnf_binary_cross_entropy .. 97
nnf_binary_cross_entropy_with_logits 98
nnf CELU .. 99
nnf_contrib_sparsemax ... 99
nnf_conv1d .. 100
nnf_conv2d .. 100
nnf_conv3d .. 101
nnf_conv_tbc ... 102
nnf_conv_transpose1d ... 103
nnf_conv_transpose2d ... 104
R topics documented:

- `nnf_conv_transpose3d` .. 105
- `nnf_cosine_embedding_loss` .. 106
- `nnf_cosine_similarity` .. 106
- `nnf_cross_entropy` .. 107
- `nnf_ctc_loss` .. 108
- `nnf_dropout` .. 109
- `nnf_dropout2d` .. 109
- `nnf_dropout3d` ... 110
- `nnf_elu` .. 110
- `nnf_embedding` .. 111
- `nnf_embedding_bag` ... 112
- `nnf_fold` .. 113
- `nnf_fractional_max_pool2d` .. 114
- `nnf_fractional_max_pool3d` .. 115
- `nnf_gelu` .. 116
- `nnf_glu` ... 116
- `nnf_grid_sample` .. 117
- `nnf_group_norm` ... 118
- `nnf_gumbel_softmax` ... 119
- `nnf_hardshrink` ... 119
- `nnf_hardsigmoid` .. 120
- `nnf_hardswish` .. 120
- `nnfhardtanh` ... 121
- `nnf_hinge_embedding_loss` ... 121
- `nnf_instance_norm` .. 122
- `nnf_interpolate` .. 122
- `nnf_kl_div` ... 124
- `nnf_l1_loss` ... 124
- `nnf_layer_norm` ... 125
- `nnf_leaky_relu` .. 125
- `nnf_linear` ... 126
- `nnf_local_response_norm` .. 126
- `nnf_logsigmoid` ... 127
- `nnf_log_softmax` .. 127
- `nnf_lp_pool1d` ... 128
- `nnf_lp_pool2d` ... 128
- `nnf_margin_ranking_loss` ... 129
- `nnf_max_pool1d` .. 129
- `nnf_max_pool2d` .. 130
- `nnf_max_pool3d` .. 131
- `nnf_max_unpool1d` ... 131
- `nnf_max_unpool2d` ... 132
- `nnf_max_unpool3d` ... 133
- `nnf_mse_loss` ... 133
- `nnf_multilabel_margin_loss` ... 134
- `nnf_multilabel_soft_margin_loss` 134
- `nnf_multi_head_attention_forward` 135
- `nnf_multi_margin_loss` .. 137
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nn_conv_transpose1d</code></td>
<td>181</td>
</tr>
<tr>
<td><code>nn_conv_transpose2d</code></td>
<td>183</td>
</tr>
<tr>
<td><code>nn_conv_transpose3d</code></td>
<td>185</td>
</tr>
<tr>
<td><code>nn_cosine_embedding_loss</code></td>
<td>188</td>
</tr>
<tr>
<td><code>nn_cross_entropy_loss</code></td>
<td>189</td>
</tr>
<tr>
<td><code>nn_ctc_loss</code></td>
<td>190</td>
</tr>
<tr>
<td><code>nn_dropout</code></td>
<td>192</td>
</tr>
<tr>
<td><code>nn_dropout2d</code></td>
<td>193</td>
</tr>
<tr>
<td><code>nn_dropout3d</code></td>
<td>194</td>
</tr>
<tr>
<td><code>nn_elu</code></td>
<td>195</td>
</tr>
<tr>
<td><code>nn_embedding</code></td>
<td>196</td>
</tr>
<tr>
<td><code>nn_fractional_max_pool2d</code></td>
<td>197</td>
</tr>
<tr>
<td><code>nn_fractional_max_pool3d</code></td>
<td>198</td>
</tr>
<tr>
<td><code>nn_gelu</code></td>
<td>199</td>
</tr>
<tr>
<td><code>nn_glu</code></td>
<td>200</td>
</tr>
<tr>
<td><code>nn_group_norm</code></td>
<td>201</td>
</tr>
<tr>
<td><code>nn_gru</code></td>
<td>202</td>
</tr>
<tr>
<td><code>nn_hardshrink</code></td>
<td>203</td>
</tr>
<tr>
<td><code>nn_hardsigmoid</code></td>
<td>205</td>
</tr>
<tr>
<td><code>nn_hardswish</code></td>
<td>205</td>
</tr>
<tr>
<td><code>nn_hardtanh</code></td>
<td>206</td>
</tr>
<tr>
<td><code>nn_hinge_embedding_loss</code></td>
<td>207</td>
</tr>
<tr>
<td><code>nn_identity</code></td>
<td>208</td>
</tr>
<tr>
<td><code>nn_init_calculate_gain</code></td>
<td>208</td>
</tr>
<tr>
<td><code>nn_init_constant_</code></td>
<td>209</td>
</tr>
<tr>
<td><code>nn_init_dirac_</code></td>
<td>209</td>
</tr>
<tr>
<td><code>nn_init_eye_</code></td>
<td>210</td>
</tr>
<tr>
<td><code>nn_init_kaiming_normal_</code></td>
<td>210</td>
</tr>
<tr>
<td><code>nn_init_kaiming_uniform_</code></td>
<td>211</td>
</tr>
<tr>
<td><code>nn_init_normal_</code></td>
<td>212</td>
</tr>
<tr>
<td><code>nn_init_ones_</code></td>
<td>213</td>
</tr>
<tr>
<td><code>nn_init_orthogonal_</code></td>
<td>213</td>
</tr>
<tr>
<td><code>nn_init_sparse_</code></td>
<td>214</td>
</tr>
<tr>
<td><code>nn_init_trunc_normal_</code></td>
<td>215</td>
</tr>
<tr>
<td><code>nn_init_uniform_</code></td>
<td>215</td>
</tr>
<tr>
<td><code>nn_init_xavier_normal_</code></td>
<td>216</td>
</tr>
<tr>
<td><code>nn_init_xavier_uniform_</code></td>
<td>216</td>
</tr>
<tr>
<td><code>nn_init_zeros_</code></td>
<td>217</td>
</tr>
<tr>
<td><code>nn_kl_div_loss</code></td>
<td>218</td>
</tr>
<tr>
<td><code>nn_l1_loss</code></td>
<td>219</td>
</tr>
<tr>
<td><code>nn_layer_norm</code></td>
<td>220</td>
</tr>
<tr>
<td><code>nn_leaky_relu</code></td>
<td>221</td>
</tr>
<tr>
<td><code>nn_linear</code></td>
<td>222</td>
</tr>
<tr>
<td><code>nn_log_sigmoid</code></td>
<td>223</td>
</tr>
<tr>
<td><code>nn_log_softmax</code></td>
<td>224</td>
</tr>
<tr>
<td><code>nn_lp_pool1d</code></td>
<td>225</td>
</tr>
<tr>
<td><code>nn_lp_pool2d</code></td>
<td>226</td>
</tr>
<tr>
<td><code>nn_lstm</code></td>
<td>228</td>
</tr>
</tbody>
</table>
nn_margin_ranking_loss ... 230
nn_max_pool1d .. 231
nn_max_pool2d .. 232
nn_max_pool3d .. 234
nn_max_unpool1d ... 235
nn_max_unpool2d ... 236
nn_max_unpool3d ... 238
nn_module ... 239
nn_module_list ... 241
nn_mse_loss ... 241
nn_multihead_attention ... 243
nn_multilabel_margin_loss ... 244
nn_multilabel_soft_margin_loss 246
nn_multi_margin_loss .. 247
nn_nll_loss ... 248
nn_pairwise_distance ... 249
nn_parameter .. 250
nn_poisson_nll_loss .. 251
nn_prelu ... 252
nn_relu ... 253
nn_relu6 ... 254
nn_rnn ... 254
nn_relu ... 257
nn_selu ... 258
nn_sequential ... 259
nn_sigmoid .. 259
nn_smooth_l1_loss ... 260
nn_softmax .. 261
nn_softmax2d .. 262
nn_softmin .. 263
nn_softplus .. 264
nn_softshrink .. 265
nn_softsign .. 265
nn_soft_margin_loss .. 266
nn_tanh ... 267
nn_tanhshrink ... 267
nn_threshold ... 268
nn_triplet_margin_loss ... 269
nn_triplet_margin_with_distance_loss 270
nn_utils_clip_grad_norm .. 272
nn_utils_clip_grad_value ... 273
nn_utils_rnn_pack_padded_sequence 273
nn_utils_rnn_pack_sequence .. 274
nn_utils_rnn_pad_packed_sequence 275
nn_utils_rnn_pad_sequence .. 276
optimizer ... 277
optim_adadelta .. 279
optim_adagrad .. 280
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>optim_adam</td>
<td>281</td>
</tr>
<tr>
<td>optim_asgd</td>
<td>282</td>
</tr>
<tr>
<td>optim_lbfgs</td>
<td>283</td>
</tr>
<tr>
<td>optim_required</td>
<td>284</td>
</tr>
<tr>
<td>optim_rmsprop</td>
<td>284</td>
</tr>
<tr>
<td>optim_rprop</td>
<td>285</td>
</tr>
<tr>
<td>optim_sgd</td>
<td>286</td>
</tr>
<tr>
<td>slc</td>
<td>287</td>
</tr>
<tr>
<td>tensor_dataset</td>
<td>288</td>
</tr>
<tr>
<td>threads</td>
<td>288</td>
</tr>
<tr>
<td>torch_abs</td>
<td>289</td>
</tr>
<tr>
<td>torch_absolute</td>
<td>289</td>
</tr>
<tr>
<td>torch_acos</td>
<td>290</td>
</tr>
<tr>
<td>torch_acosh</td>
<td>290</td>
</tr>
<tr>
<td>torch_adaptive_avg_pool1d</td>
<td>291</td>
</tr>
<tr>
<td>torch_add</td>
<td>292</td>
</tr>
<tr>
<td>torch_addbmm</td>
<td>293</td>
</tr>
<tr>
<td>torch_addediv</td>
<td>294</td>
</tr>
<tr>
<td>torch_addcmul</td>
<td>295</td>
</tr>
<tr>
<td>torch_addmm</td>
<td>296</td>
</tr>
<tr>
<td>torch_addmv</td>
<td>297</td>
</tr>
<tr>
<td>torch_addr</td>
<td>298</td>
</tr>
<tr>
<td>torch_allclose</td>
<td>299</td>
</tr>
<tr>
<td>torch_amax</td>
<td>300</td>
</tr>
<tr>
<td>torch_amin</td>
<td>301</td>
</tr>
<tr>
<td>torch_angle</td>
<td>302</td>
</tr>
<tr>
<td>torch_arange</td>
<td>302</td>
</tr>
<tr>
<td>torch_arccos</td>
<td>303</td>
</tr>
<tr>
<td>torch_arccosh</td>
<td>304</td>
</tr>
<tr>
<td>torch_arcsin</td>
<td>304</td>
</tr>
<tr>
<td>torch_arcsinh</td>
<td>305</td>
</tr>
<tr>
<td>torch_arctan</td>
<td>305</td>
</tr>
<tr>
<td>torch_arctanh</td>
<td>306</td>
</tr>
<tr>
<td>torch_argmax</td>
<td>306</td>
</tr>
<tr>
<td>torch_argmin</td>
<td>307</td>
</tr>
<tr>
<td>torch_argsort</td>
<td>308</td>
</tr>
<tr>
<td>torch_asin</td>
<td>309</td>
</tr>
<tr>
<td>torch_asinh</td>
<td>309</td>
</tr>
<tr>
<td>torch_as_strided</td>
<td>310</td>
</tr>
<tr>
<td>torch_atan</td>
<td>311</td>
</tr>
<tr>
<td>torch_atan2</td>
<td>312</td>
</tr>
<tr>
<td>torch_atanh</td>
<td>312</td>
</tr>
<tr>
<td>torch_atleast_1d</td>
<td>313</td>
</tr>
<tr>
<td>torch_atleast_2d</td>
<td>314</td>
</tr>
<tr>
<td>torch_atleast_3d</td>
<td>314</td>
</tr>
<tr>
<td>torch_avg_pool1d</td>
<td>315</td>
</tr>
<tr>
<td>torch_baddbmm</td>
<td>316</td>
</tr>
<tr>
<td>torch_bartlett_window</td>
<td>317</td>
</tr>
</tbody>
</table>
torch_bernoulli .. 318
torch_bincount .. 319
torch_bitwise_and .. 320
torch_bitwise_not .. 320
torch_bitwise_or .. 321
torch_bitwise_xor ... 321
torch_blackman_window .. 322
torch_block_diag .. 323
torch_bmm ... 323
torch_broadcast_tensors 324
torch_bucketize ... 325
torch_can_cast .. 326
torch_cartesian_prod ... 326
torch_cat ... 327
torch_cdist ... 328
torch ceil .. 328
torch_celu ... 329
torch_celu_ ... 330
torch_chain_matmul ... 330
torch_channel_shuffle ... 331
torch_cholesky .. 332
torch_cholesky_inverse 333
torch_cholesky_solve ... 334
torch_chunk ... 335
torch_clamp ... 336
torch_clip ... 337
torch_clone ... 338
torch_combinations .. 338
torch_complex .. 339
torch_conj ... 340
torch_conv1d ... 340
torch_conv2d ... 341
torch_conv3d ... 342
torch_conv_tbc .. 343
torch_conv_transpose1d 344
torch_conv_transpose2d 345
torch_conv_transpose3d 346
torch_cos .. 347
torch_cosh ... 348
torch_cosine_similarity 349
torch_count_nonzero .. 349
torch_cross ... 350
torch_cummax ... 351
torch_cummin ... 352
torch_cumprod .. 352
torch_cumsum ... 353
torch_deg2rad .. 354
torch_dequantize .. 354
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>torch.det</td>
<td>355</td>
</tr>
<tr>
<td>torch.device</td>
<td>356</td>
</tr>
<tr>
<td>torch.diag</td>
<td>356</td>
</tr>
<tr>
<td>torch.diagflat</td>
<td>357</td>
</tr>
<tr>
<td>torch_diagonal</td>
<td>358</td>
</tr>
<tr>
<td>torch_diag_embed</td>
<td>359</td>
</tr>
<tr>
<td>torch_diff</td>
<td>360</td>
</tr>
<tr>
<td>torchDigamma</td>
<td>361</td>
</tr>
<tr>
<td>torch_dist</td>
<td>361</td>
</tr>
<tr>
<td>torch_div</td>
<td>362</td>
</tr>
<tr>
<td>torch_divide</td>
<td>363</td>
</tr>
<tr>
<td>torch_dot</td>
<td>364</td>
</tr>
<tr>
<td>torch_dstack</td>
<td>365</td>
</tr>
<tr>
<td>torch_dtype</td>
<td>366</td>
</tr>
<tr>
<td>torch_eig</td>
<td>367</td>
</tr>
<tr>
<td>torch_einsum</td>
<td>367</td>
</tr>
<tr>
<td>torch_empty</td>
<td>368</td>
</tr>
<tr>
<td>torch_empty_like</td>
<td>369</td>
</tr>
<tr>
<td>torch_empty_strided</td>
<td>370</td>
</tr>
<tr>
<td>torch_eq</td>
<td>372</td>
</tr>
<tr>
<td>torch_equal</td>
<td>372</td>
</tr>
<tr>
<td>torch_erf</td>
<td>373</td>
</tr>
<tr>
<td>torch_erfc</td>
<td>374</td>
</tr>
<tr>
<td>torch_erfinv</td>
<td>374</td>
</tr>
<tr>
<td>torch_exp</td>
<td>375</td>
</tr>
<tr>
<td>torch_exp2</td>
<td>376</td>
</tr>
<tr>
<td>torch_expm1</td>
<td>376</td>
</tr>
<tr>
<td>torch_eye</td>
<td>377</td>
</tr>
<tr>
<td>torch_fft_fft</td>
<td>378</td>
</tr>
<tr>
<td>torch_fft_ifft</td>
<td>379</td>
</tr>
<tr>
<td>torch_fft_irfft</td>
<td>380</td>
</tr>
<tr>
<td>torch_fft_rfft</td>
<td>381</td>
</tr>
<tr>
<td>torch_finfo</td>
<td>382</td>
</tr>
<tr>
<td>torch_fix</td>
<td>382</td>
</tr>
<tr>
<td>torch_flatten</td>
<td>383</td>
</tr>
<tr>
<td>torch_flip</td>
<td>383</td>
</tr>
<tr>
<td>torch_fliplr</td>
<td>384</td>
</tr>
<tr>
<td>torch_flipud</td>
<td>385</td>
</tr>
<tr>
<td>torch_floor</td>
<td>386</td>
</tr>
<tr>
<td>torch_floor_divide</td>
<td>386</td>
</tr>
<tr>
<td>torch_fmod</td>
<td>387</td>
</tr>
<tr>
<td>torch_frac</td>
<td>388</td>
</tr>
<tr>
<td>torch_full</td>
<td>388</td>
</tr>
<tr>
<td>torch_full_like</td>
<td>389</td>
</tr>
<tr>
<td>torch_gather</td>
<td>390</td>
</tr>
<tr>
<td>torch_gcd</td>
<td>391</td>
</tr>
<tr>
<td>torch_ge</td>
<td>392</td>
</tr>
<tr>
<td>torch_generator</td>
<td>393</td>
</tr>
</tbody>
</table>
torch_geqrf .. 393
torch_ger .. 394
torch_greater .. 395
torch_greater_equal ... 395
torch_gt ... 396
torch_hamming_window 396
torch_hann_window ... 398
torch_heaviside ... 399
torch_histc ... 400
torch_hstack .. 400
torch_hypot .. 401
torch_i0 ... 402
torch_info ... 402
torch_imag ... 403
torch_index .. 403
torch_index_put .. 404
torch_index_put .. 404
torch_index_select .. 405
torch_inverse ... 406
torch_isclose ... 407
torch_isfinite ... 408
torch_isinf ... 408
torch.isnan ... 409
torch.isnaninf .. 409
torch.isposinf .. 410
torch.isreal .. 411
torch.isftft .. 411
torch.is_complex ... 413
torch.is_floating_point 413
torch.is_installed ... 414
torch.is_nonzero ... 414
torch.kaiser_window .. 415
torch.kthvalue .. 416
torch.layout .. 417
torch.lcm ... 417
torch.le .. 418
torch.lerp ... 419
torch.less .. 420
torch.less_equal ... 420
torch.igamma ... 421
torch.linspace .. 421
torch.load ... 422
torch.log .. 423
torch.log10 .. 423
torch.log1p ... 424
torch.log2 ... 425
torch.logaddexp ... 425
torch.logaddexp2 ... 426
topics documented:

- torch_logcumsumexp .. 427
- torch_logdet .. 427
- torch_logical_and ... 428
- torch_logical_not .. 429
- torch_logical_or ... 430
- torch_logical_xor ... 430
- torch_logit ... 431
- torch_logspace .. 432
- torch_logsumexp .. 433
- torch_lstsq .. 434
- torch_lt .. 435
- torchelu ... 436
- torch_lu ... 436
- torch_lu_solve .. 436
- torch_manual_seed ... 437
- torch_masked_select ... 438
- torch_matmul ... 439
- torch_matrix_exp .. 440
- torch_matrix_power ... 441
- torch_matrix_rank ... 442
- torch_max ... 442
- torch_maximum ... 444
- torch_mean .. 445
- torch_median ... 446
- torch_memory_format ... 447
- torch_meshgrid .. 447
- torch_min ... 448
- torch_minimum ... 449
- torch_mm .. 450
- torch_mode .. 451
- torch Movedim ... 452
- torch_mul ... 452
- torch_multinomial .. 453
- torch_multipy .. 455
- torch_mv .. 455
- torch_mvlgamma .. 456
- torch_nansum .. 457
- torch_narrow .. 458
- torch_ne .. 459
- torch_neg ... 459
- torch_negative ... 460
- torch_nextafter .. 460
- torch_nonzero ... 461
- torch_norm .. 461
- torch_normal ... 462
- torch_not_equal ... 462
- torch_ones .. 463
- torch_ones_like .. 464
- torch_ones_like .. 465
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>torch_orgqr</td>
<td>468</td>
</tr>
<tr>
<td>torch_ormqr</td>
<td>468</td>
</tr>
<tr>
<td>torch_outer</td>
<td>469</td>
</tr>
<tr>
<td>torch_pdist</td>
<td>470</td>
</tr>
<tr>
<td>torch_pinverse</td>
<td>470</td>
</tr>
<tr>
<td>torch_pixel_shuffle</td>
<td>471</td>
</tr>
<tr>
<td>torch_poisson</td>
<td>472</td>
</tr>
<tr>
<td>torch_polar</td>
<td>473</td>
</tr>
<tr>
<td>torch_polygamma</td>
<td>473</td>
</tr>
<tr>
<td>torch_pow</td>
<td>474</td>
</tr>
<tr>
<td>torch_prod</td>
<td>476</td>
</tr>
<tr>
<td>torch_promote_types</td>
<td>477</td>
</tr>
<tr>
<td>torch_qr</td>
<td>477</td>
</tr>
<tr>
<td>torch_qscheme</td>
<td>478</td>
</tr>
<tr>
<td>torch_quantile</td>
<td>479</td>
</tr>
<tr>
<td>torch_quantize_per_channel</td>
<td>480</td>
</tr>
<tr>
<td>torch_quantize_per_tensor</td>
<td>481</td>
</tr>
<tr>
<td>torch_rad2deg</td>
<td>481</td>
</tr>
<tr>
<td>torch_rand</td>
<td>482</td>
</tr>
<tr>
<td>torch_randint</td>
<td>483</td>
</tr>
<tr>
<td>torch_randint_like</td>
<td>484</td>
</tr>
<tr>
<td>torch_randn</td>
<td>485</td>
</tr>
<tr>
<td>torch_randn_like</td>
<td>486</td>
</tr>
<tr>
<td>torch_randperm</td>
<td>487</td>
</tr>
<tr>
<td>torch_rand_like</td>
<td>488</td>
</tr>
<tr>
<td>torch_range</td>
<td>489</td>
</tr>
<tr>
<td>torch_real</td>
<td>490</td>
</tr>
<tr>
<td>torch_reciprocal</td>
<td>491</td>
</tr>
<tr>
<td>torch_reduction</td>
<td>492</td>
</tr>
<tr>
<td>torch_relu</td>
<td>492</td>
</tr>
<tr>
<td>torch_relu_</td>
<td>493</td>
</tr>
<tr>
<td>torch_remainder</td>
<td>493</td>
</tr>
<tr>
<td>torch_renorm</td>
<td>494</td>
</tr>
<tr>
<td>torch_repeat_interleave</td>
<td>495</td>
</tr>
<tr>
<td>torch_reshape</td>
<td>496</td>
</tr>
<tr>
<td>torch_result_type</td>
<td>496</td>
</tr>
<tr>
<td>torch_roll</td>
<td>497</td>
</tr>
<tr>
<td>torch_rot90</td>
<td>498</td>
</tr>
<tr>
<td>torch_round</td>
<td>499</td>
</tr>
<tr>
<td>torch_rrelu</td>
<td>499</td>
</tr>
<tr>
<td>torch_rsqrt</td>
<td>500</td>
</tr>
<tr>
<td>torch_save</td>
<td>501</td>
</tr>
<tr>
<td>torch_scalar_tensor</td>
<td>501</td>
</tr>
<tr>
<td>torch_searchsorted</td>
<td>502</td>
</tr>
<tr>
<td>torch_selu</td>
<td>503</td>
</tr>
<tr>
<td>torch_selu_</td>
<td>503</td>
</tr>
<tr>
<td>torch_set_default_dtype</td>
<td>504</td>
</tr>
<tr>
<td>torch_sgn</td>
<td>504</td>
</tr>
</tbody>
</table>
Topics Documented

- `torch_sigmoid` ... 505
- `torch_sign` ... 506
- `torch_signbit` ... 506
- `torch_sin` ... 507
- `torch_sinh` ... 508
- `torch_slogdet` ... 508
- `torch_solve` ... 509
- `torch_sort` ... 510
- `torch_sparse_coo_tensor` .. 511
- `torch_split` ... 512
- `torch_sqrt` ... 513
- `torch_square` .. 514
- `torchsqueeze` .. 514
- `torch_stack` ... 515
- `torch_std` ... 516
- `torch_std_mean` .. 517
- `torch_stft` ... 518
- `torch_sub` ... 520
- `torch_subtract` ... 521
- `torch_sum` ... 521
- `torch_svd` ... 522
- `torch_symeig` .. 523
- `torch_t` ... 525
- `torch_take` ... 526
- `torch_tan` ... 526
- `torch_tanh` ... 527
- `torch_tensor` .. 528
- `torch_tensordot` .. 528
- `torch_threshold_` .. 529
- `torch_topk` ... 530
- `torch_trace` ... 531
- `torch_transpose` ... 531
- `torch_trapz` .. 532
- `torch_triangular_solve` ... 533
- `torch_tril` ... 534
- `torch_triu` ... 535
- `torch_tril_indices` .. 536
- `torch_triu_indices` .. 537
- `torch_true_divide` ... 539
- `torch_trunc` .. 539
- `torch.unbind` .. 540
- `torch_unique_consecutive` .. 541
- `torch_unsafe_chunk` .. 542
- `torch_unsafe_split` .. 542
- `torch_unsqueeze` ... 543
- `torch_vander` .. 544
- `torch_var` ... 544
- `torch_var_mean` .. 545
torch_vdot .. 546
torch_view_as_complex 547
torch_view_as_real 548
torch_vstack ... 549
torch_where ... 549
torch_zeros ... 550
torch_zeros_like .. 551
with_detect_anomaly 553
with_enable_grad .. 554
with_no_grad ... 554

Index 556

<table>
<thead>
<tr>
<th>as_array</th>
<th>Converts to array</th>
</tr>
</thead>
</table>

Description

Converts to array

Usage

```python
as_array(x)
```

Arguments

- `x`: object to be converted into an array

AutogradContext

<table>
<thead>
<tr>
<th>Class representing the context.</th>
</tr>
</thead>
</table>

Description

Class representing the context.
Class representing the context.

Public fields

- `ptr` (Dev related) pointer to the context c++ object.

Active bindings

- `needs_input_grad` boolean listing arguments of `forward` and whether they require_grad.
- `saved_variables` list of objects that were saved for backward via `save_for_backward`.
Methods

Public methods:

- AutogradContext$new()
- AutogradContext$save_for_backward()
- AutogradContext$mark_non_differentiable()
- AutogradContext$mark_dirty()
- AutogradContext$clone()

Method new(): (Dev related) Initializes the context. Not user related.

Usage:
AutogradContext$new(
 ptr,
 env,
 argument_names = NULL,
 argument_needs_grad = NULL
)

Arguments:
ptr pointer to the c++ object
env environment that encloses both forward and backward
argument_names names of forward arguments
argument_needs_grad whether each argument in forward needs grad.

Method save_for_backward(): Saves given objects for a future call to backward().
This should be called at most once, and only from inside the forward() method.
Later, saved objects can be accessed through the saved_variables attribute. Before returning
them to the user, a check is made to ensure they weren’t used in any in-place operation that
modified their content.
Arguments can also be any kind of R object.

Usage:
AutogradContext$save_for_backward(...)

Arguments:
...
any kind of R object that will be saved for the backward pass. It’s common to pass named
arguments.

Method mark_non_differentiable(): Marks outputs as non-differentiable.
This should be called at most once, only from inside the forward() method, and all arguments
should be outputs.
This will mark outputs as not requiring gradients, increasing the efficiency of backward computa-
tion. You still need to accept a gradient for each output in backward(), but it’s always going to
be a zero tensor with the same shape as the shape of a corresponding output.
This is used e.g. for indices returned from a max Function.

Usage:
AutogradContext$mark_non_differentiable(...)
Arguments:
... non-differentiable outputs.

Method mark_dirty(): Marks given tensors as modified in an in-place operation.
This should be called at most once, only from inside the forward() method, and all arguments should be inputs.
Every tensor that’s been modified in-place in a call to forward() should be given to this function, to ensure correctness of our checks. It doesn’t matter whether the function is called before or after modification.

Usage:
AutogradContext$mark_dirty(...)

Arguments:
... tensors that are modified in-place.

Method clone(): The objects of this class are cloneable with this method.

Usage:
AutogradContext$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

autograd_backward Computes the sum of gradients of given tensors w.r.t. graph leaves.

Description

The graph is differentiated using the chain rule. If any of tensors are non-scalar (i.e. their data has more than one element) and require gradient, then the Jacobian-vector product would be computed, in this case the function additionally requires specifying grad_tensors. It should be a sequence of matching length, that contains the “vector” in the Jacobian-vector product, usually the gradient of the differentiated function w.r.t. corresponding tensors (None is an acceptable value for all tensors that don’t need gradient tensors).

Usage

autograd_backward(
 tensors,
 grad_tensors = NULL,
 retain_graph = create_graph,
 create_graph = FALSE
)
Arguments

- **tensors** (list of Tensor) – Tensors of which the derivative will be computed.
- **grad_tensors** (list of (Tensor or NULL)) – The “vector” in the Jacobian-vector product, usually gradients w.r.t. each element of corresponding tensors. NULL values can be specified for scalar Tensors or ones that don’t require grad. If a NULL value would be acceptable for all grad_tensors, then this argument is optional.
- **retain_graph** (bool, optional) – If FALSE, the graph used to compute the grad will be freed. Note that in nearly all cases setting this option to TRUE is not needed and often can be worked around in a much more efficient way. Defaults to the value of create_graph.
- **create_graph** (bool, optional) – If TRUE, graph of the derivative will be constructed, allowing to compute higher order derivative products. Defaults to FALSE.

Details

This function accumulates gradients in the leaves - you might need to zero them before calling it.

Examples

```r
if (torch_is_installed()) {
  x <- torch_tensor(1, requires_grad = TRUE)
  y <- 2 * x

  a <- torch_tensor(1, requires_grad = TRUE)
  b <- 3 * a

  autograd_backward(list(y, b))
}
```

autograd_function

Records operation history and defines formulas for differentiating ops.

Description

Every operation performed on Tensor’s creates a new function object, that performs the computation, and records that it happened. The history is retained in the form of a DAG of functions, with edges denoting data dependencies (input <- output). Then, when backward is called, the graph is processed in the topological ordering, by calling backward() methods of each Function object, and passing returned gradients on to next Function’s.

Usage

```r
autograd_function(forward, backward)
```
Arguments

forward

Performs the operation. It must accept a context `ctx` as the first argument, followed by any number of arguments (tensors or other types). The context can be used to store tensors that can be then retrieved during the backward pass. See `AutogradContext` for more information about context methods.

backward

Defines a formula for differentiating the operation. It must accept a context `ctx` as the first argument, followed by as many outputs did `forward()` return, and it should return a named list. Each argument is the gradient w.r.t the given output, and each element in the returned list should be the gradient w.r.t. the corresponding input. The context can be used to retrieve tensors saved during the forward pass. It also has an attribute `ctx$needs_input_grad` as a named list of booleans representing whether each input needs gradient. E.g., `backward()` will have `ctx$needs_input_grad$input = TRUE` if the input argument to `forward()` needs gradient computed w.r.t. the output. See `AutogradContext` for more information about context methods.

Examples

```r
if (torch_is_installed()) {

  exp2 <- autograd_function(
    forward = function(ctx, i) {
      result <- i$exp()
      ctx$save_for_backward(result = result)
      result
    },
    backward = function(ctx, grad_output) {
      list(i = grad_output * ctx$saved_variable$result)
    }
  )
}
```

`autograd_grad`

Computes and returns the sum of gradients of outputs w.r.t. the inputs.

Description

`grad_outputs` should be a list of length matching output containing the “vector” in Jacobian-vector product, usually the pre-computed gradients w.r.t. each of the outputs. If an output doesn’t require_grad, then the gradient can be `None`.

Usage

```r
autograd_grad(
  outputs,
  inputs,
)```
autograd_grad

```r
grad_outputs = NULL,
retain_graph = create_graph,
create_graph = FALSE,
allow_unused = FALSE
```

### Arguments

- **outputs** *(sequence of Tensor)* – outputs of the differentiated function.
- **inputs** *(sequence of Tensor)* – Inputs w.r.t. which the gradient will be returned (and not accumulated into .grad).
- **grad_outputs** *(sequence of Tensor)* – The “vector” in the Jacobian-vector product. Usually gradients w.r.t. each output. None values can be specified for scalar Tensors or ones that don’t require grad. If a None value would be acceptable for all grad_tensors, then this argument is optional. Default: None.
- **retain_graph** *(bool, optional)* – If FALSE, the graph used to compute the grad will be freed. Note that in nearly all cases setting this option to TRUE is not needed and often can be worked around in a much more efficient way. Defaults to the value of create_graph.
- **create_graph** *(bool, optional)* – If TRUE, graph of the derivative will be constructed, allowing to compute higher order derivative products. Default: FALSE.
- **allow_unused** *(bool, optional)* – If FALSE, specifying inputs that were not used when computing outputs (and therefore their grad is always zero) is an error. Defaults to FALSE

### Details

If only_inputs is TRUE, the function will only return a list of gradients w.r.t the specified inputs. If it’s FALSE, then gradient w.r.t. all remaining leaves will still be computed, and will be accumulated into their .grad attribute.

### Examples

```r
if (torch_is_installed()) {
 w <- torch_tensor(0.5, requires_grad = TRUE)
 b <- torch_tensor(0.9, requires_grad = TRUE)
 x <- torch_tensor(runif(100))
 y <- 2 * x + 1
 loss <- (y - (w*x + b))^2
 loss <- loss$mean()
 o <- autograd_grad(loss, list(w, b))
 o
}
```
autograd_set_grad_mode

Set grad mode

Description
Sets or disables gradient history.

Usage
autograd_set_grad_mode(enabled)

Arguments
enabled bool wether to enable or disable the gradient recording.

backends_mkldnn_is_available

MKLDNN is available

Description
MKLDNN is available

Usage
backends_mkldnn_is_available()

Value
Returns whether LibTorch is built with MKL-DNN support.

backends_mkl_is_available

MKL is available

Description
MKL is available

Usage
backends_mkl_is_available()

Value
Returns whether LibTorch is built with MKL support.
Description

OpenMP is available

Usage

backends_openmp_is_available()

Value

Returns whether LibTorch is built with OpenMP support.

description

Given a list of values (possibly containing numbers), returns a list where each value is broadcasted based on the following rules:

Description

Raises value_error: if any of the values is not a numeric instance, a torch.*Tensor instance, or an instance implementing torch_function. TODO: add has_torch_function((v,)) See: https://github.com/pytorch/pytorch/blob/master/torch/distributions/utils.py

Usage

broadcast_all(values)

Arguments

| values | List of:
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• torch.*Tensor instances are broadcasted as per _broadcasting-semantics.</td>
<td></td>
</tr>
<tr>
<td>• numeric instances (scalars) are upcast to tensors having the same size and type as the first tensor passed to values. If all the values are scalars, then they are upcasted to scalar Tensors. values (list of numeric, torch.*Tensor or objects implementing torch_function)</td>
<td></td>
</tr>
</tbody>
</table>
Constraint

Abstract base class for constraints.

Description

Abstract base class for constraints.

Details

A constraint object represents a region over which a variable is valid, e.g. within which a variable can be optimized.

Methods

Public methods:

- `Constraint$check()`
- `Constraint$print()`
- `Constraint$clone()`

Method `check()`: Returns a byte tensor of `sample_shape + batch_shape` indicating whether each event in value satisfies this constraint.

Usage:

```
Constraint$check(value)
```

Arguments:

- `value` each event in value will be checked.

Method `print()`: Define the print method for constraints.

Usage:

```
Constraint$print()
```

Method `clone()`: The objects of this class are cloneable with this method.

Usage:

```
Constraint$clone(deep = FALSE)
```

Arguments:

- `deep` Whether to make a deep clone.
**contrib_sort_vertices**  
*Contrib sort vertices*

**Description**

Based on the implementation from Rotated_IoU

**Usage**

```python
contrib_sort_vertices(vertices, mask, num_valid)
```

**Arguments**

- `vertices` A Tensor with the vertices.
- `mask` A tensor containing the masks.
- `num_valid` A integer tensors.

**Details**

All tensors should be on a CUDA device so this function can be used.

**Note**

This function does not make part of the official torch API.

**Examples**

```python
if (torch_is_installed()) {
 if (cuda_is_available()) {
 v <- torch_randn(8, 1024, 24, 2)$cuda()
 mean <- torch_mean(v, dim=2, keepdim=TRUE)
 v <- v - mean
 m <- (torch_rand(8, 1024, 24) > 0.8)$cuda()
 nv <- torch_sum(m$to(dtype = torch_int()), dim=-1)$to(dtype = torch_int())$cuda()
 result <- contrib_sort_vertices(v, m, nv)
 }
}
```

**cuda_current_device**  
*Returns the index of a currently selected device.*

**Description**

Returns the index of a currently selected device.

**Usage**

```python
cuda_current_device()
```
cudnn_device_count

Returns the number of GPUs available.

Description
Returns the number of GPUs available.

Usage

cudnn_device_count()

cudnn_is_available

Returns a bool indicating if CUDA is currently available.

Description
Returns a bool indicating if CUDA is currently available.

Usage

cudnn_is_available()

dataloader

Data loader. Combines a dataset and a sampler, and provides single- or multi-process iterators over the dataset.

Description
Data loader. Combines a dataset and a sampler, and provides single- or multi-process iterators over the dataset.

Usage
dataloader(
dataset,
batch_size = 1,
shuffle = FALSE,
sampler = NULL,
batch_sampler = NULL,
num_workers = 0,
collate_fn = NULL,
pin_memory = FALSE,
drop_last = FALSE,
timeout = -1,
worker_init_fn = NULL,
worker_globals = NULL,
worker_packages = NULL
)

Arguments

dataset (Dataset): dataset from which to load the data.
batch_size (int, optional): how many samples per batch to load (default: 1).
shuffle (bool, optional): set to TRUE to have the data reshuffled at every epoch (default: FALSE).
sampler (Sampler, optional): defines the strategy to draw samples from the dataset. If specified, shuffle must be False.
batch_sampler (Sampler, optional): like sampler, but returns a batch of indices at a time. Mutually exclusive with batch_size, shuffle, sampler, and drop_last.
num_workers (int, optional): how many subprocesses to use for data loading. 0 means that the data will be loaded in the main process. (default: 0)
collate_fn (callable, optional): merges a list of samples to form a mini-batch.
pin_memory (bool, optional): If TRUE, the data loader will copy tensors into CUDA pinned memory before returning them. If your data elements are a custom type, or your collate_fn returns a batch that is a custom type see the example below.
drop_last (bool, optional): set to TRUE to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If FALSE and the size of dataset is not divisible by the batch size, then the last batch will be smaller. (default: FALSE)
timeout (numeric, optional): if positive, the timeout value for collecting a batch from workers. -1 means no timeout. (default: -1)
worker_init_fn (callable, optional): If not NULL, this will be called on each worker subprocess with the worker id (an int in [1, num_workers]) as input, after seeding and before data loading. (default: NULL)
worker_globals (list or character vector, optional) only used when num_workers > 0. If a character vector, then objects with those names are copied from the global environment to the workers. If a named list, then this list is copied and attached to the worker global environment. Notice that the objects are copied only once at the worker initialization.
worker_packages (character vector, optional) Only used if num_workers > 0 optional character vector naming packages that should be loaded in each worker.

Parallel data loading

When using num_workers > 0 data loading will happen in parallel for each worker. Note that batches are taken in parallel and not observations.
The worker initialization process happens in the following order:

• num_workers R sessions are initialized.
Then in each worker we perform the following actions:

- the torch library is loaded.
- a random seed is set both using `set.seed()` and using `torch_manual_seed`.
- packages passed to the `worker_packages` argument are loaded.
- objects passed through the `workerGlobals` parameters are copied into the global environment.
- the `worker_init` function is run with an `id` argument.
- the dataset fetcher is copied to the worker.

---

**dataloader_make_iter**  
*Copies an iterator from a DataLoader*

**Description**

Creates an iterator from a DataLoader

**Usage**

```r
dataloader_make_iter(dataloader)
```

**Arguments**

- `dataloader`: a dataloader object.

---

**dataloader_next**  
*Get the next element of a dataloader iterator*

**Description**

Get the next element of a dataloader iterator

**Usage**

```r
dataloader_next(iter, completed = NULL)
```

**Arguments**

- `iter`: a DataLoader iter created with `dataloader_make_iter`.
- `completed`: the returned value when the iterator is exhausted.
**dataset**

*Helper function to create an R6 class that inherits from the abstract Dataset class*

---

**Description**

All datasets that represent a map from keys to data samples should subclass this class. All subclasses should overwrite the `.getitem()` method, which supports fetching a data sample for a given key. Subclasses could also optionally overwrite `.length()`, which is expected to return the size of the dataset (e.g. number of samples) used by many sampler implementations and the default options of `dataloader()`.

**Usage**

```
dataset(
 name = NULL,
 inherit = Dataset,
 ...,
 private = NULL,
 active = NULL,
 parent_env = parent.frame()
)
```

**Arguments**

- `name` a name for the dataset. It’s also used as the class for it.
- `inherit` you can optionally inherit from a dataset when creating a new dataset.
- `...` public methods for the dataset class
- `private` passed to `R6::R6Class()`.
- `active` passed to `R6::R6Class()`.
- `parent_env` An environment to use as the parent of newly-created objects.

**Get a batch of observations**

By default datasets are iterated by returning each observation/item individually. Sometimes it’s possible to have an optimized implementation to take a batch of observations (e.g. subsetting a tensor by multiple indexes at once is faster than subsetting once for each index), in this case you can implement a `.getbatch` method that will be used instead of `.getitem` when getting a batch of observations within the dataloader.

**Note**

`dataloader()` by default constructs a index sampler that yields integral indices. To make it work with a map-style dataset with non-integral indices/keys, a custom sampler must be provided.
**dataset_subset**  
*Dataset Subset*

**Description**
Subset of a dataset at specified indices.

**Usage**
```python
dataset_subset(dataset, indices)
```

**Arguments**
- `dataset` *(Dataset):* The whole Dataset
- `indices` *(sequence):* Indices in the whole set selected for subset

---

**Distribution**  
*Generic R6 class representing distributions*

**Description**
Distribution is the abstract base class for probability distributions. Note: in Python, adding `torch.Size` objects works as concatenation. Try for example: `torch.Size((2, 1)) + torch.Size((1,))`

**Public fields**
- `.validate_args` whether to validate arguments
- `has_rsample` whether has `rsample`
- `has Enumerate_Support` whether has enumerate support

**Active bindings**
- `batch_shape` Returns the shape over which parameters are batched.
- `event_shape` Returns the shape of a single sample (without batching). Returns a dictionary from argument names to `torch.Constraint` objects that should be satisfied by each argument of this distribution. Args that are not tensors need not appear in this dict.
- `support` Returns a `torch.Constraint` object representing this distribution’s support.
- `mean` Returns the mean on of the distribution
- `variance` Returns the variance of the distribution
- `stddev` Returns the standard deviation of the distribution

TODO: consider different message
Methods

Public methods:

- Distribution$new()
- Distribution$expand()
- Distribution$sample()
- Distribution$rsample()
- Distribution$log_prob()
- Distribution$cdf()
- Distribution$icdf()
- Distribution$enumerate_support()
- Distribution$entropy()
- Distribution$perplexity()
- Distribution$.extended_shape()
- Distribution$.validate_sample()
- Distribution$print()
- Distribution$clone()

Method new(): Initializes a distribution class.

Usage:
Distribution$new(batch_shape = NULL, event_shape = NULL, validate_args = NULL)

Arguments:
batch_shape the shape over which parameters are batched.
event_shape the shape of a single sample (without batching).
validate_args whether to validate the arguments or not. Validation can be time consuming
so you might want to disable it.

Method expand(): Returns a new distribution instance (or populates an existing instance provided by a derived class) with batch dimensions expanded to batch_shape. This method calls expand on the distribution's parameters. As such, this does not allocate new memory for the expanded distribution instance. Additionally, this does not repeat any args checking or parameter broadcasting in initialize, when an instance is first created.

Usage:
Distribution$expand(batch_shape, .instance = NULL)

Arguments:
batch_shape the desired expanded size.
.instance new instance provided by subclasses that need to override expand.

Method sample(): Generates a sample_shape shaped sample or sample_shape shaped batch of samples if the distribution parameters are batched.

Usage:
Distribution$sample(sample_shape = NULL)

Arguments:
sample_shape the shape you want to sample.
Method `rsample()`: Generates a `sample_shape` shaped reparameterized sample or `sample_shape` shaped batch of reparameterized samples if the distribution parameters are batched.

Usage:
Distribution$rsample(sample_shape = NULL)

Arguments:
sample_shape the shape you want to sample.

Method `log_prob()`: Returns the log of the probability density/mass function evaluated at value.

Usage:
Distribution$log_prob(value)

Arguments:
value values to evaluate the density on.

Method `cdf()`: Returns the cumulative density/mass function evaluated at value.

Usage:
Distribution$cdf(value)

Arguments:
value values to evaluate the density on.

Method `icdf()`: Returns the inverse cumulative density/mass function evaluated at value.

@description Returns tensor containing all values supported by a discrete distribution. The result will enumerate over dimension 0, so the shape of the result will be `(cardinality,) + batch_shape + event_shape` (where `event_shape = ()` for univariate distributions). Note that this enumerates over all batched tensors in lock-steplist(c(0, 0), c(1, 1), ...). With `expand=FALSE`, enumeration happens along dim 0, but with the remaining batch dimensions being singleton dimensions, list(c(0), c(1), ...)’.

Usage:
Distribution$icdf(value)

Arguments:
value values to evaluate the density on.

Method `enumerate_support()`:

Usage:
Distribution$enumerate_support(expand = TRUE)

Arguments:
expand (bool): whether to expand the support over the batch dims to match the distribution’s batch_shape.

Returns: Tensor iterating over dimension 0.

Method `entropy()`: Returns entropy of distribution, batched over batch_shape.

Usage:
Distribution$entropy()

Returns: Tensor of shape batch_shape.
Method **perplexity()**: Returns perplexity of distribution, batched over batch_shape.

*Usage:*

`Distribution$perplexity()`

*Returns:*

Tensor of shape batch_shape.

Method **.extended_shape()**: Returns the size of the sample returned by the distribution, given a sample_shape. Note, that the batch and event shapes of a distribution instance are fixed at the time of construction. If this is empty, the returned shape is upcast to (1,).

*Usage:*

`Distribution$.extended_shape(sample_shape = NULL)`

*Arguments:*

`sample_shape` (torch_Size): the size of the sample to be drawn.

Method **.validate_sample()**: Argument validation for distribution methods such as log_prob, cdf and icdf. The rightmost dimensions of a value to be scored via these methods must agree with the distribution’s batch and event shapes.

*Usage:*

`Distribution$.validate_sample(value)`

*Arguments:*

`value` (Tensor): the tensor whose log probability is to be computed by the log_prob method.

Method **print()**: Prints the distribution instance.

*Usage:*

`Distribution$print()`

Method **clone()**: The objects of this class are cloneable with this method.

*Usage:*

`Distribution$clone(deep = FALSE)`

*Arguments:*

`deep` Whether to make a deep clone.

---

**distr_bernoulli**

Creates a Bernoulli distribution parameterized by `probs` or `logits` (but not both). Samples are binary (0 or 1). They take the value 1 with probability `p` and 0 with probability `1 - p`.

**Description**

Creates a Bernoulli distribution parameterized by `probs` or `logits` (but not both). Samples are binary (0 or 1). They take the value 1 with probability `p` and 0 with probability `1 - p`.

**Usage**

`distr_bernoulli(probs = NULL, logits = NULL, validate_args = NULL)`
Arguments

probs (numeric or torch_tensor): the probability of sampling 1
logits (numeric or torch_tensor): the log-odds of sampling 1
validate_args whether to validate arguments or not.

See Also

Distribution for details on the available methods.

Other distributions: distr_chi2(), distr_gamma(), distr_multivariate_normal(), distr_normal(), distr_poisson()

Examples

if (torch_is_installed()) {
  m <- distr_bernoulli(0.3)
  m$sample() # 30% chance 1; 70% chance 0
}

distr_categorical

  Creates a categorical distribution parameterized by either probs or logits (but not both).

Description

Creates a categorical distribution parameterized by either probs or logits (but not both).

Usage

distr_categorical(probs = NULL, logits = NULL, validate_args = NULL)

Arguments

probs (Tensor): event probabilities
logits (Tensor): event log probabilities (unnormalized)
validate_args Additional arguments

Note

It is equivalent to the distribution that torch_multinomial() samples from.
Samples are integers from \{0, ..., K - 1\} where K is probs$size(-1).
If probs is 1-dimensional with length-K, each element is the relative probability of sampling the class at that index.
If probs is N-dimensional, the first N-1 dimensions are treated as a batch of relative probability vectors.
The `probs` argument must be non-negative, finite and have a non-zero sum, and it will be normalized to sum to 1 along the last dimension. `attr:probs` will return this normalized value. The `logits` argument will be interpreted as unnormalized log probabilities and can therefore be any real number. It will likewise be normalized so that the resulting probabilities sum to 1 along the last dimension. `attr:logits` will return this normalized value.

See also: `torch_multinomial()`

### Examples

```r
if (torch_is_installed()) {
 m <- distr_categorical(torch_tensor(c(0.25, 0.25, 0.25, 0.25)))
 m$sample() # equal probability of 1,2,3,4
}
```

---

**distr_chisq**

Creates a Chi2 distribution parameterized by shape parameter \( df \). This is exactly equivalent to `distr_gamma(alpha=0.5*df, beta=0.5)`

### Description

Creates a Chi2 distribution parameterized by shape parameter \( df \). This is exactly equivalent to `distr_gamma(alpha=0.5*df, beta=0.5)`

### Usage

`distr_chisq(df, validate_args = NULL)`

### Arguments

- **df** (float or torch_tensor): shape parameter of the distribution
- **validate_args** whether to validate arguments or not.

### See Also

`Distribution` for details on the available methods.

Other distributions: `distr_bernoulli()`, `distr_gamma()`, `distr_multivariate_normal()`, `distr_normal()`, `distr_poisson()`

### Examples

```r
if (torch_is_installed()) {
 m <- distr_chisq(torch_tensor(1.0))
 m$sample() # Chi2 distributed with shape df=1
 torch_tensor(0.1046)
}
```
distr_mixture_same_family

Mixture of components in the same family

Description

The MixtureSameFamily distribution implements a (batch of) mixture distribution where all components are from different parameterizations of the same distribution type. It is parameterized by a Categorical selecting distribution” (over k component) and a component distribution, i.e., a Distribution with a rightmost batch shape (equal to [k]) which indexes each (batch of) component.

distr_gaussian

Creates a Gamma distribution parameterized by shape concentration and rate.

Description

Creates a Gamma distribution parameterized by shape concentration and rate.

Usage

distr_gaussian(concentration, rate, validate_args = NULL)

Arguments

concentration (float or Tensor): shape parameter of the distribution (often referred to as alpha)
rate (float or Tensor): rate = 1 / scale of the distribution (often referred to as beta)
validate_args whether to validate arguments or not.

See Also

Distribution for details on the available methods.

Other distributions: distr_bernoulli(), distr_chi2(), distr_multivariate_normal(), distr_normal(), distr_poisson()

Examples

if (torch_is_installed()) {
m <- distr_gaussian(torch_tensor(1.0), torch_tensor(1.0))
m$sample() # Gamma distributed with concentration=1 and rate=1
}

distr_mixture_same_family

Mixture of components in the same family

Description

The MixtureSameFamily distribution implements a (batch of) mixture distribution where all components are from different parameterizations of the same distribution type. It is parameterized by a Categorical selecting distribution” (over k component) and a component distribution, i.e., a Distribution with a rightmost batch shape (equal to [k]) which indexes each (batch of) component.
Usage
distr_mixture_same_family(
mixture_distribution,
component_distribution,
validate_args = NULL
)

Arguments
mixture_distribution
torch_distributions.Categorical-like instance. Manages the probability of selecting component. The number of categories must match the rightmost batch dimension of the component_distribution. Must have either scalar batch_shape or batch_shape matching component_distribution.batch_shape[:1]
component_distribution
torch_distributions.Distribution-like instance. Right-most batch dimension indexes component.
validate_args Additional arguments

Examples
if (torch_is_installed()) {
  # Construct Gaussian Mixture Model in 1D consisting of 5 equally
  # weighted normal distributions
  mix <- distr_categorical(torch_ones(5))
  comp <- distr_normal(torch_randn(5), torch_rand(5))
  gmm <- distr_mixture_same_family(mix, comp)
}

distr_multivariate_normal

Gaussian distribution

Description

Creates a multivariate normal (also called Gaussian) distribution parameterized by a mean vector and a covariance matrix.

Usage
distr_multivariate_normal(
  loc,
  covariance_matrix = NULL,
  precision_matrix = NULL,
  scale_tril = NULL,
  validate_args = NULL
)
Arguments

loc (Tensor): mean of the distribution
covariance_matrix (Tensor): positive-definite covariance matrix
precision_matrix (Tensor): positive-definite precision matrix
scale_tril (Tensor): lower-triangular factor of covariance, with positive-valued diagonal
validate_args Bool wether to validate the arguments or not.

Details

The multivariate normal distribution can be parameterized either in terms of a positive definite covariance matrix \( \Sigma \) or a positive definite precision matrix \( \Sigma^{-1} \) or a lower-triangular matrix \( L \) with positive-valued diagonal entries, such that \( \Sigma = LL^\top \). This triangular matrix can be obtained via e.g. Cholesky decomposition of the covariance.

Note

Only one of covariance_matrix or precision_matrix or scale_tril can be specified. Using scale_tril will be more efficient: all computations internally are based on scale_tril. If covariance_matrix or precision_matrix is passed instead, it is only used to compute the corresponding lower triangular matrices using a Cholesky decomposition.

See Also

Distribution for details on the available methods.

Other distributions: distr_bernoulli(), distr_chi2(), distr_gamma(), distr_normal(), distr_poisson()

Examples

if (torch_is_installed()) {
  m <- distr_multivariate_normal(torch_zeros(2), torch_eye(2))
  m$sample() # normally distributed with mean=[0,0] and covariance_matrix=I
}

---

distr_normal

Creates a normal (also called Gaussian) distribution parameterized by loc and scale.

Description

Creates a normal (also called Gaussian) distribution parameterized by loc and scale.
Usage

distr_normal(loc, scale, validate_args = NULL)

Arguments

loc (float or Tensor): mean of the distribution (often referred to as mu)
scale (float or Tensor): standard deviation of the distribution (often referred to as sigma)

validate_args Additional arguments

Value

Object of torch_Normal class

See Also

Distribution for details on the available methods.
Other distributions: distr_bernoulli(), distr_chi2(), distr_gamma(), distr_multivariate_normal(), distr_poisson()

Examples

if (torch_is_installed()) {
  m <- distr_normal(loc = 0, scale = 1)
  m$sample() # normally distributed with loc=0 and scale=1
}

| distr_poisson | Creates a Poisson distribution parameterized by rate, the rate parameter. |

Description

Samples are nonnegative integers, with a pmf given by

\[ \text{rate}^k \frac{e^{-\text{rate}}}{k!} \]

Usage

distr_poisson(rate, validate_args = NULL)

Arguments

rate (numeric, torch_tensor): the rate parameter

validate_args whether to validate arguments or not.
See Also

Distribution for details on the available methods.

Other distributions: distr_bernoulli(), distr_chi2(), distr_gamma(), distr_multivariate_normal(), distr_normal()

Examples

```r
if (torch_is_installed()) {
 m <- distr_poisson(torch_tensor(4))
 m$sample()
}
```

### enumerate

**Description**

Enumerate an iterator

**Usage**

```r
enumerate(x, ...)
```

**Arguments**

- `x`  
  the generator to enumerate.

- `...`  
  passed to specific methods.

### enumerate.dataloader

**Description**

Enumerate an iterator

**Usage**

```r
作文 S3 method for class 'dataloader'
enumerate(x, max_len = 1e+06, ...)
```

**Arguments**

- `x`  
  the generator to enumerate.

- `max_len`  
  maximum number of iterations.

- `...`  
  passed to specific methods.
get_install_libs_url  

List of files to download

Description

List the Torch and Lantern files to download as local files in order to proceed with install_torch_from_file().

Usage

get_install_libs_url(version = "1.9.0", type = install_type(version = version))

Arguments

version  
The Torch version to install.

type  
The installation type for Torch. Valid values are "cpu" or the 'CUDA' version.

install_torch  

Install Torch

Description

Installs Torch and its dependencies.

Usage

install_torch(
    version = "1.9.0",
    type = install_type(version = version),
    reinstall = FALSE,
    path = install_path(),
    timeout = 360,
    ...
)

Arguments

version  
The Torch version to install.

type  
The installation type for Torch. Valid values are "cpu" or the 'CUDA' version.

reinstall  
Re-install Torch even if it's already installed?

path  
Optional path to install or check for an already existing installation.

timeout  
Optional timeout in seconds for large file download.

...  
other optional arguments (like `load` for manual installation).
install_torch_from_file

Install Torch from files

Description
Installs Torch and its dependencies from files.

Usage
install_torch_from_file(
    version = "1.9.0",
    type = install_type(version = version),
    libtorch,
    liblantern,
    ...
)

Arguments
version The Torch version to install.
type The installation type for Torch. Valid values are "cpu" or the 'CUDA' version.
libtorch The installation archive file to use for Torch. Shall be a "file://" URL scheme.
liblantern The installation archive file to use for Lantern. Shall be a "file://" URL scheme.
... other parameters to be passed to "install_torch()"

Details
When "install_torch()" initiated download is not possible, but installation archive files are present on local filesystem, "install_torch_from_file()" can be used as a workaround to installation issue. "libtorch" is the archive containing all torch modules, and "liblantern" is the C interface to libtorch that is used for the R package. Both are highly dependent, and should be checked through "get_install_libs_url()"
is_dataloader  Checks if the object is a dataloader

Description
Checks if the object is a dataloader

Usage
is_dataloader(x)

Arguments
x  object to check

is_nn_buffer  Checks if the object is a nn_buffer

Description
Checks if the object is a nn_buffer

Usage
is_nn_buffer(x)

Arguments
x  object to check

is_nn_module  Checks if the object is an nn_module

Description
Checks if the object is an nn_module

Usage
is_nn_module(x)

Arguments
x  object to check
is_nn_parameter

Checks if an object is a nn_parameter

Description
Checks if an object is a nn_parameter

Usage
is_nn_parameter(x)

Arguments
x the object to check

is_optimizer

Checks if the object is a torch optimizer

Description
Checks if the object is a torch optimizer

Usage
is_optimizer(x)

Arguments
x object to check

is_torch_device

Checks if object is a device

Description
Checks if object is a device

Usage
is_torch_device(x)

Arguments
x object to check
is_torch_dtype

Description
Check if object is a torch data type

Usage
is_torch_dtype(x)

Arguments
x  object to check.

is_torch_layout

Description
Check if object is a torch layout.

Usage
is_torch_layout(x)

Arguments
x  object to check

is_torch_memory_format

Description
Check if object is a memory format

Usage
is_torch_memory_format(x)

Arguments
x  object to check
is_torch_qscheme  Checks if an object is a QScheme

**Description**
Checks if an object is a QScheme

**Usage**

```python
is_torch_qscheme(x)
```

**Arguments**

- `x`: object to check

is_undefined_tensor  Checks if a tensor is undefined

**Description**
Checks if a tensor is undefined

**Usage**

```python
is_undefined_tensor(x)
```

**Arguments**

- `x`: tensor to check

jit_compile  Compile TorchScript code into a graph

**Description**
See the [TorchScript language reference](#) for documentation on how to write TorchScript code.

**Usage**

```python
jit_compile(source)
```

**Arguments**

- `source`: valid TorchScript source code.
**Examples**

```r
if (torch_is_installed()) {
 comp <- jit_compile("
def fn (x):
 return torch.abs(x)

def foo (x):
 return torch.sum(x)

 ")
 comp$fn(torch_tensor(-1))
 comp$foo(torch_randn(10))
}
```

---

**jit_load**

*Loads a script_function or script_module previously saved with jit_save*

**Description**

Loads a script_function or script_module previously saved with jit_save

**Usage**

```
jit_load(path, ...)
```

**Arguments**

- **path**
  - a path to a script_function or script_module serialized with *jit_save()*.
- **...**
  - currently unused.

---

**jit_save**

*Saves a script_function to a path*

**Description**

Saves a script_function to a path

**Usage**

```
jit_save(obj, path, ...)
```
Arguments

obj     An script_function to save
path    The path to save the serialized function.
...    currently unused

Examples

if (torch_is_installed()) {
  fn <- function(x) {
    torch_relu(x)
  }

  input <- torch_tensor(c(-1, 0, 1))
  tr_fn <- jit_trace(fn, input)

  tmp <- tempfile("tst", fileext = "pt")
  jit_save(tr_fn, tmp)
}

jit_scalar      Adds the 'jit_scalar' class to the input

Description

Allows disambiguating length 1 vectors from scalars when passing them to the jit.

Usage

jit_scalar(x)

Arguments

x     a length 1 R vector.

jit_trace      Trace a function and return an executable script_function.

Description

Using jit_trace, you can turn an existing R function into a TorchScript script_function. You must provide example inputs, and we run the function, recording the operations performed on all the tensors.
Usage

jit_trace(func, ..., strict = TRUE)

Arguments

func An R function that will be run with example_inputs. func arguments and return values must be tensors or (possibly nested) lists that contain tensors. Can also be a nn_module(), in such case jit_trace_module() is used to trace that module.

... example inputs that will be passed to the function while tracing. The resulting trace can be run with inputs of different types and shapes assuming the traced operations support those types and shapes. example_inputs may also be a single Tensor in which case it is automatically wrapped in a list. Note that ... can not be named, and the order is respected.

strict run the tracer in a strict mode or not (default: TRUE). Only turn this off when you want the tracer to record your mutable container types (currently list/dict) and you are sure that the container you are using in your problem is a constant structure and does not get used as control flow (if, for) conditions.

Details

The resulting recording of a standalone function produces a script_function. In the future we will also support tracing nn_modules.

Value

An script_function if func is a function and script_module if func is a nn_module().

Warning

Tracing only correctly records functions and modules which are not data dependent (e.g., do not have conditionals on data in tensors) and do not have any untracked external dependencies (e.g., perform input/output or access global variables). Tracing only records operations done when the given function is run on the given tensors. Therefore, the returned script_function will always run the same traced graph on any input. This has some important implications when your module is expected to run different sets of operations, depending on the input and/or the module state. For example,

• Tracing will not record any control-flow like if-statements or loops. When this control-flow is constant across your module, this is fine and it often inlines the control-flow decisions. But sometimes the control-flow is actually part of the model itself. For instance, a recurrent network is a loop over the (possibly dynamic) length of an input sequence.

• In the returned script_function, operations that have different behaviors in training and eval modes will always behave as if it is in the mode it was in during tracing, no matter which mode the script_function is in.

In cases like these, tracing would not be appropriate and scripting is a better choice. If you trace such models, you may silently get incorrect results on subsequent invocations of the model. The tracer will try to emit warnings when doing something that may cause an incorrect trace to be produced.
Note

Scripting is not yet supported in R.

Examples

```r
if (torch_is_installed()) {
 fn <- function(x) {
 torch_relu(x)
 }
 input <- torch_tensor(c(-1, 0, 1))
 tr_fn <- jit_trace(fn, input)
 tr_fn(input)
}
```

jit_trace_module

Trace a module

Description

Trace a module and return an executable ScriptModule that will be optimized using just-in-time compilation. When a module is passed to `jit_trace()`, only the forward method is run and traced. With `jit_trace_module()`, you can specify a named list of method names to example inputs to trace (see the inputs) argument below.

Usage

```r
jit_trace_module(mod, ..., strict = TRUE)
```

Arguments

- `mod` A torch `nn_module()` containing methods whose names are specified in inputs. The given methods will be compiled as a part of a single ScriptModule.
- `...` A named list containing sample inputs indexed by method names in mod. The inputs will be passed to methods whose names correspond to inputs keys while tracing. list('forward'=example_forward_input,'method2'=example_method2_input).
- `strict` run the tracer in a strict mode or not (default: TRUE). Only turn this off when you want the tracer to record your mutable container types (currently list/dict) and you are sure that the container you are using in your problem is a constant structure and does not get used as control flow (if, for) conditions.

Details

See `jit_trace` for more information on tracing.
Examples

```r
if (torch_is_installed()) {
 linear <- nn_linear(10, 1)
 tr_linear <- jit_trace_module(linear, forward = list(torch_randn(10, 10)))

 x <- torch_randn(10, 10)
 torch_allclose(linear(x), tr_linear(x))
}
```

jit_tuple

*Adds the 'jit_tuple' class to the input*

Description

Allows specifying that an output or input must be considered a jit tuple and instead of a list or dictionary when tracing.

Usage

`jit_tuple(x)`

Arguments

- `x` the list object that will be converted to a tuple.

linalg_cholesky

*Computes the Cholesky decomposition of a complex Hermitian or real symmetric positive-definite matrix.*

Description

Letting \( \bullet \) be • or •, the **Cholesky decomposition** of a complex Hermitian or real symmetric positive-definite matrix \( \bullet \) is defined as

Usage

`linalg_cholesky(A)`

Arguments

- `A` (Tensor): tensor of shape \((*, n, n)\) where \(*\) is zero or more batch dimensions consisting of symmetric or Hermitian positive-definite matrices.
Details

Equation not displayed. Please find it in 'https://torch.mlverse.org/docs'
where • is a lower triangular matrix and • is the conjugate transpose when • is complex, and the
transpose when • is real-valued.

Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if
A is a batch of matrices then the output has the same batch dimensions.

See Also

• linalg_cholesky_ex() for a version of this operation that skips the (slow) error checking
  by default and instead returns the debug information. This makes it a faster way to check if
  a matrix is positive-definite. linalg_eigh() for a different decomposition of a Hermitian
  matrix. The eigenvalue decomposition gives more information about the matrix but it slower
to compute than the Cholesky decomposition.

Other linalg: linalg_cholesky_ex(), linalg_det(), linalg_eigh(), linalg_eigvalsh(), linalg_eigvals(),
linalg_eig(), linalg_householder_product(), linalg_inv_ex(), linalg_inv(), linalg_lstsq(),
linalg_matrix_norm(), linalg_matrix_power(), linalg_matrix_rank(), linalg_multi_dot(),
linalg_norm(), linalg_pinv(), linalg_qr(), linalg_slogdet(), linalg_solve(), linalg_svdvals(),
linalg_svd(), linalg_tensorinv(), linalg_tensorsolve(), linalg_vector_norm()

Examples

```r
if (torch_is_installed()) {
 a <- torch_eye(10)
 linalg_cholesky(a)
}
```

---

linalg_cholesky_ex

**Computes the Cholesky decomposition of a complex Hermitian or real symmetric positive-definite matrix.**

Description

This function skips the (slow) error checking and error message construction of linalg_cholesky(),
instead directly returning the LAPACK error codes as part of a named tuple (L, info). This makes
this function a faster way to check if a matrix is positive-definite, and it provides an opportunity
to handle decomposition errors more gracefully or performantly than linalg_cholesky() does.
Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and
if A is a batch of matrices then the output has the same batch dimensions. If A is not a Hermitian
positive-definite matrix, or if it’s a batch of matrices and one or more of them is not a Hermitian
positive-definite matrix, then info stores a positive integer for the corresponding matrix. The
positive integer indicates the order of the leading minor that is not positive-definite, and the
decomposition could not be completed. info filled with zeros indicates that the decomposition was
successful. If check_errors=TRUE and info contains positive integers, then a RuntimeError is
thrown.
Usage

```r
linalg_cholesky_ex(A, check_errors = FALSE)
```

Arguments

- **A** (Tensor): the Hermitian n \times n matrix or the batch of such matrices of size (*, n, n) where * is one or more batch dimensions.
- **check_errors** (bool, optional): controls whether to check the content of `infos`. Default: FALSE.

Note

If A is on a CUDA device, this function may synchronize that device with the CPU.

This function is "experimental" and it may change in a future PyTorch release.

See Also

- `linalg_cholesky()`: is a NumPy compatible variant that always checks for errors.
- Other linalg: `linalg_cholesky()`, `linalg_det()`, `linalg_eigh()`, `linalg_eigvalsh()`, `linalg_eigvals()`, `linalg_eig()`, `linalg_householder_product()`, `linalg_inv_ex()`, `linalg_inv()`, `linalg_lstsq()`, `linalg_matrix_norm()`, `linalg_matrix_power()`, `linalg_matrix_rank()`, `linalg_multi_dot()`, `linalg_norm()`, `linalg_pinv()`, `linalg_or()`, `linalg_slogdet()`, `linalg_solve()`, `linalg_svdvals()`, `linalg_svd()`, `linalg_tensorinv()`, `linalg_tensorsolve()`, `linalg_vector_norm()`

Examples

```r
if (torch_is_installed()) {
 A <- torch_randn(2, 2)
 out = linalg_cholesky_ex(A)
 out
}
```

### linalg_cond

**Summary**

Computes the condition number of a matrix with respect to a matrix norm.

**Description**

Letting • be • or •, the condition number • of a matrix • is defined as

**Usage**

```r
linalg_cond(A, p = NULL)
```
Arguments

A (Tensor): tensor of shape (*, m, n) where * is zero or more batch dimensions for p in (2, -2), and of shape (*, n, n) where every matrix is invertible for p in ('fro', 'nuc', inf, -inf, 1, -1).

p (int, inf, -inf, 'fro', 'nuc', optional): the type of the matrix norm to use in the computations (see above). Default: NULL

Details

Equation not displayed. Please find it in 'https://torch.mlverse.org/docs'

The condition number of A measures the numerical stability of the linear system AX = B with respect to a matrix norm.

Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if A is a batch of matrices then the output has the same batch dimensions.

p defines the matrix norm that is computed. See the table in 'Details' to find the supported norms.

For p is one of ('fro', 'nuc', inf, -inf, 1, -1), this function uses linalg_norm() and linalg_inv().

As such, in this case, the matrix (or every matrix in the batch) A has to be square and invertible.

For p in (2, -2), this function can be computed in terms of the singular values •

Equation not displayed. Please find it in 'https://torch.mlverse.org/docs'

In these cases, it is computed using linalg_svd(). For these norms, the matrix (or every matrix in the batch) A may have any shape.

<table>
<thead>
<tr>
<th>p</th>
<th>matrix norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>2-norm (largest singular value)</td>
</tr>
<tr>
<td>'fro'</td>
<td>Frobenius norm</td>
</tr>
<tr>
<td>'nuc'</td>
<td>nuclear norm</td>
</tr>
<tr>
<td>Inf</td>
<td>max(sum(abs(x), dim=2))</td>
</tr>
<tr>
<td>-Inf</td>
<td>min(sum(abs(x), dim=2))</td>
</tr>
<tr>
<td>1</td>
<td>max(sum(abs(x), dim=1))</td>
</tr>
<tr>
<td>-1</td>
<td>min(sum(abs(x), dim=1))</td>
</tr>
<tr>
<td>2</td>
<td>largest singular value</td>
</tr>
<tr>
<td>-2</td>
<td>smallest singular value</td>
</tr>
</tbody>
</table>

Value

A real-valued tensor, even when A is complex.

Note

When inputs are on a CUDA device, this function synchronizes that device with the CPU if if p is one of ('fro', 'nuc', inf, -inf, 1, -1).

Examples

if (torch_is_installed()) {
a <- torch_tensor(rbind(c(1., 0, -1), c(0, 1, 0), c(1, 0, 1)))
linalg_cond(a)
linalg_cond(a, "fro")

---

**linalg.det**

*Computes the determinant of a square matrix.*

**Description**

Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if \( A \) is a batch of matrices then the output has the same batch dimensions.

**Usage**

```r
linalg_det(A)
```

**Arguments**

* \( A \)  
  
  (Tensor): tensor of shape (*, n, n) where * is zero or more batch dimensions.

**See Also**

Other linalg: `linalg_cholesky_ex()`, `linalg_cholesky()`, `linalg_eigh()`, `linalg_eigvalsh()`, `linalg_eigvals()`, `linalg_eig()`, `linalg_householder_product()`, `linalg_inv_ex()`, `linalg_inv()`, `linalg_lstsq()`, `linalg_matrix_norm()`, `linalg_matrix_power()`, `linalg_matrix_rank()`, `linalg_multi_dot()`, `linalg_norm()`, `linalg_pinv()`, `linalg qr()`, `linalg_slogdet()`, `linalg_solve()`, `linalg_svdvals()`, `linalg_svd()`, `linalg_tensorinv()`, `linalg_tensorsolve()`, `linalg_vector_norm()`

**Examples**

```r
if (torch_is_installed()) {
 a <- torch_randn(3,3)
linalg_det(a)

 a <- torch_randn(3,3,3)
linalg_det(a)
}
```
linalg_eig

Computes the eigenvalue decomposition of a square matrix if it exists.

Description

Letting \( \mathbf{A} \) be \( \mathbf{X} \) or \( \mathbf{Y} \), the eigenvalue decomposition of a square matrix \( \mathbf{A} \) (if it exists) is defined as

Usage

linalg_eig(A)

Arguments

\( A \)

(Tensor): tensor of shape \((*, n, n)\) where \(*\) is zero or more batch dimensions consisting of diagonalizable matrices.

Details

Equation not displayed. Please find it in 'https://torch.mlverse.org/docs'

This decomposition exists if and only if \( \mathbf{A} \) is diagonalizable. This is the case when all its eigenvalues are different. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if \( \mathbf{A} \) is a batch of matrices then the output has the same batch dimensions.

Value

A list (eigenvalues, eigenvectors) which corresponds to \( \mathbf{X} \) and \( \mathbf{Y} \) above. eigenvalues and eigenvectors will always be complex-valued, even when \( \mathbf{A} \) is real. The eigenvectors will be given by the columns of eigenvectors.

Warning

- This function assumes that \( \mathbf{A} \) is diagonalizable (for example, when all the eigenvalues are different). If it is not diagonalizable, the returned eigenvalues will be correct but \( \mathbf{X} \).
- The eigenvectors of a matrix are not unique, nor are they continuous with respect to \( \mathbf{A} \). Due to this lack of uniqueness, different hardware and software may compute different eigenvectors. This non-uniqueness is caused by the fact that multiplying an eigenvector by a non-zero number produces another set of valid eigenvectors of the matrix. In this implementation, the returned eigenvectors are normalized to have norm 1 and largest real component.
- Gradients computed using \( \mathbf{V} \) will only be finite when \( \mathbf{A} \) does not have repeated eigenvalues. Furthermore, if the distance between any two eigenvalues is close to zero, the gradient will be numerically unstable, as it depends on the eigenvalues \( \mathbf{X} \) through the computation of \( \mathbf{Y} \).

Note

The eigenvalues and eigenvectors of a real matrix may be complex.
See Also

- `linalg_eigvals()` computes only the eigenvalues. Unlike `linalg_eig()`, the gradients of `linalg_eigvals()` are always numerically stable.
- `linalg_eigh()` for a (faster) function that computes the eigenvalue decomposition for Hermitian and symmetric matrices.
- `linalg_svd()` for a function that computes another type of spectral decomposition that works on matrices of any shape.
- `linalg_qr()` for another (much faster) decomposition that works on matrices of any shape.

Other linalg: `linalg_cholesky_ex()`, `linalg_cholesky()`, `linalg_det()`, `linalg_eigh()`, `linalg_eigvalsh()`, `linalg_eigvals()`, `linalg_householder_product()`, `linalg_inv_ex()`, `linalg_inv()`, `linalg_lstsq()`, `linalg_matrix_norm()`, `linalg_matrix_power()`, `linalg_matrix_rank()`, `linalg_multi_dot()`, `linalg_norm()`, `linalg_pinv()`, `linalg_qr()`, `linalg_slogdet()`, `linalg_solve()`, `linalg_svdvals()`, `linalg_svd()`, `linalg_tensorinv()`, `linalg_tensorsolve()`, `linalg_vector_norm()`

Examples

```r
if (torch_is_installed()) {
 a <- torch_randn(2, 2)
 wv = linalg_eig(a)
}
```

---

**linalg_eigh**

*Computes the eigenvalue decomposition of a complex Hermitian or real symmetric matrix.*

**Description**

Letting • be • or •, the **eigenvalue decomposition** of a complex Hermitian or real symmetric matrix • is defined as

**Usage**

```r
linalg_eigh(A, UPLO = "L")
```

**Arguments**

- **A** (Tensor): tensor of shape (*, n, n) where * is zero or more batch dimensions consisting of symmetric or Hermitian matrices.
- **UPLO** (‘L’, ‘U’, optional): controls whether to use the upper or lower triangular part of A in the computations. Default: ‘L’.
Details

Equation not displayed. Please find it in `https://torch.mlverse.org/docs`

where • is the conjugate transpose when • is complex, and the transpose when • is real-valued. • is orthogonal in the real case and unitary in the complex case.

Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if A is a batch of matrices then the output has the same batch dimensions.

A is assumed to be Hermitian (resp. symmetric), but this is not checked internally, instead:

• If UPLO = 'L' (default), only the lower triangular part of the matrix is used in the computation.
• If UPLO = 'U', only the upper triangular part of the matrix is used. The eigenvalues are returned in ascending order.

Value

A list (eigenvalues, eigenvectors) which corresponds to • and • above. eigenvalues will always be real-valued, even when A is complex.

It will also be ordered in ascending order. eigenvectors will have the same dtype as A and will contain the eigenvectors as its columns.

Warning

• The eigenvectors of a symmetric matrix are not unique, nor are they continuous with respect to A. Due to this lack of uniqueness, different hardware and software may compute different eigenvectors. This non-uniqueness is caused by the fact that multiplying an eigenvector by -1 in the real case or by • in the complex case produces another set of valid eigenvectors of the matrix. This non-uniqueness problem is even worse when the matrix has repeated eigenvalues. In this case, one may multiply the associated eigenvectors spanning the subspace by a rotation matrix and the resulting eigenvectors will be valid eigenvectors.
• Gradients computed using the eigenvectors tensor will only be finite when A has unique eigenvalues. Furthermore, if the distance between any two eigvalues is close to zero, the gradient will be numerically unstable, as it depends on the eigenvalues • through the computation of •.

Note

The eigenvalues of real symmetric or complex Hermitian matrices are always real.

See Also

• linalg_eigvalsh() computes only the eigenvalues values of a Hermitian matrix. Unlike linalg_eigh(), the gradients of linalg_eigvalsh() are always numerically stable.
• linalg_cholesky() for a different decomposition of a Hermitian matrix. The Cholesky decomposition gives less information about the matrix but is much faster to compute than the eigenvalue decomposition.
• linalg_eig() for a (slower) function that computes the eigenvalue decomposition of a not necessarily Hermitian square matrix.
linalg_eigvals • linalg_svd() for a (slower) function that computes the more general SVD decomposition of matrices of any shape.

• linalg_qr() for another (much faster) decomposition that works on general matrices.

Other linalg: linalg_cholesky_ex(), linalg_cholesky(), linalg_det(), linalg_eigvalsh(), linalg_eigvals(), linalg_eig(), linalg_householder_product(), linalg_inv_ex(), linalg_inv(), linalg_lstsq(), linalg_matrix_norm(), linalg_matrix_power(), linalg_matrix_rank(), linalg_multi_dot(), linalg_norm(), linalg_pinv(), linalg_qr(), linalg_slogdet(), linalg_solve(), linalg_svdvals(), linalg_svd(), linalg_tensorinv(), linalg_tensorsolve(), linalg_vector_norm()

Examples

if (torch_is_installed()) {
  a <- torch_randn(2, 2)
  linalg_eigh(a)
}

linalg_eigvals Computes the eigenvalues of a square matrix.

Description

Letting • be • or •, the eigenvalues of a square matrix • are defined as the roots (counted with multiplicity) of the polynomial p of degree n given by

Usage

linalg_eigvals(A)

Arguments

A (Tensor): tensor of shape (*, n, n) where * is zero or more batch dimensions.

Details

Equation not displayed. Please find it in 'https://torch.mlverse.org/docs'
where • is the n-dimensional identity matrix. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if A is a batch of matrices then the output has the same batch dimensions.

Note

The eigenvalues of a real matrix may be complex, as the roots of a real polynomial may be complex. The eigenvalues of a matrix are always well-defined, even when the matrix is not diagonalizable.
linalg_eigvalsh

Computes the eigenvalues of a complex Hermitian or real symmetric matrix.

See Also

linalg_eig() computes the full eigenvalue decomposition.

Other linalg: linalg_cholesky_ex(), linalg_cholesky(), linalg_det(), linalg_eigh(), linalg_eigvalsh(),
linalg_eig(), linalg_householder_product(), linalg_inv_ex(), linalg_inv(), linalg_lstsq(),
linalg_matrix_norm(), linalg_matrix_power(), linalg_matrix_rank(), linalg_multi_dot(),
linalg_norm(), linalg_pinv(), linalg_or(), linalg slogdet(), linalg_solve(), linalg svdvals(),
linalg_svd(), linalg_tensorinv(), linalg_tensorsolve(), linalg_vector_norm()

Examples

```r
if (torch_is_installed()) {
 a <- torch_randn(2, 2)
 w <- linalg_eigvals(a)
}
```

Description

Letting \( \bullet \) be \( \bullet \) or \( \bullet \), the eigenvalues of a complex Hermitian or real symmetric matrix \( \bullet \) are defined as the roots (counted with multiplicity) of the polynomial \( p \) of degree \( n \) given by

Usage

```r
linalg_eigvalsh(A, UPLO = "L")
```

Arguments

- **A** (Tensor): tensor of shape \((\ast, n, n)\) where \( \ast \) is zero or more batch dimensions consisting of symmetric or Hermitian matrices.
- **UPLO** ("L", "U", optional): controls whether to use the upper or lower triangular part of \( A \) in the computations. Default: "L".

Details

Equation not displayed. Please find it in 'https://torch.mlverse.org/docs'

where • is the \( n \)-dimensional identity matrix.

The eigenvalues of a real symmetric or complex Hermitian matrix are always real. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if \( A \) is a batch of matrices then the output has the same batch dimensions. The eigenvalues are returned in ascending order.

\( A \) is assumed to be Hermitian (resp. symmetric), but this is not checked internally, instead:

- If \( \text{UPLO} = 'L' \) (default), only the lower triangular part of the matrix is used in the computation.
- If \( \text{UPLO} = 'U' \), only the upper triangular part of the matrix is used.
**Value**

A real-valued tensor containing the eigenvalues even when A is complex. The eigenvalues are returned in ascending order.

**See Also**

- `linalg_eigh()` computes the full eigenvalue decomposition.

Other linalg: `linalg_cholchecky_ex()`, `linalg_cholchecky()`, `linalg_det()`, `linalg_eigh()`, `linalg_eigvals()`, `linalg_eig()`, `linalg_householder_product()`, `linalg_inv_ex()`, `linalg_inv()`, `linalg_lstsq()`, `linalg_lmatrix_norm()`, `linalg_lmatrix_power()`, `linalg_lmatrix_rank()`, `linalg_multi_dot()`, `linalg_norm()`, `linalg_pinv()`, `linalg_or()`, `linalg_slogdet()`, `linalg_solve()`, `linalg_svdvals()`, `linalg_svd()`, `linalg_tensorinv()`, `linalg_tensorsolve()`, `linalg_vector_norm()`

**Examples**

```r
if (torch_is_installed()) {
 a <- torch_randn(2, 2)
 linalg_eigvalsh(a)
}
```

---

**linalg_householder_product**

*Computes the first n columns of a product of Householder matrices.*

**Description**

Letting • be • or •, for a matrix • with columns • and a vector •, this function computes the first • columns of the matrix

**Usage**

```r
linalg_householder_product(A, tau)
```

**Arguments**

- `A` (Tensor): tensor of shape (*, m, n) where * is zero or more batch dimensions.
- `tau` (Tensor): tensor of shape (*, k) where * is zero or more batch dimensions.

**Details**

Equation not displayed. Please find it in 'https://torch.mlverse.org/docs'

where • is the m-dimensional identity matrix and • is the conjugate transpose when • is complex, and the transpose when • is real-valued. See Representation of Orthogonal or Unitary Matrices for further details.

Supports inputs of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if the inputs are batches of matrices then the output has the same batch dimensions.
**Note**

This function only uses the values strictly below the main diagonal of \( A \). The other values are ignored.

**See Also**

- `torch.geqrf()` can be used together with this function to form the \( Q \) from the `linalg_qr()` decomposition.
- `torch.ormqr()` is a related function that computes the matrix multiplication of a product of Householder matrices with another matrix. However, that function is not supported by autograd.

Other linalg: `linalg_cholesky_ex()`, `linalg_cholesky()`, `linalg_det()`, `linalg_eigh()`, `linalg_eigvalsh()`, `linalg_eigvals()`, `linalg_eig()`, `linalg_inv_ex()`, `linalg_inv()`, `linalg_lstsq()`, `linalg_matrix_norm()`, `linalg_matrix_power()`, `linalg_matrix_rank()`, `linalg_multi_dot()`, `linalg_norm()`, `linalg_pinv()`, `linalg_qr()`, `linalg_slogdet()`, `linalg_solve()`, `linalg_svdvals()`, `linalg_svd()`, `linalg_tensorinv()`, `linalg_tensorsolve()`, `linalg_vector_norm()`

**Examples**

```python
if (torch_is_installed()) {
 A <- torch_randn(2, 2)
 h_tau <- torch_geqrf(A)
 Q <- linalg_householder_product(h_tau[[1]], h_tau[[2]])
 torch_allclose(Q, linalg_qr(A)[[1]])
}
```

---

### linalg_inv

**Computes the inverse of a square matrix if it exists.**

**Description**

Throws a `runtime_error` if the matrix is not invertible.

**Usage**

```python
linalg_inv(A)
```

**Arguments**

- \( A \) (Tensor): tensor of shape (\( *, n, n \)) where \( * \) is zero or more batch dimensions consisting of invertible matrices.
Letting • be • or •, for a matrix •, its inverse matrix • (if it exists) is defined as

\[
\text{Equation not displayed. Please find it in } \text{https://torch.mlverse.org/docs}
\]

where • is the n-dimensional identity matrix.

The inverse matrix exists if and only if • is invertible. In this case, the inverse is unique. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if A is a batch of matrices then the output has the same batch dimensions.

Consider using linalg_solve() if possible for multiplying a matrix on the left by the inverse, as

\[
linalg_solve(A, B) == A inv() %*% B
\]

It is always preferred to use linalg_solve() when possible, as it is faster and more numerically stable than computing the inverse explicitly.

See Also

linalg_pinv() computes the pseudoinverse (Moore-Penrose inverse) of matrices of any shape.
linalg_solve() computes A inv() %*% B with a numerically stable algorithm.

Other linalg: linalg_cholesky_ex(), linalg_cholesky(), linalg_det(), linalg_eigh(), linalg_eigvalsh(), linalg_eigvals(), linalg_eig(), linalg_householder_product(), linalg_inv_ex(), linalg_lstsq(), linalg_matrix_norm(), linalg_matrix_power(), linalg_matrix_rank(), linalg_multi_dot(), linalg_norm(), linalg_pinv(), linalg_qr(), linalg_slogdet(), linalg_solve(), linalg_svdvals(), linalg_svd(), linalg_tensorinv(), linalg_tensorsolve(), linalg_vector_norm()

Examples

if (torch_is_installed()) {
  A <- torch_randn(4, 4)
  linalg_inv(A)
}

---

linalg_inv_ex

**Computes the inverse of a square matrix if it is invertible.**

Description

Returns a namedtuple (inverse, info). inverse contains the result of inverting A and info stores the LAPACK error codes. If A is not an invertible matrix, or if it’s a batch of matrices and one or more of them is not an invertible matrix, then info stores a positive integer for the corresponding matrix. The positive integer indicates the diagonal element of the LU decomposition of the input matrix that is exactly zero. info filled with zeros indicates that the inversion was successful. If check_errors=TRUE and info contains positive integers, then a RuntimeError is thrown. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if A is a batch of matrices then the output has the same batch dimensions.

Usage

linalg_inv_ex(A, check_errors = FALSE)
Arguments

- **A** (Tensor): tensor of shape (*, n, n) where * is zero or more batch dimensions consisting of square matrices.
- **check_errors** (bool, optional): controls whether to check the content of info. Default: FALSE.

Note

If A is on a CUDA device then this function may synchronize that device with the CPU.
This function is "experimental" and it may change in a future PyTorch release.

See Also

- `linalg_inv()` is a NumPy compatible variant that always checks for errors.

Examples

```r
if (torch_is_installed()) {
 A <- torch_randn(3, 3)
 out <- linalg_lstsq(A)
}
```

---

### linalg_lstsq

**Computes a solution to the least squares problem of a system of linear equations.**

**Description**

Letting • be • or •, the least squares problem for a linear system • with • is defined as

**Usage**

```r
linalg_lstsq(A, B, rcond = NULL, ..., driver = NULL)
```

**Arguments**

- **A** (Tensor): lhs tensor of shape (*, m, n) where * is zero or more batch dimensions.
- **B** (Tensor): rhs tensor of shape (*, m, k) where * is zero or more batch dimensions.
- **rcond** (float, optional): used to determine the effective rank of A. If rcond = NULL, rcond is set to the machine precision of the dtype of A times max(m, n). Default: NULL.
... currently unused.

driver (str, optional): name of the LAPACK/MAGMA method to be used. If NULL, 'gelsy' is used for CPU inputs and 'gels' for CUDA inputs. Default: NULL.

Details

Equation not displayed. Please find it in 'https://torch.mlverse.org/docs'

where • denotes the Frobenius norm. Supports inputs of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if the inputs are batches of matrices then the output has the same batch dimensions. driver chooses the LAPACK/MAGMA function that will be used.

For CPU inputs the valid values are 'gels', 'gelsy', 'gelsd', 'gelss'. For CUDA input, the only valid driver is 'gels', which assumes that A is full-rank.

To choose the best driver on CPU consider:

- If A is well-conditioned (its condition number is not too large), or you do not mind some precision loss.
- For a general matrix: 'gelsy' (QR with pivoting) (default)
- If A is full-rank: 'gels' (QR)
- If A is not well-conditioned.
- 'gelsd' (tridiagonal reduction and SVD)
- But if you run into memory issues: 'gelss' (full SVD).

See also the full description of these drivers

rcond is used to determine the effective rank of the matrices in A when driver is one of ('gelsy', 'gelsd', 'gelss'). In this case, if • are the singular values of A in decreasing order, • will be rounded down to zero if •. If rcond = NULL (default), rcond is set to the machine precision of the dtype of A.

This function returns the solution to the problem and some extra information in a list of four tensors (solution, residuals, rank, singular_values). For inputs A, B of shape (*, m, n), (*, m, k) respectively, it contains

- solution: the least squares solution. It has shape (*, n, k).
- residuals: the squared residuals of the solutions, that is, •. It has shape equal to the batch dimensions of A. It is computed when m > n and every matrix in A is full-rank, otherwise, it is an empty tensor. If A is a batch of matrices and any matrix in the batch is not full rank, then an empty tensor is returned. This behavior may change in a future PyTorch release.
- rank: tensor of ranks of the matrices in A. It has shape equal to the batch dimensions of A. It is computed when driver is one of ('gelsy', 'gelsd', 'gelss'), otherwise it is an empty tensor.
- singular_values: tensor of singular values of the matrices in A. It has shape (*, min(m, n)). It is computed when driver is one of ('gelsd', 'gelss'), otherwise it is an empty tensor.

Value

A list (solution, residuals, rank, singular_values).
Warning

The default value of rcond may change in a future PyTorch release. It is therefore recommended to use a fixed value to avoid potential breaking changes.

Note

This function computes \( X = A \text{pinverse()} \%\% B \) in a faster and more numerically stable way than performing the computations separately.

See Also

Other linalg: \texttt{linalg_chol}

See Also

Other linalg: \texttt{linalg_chol}

Examples

```r
if (torch_is_installed()) {
 A <- torch_tensor(rbind(c(10, 2, 3), c(3, 10, 5), c(5, 6, 12)))$unsqueeze(1) # shape (1, 3, 3)
 B <- torch_stack(list(rbind(c(2, 5, 1), c(3, 2, 1), c(5, 1, 9)),
 rbind(c(4, 2, 9), c(2, 0, 3), c(2, 5, 3))), dim = 1) # shape (2, 3, 3)
 X <- linalg_lstsq(A, B)$solution # A is broadcasted to shape (2, 3, 3)
}
```

\texttt{linalg_matrix_norm} \hspace{1cm} Computes a matrix norm.

Description

If A is complex valued, it computes the norm of \( A\text{abs()} \). Support input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices: the norm will be computed over the dimensions specified by the 2-tuple \texttt{dim} and the other dimensions will be treated as batch dimensions. The output will have the same batch dimensions.

Usage

```r
linalg_matrix_norm(
 A,
 ord = "fro",
 dim = c(-2, -1),
 keepdim = FALSE,
 dtype = NULL
)
```
Arguments

- **A** (Tensor): tensor with two or more dimensions. By default its shape is interpreted as (*, m, n) where * is zero or more batch dimensions, but this behavior can be controlled using dim.


- **dim** (int, Tupleint, optional): dimensions over which to compute the vector or matrix norm. See above for the behavior when dim=NULL. Default: NULL

- **keepdim** (bool, optional): If set to TRUE, the reduced dimensions are retained in the result as dimensions with size one. Default: FALSE

- **dtype** dtype (torch_dtype, optional): If specified, the input tensor is cast to dtype before performing the operation, and the returned tensor’s type will be dtype. Default: NULL

Details

**ord** defines the norm that is computed. The following norms are supported:

<table>
<thead>
<tr>
<th>ord</th>
<th>norm for matrices</th>
<th>norm for vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL (default)</td>
<td>Frobenius norm</td>
<td>2-norm (see below)</td>
</tr>
<tr>
<td>&quot;fro&quot;</td>
<td>Frobenius norm</td>
<td>– not supported –</td>
</tr>
<tr>
<td>&quot;nuc&quot;</td>
<td>nuclear norm</td>
<td>– not supported –</td>
</tr>
<tr>
<td>Inf</td>
<td>max(sum(abs(x), dim=2))</td>
<td>max(abs(x))</td>
</tr>
<tr>
<td>-Inf</td>
<td>min(sum(abs(x), dim=2))</td>
<td>min(abs(x))</td>
</tr>
<tr>
<td>0</td>
<td>– not supported –</td>
<td>sum(x ! = 0)</td>
</tr>
<tr>
<td>1</td>
<td>max(sum(abs(x), dim=1))</td>
<td>as below</td>
</tr>
<tr>
<td>-1</td>
<td>min(sum(abs(x), dim=1))</td>
<td>as below</td>
</tr>
<tr>
<td>2</td>
<td>largest singular value</td>
<td>as below</td>
</tr>
<tr>
<td>-2</td>
<td>smallest singular value</td>
<td>as below</td>
</tr>
<tr>
<td>other int or float</td>
<td>– not supported –</td>
<td>sum(abs(x)^{ord})^{(1 / ord)}</td>
</tr>
</tbody>
</table>

See Also

Other linalg: `linalg_cholesky_ex()`, `linalg_cholesky()`, `linalg_det()`, `linalg_eigh()`, `linalg_eigvalsh()`, `linalg_eigvals()`, `linalg_eig()`, `linalg_householder_product()`, `linalg_inv_ex()`, `linalg_inv()`, `linalg_lstsq()`, `linalg_matrix_power()`, `linalg_matrix_rank()`, `linalg_multi_dot()`, `linalg_norm()`, `linalg_pinv()`, `linalg_qr()`, `linalg_slogdet()`, `linalg_solve()`, `linalg_svdvals()`, `linalg_svd()`, `linalg_tensorinv()`, `linalg_tensorsolve()`, `linalg_vector_norm()`

Examples

```r
if (torch_is_installed()) {
 a <- torch_arange(0, 8, dtype=torch_float())$reshape(c(3,3))
 linalg_matrix_norm(a)
 linalg_matrix_norm(a, ord = -1)
 b <- a$expand(c(2, -1, -1))
 linalg_matrix_norm(b)
 linalg_matrix_norm(b, dim = c(1, 3))
```
linalg_matrix_power

Computes the n-th power of a square matrix for an integer n.

Description

Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if A is a batch of matrices then the output has the same batch dimensions.

Usage

linalg_matrix_power(A, n)

Arguments

A (Tensor): tensor of shape (*, m, m) where * is zero or more batch dimensions.

n (int): the exponent.

Details

If n=0, it returns the identity matrix (or batch) of the same shape as A. If n is negative, it returns the inverse of each matrix (if invertible) raised to the power of abs(n).

See Also

linalg_solve() computes A$^{-1} \times B$ with a numerically stable algorithm.

Other linalg: linalg_cholesky_ex(), linalg_cholesky(), linalg_det(), linalg_eigh(), linalg_eigvalsh(), linalg_eigvals(), linalg_eig(), linalg_householder_product(), linalg_inv_ex(), linalg_inv(), linalg_lstsq(), linalg_matrix_norm(), linalg_matrix_rank(), linalg_multi_dot(), linalg_norm(), linalg_pinv(), linalg_qr(), linalg_slogdet(), linalg_solve(), linalg_svdvals(), linalg_svd(), linalg_tensorinv(), linalg_tensorsolve(), linalg_vector_norm()

Examples

if (torch_is_installed()) {
  A <- torch_randn(3, 3)
linalg_matrix_power(A, 0)
}
**linalg_matrix_rank**

Computes the numerical rank of a matrix.

**Description**

The matrix rank is computed as the number of singular values (or eigenvalues in absolute value when `hermitian = TRUE`) that are greater than the specified `tol` threshold.

**Usage**

```r
linalg_matrix_rank(A, tol = NULL, hermitian = FALSE)
```

**Arguments**

- `A` (Tensor): tensor of shape (*, m, n) where * is zero or more batch dimensions.
- `tol` (float, Tensor, optional): the tolerance value. See above for the value it takes when `NULL`. Default: `NULL`.
- `hermitian` (bool, optional): indicates whether `A` is Hermitian if complex or symmetric if real. Default: `FALSE`.

**Details**

Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if `A` is a batch of matrices then the output has the same batch dimensions.

If `hermitian = TRUE`, `A` is assumed to be Hermitian if complex or symmetric if real, but this is not checked internally. Instead, just the lower triangular part of the matrix is used in the computations.

If `tol` is not specified and `A` is a matrix of dimensions (m, n), the tolerance is set to be

\[ \text{Equation not displayed. Please find it in 'https://torch.mlverse.org/docs'} \]

where • is the largest singular value (or eigenvalue in absolute value when `hermitian = TRUE`), and • is the epsilon value for the dtype of `A` (see `torch_finfo()`).

If `A` is a batch of matrices, `tol` is computed this way for every element of the batch.

**See Also**

Other linalg: `linalg_cholesky_ex()`, `linalg_cholesky()`, `linalg_det()`, `linalg_eigh()`, `linalg_eigvalsh()`, `linalg_eigvals()`, `linalg_eig()`, `linalg_householder_product()`, `linalg_inv_ex()`, `linalg_inv()`, `linalg_lstsq()`, `linalg_matrix_norm()`, `linalg_matrix_power()`, `linalg_multi_dot()`, `linalg_norm()`, `linalg_pinv()`, `linalg_qr()`, `linalg_slogdet()`, `linalg_solve()`, `linalg_svdvals()`, `linalg_svd()`, `linalg_tensorinv()`, `linalg_tensorsolve()`, `linalg_vector_norm()`

**Examples**

```r
if (torch_is_installed()) {
 a <- torch_eye(10)
 linalg_matrix_rank(a)
}
```
linalg_multi_dot

Efficiently multiplies two or more matrices

Description
Efficiently multiplies two or more matrices by reordering the multiplications so that the fewest arithmetic operations are performed.

Usage
linalg_multi_dot(tensors)

Arguments
tensors (Sequence[Tensor]): two or more tensors to multiply. The first and last tensors may be 1D or 2D. Every other tensor must be 2D.

Details
Supports inputs of float, double, cfloat and cdouble dtypes. This function does not support batched inputs.

Every tensor in tensors must be 2D, except for the first and last which may be 1D. If the first tensor is a 1D vector of shape (n,) it is treated as a row vector of shape (1, n), similarly if the last tensor is a 1D vector of shape (n,) it is treated as a column vector of shape (n, 1).

If the first and last tensors are matrices, the output will be a matrix. However, if either is a 1D vector, then the output will be a 1D vector.

Note
This function is implemented by chaining torch_mm() calls after computing the optimal matrix multiplication order.

The cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c. Given matrices A, B, C with shapes (10, 100), (100, 5), (5, 50) respectively, we can calculate the cost of different multiplication orders as follows:

Equation not displayed. Please find it in 'https://torch.mlverse.org/docs'

In this case, multiplying A and B first followed by C is 10 times faster.

See Also
Other linalg: linalg_cholesky_ex(), linalg_cholesky(), linalg_det(), linalg_eigh(), linalg_eigvalsh(), linalg_eigvals(), linalg_eig(), linalg_householder_product(), linalg_inv_ex(), linalg_inv(), linalg_lstsq(), linalg_matrix_norm(), linalg_matrix_power(), linalg_matrix_rank(), linalg_norm(), linalg_pinv(), linalgqr(), linalg_slogdet(), linalg_solve(), linalg_svdvals(), linalg_svd(), linalg_tensorinv(), linalg_tensorsolve(), linalg_vector_norm()
linalg_norm

Examples
if (torch_is_installed()) {
    linalg_multi_dot(list(torch_tensor(c(1,2)), torch_tensor(c(2,3))))
}

linalg_norm

Computes a vector or matrix norm.

Description
If A is complex valued, it computes the norm of $|A|$ Supports input of float, double, cfloat and cdouble dtypes. Whether this function computes a vector or matrix norm is determined as follows:

- If dim is an int, the vector norm will be computed.
- If dim is a 2-tuple, the matrix norm will be computed.
- If dim=NULL and ord=NULL, A will be flattened to 1D and the 2-norm of the resulting vector will be computed.
- If dim=NULL and ord!=NULL, A must be 1D or 2D.

Usage
linalg_norm(A, ord = NULL, dim = NULL, keepdim = FALSE, dtype = NULL)

Arguments
A (Tensor): tensor of shape (*, n) or (*, m, n) where * is zero or more batch dimensions
dim (int, Tuple[int], optional): dimensions over which to compute the vector or matrix norm. See above for the behavior when dim=NULL. Default: NULL
keepdim (bool, optional): If set to TRUE, the reduced dimensions are retained in the result as dimensions with size one. Default: FALSE
dtype dtype (torch_dtype, optional): If specified, the input tensor is cast to dtype before performing the operation, and the returned tensor’s type will be dtype. Default: NULL

Details
ord defines the norm that is computed. The following norms are supported:

<table>
<thead>
<tr>
<th>ord</th>
<th>norm for matrices</th>
<th>norm for vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>Frobenius norm</td>
<td>2-norm (see below)</td>
</tr>
<tr>
<td>&quot;fro&quot;</td>
<td>Frobenius norm</td>
<td>– not supported –</td>
</tr>
<tr>
<td>&quot;nuc&quot;</td>
<td>nuclear norm</td>
<td>– not supported –</td>
</tr>
</tbody>
</table>
linalg_pinv

Computes the pseudoinverse (Moore-Penrose inverse) of a matrix.

Description

The pseudoinverse may be defined algebraically but it is more computationally convenient to understand it through the SVD. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if A is a batch of matrices then the output has the same batch dimensions.

Usage

linalg_pinv(A, rcond = 1e-15, hermitian = FALSE)
Arguments

A (Tensor): tensor of shape (*, m, n) where * is zero or more batch dimensions.

rcond (float or Tensor, optional): the tolerance value to determine when is a singular value zero. If it is a torch.Tensor, its shape must be broadcastable to that of the singular values of A as returned by \texttt{linalg_svd()}. Default: 1e-15.

hermitian (bool, optional): indicates whether A is Hermitian if complex or symmetric if real. Default: FALSE.

Details

If hermitian= TRUE, A is assumed to be Hermitian if complex or symmetric if real, but this is not checked internally. Instead, just the lower triangular part of the matrix is used in the computations. The singular values (or the norm of the eigenvalues when hermitian= TRUE) that are below the specified rcond threshold are treated as zero and discarded in the computation.

Note

This function uses \texttt{linalg_svd()} if hermitian= FALSE and \texttt{linalg_eigh()} if hermitian= TRUE. For CUDA inputs, this function synchronizes that device with the CPU.

Consider using \texttt{linalg_lstsq()} if possible for multiplying a matrix on the left by the pseudoinverse, as \texttt{linalg_lstsq(A,B)$solution == A$pinv() %*% B}

It is always preferred to use \texttt{linalg_lstsq()} when possible, as it is faster and more numerically stable than computing the pseudoinverse explicitly.

See Also

- \texttt{linalg_inv()} computes the inverse of a square matrix.
- \texttt{linalg_lstsq()} computes \texttt{A$pinv() %*% B} with a numerically stable algorithm.

Other linalg: \texttt{linalg_cholesky_ex()}, \texttt{linalg_cholesky()}, \texttt{linalg_det()}, \texttt{linalg_eigh()}, \texttt{linalg_eigvalsh()}, \texttt{linalg_eigvals()}, \texttt{linalg_eig()}, \texttt{linalg_householder_product()}, \texttt{linalg_inv_ex()}, \texttt{linalg_inv()}, \texttt{linalg_lstsq()}, \texttt{linalg_matrix_norm()}, \texttt{linalg_matrix_power()}, \texttt{linalg_matrix_rank()}, \texttt{linalg_multi_dot()}, \texttt{linalg_norm()}, \texttt{linalg_qr()}, \texttt{linalg_slogdet()}, \texttt{linalg_solve()}, \texttt{linalg_svdvals()}, \texttt{linalg_svd()}, \texttt{linalg_tensorinv()}, \texttt{linalg_tensorsolve()}, \texttt{linalg_vector_norm()}

Examples

if (torch_is_installed()) {
  A <- torch_randn(3, 5)
linalg_pinv(A)
}

linalg_qr  Computes the QR decomposition of a matrix.

Description

Letting \( \bullet \) be \( \ast \) or \( \ast \), the **full QR decomposition** of a matrix \( \bullet \) is defined as

Usage

linalg_qr(A, mode = "reduced")

Arguments

- **A** (Tensor): tensor of shape (*, m, n) where * is zero or more batch dimensions.

Details

Equation not displayed. Please find it in 'https://torch.mlverse.org/docs'

where \( \bullet \) is orthogonal in the real case and unitary in the complex case, and \( \bullet \) is upper triangular.

When \( m > n \) (tall matrix), as \( R \) is upper triangular, its last \( m - n \) rows are zero. In this case, we can drop the last \( m - n \) columns of \( Q \) to form the **reduced QR decomposition**:

Equation not displayed. Please find it in 'https://torch.mlverse.org/docs'

The reduced QR decomposition agrees with the full QR decomposition when \( n >= m \) (wide matrix).

Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if \( A \) is a batch of matrices then the output has the same batch dimensions. The parameter mode chooses between the full and reduced QR decomposition.

If \( A \) has shape (*, m, n), denoting \( k = \min(m, n) \)

- **mode** = ‘reduced’ (default): Returns (Q, R) of shapes (*, m, k), (*, k, n) respectively.
- **mode** = ‘complete’: Returns (Q, R) of shapes (*, m, m), (*, m, n) respectively.
- **mode** = ‘r’: Computes only the reduced R. Returns (Q, R) with Q empty and R of shape (*, k, n).

Value

A list (Q, R).

See Also

Other linalg: linalg_cholesky_ex(), linalg_cholesky(), linalg_det(), linalg_eigh(), linalg_eigvalsh(), linalg_eigvals(), linalg_eig(), linalg_householder_product(), linalg_inv_ex(), linalg_inv(), linalg_lstsq(), linalg_matrix_norm(), linalg_matrix_rank(), linalg_multi_dot(), linalg_pinv(), linalg_slogdet(), linalg_solve(), linalg_svdvals(), linalg_svd(), linalg_tensorinv(), linalg_tensorsolve(), linalg_vector_norm()
Examples

```r
if (torch_is_installed()) {
 a <- torch_tensor(rbind(c(12, -51, 4), c(6, 167, -68), c(-4, 24, -41))
 qr <- linalg_qr(a)

 torch_mm(qr[[1]], qr[[2]])$round()
 torch_mm(qr[[1]]$t(), qr[[1]])$round()
}
```

linalg_slogdet  Computes the sign and natural logarithm of the absolute value of the
determinant of a square matrix.

Description

For complex $A$, it returns the angle and the natural logarithm of the modulus of the determinant, that
is, a logarithmic polar decomposition of the determinant. Supports input of float, double, cfloat and
cdouble dtypes. Also supports batches of matrices, and if $A$ is a batch of matrices then the output
has the same batch dimensions.

Usage

```r
linalg_slogdet(A)
```

Arguments

- **A**  (Tensor): tensor of shape (*, n, n) where * is zero or more batch dimensions.

Value

A list (sign, logabsdet). logabsdet will always be real-valued, even when A is complex. sign will
have the same dtype as A.

Notes

- The determinant can be recovered as sign * exp(logabsdet).
- When a matrix has a determinant of zero, it returns (0, -Inf).

See Also

Other linalg: linalg_cholesky_ex(), linalg_cholesky(), linalg_det(), linalg_eigh(), linalg_eigvalsh(),
linalg_eigvals(), linalg_eig(), linalg_householder_product(), linalg_inv_ex(), linalg_inv(),
linalg_lstsq(), linalg_matrix_norm(), linalg_matrix_power(), linalg_matrix_rank(),
linalg_multi_dot(), linalg_norm(), linalg_pinv(), linalg_qr(), linalg_solve(), linalg_svdvals(),
linalg_svd(), linalg_tensorinv(), linalg_tensorsolve(), linalg_vector_norm()
Examples

```r
if (torch_is_installed()) {
 a <- torch_randn(3,3)
 linalg_slogdet(a)
}
```

Description

Letting $\mathbf{a_2}$ be $\mathbf{a_2}$ or $\mathbf{a_2}$, this function computes the solution of the linear system associated to $\mathbf{a_2}$, which is defined as

Usage

```r
linalg_solve(A, B)
```

Arguments

- **A** (Tensor): tensor of shape (*, n, n) where * is zero or more batch dimensions.
- **B** (Tensor): right-hand side tensor of shape (*, n) or (*, n, k) or (n,) or (n, k) according to the rules described above.

Details

$AX = B$

This system of linear equations has one solution if and only if $\mathbf{a_2}$ is invertible. This function assumes that $\mathbf{a_2}$ is invertible. Supports inputs of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if the inputs are batches of matrices then the output has the same batch dimensions.

Letting * be zero or more batch dimensions,

- If A has shape (*, n, n) and B has shape (*, n) (a batch of vectors) or shape (*, n, k) (a batch of matrices or "multiple right-hand sides"), this function returns X of shape (*, n) or (*, n, k) respectively.
- Otherwise, if A has shape (*, n, n) and B has shape (n,) or (n, k), B is broadcasted to have shape (*, n) or (*, n, k) respectively.

This function then returns the solution of the resulting batch of systems of linear equations.

Note

This function computes $X = \mathbf{A^{-1}} \mathbf{B}$ in a faster and more numerically stable way than performing the computations separately.
See Also

Other linalg: `linalg_cholesky_ex()`, `linalg_cholesky()`, `linalg_det()`, `linalg_eigh()`, `linalg_eigvalsh()`,
`linalg_eigvals()`, `linalg_eig()`, `linalg_householder_product()`, `linalg_inv_ex()`, `linalg_inv()`,
`linalg_lstsq()`, `linalg_matrix_norm()`, `linalg_matrix_power()`, `linalg_matrix_rank()`,
`linalg_multi_dot()`, `linalg_norm()`, `linalg_pinv()`, `linalg_qr()`, `linalg_slogdet()`, `linalg_svdvals()`,
`linalg_svd()`, `linalg_tensorinv()`, `linalg_tensorsolve()`, `linalg_vector_norm()`

Examples

```r
if (torch_is_installed()) {
 A <- torch_randn(3, 3)
 b <- torch_randn(3)
 x <- linalg_solve(A, b)
 torch_allclose(torch_matmul(A, x), b)
}
```

---

**linalg_svd**

*Computes the singular value decomposition (SVD) of a matrix.*

**Description**

Letting • be • or •, the **full SVD** of a matrix •, if \( k = \min(m, n) \), is defined as

**Usage**

`linalg_svd(A, full_matrices = TRUE)`

**Arguments**

- `A` (Tensor): tensor of shape (*, m, n) where * is zero or more batch dimensions.
- `full_matrices` (bool, optional): controls whether to compute the full or reduced SVD, and consequently, the shape of the returned tensors \( U \) and \( V \). Default: TRUE.

**Details**

Equation not displayed. Please find it in `https://torch.mlverse.org/docs`
where •, • is the conjugate transpose when • is complex, and the transpose when • is real-valued.

The matrices •, • (and thus •) are orthogonal in the real case, and unitary in the complex case. When \( m > n \) (resp. \( m < n \)) we can drop the last \( m - n \) (resp. \( n - m \)) columns of \( U \) (resp. \( V \)) to form the **reduced SVD**:

Equation not displayed. Please find it in `https://torch.mlverse.org/docs`
where •.

In this case, • and • also have orthonormal columns. Supports input of float, double, cfloat and cdouble dtypes.
Also supports batches of matrices, and if \( A \) is a batch of matrices then the output has the same batch dimensions.

The returned decomposition is a named tuple \((U, S, V)\) which corresponds to \( \bullet, \bullet, \bullet \) above.

The singular values are returned in descending order. The parameter `full_matrices` chooses between the full (default) and reduced SVD.

**Value**

A list \((U, S, V)\) which corresponds to \( \bullet, \bullet, \bullet \) above. \( S \) will always be real-valued, even when \( A \) is complex. It will also be ordered in descending order. \( U \) and \( V \) will have the same dtype as \( A \). The left / right singular vectors will be given by the columns of \( U \) and the rows of \( V \) respectively.

**Warnings**

The returned tensors \( U \) and \( V \) are not unique, nor are they continuous with respect to \( A \). Due to this lack of uniqueness, different hardware and software may compute different singular vectors. This non-uniqueness is caused by the fact that multiplying any pair of singular vectors \( \bullet \) by \(-1\) in the real case or by \( \bullet \) in the complex case produces another two valid singular vectors of the matrix. This non-uniqueness problem is even worse when the matrix has repeated singular values. In this case, one may multiply the associated singular vectors of \( U \) and \( V \) spanning the subspace by a rotation matrix and the resulting vectors will span the same subspace.

Gradients computed using \( U \) or \( V \) will only be finite when \( A \) does not have zero as a singular value or repeated singular values. Furthermore, if the distance between any two singular values is close to zero, the gradient will be numerically unstable, as it depends on the singular values \( \bullet \) through the computation of \( \bullet \). The gradient will also be numerically unstable when \( A \) has small singular values, as it also depends on the computation of \( \bullet \).

**Note**

When `full_matrices=True`, the gradients with respect to \( U[\ldots,:)\) and \( Vh[\ldots,:)\) will be ignored, as those vectors can be arbitrary bases of the corresponding subspaces.

**See Also**

- `linalg_svdvals()` computes only the singular values. Unlike `linalg_svd()`, the gradients of `linalg_svdvals()` are always numerically stable.
- `linalg_eig()` for a function that computes another type of spectral decomposition of a matrix. The eigendecomposition works just on on square matrices.
- `linalg_eigh()` for a (faster) function that computes the eigenvalue decomposition for Hermitian and symmetric matrices.
- `linalg_qr()` for another (much faster) decomposition that works on general matrices.

Other `linalg`: `linalg_cholesky_ex()`, `linalg_cholesky()`, `linalg_det()`, `linalg_eigh()`, `linalg_eigvalsh()`, `linalg_eigvals()`, `linalg_eig()`, `linalg_householder_product()`, `linalg_inv_ex()`, `linalg_inv()`, `linalg_lstsq()`, `linalg_matrix_norm()`, `linalg_matrix_power()`, `linalg_matrix_rank()`, `linalg_multi_dot()`, `linalg_norm()`, `linalg_pinv()`, `linalg_qr()`, `linalg_slogdet()`, `linalg_svdvals()`, `linalg_tensorinv()`, `linalg_tensorsolve()`, `linalg_vector_norm()`


Examples
if (torch_is_installed()) {
    a <- torch_randn(5, 3)
    linalg_svd(a, full_matrices=FALSE)
}

linalg_svdvals

| Computes the singular values of a matrix. |

Description
Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if \( A \) is a batch of matrices then the output has the same batch dimensions. The singular values are returned in descending order.

Usage
linalg_svdvals(A)

Arguments
A (Tensor): tensor of shape (*, m, n) where * is zero or more batch dimensions.

Value
A real-valued tensor, even when \( A \) is complex.

See Also
linalg_svd() computes the full singular value decomposition.

Other linalg: linalg_cholesky_ex(), linalg_cholesky(), linalg_det(), linalg_eigh(), linalg_eigvalsh(), linalg_eigvals(), linalg_eig(), linalg_householder_product(), linalg_inv_ex(), linalg_inv(), linalg_lstsq(), linalg_matrix_norm(), linalg_matrix_power(), linalg_matrix_rank(), linalg_multi_dot(), linalg_norm(), linalg_pinv(), linalg_qr(), linalg_slogdet(), linalg_solve(), linalg_svd(), linalg_tensorinv(), linalg_tensorsolve(), linalg_vector_norm()

Examples
if (torch_is_installed()) {
    A <- torch_randn(5, 3)
    S <- linalg_svdvals(A)
    S
}

linalg_tensorinv  Computes the multiplicative inverse of  torch_tensordot()

Description
If \( m \) is the product of the first \( \text{ind} \) dimensions of \( A \) and \( n \) is the product of the rest of the dimensions, this function expects \( m \) and \( n \) to be equal. If this is the case, it computes a tensor \( X \) such that  
\[
tensordot(A, X, \text{ind})
\]
is the identity matrix in dimension \( m \).

Usage
linalg_tensorinv(A, ind = 3L)

Arguments
\( A \) (Tensor): tensor to invert.
\( \text{ind} \) (int): index at which to compute the inverse of  \( \text{torch_tensordot}() \). Default: 3.

Details
Supports input of float, double, cfloat and cdouble dtypes.

Note
Consider using  \( \text{linalg_tensorsolve()} \) if possible for multiplying a tensor on the left by the tensor inverse as  
\[
\text{linalg_tensorsolve}(A, B) = \text{torch_tensordot}\left(\text{linalg_tensorinv}(A), B\right)
\]
It is always preferred to use  \( \text{linalg_tensorsolve()} \) when possible, as it is faster and more numerically stable than computing the pseudoinverse explicitly.

See Also
- \( \text{linalg_tensorsolve()} \) computes  \( \text{torch_tensordot}(\text{linalg_tensorinv}(A), B) \).

Examples
if (torch_is_installed()) {
A <- torch_eye(4 * 6)$reshape(c(4, 6, 8, 3))
Ainv <- linalg_tensorinv(A, ind=3)
Ainv$shape
B <- torch_randn(4, 6)
torch_allclose(torch_tensordot(Ainv, B), linalg_tensorsolve(A, B))
```r
A <- torch_randn(4, 4)
Atensorinv<- linalg_tensorinv(A, 2)
Ainv <- linalg_inv(A)
torch_allclose(Atensorinv, Ainv)
}
```

---

**linalg_tensorsolve**  
*Computes the solution* \( X \) *to the system* \( \text{torch_tensordot}(A, X) = B \).*

**Description**

If \( m \) is the product of the first \( B \).\( ndim \) dimensions of \( A \) and \( n \) is the product of the rest of the dimensions, this function expects \( m \) and \( n \) to be equal. The returned tensor \( x \) satisfies \( \text{tensordot}(A, x, \text{dims} = x\text{ndim}) = B \).

**Usage**

```r
linalg_tensorsolve(A, B, dims = NULL)
```

**Arguments**

- **A** *(Tensor):* tensor to solve for.
- **B** *(Tensor):* the solution
- **dims** *(Tupleint, optional):* dimensions of \( A \) to be moved. If NULL, no dimensions are moved. Default: NULL.

**Details**

If dims is specified, \( A \) will be reshaped as \( A = \text{movedim}(A, \text{dims}, \text{seq}(\text{len}(\text{dims}) - A\text{ndim} + 1, 0)) \)

Supports inputs of float, double, cfloat and cdouble dtypes.

**See Also**

- `linalg_tensorinv()` computes the multiplicative inverse of `torch_tensordot()`.

Other linalg: `linalg_cholesky_ex()`, `linalg_cholesky()`, `linalg_det()`, `linalg_eigh()`, `linalg_eigvalsh()`, `linalg_eigvals()`, `linalg_eig()`, `linalg_householder_product()`, `linalg_inv_ex()`, `linalg_inv()`, `linalg_lstsq()`, `linalg_matrix_norm()`, `linalg_matrix_power()`, `linalg_matrix_rank()`, `linalg_multi_dot()`, `linalg_norm()`, `linalg_pinv()`, `linalg_qr()`, `linalg_slogdet()`, `linalg_solve()`, `linalg_svdvals()`, `linalg_svd()`, `linalg_tensorinv()`, `linalg_vector_norm()`
Examples

```r
if (torch_is_installed()) {
 A <- torch_eye(2 * 3 * 4)$reshape(c(2 * 3, 4, 2, 3, 4))
 B <- torch_randn(2 * 3, 4)
 X <- linalg_tensorsolve(A, B)
 X$shape
 torch_allclose(torch_tensordot(A, X, dims=X$ndim), B)

 A <- torch_randn(6, 4, 4, 3, 2)
 B <- torch_randn(4, 3, 2)
 X <- linalg_tensorsolve(A, B, dims=c(1, 3))
 A <- A$permute(c(2, 4, 5, 1, 3))
 torch_allclose(torch_tensordot(A, X, dims=X$ndim), B, atol=1e-6)
}
```

linalg_vector_norm

**Computes a vector norm.**

### Description

If `A` is complex valued, it computes the norm of `A$abs()` Supports input of float, double, cfloat and cdouble dtypes. This function does not necessarily treat multidimensional `A` as a batch of vectors, instead:

### Usage

```r
linalg_vector_norm(A, ord = 2, dim = NULL, keepdim = FALSE, dtype = NULL)
```

### Arguments

- **A** *(Tensor)*: tensor, flattened by default, but this behavior can be controlled using `dim`
- **ord** *(int, float, inf, -inf, 'fro', 'nuc', optional)*: order of norm. Default: 2
- **dim** *(int, Tupleint, optional)*: dimensions over which to compute the vector or matrix norm. See above for the behavior when `dim=NULL`. Default: `NULL`
- **keepdim** *(bool, optional)*: If set to `TRUE`, the reduced dimensions are retained in the result as dimensions with size one. Default: `FALSE`
- **dtype** *(torch_dtype, optional)*: If specified, the input tensor is cast to `dtype` before performing the operation, and the returned tensor’s type will be `dtype`. Default: `NULL`
Details

- If `dim=NULL`, A will be flattened before the norm is computed.
- If `dim` is an int or a tuple, the norm will be computed over these dimensions and the other dimensions will be treated as batch dimensions.

This behavior is for consistency with `linalg_norm()`.

`ord` defines the norm that is computed. The following norms are supported:

<table>
<thead>
<tr>
<th><code>ord</code></th>
<th>norm for matrices</th>
<th>norm for vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL (default)</td>
<td>Frobenius norm</td>
<td>2-norm (see below)</td>
</tr>
<tr>
<td>&quot;fro&quot;</td>
<td>Frobenius norm</td>
<td>– not supported –</td>
</tr>
<tr>
<td>&quot;nuc&quot;</td>
<td>nuclear norm</td>
<td>– not supported –</td>
</tr>
<tr>
<td>Inf</td>
<td>max(sum(abs(x), dim=2))</td>
<td>max(abs(x))</td>
</tr>
<tr>
<td>-Inf</td>
<td>min(sum(abs(x), dim=2))</td>
<td>min(abs(x))</td>
</tr>
<tr>
<td>0</td>
<td>– not supported –</td>
<td>sum(x != 0)</td>
</tr>
<tr>
<td>1</td>
<td>max(sum(abs(x), dim=1))</td>
<td>as below</td>
</tr>
<tr>
<td>-1</td>
<td>min(sum(abs(x), dim=1))</td>
<td>as below</td>
</tr>
<tr>
<td>2</td>
<td>largest singular value</td>
<td>as below</td>
</tr>
<tr>
<td>-2</td>
<td>smallest singular value</td>
<td>as below</td>
</tr>
<tr>
<td>other int or float</td>
<td>– not supported –</td>
<td>sum(abs(x)^{ord})^{(1 / ord)}</td>
</tr>
</tbody>
</table>

See Also

Other linalg: `linalg_cholesky_ex()`, `linalg_cholesky()`, `linalg_det()`, `linalg_eigh()`, `linalg_eigvalsh()`, `linalg_eigvals()`, `linalg_eig()`, `linalg_householder_product()`, `linalg_inv_ex()`, `linalg_inv()`, `linalg_lstsq()`, `linalg_matrix_norm()`, `linalg_matrix_power()`, `linalg_matrix_rank()`, `linalg_multi_dot()`, `linalg_norm()`, `linalg_pinv()`, `linalg_qr()`, `linalg_slogdet()`, `linalg_solve()`, `linalg_svdvals()`, `linalg_svd()`, `linalg_tensorinv()`, `linalg_tensorsolve()`

Examples

```r
if (torch_is_installed()) {
 a <- torch_arange(0, 8, dtype=torch_float()) - 4
 a
 b <- a$reshape(c(3, 3))
 b

 linalg_vector_norm(a, ord = 3.5)
 linalg_vector_norm(b, ord = 3.5)
}
```

---

**load_state_dict**  Load a state dict file
Description

This function should only be used to load models saved in python. For it to work correctly you need to use torch.save with the flag: _use_new_zipfile_serialization=True and also remove all nn.Parameter classes from the tensors in the dict.

Usage

load_state_dict(path)

Arguments

path to the state dict file

Details

The above might change with development of this in pytorch’s C++ api.

Value

a named list of tensors.

<table>
<thead>
<tr>
<th>lr_lambda</th>
<th>Sets the learning rate of each parameter group to the initial lr times a given function. When last_epoch=-1, sets initial lr as lr.</th>
</tr>
</thead>
</table>

Description

Sets the learning rate of each parameter group to the initial lr times a given function. When last_epoch=-1, sets initial lr as lr.

Usage

lr_lambda(optimizer, lr_lambda, last_epoch = -1, verbose = FALSE)

Arguments

optimizer (Optimizer): Wrapped optimizer.
lr_lambda (function or list): A function which computes a multiplicative factor given an integer parameter epoch, or a list of such functions, one for each group in optimizer.param_groups.
last_epoch (int): The index of last epoch. Default: -1.
verbose (bool): If TRUE, prints a message to stdout for each update. Default: FALSE.
Examples

```r
if (torch_is_installed()) {
 # Assuming optimizer has two groups.
 lambda1 <- function(epoch) epoch %/% 30
 lambda2 <- function(epoch) 0.95^epoch
 ## Not run:
 scheduler <- lr_lambda(optimizer, lr_lambda = list(lambda1, lambda2))
 for (epoch in 1:100) {
 train(...)
 validate(...)
 scheduler$step()
 }
 ## End(Not run)
}
```

---

**lr_multiplicative**  

_Multiply the learning rate of each parameter group by the factor given in the specified function. When last_epoch=-1, sets initial lr as lr._

**Description**

Multiply the learning rate of each parameter group by the factor given in the specified function. When last_epoch=-1, sets initial lr as lr.

**Usage**

```r
lr_multiplicative(optimizer, lr_lambda, last_epoch = -1, verbose = FALSE)
```

**Arguments**

- `optimizer` (Optimizer): Wrapped optimizer.
- `lr_lambda` (function or list): A function which computes a multiplicative factor given an integer parameter epoch, or a list of such functions, one for each group in optimizer.param_groups.
- `last_epoch` (int): The index of last epoch. Default: -1.
- `verbose` (bool): If TRUE, prints a message to stdout for each update. Default: FALSE.

**Examples**

```r
if (torch_is_installed()) {
 ## Not run:
 lmbda <- function(epoch) 0.95
 scheduler <- lr_multiplicative(optimizer, lr_lambda=lmbda)
 for (epoch in 1:100) {
 train(...)
 validate(...)
 }
 ## End(Not run)
}
lr_one_cycle

Description

Sets the learning rate of each parameter group according to the 1cycle learning rate policy. The 1cycle policy anneals the learning rate from an initial learning rate to some maximum learning rate and then from that maximum learning rate to some minimum learning rate much lower than the initial learning rate.

Usage

lr_one_cycle(
 optimizer,
 max_lr,
 total_steps = NULL,
 epochs = NULL,
 steps_per_epoch = NULL,
 pct_start = 0.3,
 anneal_strategy = "cos",
 cycle_momentum = TRUE,
 base_momentum = 0.85,
 max_momentum = 0.95,
 div_factor = 25,
 final_div_factor = 10000,
 last_epoch = -1,
 verbose = FALSE
)

Arguments

 optimizer (Optimizer): Wrapped optimizer.
 max_lr (float or list): Upper learning rate boundaries in the cycle for each parameter group.
 total_steps (int): The total number of steps in the cycle. Note that if a value is not provided here, then it must be inferred by providing a value for epochs and steps_per_epoch. Default: NULL
 epochs (int): The number of epochs to train for. This is used along with steps_per_epoch in order to infer the total number of steps in the cycle if a value for total_steps is not provided. Default: NULL
lr_one_cycle

steps_per_epoch
(int): The number of steps per epoch to train for. This is used along with epochs in order to infer the total number of steps in the cycle if a value for total_steps is not provided. Default: NULL

pct_start
(float): The percentage of the cycle (in number of steps) spent increasing the learning rate. Default: 0.3

anneal_strategy
(str): 'cos', 'linear' Specifies the annealing strategy: "cos" for cosine annealing, "linear" for linear annealing. Default: 'cos'

cycle_momentum
(bool): If TRUE, momentum is cycled inversely to learning rate between 'base_momentum' and 'max_momentum'. Default: TRUE

base_momentum
(float or list): Lower momentum boundaries in the cycle for each parameter group. Note that momentum is cycled inversely to learning rate; at the peak of a cycle, momentum is 'base_momentum' and learning rate is 'max_lr'. Default: 0.85

max_momentum
(float or list): Upper momentum boundaries in the cycle for each parameter group. Functionally, it defines the cycle amplitude (max_momentum - base_momentum). Note that momentum is cycled inversely to learning rate; at the start of a cycle, momentum is 'max_momentum' and learning rate is 'base_lr'. Default: 0.95

div_factor
(float): Determines the initial learning rate via initial_lr = max_lr/div_factor Default: 25

final_div_factor
(float): Determines the minimum learning rate via min_lr = initial_lr/final_div_factor Default: 1e4

last_epoch
(int): The index of the last batch. This parameter is used when resuming a training job. Since step() should be invoked after each batch instead of after each epoch, this number represents the total number of batches computed, not the total number of epochs computed. When last_epoch=-1, the schedule is started from the beginning. Default: -1

verbose
(bool): If TRUE, prints a message to stdout for each update. Default: FALSE.

Details

This policy was initially described in the paper Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates.

The 1cycle learning rate policy changes the learning rate after every batch. step should be called after a batch has been used for training. This scheduler is not chainable.

Note also that the total number of steps in the cycle can be determined in one of two ways (listed in order of precedence):

- A value for total_steps is explicitly provided.
- A number of epochs (epochs) and a number of steps per epoch (steps_per_epoch) are provided.

In this case, the number of total steps is inferred by total_steps = epochs * steps_per_epoch

You must either provide a value for total_steps or provide a value for both epochs and steps_per_epoch.
Examples

```r
if (torch_is_installed()) {
  ## Not run:
  data_loader <- dataloader(...)  
  optimizer <- optim_sgd(model$parameters, lr=0.1, momentum=0.9)
  scheduler <- lr_one_cycle(optimizer, max_lr=0.01, steps_per_epoch=length(data_loader),
    epochs=10)

  for (i in 1:epochs) {
    coro::loop(for (batch in data_loader) {
      train_batch(...)  
      scheduler$step()
    })
  }

  ## End(Not run)
}
```

```
# lr_scheduler
```

Description

Creates learning rate schedulers

Usage

```r
lr_scheduler(
  classname = NULL,
  inherit = LRScheduler,
  ...
  parent_env = parent.frame()
)
```

Arguments

- `classname` optional name for the learning rate scheduler
- `inherit` an optional learning rate scheduler to inherit from
- `...` named list of methods. You must implement the `get_lr()` method that doesn’t take any argument and returns learning rates for each `param_group` in the optimizer.
- `parent_env` passed to `R6::R6Class()`.
lr_step

Step learning rate decay

Description

Decays the learning rate of each parameter group by gamma every step_size epochs. Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr.

Usage

```r
lr_step(optimizer, step_size, gamma = 0.1, last_epoch = -1)
```

Arguments

- `optimizer` *(Optimizer)*: Wrapped optimizer.
- `step_size` *(int)*: Period of learning rate decay.
- `gamma` *(float)*: Multiplicative factor of learning rate decay. Default: 0.1.
- `last_epoch` *(int)*: The index of last epoch. Default: -1.

Examples

```r
if (torch_is_installed()) {
  ## Not run:
  # Assuming optimizer uses lr = 0.05 for all groups
  # lr = 0.05  if epoch < 30
  # lr = 0.005  if 30 <= epoch < 60
  # lr = 0.0005  if 60 <= epoch < 90
  # ...
  scheduler <- lr_step(optimizer, step_size=30, gamma=0.1)
  for (epoch in 1:100) {
    train(...)  
    validate(...)  
    scheduler$step()
  }

  ## End(Not run)
}
```
nnf_adaptive_avg_pool1d

Adaptive_avg_pool1d

Description

Applies a 1D adaptive average pooling over an input signal composed of several input planes.

Usage

```python
nnf_adaptive_avg_pool1d(input, output_size)
```

Arguments

- **input**: input tensor of shape (minibatch, in_channels, iW)
- **output_size**: the target output size (single integer)

nnf_adaptive_avg_pool2d

Adaptive_avg_pool2d

Description

Applies a 2D adaptive average pooling over an input signal composed of several input planes.

Usage

```python
nnf_adaptive_avg_pool2d(input, output_size)
```

Arguments

- **input**: input tensor (minibatch, in_channels, iH, iW)
- **output_size**: the target output size (single integer or double-integer tuple)
nnf_adaptive_avg_pool3d

Adaptive_avg_pool3d

Description
Applies a 3D adaptive average pooling over an input signal composed of several input planes.

Usage

nnf_adaptive_avg_pool3d(input, output_size)

Arguments
input input tensor (minibatch, in_channels, iT, iH, iW)
output_size the target output size (single integer or triple-integer tuple)

nnf_adaptive_max_pool1d

Adaptive_max_pool1d

Description
Applies a 1D adaptive max pooling over an input signal composed of several input planes.

Usage

nnf_adaptive_max_pool1d(input, output_size, return_indices = FALSE)

Arguments
input input tensor of shape (minibatch, in_channels, iW)
output_size the target output size (single integer)
return_indices whether to return pooling indices. Default: FALSE
nnf_adaptive_max_pool2d

Adaptive_max_pool2d

Description
Applies a 2D adaptive max pooling over an input signal composed of several input planes.

Usage
nnf_adaptive_max_pool2d(input, output_size, return_indices = FALSE)

Arguments
- input: input tensor (minibatch, in_channels, iH, iW)
- output_size: the target output size (single integer or double-integer tuple)
- return_indices: whether to return pooling indices. Default: FALSE

nnf_adaptive_max_pool3d

Adaptive_max_pool3d

Description
Applies a 3D adaptive max pooling over an input signal composed of several input planes.

Usage
nnf_adaptive_max_pool3d(input, output_size, return_indices = FALSE)

Arguments
- input: input tensor (minibatch, in_channels, iT * iH, iW)
- output_size: the target output size (single integer or triple-integer tuple)
- return_indices: whether to return pooling indices. Default: FALSE
nnf_affine_grid

Affine_grid

Description
Generates a 2D or 3D flow field (sampling grid), given a batch of affine matrices theta.

Usage
```python
nnf_affine_grid(theta, size, align_corners = FALSE)
```

Arguments
- **theta** (Tensor) input batch of affine matrices with shape $(N \times 2 \times 3)$ for 2D or $(N \times 3 \times 4)$ for 3D
- **size** (torch.Size) the target output image size. $(N \times C \times H \times W$ for 2D or $N \times C \times D \times H \times W$ for 3D) Example: torch.Size((32, 3, 24, 24))
- **align_corners** (bool, optional) if True, consider -1 and 1 to refer to the centers of the corner pixels rather than the image corners. Refer to `nnf_grid_sample()` for a more complete description. A grid generated by `nnf_affine_grid()` should be passed to `nnf_grid_sample()` with the same setting for this option. Default: False

Note
This function is often used in conjunction with `nnf_grid_sample()` to build Spatial Transformer Networks.

nnf_alpha_dropout

Alpha_dropout

Description
Applies alpha dropout to the input.

Usage
```python
nnf_alpha_dropout(input, p = 0.5, training = FALSE, inplace = FALSE)
```

Arguments
- **input** the input tensor
- **p** probability of an element to be zeroed. Default: 0.5
- **training** apply dropout if is TRUE. Default: TRUE
- **inplace** If set to TRUE, will do this operation in-place. Default: FALSE
nnf_avg_pool1d

Description

Applies 1D average pooling over an input signal composed of several input planes.

Usage

nnf_avg_pool1d(
 input,
 kernel_size,
 stride = NULL,
 padding = 0,
 ceil_mode = FALSE,
 count_include_pad = TRUE
)

Arguments

- **input**
 input tensor of shape (minibatch, in_channels, iW)
- **kernel_size**
 the size of the window. Can be a single number or a tuple (kW,).
- **stride**
 the stride of the window. Can be a single number or a tuple (sW,). Default: kernel_size
- **padding**
 implicit zero paddings on both sides of the input. Can be a single number or a tuple (padW,). Default: 0
- **ceil_mode**
 when True, will use ceil instead of floor to compute the output shape. Default: FALSE
- **count_include_pad**
 when True, will include the zero-padding in the averaging calculation. Default: TRUE

nnf_avg_pool2d

Description

Applies 2D average-pooling operation in $kH \times kW$ regions by step size $sH \times sW$ steps. The number of output features is equal to the number of input planes.
nnf_avg_pool3d

Usage

```python	nnf_avg_pool3d(
    input,
    kernel_size,
    stride = NULL,
    padding = 0,
    ceil_mode = FALSE,
    count_include_pad = TRUE,
    divisor_override = NULL
)
```

Arguments

- **input**: input tensor (minibatch, in_channels, iH, iW)
- **kernel_size**: size of the pooling region. Can be a single number or a tuple (kH, kW)
- **stride**: stride of the pooling operation. Can be a single number or a tuple (sH, sW). Default: kernel_size
- **padding**: implicit zero paddings on both sides of the input. Can be a single number or a tuple (padH, padW). Default: 0
- **ceil_mode**: when True, will use ceil instead of floor in the formula to compute the output shape. Default: FALSE
- **count_include_pad**: when True, will include the zero-padding in the averaging calculation. Default: TRUE
- **divisor_override**: if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: NULL

nnf_avg_pool3d Avg_pool3d

Description

Applies 3D average-pooling operation in \(kT \times kH \times kW \) regions by step size \(sT \times sH \times sW \) steps. The number of output features is equal to \(\left\lfloor \frac{\text{input planes}}{sT \times sH \times sW} \right\rfloor \).

Usage

```python
nnf_avg_pool3d(
    input,
    kernel_size,
    stride = NULL,
    padding = 0,
    ceil_mode = FALSE,
    count_include_pad = TRUE,
    divisor_override = NULL
)
```
Arguments

- **input**: input tensor (minibatch, in_channels, iT * iH, iW)
- **kernel_size**: size of the pooling region. Can be a single number or a tuple (kT, kH, kW)
- **stride**: stride of the pooling operation. Can be a single number or a tuple (sT, sH, sW). Default: kernel_size
- **padding**: implicit zero paddings on both sides of the input. Can be a single number or a tuple (padT, padH, padW). Default: 0
- **ceil_mode**: when True, will use ceil instead of floor in the formula to compute the output shape
- **count_include_pad**: when True, will include the zero-padding in the averaging calculation
- **divisor_override**: NA if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: NULL

nnf_batch_norm

Batch_norm

Description

Applies Batch Normalization for each channel across a batch of data.

Usage

```r
nnf_batch_norm(
  input,
  running_mean,
  running_var,
  weight = NULL,
  bias = NULL,
  training = FALSE,
  momentum = 0.1,
  eps = 1e-05
)
```

Arguments

- **input**: input tensor
- **running_mean**: the running_mean tensor
- **running_var**: the running_var tensor
- **weight**: the weight tensor
- **bias**: the bias tensor
- **training**: bool wether it’s training. Default: FALSE
nnf_bilinear

Description

Applies a bilinear transformation to the incoming data: \(y = x_1A x_2 + b \)

Usage

\[
\text{nnf_bilinear}(\text{input1}, \text{input2}, \text{weight}, \text{bias} = \text{NULL})
\]

Arguments

- **input1**: \((N, *, H_{in1})\) where \(H_{in1} = \text{in1_features} \) and \(*\) means any number of additional dimensions. All but the last dimension of the inputs should be the same.
- **input2**: \((N, *, H_{in2})\) where \(H_{in2} = \text{in2_features} \)
- **weight**: \((\text{out_features}, \text{in1_features}, \text{in2_features})\)
- **bias**: \((\text{out_features})\)

Value

\(\text{output} (N, *, H_{out}) \) where \(H_{out} = \text{out_features} \) and all but the last dimension are the same shape as the input.

nnf_binary_cross_entropy

Binary_cross_entropy

Description

Function that measures the Binary Cross Entropy between the target and the output.

Usage

\[
\text{nnf_binary_cross_entropy}(
\text{input}, \text{target}, \text{weight} = \text{NULL}, \text{reduction} = \text{c("mean", "sum", "none")})
\]
nnf_binary_cross_entropy_with_logits

Arguments

input tensor (N,*) where ** means, any number of additional dimensions

target tensor (N,*), same shape as the input

weight (tensor) weight for each value.

reduction (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'

nnf_binary_cross_entropy_with_logits

Function that measures Binary Cross Entropy between target and output logits.

Usage

nnf_binary_cross_entropy_with_logits(
 input,
 target,
 weight = NULL,
 reduction = c("mean", "sum", "none"),
 pos_weight = NULL
)

Arguments

input Tensor of arbitrary shape

target Tensor of the same shape as input

weight (Tensor, optional) a manual rescaling weight if provided it’s repeated to match input tensor shape.

reduction (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'

pos_weight (Tensor, optional) a weight of positive examples. Must be a vector with length equal to the number of classes.
nnf_celu

Cellu

Description

Applies element-wise, $CELU(x) = \max(0, x) + \min(0, \alpha \times (\exp(x\alpha) - 1))$.

Usage

```
nnf_celu(input, alpha = 1, inplace = FALSE)
nnf_celu_(input, alpha = 1)
```

Arguments

- `input` (N,*) tensor, where * means, any number of additional dimensions
- `alpha` the alpha value for the CELU formulation. Default: 1.0
- `inplace` can optionally do the operation in-place. Default: FALSE

nnf_contribsparsemax

Sparsemax

Description

Applies the SparseMax activation.

Usage

```
nnf_contribsparsemax(input, dim = -1)
```

Arguments

- `input` the input tensor
- `dim` The dimension over which to apply the sparsemax function. (-1)

Details

The SparseMax activation is described in 'From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification' The implementation is based on aced125/sparsemax
nnf_conv1d

Description

Applies a 1D convolution over an input signal composed of several input planes.

Usage

nnf_conv1d(
 input,
 weight,
 bias = NULL,
 stride = 1,
 padding = 0,
 dilation = 1,
 groups = 1
)

Arguments

input
input tensor of shape (minibatch, in_channels , iW)

weight
filters of shape (out_channels, in_channels/groups , kW)

bias
optional bias of shape (out_channels). Default: NULL

stride
the stride of the convolving kernel. Can be a single number or a one-element tuple (sW). Default: 1

padding
implicit paddings on both sides of the input. Can be a single number or a one-element tuple (padW). Default: 0

dilation
the spacing between kernel elements. Can be a single number or a one-element tuple (dW). Default: 1

groups
split input into groups, in_channels should be divisible by the number of groups. Default: 1

nnf_conv2d

Description

Applies a 2D convolution over an input image composed of several input planes.
nnf_conv3d

Usage

```r
nnf_conv3d(
  input,
  weight,
  bias = NULL,
  stride = 1,
  padding = 0,
  dilation = 1,
  groups = 1
)
```

Arguments

- **input**: input tensor of shape (minibatch, in_channels, iH, iW)
- **weight**: filters of shape (out_channels, in_channels/groups, kH, kW)
- **bias**: optional bias tensor of shape (out_channels). Default: NULL
- **stride**: the stride of the convolving kernel. Can be a single number or a tuple (sH, sW). Default: 1
- **padding**: implicit paddings on both sides of the input. Can be a single number or a tuple (padH, padW). Default: 0
- **dilation**: the spacing between kernel elements. Can be a single number or a tuple (dH, dW). Default: 1
- **groups**: split input into groups, in_channels should be divisible by the number of groups. Default: 1

Description

Applies a 3D convolution over an input image composed of several input planes.

Usage

```r
nnf_conv3d(
  input,
  weight,
  bias = NULL,
  stride = 1,
  padding = 0,
  dilation = 1,
  groups = 1
)
```
Arguments

- **input**: input tensor of shape (minibatch, in_channels, iT, iH, iW)
- **weight**: filters of shape (out_channels, in_channels/groups, kT, kH, kW)
- **bias**: optional bias tensor of shape (out_channels). Default: NULL
- **stride**: the stride of the convolving kernel. Can be a single number or a tuple (sT, sH, sW). Default: 1
- **padding**: implicit paddings on both sides of the input. Can be a single number or a tuple (padT, padH, padW). Default: 0
- **dilation**: the spacing between kernel elements. Can be a single number or a tuple (dT, dH, dW). Default: 1
- **groups**: split input into groups, in_channels should be divisible by the number of groups. Default: 1

nnf_conv_tbc
Conv_tbc

Description

Applies a 1-dimensional sequence convolution over an input sequence. Input and output dimensions are (Time, Batch, Channels) - hence TBC.

Usage

`nnf_conv_tbc(input, weight, bias, pad = 0)`

Arguments

- **input**: input tensor of shape (sequence length × batch × in_channels)
- **weight**: filter of shape (kernel width × in_channels × out_channels)
- **bias**: bias of shape (out_channels)
- **pad**: number of timesteps to pad. Default: 0
nnf_conv_transpose1d

Description

Applies a 1D transposed convolution operator over an input signal composed of several input planes, sometimes also called "deconvolution".

Usage

```r
nnf_conv_transpose1d(
  input,
  weight,
  bias = NULL,
  stride = 1,
  padding = 0,
  output_padding = 0,
  groups = 1,
  dilation = 1
)
```

Arguments

- **input**: input tensor of shape (minibatch, in_channels, iW)
- **weight**: filters of shape (out_channels, in_channels/groups, kW)
- **bias**: optional bias of shape (out_channels). Default: NULL
- **stride**: the stride of the convolving kernel. Can be a single number or a one-element tuple (sW,). Default: 1
- **padding**: implicit paddings on both sides of the input. Can be a single number or a one-element tuple (padW,). Default: 0
- **output_padding**: padding applied to the output
- **groups**: split input into groups, in_channels should be divisible by the number of groups. Default: 1
- **dilation**: the spacing between kernel elements. Can be a single number or a one-element tuple (dW,). Default: 1
nnf_conv_transpose2d

Description

Applies a 2D transposed convolution operator over an input image composed of several input planes, sometimes also called “deconvolution”.

Usage

```python
nnf_conv_transpose2d(
    input,
    weight,
    bias = NULL,
    stride = 1,
    padding = 0,
    output_padding = 0,
    groups = 1,
    dilation = 1
)
```

Arguments

- **input**: input tensor of shape (minibatch, in_channels, iH , iW)
- **weight**: filters of shape (out_channels, in_channels/groups, kH , kW)
- **bias**: optional bias tensor of shape (out_channels). Default: `NULL`
- **stride**: the stride of the convolving kernel. Can be a single number or a tuple (sH, sW). Default: 1
- **padding**: implicit paddings on both sides of the input. Can be a single number or a tuple (padH, padW). Default: 0
- **output_padding**: padding applied to the output
- **groups**: split input into groups, in_channels should be divisible by the number of groups. Default: 1
- **dilation**: the spacing between kernel elements. Can be a single number or a tuple (dH, dW). Default: 1
nnf_conv_transpose3d

Conv_transpose3d

Description

Applies a 3D transposed convolution operator over an input image composed of several input planes, sometimes also called "deconvolution".

Usage

```r
nnf_conv_transpose3d(
  input,
  weight,
  bias = NULL,
  stride = 1,
  padding = 0,
  output_padding = 0,
  groups = 1,
  dilation = 1
)
```

Arguments

- **input**: input tensor of shape (minibatch, in_channels , iT , iH , iW)
- **weight**: filters of shape (out_channels , in_channels/groups, kT , kH , kW)
- **bias**: optional bias tensor of shape (out_channels). Default: NULL
- **stride**: the stride of the convolving kernel. Can be a single number or a tuple (sT, sH, sW). Default: 1
- **padding**: implicit paddings on both sides of the input. Can be a single number or a tuple (padT, padH, padW). Default: 0
- **output_padding**: padding applied to the output
- **groups**: split input into groups, in_channels should be divisible by the number of groups. Default: 1
- **dilation**: the spacing between kernel elements. Can be a single number or a tuple (dT, dH, dW). Default: 1
nnf_cosine_embedding_loss

Cosine_embedding_loss

Description

Creates a criterion that measures the loss given input tensors \(x_1, x_2\) and a Tensor label \(y\) with values 1 or -1. This is used for measuring whether two inputs are similar or dissimilar, using the cosine distance, and is typically used for learning nonlinear embeddings or semi-supervised learning.

Usage

```r
nnf_cosine_embedding_loss(
  input1,
  input2,
  target,
  margin = 0,
  reduction = c("mean", "sum", "none")
)
```

Arguments

- `input1`: the input \(x_1\) tensor
- `input2`: the input \(x_2\) tensor
- `target`: the target tensor
- `margin`: Should be a number from -1 to 1, 0 to 0.5 is suggested. If margin is missing, the default value is 0.
- `reduction`: (string, optional) – Specifies the reduction to apply to the output: ’none’ | ’mean’ | ’sum’. ’none’: no reduction will be applied, ’mean’: the sum of the output will be divided by the number of elements in the output, ’sum’: the output will be summed. Default: ’mean’

nnf_cosine_similarity *Cosine_similarity*

Description

Returns cosine similarity between \(x_1\) and \(x_2\), computed along `dim`.

Usage

```r
nnf_cosine_similarity(x1, x2, dim = 1, eps = 1e-08)
```
Arguments

- **x1** (Tensor) First input.
- **x2** (Tensor) Second input (of size matching x1).
- **dim** (int, optional) Dimension of vectors. Default: 1
- **eps** (float, optional) Small value to avoid division by zero. Default: 1e-8

Details

\[
\text{similarity} = \frac{x_1 \cdot x_2}{\max(\|x_1\|_2 \cdot \|x_2\|_2, \epsilon)}
\]

Description

This criterion combines `log_softmax` and `nll_loss` in a single function.

Usage

```r
nnf_cross_entropy(  
  input,  
  target,  
  weight = NULL,  
  ignore_index = -100,  
  reduction = c("mean", "sum", "none")
)
```

Arguments

- **input** (Tensor) \((N, C)\) where \(C\) = number of classes or \((N, C, H, W)\) in case of 2D Loss, or \((N, C, d_1, d_2, ..., d_K)\) where \(K \geq 1\) in the case of \(K\)-dimensional loss.
- **target** (Tensor) \((N)\) where each value is \(0 \leq \text{targets}[i] \leq C - 1\), or \((N, d_1, d_2, ..., d_K)\) where \(K \geq 1\) for \(K\)-dimensional loss.
- **weight** (Tensor, optional) a manual rescaling weight given to each class. If given, has to be a Tensor of size \(C\)
- **ignore_index** (int, optional) Specifies a target value that is ignored and does not contribute to the input gradient.
- **reduction** (string, optional) – Specifies the reduction to apply to the output: `none` | `mean` | `sum`. `none`: no reduction will be applied, `mean`: the sum of the output will be divided by the number of elements in the output, `sum`: the output will be summed. Default: `mean`
nnf_ctc_loss

Ctc_loss

Description

The Connectionist Temporal Classification loss.

Usage

```r
nnf_ctc_loss(
    log_probs,
    targets,
    input_lengths,
    target_lengths,
    blank = 0,
    reduction = c("mean", "sum", "none"),
    zero_infinity = FALSE
)
```

Arguments

- **log_probs** \((T, N, C)\) where \(C\) = number of characters in alphabet including blank, \(T\) = input length, and \(N\) = batch size. The logarithmized probabilities of the outputs (e.g. obtained with `nnf_log_softmax`).
- **targets** \((N, S)\) or \((\text{sum}(\text{target_lengths}))\). Targets cannot be blank. In the second form, the targets are assumed to be concatenated.
- **input_lengths** \((N)\). Lengths of the inputs (must each be \(\leq T\))
- **target_lengths** \((N)\). Lengths of the targets
- **blank** (int, optional) Blank label. Default 0.
- **reduction** (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'
- **zero_infinity** (bool, optional) Whether to zero infinite losses and the associated gradients. Default: FALSE Infinite losses mainly occur when the inputs are too short to be aligned to the targets.
nnf_dropout

Dropout

Description
During training, randomly zeroes some of the elements of the input tensor with probability \(p \) using samples from a Bernoulli distribution.

Usage

```
nnf_dropout(input, p = 0.5, training = TRUE, inplace = FALSE)
```

Arguments
- `input`: the input tensor
- `p`: probability of an element to be zeroed. Default: 0.5
- `training`: apply dropout if is TRUE. Default: TRUE
- `inplace`: If set to TRUE, will do this operation in-place. Default: FALSE

nnf_dropout2d

Dropout2d

Description
Randomly zero out entire channels (a channel is a 2D feature map, e.g., the \(j \)-th channel of the \(i \)-th sample in the batched input is a 2D tensor \(\text{input}[i,j] \)) of the input tensor). Each channel will be zeroed out independently on every forward call with probability \(p \) using samples from a Bernoulli distribution.

Usage

```
nnf_dropout2d(input, p = 0.5, training = TRUE, inplace = FALSE)
```

Arguments
- `input`: the input tensor
- `p`: probability of a channel to be zeroed. Default: 0.5
- `training`: apply dropout if is TRUE. Default: TRUE
- `inplace`: If set to TRUE, will do this operation in-place. Default: FALSE
nnf_dropout3d

Dropout3d

Description
Randomly zero out entire channels (a channel is a 3D feature map, e.g., the \(j \)-th channel of the \(i \)-th sample in the batched input is a 3D tensor \(\text{input}[i, j] \) of the input tensor). Each channel will be zeroed out independently on every forward call with probability \(p \) using samples from a Bernoulli distribution.

Usage

nnf_dropout3d(input, \(p = 0.5 \), training = TRUE, inplace = FALSE)

Arguments
- **input**: the input tensor
- **p**: probability of a channel to be zeroed. Default: 0.5
- **training**: apply dropout if is TRUE. Default: TRUE.
- **inplace**: If set to TRUE, will do this operation in-place. Default: FALSE

nnf_elu

Elu

Description
Applies element-wise,

\[
ELU(x) = \max(0, x) + \min(0, \alpha \times (\exp(x) - 1))
\]

Usage

nnf_elu(input, alpha = 1, inplace = FALSE)

nnf_elu_(input, alpha = 1)

Arguments
- **input**: (\(N, * \)) tensor, where * means, any number of additional dimensions
- **alpha**: the alpha value for the ELU formulation. Default: 1.0
- **inplace**: can optionally do the operation in-place. Default: FALSE
Examples

```r
if (torch_is_installed()) {
  x <- torch_randn(2, 2)
  y <- nnnf_elu(x, alpha = 1)
  nnnf_elu_(x, alpha = 1)
  torch_equal(x, y)
}
```

Description

A simple lookup table that looks up embeddings in a fixed dictionary and size.

Usage

```r
nnf_embedding(
  input,  # (LongTensor) Tensor containing indices into the embedding matrix
  weight,  # (Tensor) The embedding matrix with number of rows equal to the maximum possible index + 1, and number of columns equal to the embedding size
  padding_idx = NULL,  # (int, optional) If given, pads the output with the embedding vector at padding_idx (initialized to zeros) whenever it encounters the index.
  max_norm = NULL,  # (float, optional) If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm. Note: this will modify weight in-place.
  norm_type = 2,  # (float, optional) The p of the p-norm to compute for the max_norm option. Default 2.
  scale_grad_by_freq = FALSE,  # (boolean, optional) If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default FALSE.
  sparse = FALSE  # (bool, optional) If TRUE, gradient w.r.t. weight will be a sparse tensor. See Notes under nn_embedding for more details regarding sparse gradients.
)`
nnf_embedding_bag

Details

This module is often used to retrieve word embeddings using indices. The input to the module is a list of indices, and the embedding matrix, and the output is the corresponding word embeddings.

Description

Computes sums, means or maxes of bags of embeddings, without instantiating the intermediate embeddings.

Usage

```python
nnf_embedding_bag(
 input,
 weight,
 offsets = NULL,
 max_norm = NULL,
 norm_type = 2,
 scale_grad_by_freq = FALSE,
 mode = "mean",
 sparse = FALSE,
 per_sample_weights = NULL,
 include_last_offset = FALSE
)
```

Arguments

- **input** (LongTensor) Tensor containing bags of indices into the embedding matrix
- **weight** (Tensor) The embedding matrix with number of rows equal to the maximum possible index + 1, and number of columns equal to the embedding size
- **offsets** (LongTensor, optional) Only used when input is 1D. offsets determines the starting index position of each bag (sequence) in input.
- **max_norm** (float, optional) If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm. Note: this will modify weight in-place.
- **norm_type** (float, optional) The p in the p-norm to compute for the max_norm option. Default 2.
- **scale_grad_by_freq** (boolean, optional) if given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default FALSE. Note: this option is not supported when mode="max".
- **mode** (string, optional) "sum", "mean" or "max". Specifies the way to reduce the bag. Default: 'mean'
nnf_fold

(see Notes under nn_embedding for more details regarding sparse gradients. Note: this option is not supported when mode="max".

per_sample_weights
(Tensor, optional) a tensor of float / double weights, or NULL to indicate all weights should be taken to be 1. If specified, per_sample_weights must have exactly the same shape as input and is treated as having the same offsets, if those are not NULL.

include_last_offset
(bool, optional) if TRUE, the size of offsets is equal to the number of bags + 1.

Description
Combines an array of sliding local blocks into a large containing tensor.

Usage

nnf_fold(
  input,
  output_size,
  kernel_size,
  dilation = 1,
  padding = 0,
  stride = 1
)

Arguments

input the input tensor
output_size the shape of the spatial dimensions of the output (i.e., output$sizes()[-c(1,2)])
kernel_size the size of the sliding blocks
dilation a parameter that controls the stride of elements within the neighborhood. Default: 1
padding implicit zero padding to be added on both sides of input. Default: 0
stride the stride of the sliding blocks in the input spatial dimensions. Default: 1

Warning
Currently, only 4-D output tensors (batched image-like tensors) are supported.
nnf_fractional_max_pool2d

*Fractional_max_pool2d*

**Description**

Applies 2D fractional max pooling over an input signal composed of several input planes.

**Usage**

```python
nenf_fractional_max_pool2d(
 input,
 kernel_size,
 output_size = NULL,
 output_ratio = NULL,
 return_indices = FALSE,
 random_samples = NULL
)
```

**Arguments**

- **input**
  - the input tensor

- **kernel_size**
  - the size of the window to take a max over. Can be a single number $k$ (for a square kernel of $k \times k$) or a tuple (kH, kW)

- **output_size**
  - the target output size of the image of the form $oH \times oW$. Can be a tuple (oH, oW) or a single number $oH$ for a square image $oH \times oH$

- **output_ratio**
  - If one wants to have an output size as a ratio of the input size, this option can be given. This has to be a number or tuple in the range (0, 1)

- **return_indices**
  - if True, will return the indices along with the outputs.

- **random_samples**
  - optional random samples.

**Details**

Fractional MaxPooling is described in detail in the paper *Fractional MaxPooling* by Ben Graham

The max-pooling operation is applied in $kH \times kW$ regions by a stochastic step size determined by the target output size. The number of output features is equal to the number of input planes.
nnf_fractional_max_pool3d

Fractional_max_pool3d

Description

Applies 3D fractional max pooling over an input signal composed of several input planes.

Usage

```python
nnf_fractional_max_pool3d(
 input,
 kernel_size,
 output_size = NULL,
 output_ratio = NULL,
 return_indices = FALSE,
 random_samples = NULL
)
```

Arguments

- **input**: the input tensor
- **kernel_size**: the size of the window to take a max over. Can be a single number \( k \) (for a square kernel of \( k \times k \times k \)) or a tuple \( (kT, kH, kW) \)
- **output_size**: the target output size of the form \( oT \times oH \times oW \). Can be a tuple \( (oT, oH, oW) \) or a single number \( oH \) for a cubic output \( oH \times oH \times oH \)
- **output_ratio**: If one wants to have an output size as a ratio of the input size, this option can be given. This has to be a number or tuple in the range \((0, 1)\)
- **return_indices**: if True, will return the indices along with the outputs.
- **random_samples**: undocumented argument.

Details

Fractional MaxPooling is described in detail in the paper Fractional MaxPooling_ by Ben Graham

The max-pooling operation is applied in \( kT \times kH \times kW \) regions by a stochastic step size determined by the target output size. The number of output features is equal to the number of input planes.
\textbf{nnf\_gelu} \hspace{1cm} \textit{Gelu}

\textbf{Description}

Gelu

\textbf{Usage}

\texttt{nnf\_gelu}(input)

\textbf{Arguments}

\begin{itemize}
  \item \texttt{input} \hspace{1cm} (N,*) tensor, where * means, any number of additional dimensions
\end{itemize}

\texttt{gelu}(input) \rightarrow \texttt{Tensor}

Applies element-wise the function \( GELU(x) = x \ast \Phi(x) \)
where \( \Phi(x) \) is the Cumulative Distribution Function for Gaussian Distribution.
See \textit{Gaussian Error Linear Units (GELUs)}.

\textbf{nnf\_glu} \hspace{1cm} \textit{Glu}

\textbf{Description}

The gated linear unit. Computes:

\textbf{Usage}

\texttt{nnf\_glu}(input, \texttt{dim = -1})

\textbf{Arguments}

\begin{itemize}
  \item \texttt{input} \hspace{1cm} (Tensor) input tensor
  \item \texttt{dim} \hspace{1cm} (int) dimension on which to split the input. Default: -1
\end{itemize}

\textbf{Details}

\( GLU(a, b) = a \otimes \sigma(b) \)

where \texttt{input} is split in half along \texttt{dim} to form \( a \) and \( b \), \( \sigma \) is the sigmoid function and \( \otimes \) is the element-wise product between matrices.
See \textit{Language Modeling with Gated Convolutional Networks}.  

nnf_grid_sample

Description

Given an input and a flow-field grid, computes the output using input values and pixel locations from grid.

Usage

nnf_grid_sample(
    input,
    grid,
    mode = c("bilinear", "nearest"),
    padding_mode = c("zeros", "border", "reflection"),
    align_corners = FALSE
)

Arguments

input (Tensor) input of shape \((N, C, H_{\text{in}}, W_{\text{in}})\) (4-D case) or \((N, C, D_{\text{in}}, H_{\text{in}}, W_{\text{in}})\) (5-D case)

grid (Tensor) flow-field of shape \((N, H_{\text{out}}, W_{\text{out}}, 2)\) (4-D case) or \((N, D_{\text{out}}, H_{\text{out}}, W_{\text{out}}, 3)\) (5-D case)

mode (str) interpolation mode to calculate output values 'bilinear' | 'nearest'. Default: 'bilinear'

padding_mode (str) padding mode for outside grid values 'zeros' | 'border' | 'reflection'. Default: 'zeros'

align_corners (bool, optional) Geometrically, we consider the pixels of the input as squares rather than points. If set to True, the extrema (-1 and 1) are considered as referring to the center points of the input's corner pixels. If set to False, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. This option parallels the align_corners option in nnf_interpolate(), and so whichever option is used here should also be used there to resize the input image before grid sampling. Default: False

Details

Currently, only spatial (4-D) and volumetric (5-D) input are supported.

In the spatial (4-D) case, for input with shape \((N, C, H_{\text{in}}, W_{\text{in}})\) and grid with shape \((N, H_{\text{out}}, W_{\text{out}}, 2)\), the output will have shape \((N, C, H_{\text{out}}, W_{\text{out}})\).

For each output location output\[n, :, h, w\], the size-2 vector grid\[n, h, w\] specifies input pixel locations \(x\) and \(y\), which are used to interpolate the output value output\[n, :, h, w\]. In the case of
5D inputs, grid[n, d, h, w] specifies the x, y, z pixel locations for interpolating output[n, :, d, h, w]. The mode argument specifies nearest or bilinear interpolation method to sample the input pixels.

grid specifies the sampling pixel locations normalized by the input spatial dimensions. Therefore, it should have most values in the range of [-1, 1]. For example, values x = -1, y = -1 is the left-top pixel of input, and values x = 1, y = 1 is the right-bottom pixel of input.

If grid has values outside the range of [-1, 1], the corresponding outputs are handled as defined by padding_mode. Options are:

- padding_mode="zeros": use 0 for out-of-bound grid locations,
- padding_mode="border": use border values for out-of-bound grid locations,
- padding_mode="reflection": use values at locations reflected by the border for out-of-bound grid locations. For location far away from the border, it will keep being reflected until becoming in bound, e.g., (normalized) pixel location x = -3.5 reflects by border -1 and becomes x' = 1.5, then reflects by border 1 and becomes x'' = -0.5.

Note

This function is often used in conjunction with `nnf_affine_grid()` to build Spatial Transformer Networks.

---

**nnf_group_norm**

**Group_norm**

---

**Description**

Applies Group Normalization for last certain number of dimensions.

**Usage**

```r
nnf_group_norm(input, num_groups, weight = NULL, bias = NULL, eps = 1e-05)
```

**Arguments**

- **input**: the input tensor
- **num_groups**: number of groups to separate the channels into
- **weight**: the weight tensor
- **bias**: the bias tensor
- **eps**: a value added to the denominator for numerical stability. Default: 1e-5
**nnf_gumbel_softmax**

**Gumbel_softmax**

**Description**

Samples from the Gumbel-Softmax distribution and optionally discretizes.

**Usage**

```
nnf_gumbel_softmax(logits, tau = 1, hard = FALSE, dim = -1)
```

**Arguments**

- **logits** [..., num_features] unnormalized log probabilities
- **tau** non-negative scalar temperature
- **hard** if True, the returned samples will be discretized as one-hot vectors, but will be differentiated as if it is the soft sample in autograd
- **dim** (int) A dimension along which softmax will be computed. Default: -1.

---

**nnf_hardshrink**

**Hardshrink**

**Description**

Applies the hard shrinkage function element-wise.

**Usage**

```
nnf_hardshrink(input, lambd = 0.5)
```

**Arguments**

- **input** (N,*) tensor, where * means, any number of additional dimensions
- **lambd** the lambda value for the Hardshrink formulation. Default: 0.5
**nnf_hardsigmoid**  
*Hardsigmoid*

**Description**  
Applies the element-wise function $Hardsigmoid(x) = \frac{ReLU_6(x+3)}{6}$

**Usage**  
`nnf_hardsigmoid(input, inplace = FALSE)`

**Arguments**  
- **input** (N,*) tensor, where * means, any number of additional dimensions
- **inplace** NA If set to True, will do this operation in-place. Default: False

---

**nnf_hardswish**  
*Hardswish*

**Description**  
Applies the hardswish function, element-wise, as described in the paper: Searching for MobileNetV3.

**Usage**  
`nnf_hardswish(input, inplace = FALSE)`

**Arguments**  
- **input** (N,*) tensor, where * means, any number of additional dimensions
- **inplace** can optionally do the operation in-place. Default: FALSE

**Details**  
Hardswish$(x) = \begin{cases} 0 & \text{if } x \leq -3, \\ x & \text{if } x \geq +3, \\ x \cdot (x + 3)/6 & \text{otherwise} \end{cases}$
nnf_hardtanh

**Hardtanh**

**Description**

Applies the HardTanh function element-wise.

**Usage**

```r
nnf_hardtanh(input, min_val = -1, max_val = 1, inplace = FALSE)
```

```r
nnf_hardtanh_(input, min_val = -1, max_val = 1)
```

**Arguments**

- **input** (N,*): tensor, where * means, any number of additional dimensions
- **min_val** minimum value of the linear region range. Default: -1
- **max_val** maximum value of the linear region range. Default: 1
- **inplace** can optionally do the operation in-place. Default: FALSE

nnf_hinge_embedding_loss

**Hinge_embedding_loss**

**Description**

Measures the loss given an input tensor `xx` and a labels tensor `yy` (containing 1 or -1). This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as `xx`, and is typically used for learning nonlinear embeddings or semi-supervised learning.

**Usage**

```r
nnf_hinge_embedding_loss(input, target, margin = 1, reduction = "mean")
```

**Arguments**

- **input** tensor (N,*), where ** means, any number of additional dimensions
- **target** tensor (N,*), same shape as the input
- **margin** Has a default value of 1.
- **reduction** (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'
nnf_instance_norm  Instance_norm

Description
Applies Instance Normalization for each channel in each data sample in a batch.

Usage
nnf_instance_norm(input, running_mean = NULL, running_var = NULL, weight = NULL, bias = NULL, use_input_stats = TRUE, momentum = 0.1, eps = 1e-05)

Arguments
- input: the input tensor
- running_mean: the running_mean tensor
- running_var: the running_var tensor
- weight: the weight tensor
- bias: the bias tensor
- use_input_stats: whether to use input stats
- momentum: a double for the momentum
- eps: an eps double for numerical stability

nnf_interpolate  Interpolate

Description
Down/up samples the input to either the given size or the given scale_factor
nnf_interpolate

Usage

nnf_interpolate(
    input,
    size = NULL,
    scale_factor = NULL,
    mode = "nearest",
    align_corners = FALSE,
    recompute_scale_factor = NULL
)

Arguments

input (Tensor) the input tensor
size (int or Tuple[int] or Tuple[int,int] or Tuple[int,int,int]) output spatial size.
scale_factor (float or Tuple[float]) multiplier for spatial size. Has to match input size if it is a tuple.
mode (str) algorithm used for upsampling: 'nearest' | 'linear' | 'bilinear' | 'bicubic' | 'trilinear' | 'area' Default: 'nearest'
align_corners (bool, optional) Geometrically, we consider the pixels of the input and output as squares rather than points. If set to TRUE, the input and output tensors are aligned by the center points of their corner pixels, preserving the values at the corner pixels. If set to False, the input and output tensors are aligned by the corner points of their corner pixels, and the interpolation uses edge value padding for out-of-boundary values, making this operation independent of input size when scale_factor is kept the same. This only has an effect when mode is 'linear', 'bilinear', 'bicubic' or 'trilinear'. Default: False
recompute_scale_factor (bool, optional) recompute the scale_factor for use in the interpolation calculation. When scale_factor is passed as a parameter, it is used to compute the output_size. If recompute_scale_factor is True or not specified, a new scale_factor will be computed based on the output and input sizes for use in the interpolation computation (i.e. the computation will be identical to if the computed 'output_size' were passed-in explicitly). Otherwise, the passed-in `scale_factor` will be used in the interpolation computation. Note that when 'scale_factor' is floating-point, the recomputed scale_factor may differ from the one passed in due to rounding and precision issues.

Details

The algorithm used for interpolation is determined by mode.

Currently temporal, spatial and volumetric sampling are supported, i.e. expected inputs are 3-D, 4-D or 5-D in shape.

The input dimensions are interpreted in the form: mini-batch x channels x [optional depth] x [optional height] x width.

The modes available for resizing are: nearest, linear (3D-only), bilinear, bicubic (4D-only), trilinear (5D-only), area
### nnf_kl_div

**Kl_div**

**Description**

The Kullback-Leibler divergence Loss.

**Usage**

\[
nnf\_kl\_div(input, target, reduction = "mean")
\]

**Arguments**

- **input**: tensor (N,*) where ** means, any number of additional dimensions
- **target**: tensor (N,*), same shape as the input
- **reduction**: (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'

### nnf_l1_loss

**L1_loss**

**Description**

Function that takes the mean element-wise absolute value difference.

**Usage**

\[
nnf\_l1\_loss(input, target, reduction = "mean")
\]

**Arguments**

- **input**: tensor (N,*) where ** means, any number of additional dimensions
- **target**: tensor (N,*), same shape as the input
- **reduction**: (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'
**nnf_layer_norm**

**Layer_norm**

**Description**

Applies Layer Normalization for last certain number of dimensions.

**Usage**

```r
nnf_layer_norm(
 input,
 normalized_shape,
 weight = NULL,
 bias = NULL,
 eps = 1e-05
)
```

**Arguments**

- **input**: the input tensor
- **normalized_shape**: input shape from an expected input of size. If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size.
- **weight**: the weight tensor
- **bias**: the bias tensor
- **eps**: a value added to the denominator for numerical stability. Default: 1e-5

**nnf_leaky_relu**

**Leaky_relu**

**Description**

Applies element-wise, \( \text{LeakyReLU}(x) = \max(0, x) + \text{negative_slope} \times \min(0, x) \)

**Usage**

```r
nnf_leaky_relu(input, negative_slope = 0.01, inplace = FALSE)
```

**Arguments**

- **input**: (N,*) tensor, where * means, any number of additional dimensions
- **negative_slope**: Controls the angle of the negative slope. Default: 1e-2
- **inplace**: can optionally do the operation in-place. Default: FALSE
nnf_linear  

**Description**

Applies a linear transformation to the incoming data: \( y = x^T \theta + b \).

**Usage**

`nnf_linear(input, weight, bias = NULL)`

**Arguments**

- `input` 
  \((N, *, in\_features)\) where * means any number of additional dimensions
- `weight` 
  \((out\_features, in\_features)\) the weights tensor.
- `bias` 
  optional tensor \((out\_features)\)

---

nnf_local_response_norm  

**Local_response_norm**

**Description**

Applies local response normalization over an input signal composed of several input planes, where channels occupy the second dimension. Applies normalization across channels.

**Usage**

`nnf_local_response_norm(input, size, alpha = 1e-04, beta = 0.75, k = 1)`

**Arguments**

- `input` 
  the input tensor
- `size` 
  amount of neighbouring channels used for normalization
- `alpha` 
  multiplicative factor. Default: 0.0001
- `beta` 
  exponent. Default: 0.75
- `k` 
  additive factor. Default: 1
**nnf_logsigmoid**  

**Logsigmoid**

**Description**

Applies element-wise $LogSigmoid(x_i) = log\left(\frac{1}{1 + exp(-x_i)}\right)$

**Usage**

```
nnf_logsigmoid(input)
```

**Arguments**

- **input** (N,*) tensor, where * means, any number of additional dimensions

**nnf_log_softmax**

**Log_softmax**

**Description**

Applies a softmax followed by a logarithm.

**Usage**

```
nnf_log_softmax(input, dim = NULL, dtype = NULL)
```

**Arguments**

- **input** (Tensor) input
- **dim** (int) A dimension along which log_softmax will be computed.
- **dtype** (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: NULL.

**Details**

While mathematically equivalent to log(softmax(x)), doing these two operations separately is slower, and numerically unstable. This function uses an alternative formulation to compute the output and gradient correctly.
nnf_lp_pool1d  
$Lp\_pool1d$

**Description**

Applies a 1D power-average pooling over an input signal composed of several input planes. If the sum of all inputs to the power of $p$ is zero, the gradient is set to zero as well.

**Usage**

`nnf_lp_pool1d(input, norm_type, kernel_size, stride = NULL, ceil_mode = FALSE)`

**Arguments**

- **input**  
  the input tensor
- **norm_type**  
  if inf than one gets max pooling if 0 you get sum pooling (proportional to the avg pooling)
- **kernel_size**  
  a single int, the size of the window
- **stride**  
  a single int, the stride of the window. Default value is kernel_size
- **ceil_mode**  
  when True, will use ceil instead of floor to compute the output shape

nnf_lp_pool2d  
$Lp\_pool2d$

**Description**

Applies a 2D power-average pooling over an input signal composed of several input planes. If the sum of all inputs to the power of $p$ is zero, the gradient is set to zero as well.

**Usage**

`nnf_lp_pool2d(input, norm_type, kernel_size, stride = NULL, ceil_mode = FALSE)`

**Arguments**

- **input**  
  the input tensor
- **norm_type**  
  if inf than one gets max pooling if 0 you get sum pooling (proportional to the avg pooling)
- **kernel_size**  
  a single int, the size of the window
- **stride**  
  a single int, the stride of the window. Default value is kernel_size
- **ceil_mode**  
  when True, will use ceil instead of floor to compute the output shape
nnf_margin_ranking_loss

*Margin_ranking_loss*

**Description**

Creates a criterion that measures the loss given inputs \( x_1, x_2 \), two 1D mini-batch Tensors, and a label 1D mini-batch tensor \( y \) (containing 1 or -1).

**Usage**

```python
nnf_margin_ranking_loss(input1, input2, target, margin = 0, reduction = "mean")
```

**Arguments**

- `input1` : the first tensor
- `input2` : the second input tensor
- `target` : the target tensor
- `margin` : Has a default value of 0.
- `reduction` : (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'

nnf_max_pool1d

*Max_pool1d*

**Description**

Applies a 1D max pooling over an input signal composed of several input planes.

**Usage**

```python
nnf_max_pool1d(input, kernel_size, stride = NULL, padding = 0, dilation = 1, ceil_mode = FALSE, return_indices = FALSE)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>input tensor of shape (minibatch, in_channels, iW)</td>
</tr>
<tr>
<td>kernel_size</td>
<td>the size of the window. Can be a single number or a tuple (kW,).</td>
</tr>
<tr>
<td>stride</td>
<td>the stride of the window. Can be a single number or a tuple (sW,). Default:</td>
</tr>
<tr>
<td>padding</td>
<td>implicit zero paddings on both sides of the input. Can be a single number or a</td>
</tr>
<tr>
<td>dilation</td>
<td>controls the spacing between the kernel points; also known as the à trous algorithm.</td>
</tr>
<tr>
<td>ceil_mode</td>
<td>when True, will use ceil instead of floor to compute the output shape. Default:</td>
</tr>
<tr>
<td>return_indices</td>
<td>whether to return the indices where the max occurs.</td>
</tr>
</tbody>
</table>

Description

Applies a 2D max pooling over an input signal composed of several input planes.

Usage

```
nnf_max_pool2d(
 input,
 kernel_size,
 stride = kernel_size,
 padding = 0,
 dilation = 1,
 ceil_mode = FALSE,
 return_indices = FALSE
)
```
nnf_max_pool3d

**Description**

Applies a 3D max pooling over an input signal composed of several input planes.

**Usage**

```python
nnf_max_pool3d(
 input,
 kernel_size,
 stride = NULL,
 padding = 0,
 dilation = 1,
 ceil_mode = FALSE,
 return_indices = FALSE
)
```

**Arguments**

- **input**: input tensor (minibatch, in_channels, iT, iH, iW)
- **kernel_size**: size of the pooling region. Can be a single number or a tuple (kT, kH, kW)
- **stride**: stride of the pooling operation. Can be a single number or a tuple (sT, sH, sW). Default: kernel_size
- **padding**: implicit zero paddings on both sides of the input. Can be a single number or a tuple (padT, padH, padW). Default: 0
- **dilation**: controls the spacing between the kernel points; also known as the à trous algorithm.
- **ceil_mode**: when True, will use ceil instead of floor in the formula to compute the output shape
- **return_indices**: whether to return the indices where the max occurs.

nnf_max_unpool1d

**Description**

Computes a partial inverse of MaxPool1d.
nnf_max_unpool2d

Usage

nnf_max_unpool2d(
    input,
    indices,
    kernel_size,
    stride = NULL,
    padding = 0,
    output_size = NULL
)

Arguments

input       the input Tensor to invert
indices     the indices given out by max pool
kernel_size Size of the max pooling window.
stride      Stride of the max pooling window. It is set to kernel_size by default.
padding     Padding that was added to the input
output_size the targeted output size

---

nnf_max_unpool2d      Max_unpool2d

Description

Computes a partial inverse of MaxPool2d.

Usage

nnf_max_unpool2d(
    input,
    indices,
    kernel_size,
    stride = NULL,
    padding = 0,
    output_size = NULL
)

Arguments

input       the input Tensor to invert
indices     the indices given out by max pool
kernel_size Size of the max pooling window.
stride      Stride of the max pooling window. It is set to kernel_size by default.
padding     Padding that was added to the input
output_size the targeted output size
### nnf_max_unpool3d

**Description**

Computes a partial inverse of MaxPool3d.

**Usage**

```r
nnf_max_unpool3d(
 input,
 indices,
 kernel_size,
 stride = NULL,
 padding = 0,
 output_size = NULL
)
```

**Arguments**

- `input`: the input Tensor to invert
- `indices`: the indices given out by max pool
- `kernel_size`: Size of the max pooling window.
- `stride`: Stride of the max pooling window. It is set to kernel_size by default.
- `padding`: Padding that was added to the input
- `output_size`: the targeted output size

### nnf_mse_loss

**Description**

Measures the element-wise mean squared error.

**Usage**

```r
nnf_mse_loss(input, target, reduction = "mean")
```

**Arguments**

- `input`: tensor (N,*) where ** means, any number of additional dimensions
- `target`: tensor (N,*) , same shape as the input
- `reduction` (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'
nnf_multilabel_margin_loss

*Multilabel_margin_loss*

**Description**

Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between input x (a 2D mini-batch Tensor) and output y (which is a 2D Tensor of target class indices).

**Usage**

```python
nnf_multilabel_margin_loss(input, target, reduction = "mean")
```

**Arguments**

- **input**: tensor (N,*) where ** means, any number of additional dimensions
- **target**: tensor (N,*) , same shape as the input
- **reduction** (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'

nnf_multilabel_soft_margin_loss

*Multilabel_soft_margin_loss*

**Description**

Creates a criterion that optimizes a multi-label one-versus-all loss based on max-entropy, between input x and target y of size (N, C).

**Usage**

```python
nnf_multilabel_soft_margin_loss(
 input,
 target,
 weight = NULL,
 reduction = "mean"
)
```
**Arguments**

- **input** tensor \((N,*)\) where ** means, any number of additional dimensions
- **target** tensor \((N,*)\), same shape as the input
- **weight** weight tensor to apply on the loss.
- **reduction** (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'

**Description**

Allows the model to jointly attend to information from different representation subspaces. See reference: Attention Is All You Need

**Usage**

```r
nnf_multi_head_attention_forward(
 query,
 key,
 value,
 embed_dim_to_check,
 num_heads,
 in_proj_weight,
 in_proj_bias,
 bias_k,
 bias_v,
 add_zero_attn,
 dropout_p,
 out_proj_weight,
 out_proj_bias,
 training = TRUE,
 key_padding_mask = NULL,
 need_weights = TRUE,
 attn_mask = NULL,
 avg_weights = TRUE,
 use_separate_proj_weight = FALSE,
 q_proj_weight = NULL,
 k_proj_weight = NULL,
 v_proj_weight = NULL,
 static_k = NULL,
 static_v = NULL
)
```
## Arguments

**query**

$(L, N, E)$ where $L$ is the target sequence length, $N$ is the batch size, $E$ is the embedding dimension.

**key**

$(S, N, E)$, where $S$ is the source sequence length, $N$ is the batch size, $E$ is the embedding dimension.

**value**

$(S, N, E)$ where $S$ is the source sequence length, $N$ is the batch size, $E$ is the embedding dimension.

**embed_dim_to_check**

total dimension of the model.

**num_heads**

parallel attention heads.

**in_proj_weight**

input projection weight and bias.

**in_proj_bias**

currently undocumented.

**bias_k**

bias of the key and value sequences to be added at dim=0.

**bias_v**

currently undocumented.

**add_zero_attn**

dобавьте новую порцию нулей к ключу и значению последовательности при dim=1.

**dropout_p**

probability of an element to be zeroed.

**out_proj_weight**

the output projection weight and bias.

**out_proj_bias**

currently undocumented.

**training**

apply dropout if is `TRUE`.

**key_padding_mask**

$(N, S)$ where $N$ is the batch size, $S$ is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of True will be ignored while the position with the value of False will be unchanged.

**need_weights**

output attn_output_weights.

**attn_mask**

2D mask $(L, S)$ where $L$ is the target sequence length, $S$ is the source sequence length. 3D mask $(N * num_heads, L, S)$ where $N$ is the batch size, $L$ is the target sequence length, $S$ is the source sequence length. attn_mask ensure that position $i$ is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with True is not allowed to attend while False values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight.

**avg_weights**

Logical; whether to average attn_output_weights over the attention heads before outputting them. This doesn’t change the returned value of attn_output; it only affects the returned attention weight matrix.

**use_separate_proj_weight**

the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight.

**q_proj_weight**

input projection weight and bias.

---

### Description of Arguments

- **query**
  - Type: $(L, N, E)$
  - Description: Target sequence length, batch size, embedding dimension.

- **key**
  - Type: $(S, N, E)$
  - Description: Source sequence length, batch size, embedding dimension.

- **value**
  - Type: $(S, N, E)$
  - Description: Source sequence length, batch size, embedding dimension.

- **embed_dim_to_check**
  - Type: Total model dimension.

- **num_heads**
  - Type: Parallel attention heads.

- **in_proj_weight**
  - Type: Input projection weight and bias.

- **in_proj_bias**
  - Type: Currently undocumented.

- **bias_k**
  - Type: Bias of key and value sequences added at dim=0.

- **bias_v**
  - Type: Currently undocumented.

- **add_zero_attn**
  - Type: Adds a new batch of zeros to the key and value sequences at dim=1.

- **dropout_p**
  - Type: Probability of an element to be zeroed.

- **out_proj_weight**
  - Type: Output projection weight and bias.

- **out_proj_bias**
  - Type: Currently undocumented.

- **training**
  - Type: Applies dropout if `TRUE`.

- **key_padding_mask**
  - Type: $(N, S)$
  - Description: Batch size, source sequence length. If a ByteTensor is provided, non-zero positions are ignored while the position with zero positions remains unchanged. If a BoolTensor is provided, positions with `True` will be ignored while the position with `False` will be unchanged.

- **need_weights**
  - Type: Outputs `attn_output_weights`.

- **attn_mask**
  - Type: 2D mask $(L, S)$ or 3D mask $(N * num_heads, L, S)$
  - Description: Allows or disallows attending to unmasked positions. If ByteTensor, non-zero positions are not allowed to attend while the zero positions remain unchanged. If BoolTensor, positions with `True` are not allowed to attend while `False` values remain unchanged. If FloatTensor, it's added to the attention weight.

- **avg_weights**
  - Type: Logical; averages `attn_output_weights` over attention heads before outputting.

- **use_separate_proj_weight**
  - Type: Accepts projection weights for query, key, and value in different forms.
  - Description: If `FALSE`, `in_proj_weight` is used, combining `q_proj_weight`, `k_proj_weight`, `v_proj_weight`.

- **q_proj_weight**
  - Type: Input projection weight and bias.
nnf_multi_margin_loss

k_proj_weight currently undocumented.

v_proj_weight currently undocumented.

static_k static key and value used for attention operators.

static_v currently undocumented.

---

**nnf_multi_margin_loss**  *Multi_margin_loss*

---

**Description**

Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input x (a 2D mini-batch Tensor) and output y (which is a 1D tensor of target class indices, 0 <= y <= x$size(2) - 1 $).

**Usage**

```r
nnf_multi_margin_loss(
 input,
 target,
 p = 1,
 margin = 1,
 weight = NULL,
 reduction = "mean"
)
```

**Arguments**

- **input** tensor (N,*), where ** means, any number of additional dimensions
- **target** tensor (N,*), same shape as the input
- **p** Has a default value of 1. 1 and 2 are the only supported values.
- **margin** Has a default value of 1.
- **weight** a manual rescaling weight given to each class. If given, it has to be a Tensor of size C. Otherwise, it is treated as if having all ones.
- **reduction** (string, optional) – Specifies the reduction to apply to the output: ’none’ | ’mean’ | ’sum’. ’none’: no reduction will be applied, ’mean’: the sum of the output will be divided by the number of elements in the output, ’sum’: the output will be summed. Default: ’mean’
nnf_nll_loss  Nll_loss

**Description**

The negative log likelihood loss.

**Usage**

```r
nnf_nll_loss(
 input,
 target,
 weight = NULL,
 ignore_index = -100,
 reduction = "mean"
)
```

**Arguments**

- **input**  
  
  \((N, C)\) where \(C\) = number of classes or \((N, C, H, W)\) in case of 2D Loss, or \((N, C, d_1, d_2, ..., d_K)\) where \(K \geq 1\) in the case of K-dimensional loss.

- **target**  
  
  \((N)\) where each value is \(0 \leq \text{targets}[i] \leq C - 1\), or \((N, d_1, d_2, ..., d_K)\) where \(K \geq 1\) for K-dimensional loss.

- **weight**  
  
  (Tensor, optional) a manual rescaling weight given to each class. If given, has to be a Tensor of size \(C\).

- **ignore_index**  
  
  (int, optional) Specifies a target value that is ignored and does not contribute to the input gradient.

- **reduction**  
  
  (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'

nnf_normalize  Normalize

**Description**

Performs \(L_p\) normalization of inputs over specified dimension.

**Usage**

```r
nnf_normalize(input, p = 2, dim = 2, eps = 1e-12, out = NULL)
```
nnf_one_hot

Arguments

- **input**: input tensor of any shape
- **p**: (float) the exponent value in the norm formulation. Default: 2
- **dim**: (int) the dimension to reduce. Default: 1
- **eps**: (float) small value to avoid division by zero. Default: 1e-12
- **out**: (Tensor, optional) the output tensor. If out is used, this operation won’t be differentiable.

Details

For a tensor input of sizes \((n_0, \ldots, n_{dim}, \ldots, n_k)\), each \(n_{dim}\)-element vector \(v\) along dimension \(dim\) is transformed as

\[
v = \frac{v}{\max(\|v\|_p, \epsilon)}.
\]

With the default arguments it uses the Euclidean norm over vectors along dimension 1 for normalization.

nnf_one_hot  One_hot

Description

Takes LongTensor with index values of shape (*) and returns a tensor of shape (*, num_classes) that have zeros everywhere except where the index of last dimension matches the corresponding value of the input tensor, in which case it will be 1.

Usage

nnf_one_hot(tensor, num_classes = -1)

Arguments

- **tensor**: (LongTensor) class values of any shape.
- **num_classes**: (int) Total number of classes. If set to -1, the number of classes will be inferred as one greater than the largest class value in the input tensor.

Details

One-hot on Wikipedia: https://en.wikipedia.org/wiki/One-hot
nnf_pad  
\textit{Pad}
\begin{itemize}
\item \textbf{Description} \hfill \hfill \\
\text{Pads tensor.}
\item \textbf{Usage} \hfill \hfill \\
\text{nnf\_pad(input, pad, mode = "constant", value = 0)}
\item \textbf{Arguments} \hfill \hfill \\
\begin{itemize}
\item \texttt{input} \quad \text{(Tensor) N-dimensional tensor}
\item \texttt{pad} \quad \text{(tuple) m-elements tuple, where } \frac{m}{2} \leq \text{input dimensions and } m \text{ is even.}
\item \texttt{mode} \quad 'constant', 'reflect', 'replicate' or 'circular'. Default: 'constant'
\item \texttt{value} \quad \text{fill value for 'constant' padding. Default: 0.}
\end{itemize}
\item \textbf{Padding size} \hfill \hfill \\
\text{The padding size by which to pad some dimensions of input are described starting from the last dimension and moving forward. } \left\lfloor \frac{\text{len(pad)}}{2} \right\rfloor \text{ dimensions of input will be padded. For example, to pad only the last dimension of the input tensor, then pad has the form (padding\_left, padding\_right); to pad the last 2 dimensions of the input tensor, then use (padding\_left, padding\_right, padding\_top, padding\_bottom); to pad the last 3 dimensions, use (padding\_left, padding\_right, padding\_top, padding\_bottom, padding\_front, padding\_back).}
\item \textbf{Padding mode} \hfill \hfill \\
\text{See nn\_constant\_pad\_2d, nn\_reflection\_pad\_2d, and nn\_replication\_pad\_2d for concrete examples on how each of the padding modes works. Constant padding is implemented for arbitrary dimensions, tensor, or the last 2 dimensions of 4D input tensor, or the last dimension of 3D input tensor. Reflect padding is only implemented for padding the last 2 dimensions of 4D input tensor, or the last dimension of 3D input tensor.}
\end{itemize}

nnf_pairwise_distance  
\textit{Pairwise\_distance}
\begin{itemize}
\item \textbf{Description} \hfill \hfill \\
\text{Computes the batchwise pairwise distance between vectors using the p-norm.}
\item \textbf{Usage} \hfill \hfill \\
\text{nnf\_pairwise\_distance(x1, x2, p = 2, eps = 1e-06, keepdim = FALSE)}
\end{itemize}
**nnf_pdist**

**Arguments**

- **x1** (Tensor) First input.
- **x2** (Tensor) Second input (of size matching x1).
- **p** the norm degree. Default: 2
- **eps** (float, optional) Small value to avoid division by zero. Default: 1e-8
- **keepdim** Determines whether or not to keep the vector dimension. Default: False

**Description**

Computes the p-norm distance between every pair of row vectors in the input. This is identical to the upper triangular portion, excluding the diagonal, of torch_norm(input[:, None] - input, dim=2, p=p). This function will be faster if the rows are contiguous.

**Usage**

```
nnf_pdist(input, p = 2)
```

**Arguments**

- **input** input tensor of shape \(N \times M\).
- **p** p value for the p-norm distance to calculate between each vector pair \(\in [0, \infty]\).

**Details**

If input has shape \(N \times M\) then the output will have shape \(\frac{1}{2}N(N - 1)\).

**nnf_pixel_shuffle**

**Pixel_shuffle**

**Description**

Rearranges elements in a tensor of shape \((*, C \times r^2, H, W)\) to a tensor of shape \((*, C, H \times r, W \times r)\).

**Usage**

```
nnf_pixel_shuffle(input, upscale_factor)
```

**Arguments**

- **input** (Tensor) the input tensor
- **upscale_factor** (int) factor to increase spatial resolution by
nnf_poisson_nll_loss  

**Description**

Poisson negative log likelihood loss.

**Usage**

```r
nnf_poisson_nll_loss(
 input,
 target,
 log_input = TRUE,
 full = FALSE,
 eps = 1e-08,
 reduction = "mean"
)
```

**Arguments**

- **input**: tensor (N,*) where ** means, any number of additional dimensions
- **target**: tensor (N,*) , same shape as the input
- **log_input**: if TRUE the loss is computed as \( \exp(input) - target \times input \), if FALSE then loss is \( input - target \times \log(input + eps) \). Default: TRUE.
- **full**: whether to compute full loss, i.e. to add the Stirling approximation term. Default: FALSE.
- **eps**: (float, optional) Small value to avoid evaluation of \( \log(0) \) when log_input=FALSE. Default: 1e-8
- **reduction**: (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the mean of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'

nnf_prelu  

**Description**

Applies element-wise the function \( PReLU(x) = \max(0, x) + weight \times \min(0, x) \) where weight is a learnable parameter.

**Usage**

```r
nnf_prelu(input, weight)
```
**Arguments**

- **input** (N,* tensor, where * means, any number of additional dimensions)
- **weight** (Tensor) the learnable weights

---

**nnf_relu**  
**Relu**

**Description**

Applies the rectified linear unit function element-wise.

**Usage**

```plaintext
nnf_relu(input, inplace = FALSE)

nnf_relu_(input)
```

**Arguments**

- **input** (N,* tensor, where * means, any number of additional dimensions)
- **inplace** can optionally do the operation in-place. Default: FALSE

---

**nnf_relu6**  
**Relu6**

**Description**

Applies the element-wise function \(ReLU_6(x) = \min(\max(0, x), 6)\).

**Usage**

```plaintext
nnf_relu6(input, inplace = FALSE)
```

**Arguments**

- **input** (N,* tensor, where * means, any number of additional dimensions)
- **inplace** can optionally do the operation in-place. Default: FALSE
nnf_rrelu | Rrelu

**Description**

Randomized leaky ReLU.

**Usage**

```python
nnf_rrelu(input, lower = 1/8, upper = 1/3, training = FALSE, inplace = FALSE)

nnf_rrelu_(input, lower = 1/8, upper = 1/3, training = FALSE)
```

**Arguments**

- **input**: (N,* tensor, where * means, any number of additional dimensions
- **lower**: lower bound of the uniform distribution. Default: 1/8
- **upper**: upper bound of the uniform distribution. Default: 1/3
- **training**: bool whether it’s a training pass. Default: FALSE
- **inplace**: can optionally do the operation in-place. Default: FALSE

nnf_selu | Selu

**Description**

Applies element-wise,

\[ SELU(x) = scale \cdot (\max(0, x) + \min(0, \alpha \cdot (\exp(x) - 1))) \]

, with \( \alpha = 1.6732632423543772848170429916717 \) and \( scale = 1.0507009873554804934193349852946 \).

**Usage**

```python
nnf_selu(input, inplace = FALSE)

nnf_selu_(input)
```

**Arguments**

- **input**: (N,* tensor, where * means, any number of additional dimensions
- **inplace**: can optionally do the operation in-place. Default: FALSE
Examples

```r
if (torch_is_installed()) {
 x <- torch_randn(2, 2)
 y <- nnf_selu(x)
 nnf_selu_(x)
 torch_equal(x, y)
}
```

### nnf_sigmoid

**Description**

Applies element-wise $Sigmoid(x_i) = \frac{1}{1 + e^{-x_i}}$

**Usage**

`nnf_sigmoid(input)`

**Arguments**

- `input` (N,*) tensor, where * means, any number of additional dimensions

### nnf_smooth_l1_loss

**Description**

Function that uses a squared term if the absolute element-wise error falls below 1 and an L1 term otherwise.

**Usage**

`nnf_smooth_l1_loss(input, target, reduction = "mean")`

**Arguments**

- `input` tensor (N,*) where ** means, any number of additional dimensions
- `target` tensor (N,*) , same shape as the input
- `reduction` (string, optional) – Specifies the reduction to apply to the output: 'none' l 'mean' l 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'
**nnf_softmax**

**Softmax**

**Description**

Applies a softmax function.

**Usage**

```python
nnf_softmax(input, dim, dtype = NULL)
```

**Arguments**

- `input` (Tensor) input
- `dim` (int) A dimension along which softmax will be computed.
- `dtype` (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: NULL.

**Details**

Softmax is defined as:

\[
\text{Softmax}(x_i) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
\]

It is applied to all slices along dim, and will re-scale them so that the elements lie in the range [0, 1] and sum to 1.

---

**nnf_softmin**

**Softmin**

**Description**

Applies a softmin function.

**Usage**

```python
nnf_softmin(input, dim, dtype = NULL)
```
nnf_softplus

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>(Tensor) input</td>
</tr>
<tr>
<td>dim</td>
<td>(int) A dimension along which softmin will be computed (so every slice along dim will sum to 1).</td>
</tr>
<tr>
<td>dtype</td>
<td>(torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: NULL.</td>
</tr>
</tbody>
</table>

Details

Note that

\[
\text{Softmin}(x) = \text{Softmax}(-x)
\]

See nnf_softmax definition for mathematical formula.

nnf_softplus Softplus

Description

Applies element-wise, the function \( \text{Softplus}(x) = \frac{1}{\beta} \log(1 + \exp(\beta \times x)) \).

Usage

nnf_softplus(input, beta = 1, threshold = 20)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>(N,*) tensor, where * means, any number of additional dimensions</td>
</tr>
<tr>
<td>beta</td>
<td>the beta value for the Softplus formulation. Default: 1</td>
</tr>
<tr>
<td>threshold</td>
<td>values above this revert to a linear function. Default: 20</td>
</tr>
</tbody>
</table>

Details

For numerical stability the implementation reverts to the linear function when \( \text{input} \times \beta > \text{threshold} \).
nnf_softshrink  

**Softshrink**

**Description**

Applies the soft shrinkage function elementwise

**Usage**

```
nnf_softshrink(input, lambd = 0.5)
```

**Arguments**

- **input**: (N,*) tensor, where * means, any number of additional dimensions
- **lambd**: the lambda (must be no less than zero) value for the Softshrink formulation. Default: 0.5

---

nnf_softsign  

**Softsign**

**Description**

Applies element-wise, the function $\text{SoftSign}(x) = \frac{x}{1 + |x|}$

**Usage**

```
nnf_softsign(input)
```

**Arguments**

- **input**: (N,*) tensor, where * means, any number of additional dimensions
nnf_soft_margin_loss

**Soft_margin_loss**

Description

Creates a criterion that optimizes a two-class classification logistic loss between input tensor x and target tensor y (containing 1 or -1).

Usage

`nnf_soft_margin_loss(input, target, reduction = "mean")`

Arguments

- **input**: tensor (N,*), where * means, any number of additional dimensions
- **target**: tensor (N,*), same shape as the input
- **reduction** (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'

nnf_tanhshrink

**Tanhshrink**

Description

Applies element-wise, $Tanhshrink(x) = x - Tanh(x)$

Usage

`nnf_tanhshrink(input)`

Arguments

- **input**: (N,*) tensor, where * means, any number of additional dimensions
nnf_threshold  

**Description**

Thresholds each element of the input Tensor.

**Usage**

```r
nnf_threshold(input, threshold, value, inplace = FALSE)

nnf_threshold_(input, threshold, value)
```

**Arguments**

- **input**  
  (N,*) tensor, where * means, any number of additional dimensions
- **threshold**  
  The value to threshold at
- **value**  
  The value to replace with
- **inplace**  
  can optionally do the operation in-place. Default: FALSE

---

nnf_triplet_margin_loss  

**Description**

Creates a criterion that measures the triplet loss given an input tensors x1, x2, x3 and a margin with a value greater than 0. This is used for measuring a relative similarity between samples. A triplet is composed by a, p and n (i.e., anchor, positive examples and negative examples respectively). The shapes of all input tensors should be (N, D).

**Usage**

```r
nnf_triplet_margin_loss(
 anchor,
 positive,
 negative,
 margin = 1,
 p = 2,
 eps = 1e-06,
 swap = FALSE,
 reduction = "mean"
)
```
Arguments

- **anchor**: the anchor input tensor
- **positive**: the positive input tensor
- **negative**: the negative input tensor
- **margin**: Default: 1.
- **p**: The norm degree for pairwise distance. Default: 2.
- **eps**: (float, optional) Small value to avoid division by zero.
- **swap**: The distance swap is described in detail in the paper Learning shallow convolutional feature descriptors with triplet losses by V. Balntas, E. Riba et al. Default: FALSE.
- **reduction**: (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'

**nnf_triplet_margin_with_distance_loss**

*Triplet margin with distance loss*

**Description**

See **nn_triplet_margin_with_distance_loss()**

**Usage**

```python
nnf_triplet_margin_with_distance_loss(
 anchor,
 positive,
 negative,
 distance_function = NULL,
 margin = 1,
 swap = FALSE,
 reduction = "mean"
)
```

**Arguments**

- **anchor**: the anchor input tensor
- **positive**: the positive input tensor
- **negative**: the negative input tensor
- **distance_function**: (callable, optional): A nonnegative, real-valued function that quantifies the closeness of two tensors. If not specified, nn_pairwise_distance() will be used. Default: None
nnf_unfold

Description

Extracts sliding local blocks from an batched input tensor.

Usage

nnf_unfold(input, kernel_size, dilation = 1, padding = 0, stride = 1)

Arguments

- **input**: the input tensor
- **kernel_size**: the size of the sliding blocks
- **dilation**: a parameter that controls the stride of elements within the neighborhood. Default: 1
- **padding**: implicit zero padding to be added on both sides of input. Default: 0
- **stride**: the stride of the sliding blocks in the input spatial dimensions. Default: 1

Warning

Currently, only 4-D input tensors (batched image-like tensors) are supported.

More than one element of the unfolded tensor may refer to a single memory location. As a result, in-place operations (especially ones that are vectorized) may result in incorrect behavior. If you need to write to the tensor, please clone it first.
nn_adaptive_avg_pool1d

Applies a 1D adaptive average pooling over an input signal composed of several input planes.

Description

The output size is H, for any input size. The number of output features is equal to the number of input planes.

Usage

nn_adaptive_avg_pool1d(output_size)

Arguments

output_size the target output size H

Examples

if (torch_is_installed()) {
    # target output size of 5
    m = nn_adaptive_avg_pool1d(5)
    input <- torch_randn(1, 64, 8)
    output <- m(input)
}

nn_adaptive_avg_pool2d

Applies a 2D adaptive average pooling over an input signal composed of several input planes.

Description

The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.

Usage

nn_adaptive_avg_pool2d(output_size)

Arguments

output_size the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H. H and W can be either a int, or NULL which means the size will be the same as that of the input.
Examples

```r
if (torch_is_installed()) {
 # target output size of 5x7
 m <- nn_adaptive_avg_pool2d(c(5, 7))
 input <- torch_randn(1, 64, 8, 9)
 output <- m(input)

 # target output size of 7x7 (square)
 m <- nn_adaptive_avg_pool2d(7)
 input <- torch_randn(1, 64, 10, 9)
 output <- m(input)
}
```

---

**nn_adaptive_avg_pool3d**

Applies a 3D adaptive average pooling over an input signal composed of several input planes.

---

**Description**

The output is of size D x H x W, for any input size. The number of output features is equal to the number of input planes.

**Usage**

`nn_adaptive_avg_pool3d(output_size)`

**Arguments**

- `output_size` the target output size of the form D x H x W. Can be a tuple (D, H, W) or a single number D for a cube D x D x D. D, H and W can be either a `int`, or `None` which means the size will be the same as that of the input.

**Examples**

```r
if (torch_isInstalled()) {
 # target output size of 5x7x9
 m <- nn_adaptive_avg_pool3d(c(5, 7, 9))
 input <- torch_randn(1, 64, 8, 9, 10)
 output <- m(input)

 # target output size of 7x7x7 (cube)
 m <- nn_adaptive_avg_pool3d(7)
 input <- torch_randn(1, 64, 10, 9, 8)
 output <- m(input)
}
```
nn_adaptive_log_softmax_with_loss

AdaptiveLogSoftmaxWithLoss module

Description

Efficient softmax approximation as described in Efficient softmax approximation for GPUs by Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou

Usage

nn_adaptive_log_softmax_with_loss(
    in_features,
    n_classes,
    cutoffs,
    div_value = 4,
    head_bias = FALSE
)

Arguments

in_features (int): Number of features in the input tensor
n_classes (int): Number of classes in the dataset
cutoffs (Sequence): Cutoffs used to assign targets to their buckets
div_value (float, optional): value used as an exponent to compute sizes of the clusters. Default: 4.0
head_bias (bool, optional): If True, adds a bias term to the ‘head’ of the adaptive softmax. Default: False

Details

Adaptive softmax is an approximate strategy for training models with large output spaces. It is most effective when the label distribution is highly imbalanced, for example in natural language modelling, where the word frequency distribution approximately follows the Zipf’s law.

Adaptive softmax partitions the labels into several clusters, according to their frequency. These clusters may contain different number of targets each.

Additionally, clusters containing less frequent labels assign lower dimensional embeddings to those labels, which speeds up the computation. For each minibatch, only clusters for which at least one target is present are evaluated.

The idea is that the clusters which are accessed frequently (like the first one, containing most frequent labels), should also be cheap to compute – that is, contain a small number of assigned labels. We highly recommend taking a look at the original paper for more details.
• cutoffs should be an ordered Sequence of integers sorted in the increasing order. It controls number of clusters and the partitioning of targets into clusters. For example setting cutoffs = c(10, 100, 1000) means that first 10 targets will be assigned to the 'head' of the adaptive softmax, targets 11, 12, ..., 100 will be assigned to the first cluster, and targets 101, 102, ..., 1000 will be assigned to the second cluster, while targets 1001, 1002, ..., n_classes - 1 will be assigned to the last, third cluster.

• div_value is used to compute the size of each additional cluster, which is given as \( \frac{\text{in_features}}{\text{div_value}} \), where idx is the cluster index (with clusters for less frequent words having larger indices, and indices starting from 1).

• head_bias if set to True, adds a bias term to the 'head' of the adaptive softmax. See paper for details. Set to False in the official implementation.

Value

NamedTuple with output and loss fields:

• output is a Tensor of size N containing computed target log probabilities for each example
• loss is a Scalar representing the computed negative log likelihood loss

Warning

Labels passed as inputs to this module should be sorted according to their frequency. This means that the most frequent label should be represented by the index 0, and the least frequent label should be represented by the index n_classes - 1.

Shape

• input: (N, in_features)
• target: (N) where each value satisfies 0 <= target[i] <= n_classes
• output1: (N)
• output2: Scalar

Note

This module returns a NamedTuple with output and loss fields. See further documentation for details.

To compute log-probabilities for all classes, the log_prob method can be used.
nn_adaptive_max_pool1d

Applies a 1D adaptive max pooling over an input signal composed of several input planes.

Description

The output size is H, for any input size. The number of output features is equal to the number of input planes.

Usage

nn_adaptive_max_pool1d(output_size, return_indices = FALSE)

Arguments

output_size the target output size H
return_indices if TRUE, will return the indices along with the outputs. Useful to pass to nn_max_unpool1d(). Default: FALSE

Examples

if (torch_is_installed()) {
  # target output size of 5
  m <- nn_adaptive_max_pool1d(5)
  input <- torch_randn(1, 64, 8)
  output <- m(input)
}

nn_adaptive_max_pool2d

Applies a 2D adaptive max pooling over an input signal composed of several input planes.

Description

The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.

Usage

nn_adaptive_max_pool2d(output_size, return_indices = FALSE)
**Arguments**

- **output_size**  
  The target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H. H and W can be either an int, or None which means the size will be the same as that of the input.

- **return_indices**  
  If TRUE, will return the indices along with the outputs. Useful to pass to `nn_max_unpool2d()`. Default: FALSE

**Examples**

```r
if (torch_is_installed()) {
 # target output size of 5x7
 m <- nn_adaptive_max_pool2d(c(5, 7))
 input <- torch_randn(1, 64, 8, 9)
 output <- m(input)

 # target output size of 7x7 (square)
 m <- nn_adaptive_max_pool2d(7)
 input <- torch_randn(1, 64, 10, 9)
 output <- m(input)
}
```

---

**nn_adaptive_max_pool3d**

Applies a 3D adaptive max pooling over an input signal composed of several input planes.

---

**Description**

The output is of size D x H x W, for any input size. The number of output features is equal to the number of input planes.

**Usage**

```r
nn_adaptive_max_pool3d(output_size, return_indices = FALSE)
```

**Arguments**

- **output_size**  
  The target output size of the image of the form D x H x W. Can be a tuple (D, H, W) or a single D for a cube D x D x D. D, H and W can be either an int, or None which means the size will be the same as that of the input.

- **return_indices**  
  If TRUE, will return the indices along with the outputs. Useful to pass to `nn_max_unpool3d()`. Default: FALSE
**Examples**

```python
if (torch_is_installed()) {
 # target output size of 5x7x9
 m <- nn_adaptive_max_pool3d(c(5,7,9))
 input <- torch_randn(1, 64, 8, 9, 10)
 output <- m(input)
 # target output size of 7x7x7 (cube)
 m <- nn_adaptive_max_pool3d(7)
 input <- torch_randn(1, 64, 10, 9, 8)
 output <- m(input)
}
```

**nn_avg_pool1d**

Applies a 1D average pooling over an input signal composed of several input planes.

**Description**

In the simplest case, the output value of the layer with input size \((N, C, L)\), output \((N, C, L_{out})\) and kernel size \(k\) can be precisely described as:

\[
out(N_i, C_j, l) = \frac{1}{k} \sum_{m=0}^{k-1} \text{input}(N_i, C_j, \text{stride} \times l + m)
\]

**Usage**

```
nn_avg_pool1d(
 kernel_size,
 stride = NULL,
 padding = 0,
 ceil_mode = FALSE,
 count_include_pad = TRUE
)
```

**Arguments**

- `kernel_size`: the size of the window
- `stride`: the stride of the window. Default value is `kernel_size`
- `padding`: implicit zero padding to be added on both sides
- `ceil_mode`: when TRUE, will use ceil instead of floor to compute the output shape
- `count_include_pad`: when TRUE, will include the zero-padding in the averaging calculation
Details

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points.

The parameters kernel_size, stride, padding can each be an int or a one-element tuple.

Shape

- Input: \((N, C, L_{in})\)
- Output: \((N, C, L_{out})\), where

\[
L_{out} = \left\lfloor \frac{L_{in} + 2 \times \text{padding} - \text{kernel\_size}}{\text{stride}} + 1 \right\rfloor
\]

Examples

```python
if (torch_is_installed()) {

 # pool with window of size=3, stride=2
 m <- nn_avg_pool1d(3, stride=2)
 m(torch_randn(1, 1, 8))
}
```

---

**nn_avg_pool2d**  
Applies a 2D average pooling over an input signal composed of several input planes.

Description

In the simplest case, the output value of the layer with input size \((N, C, H, W)\), output \((N, C, H_{out}, W_{out})\) and kernel_size \((kH, kW)\) can be precisely described as:

\[
out(N_i, C_j, h, w) = \frac{1}{kH \times kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1} \text{input}(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
\]

Usage

```python
nn_avg_pool2d(
 kernel_size,
 stride = NULL,
 padding = 0,
 ceil_mode = FALSE,
 count_include_pad = TRUE,
 divisor_override = NULL
)```
Arguments

- `kernel_size` the size of the window
- `stride` the stride of the window. Default value is `kernel_size`
- `padding` implicit zero padding to be added on both sides
- `ceil_mode` when TRUE, will use `ceil` instead of `floor` to compute the output shape
- `count_include_pad` when TRUE, will include the zero-padding in the averaging calculation
- `divisor_override` if specified, it will be used as divisor, otherwise `kernel_size` will be used

Details

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points.

The parameters `kernel_size`, `stride`, `padding` can either be:

- a single `int` – in which case the same value is used for the height and width dimension
- a tuple of two `ints` – in which case, the first `int` is used for the height dimension, and the second `int` for the width dimension

Shape

- Input: \((N, C, H_{in}, W_{in})\)
- Output: \((N, C, H_{out}, W_{out})\), where

\[
H_{out} = \left\lfloor \frac{H_{in} + 2 \times \text{padding}[0] - \text{kernel_size}[0]}{\text{stride}[0]} + 1 \right\rfloor
\]

\[
W_{out} = \left\lfloor \frac{W_{in} + 2 \times \text{padding}[1] - \text{kernel_size}[1]}{\text{stride}[1]} + 1 \right\rfloor
\]

Examples

```r
if (torch_is_installed()) {

    # pool of square window of size=3, stride=2
    m <- nn_avg_pool2d(3, stride=2)
    # pool of non-square window
    m <- nn_avg_pool2d(c(3, 2), stride=c(2, 1))
    input <- torch_randn(20, 16, 50, 32)
    output <- m(input)
}
```
nn_avg_pool3d

Applies a 3D average pooling over an input signal composed of several input planes.

Description

In the simplest case, the output value of the layer with input size \((N, C, D, H, W)\), output \((N, C, D_{out}, H_{out}, W_{out})\) and kernel_size \((kD, kH, kW)\) can be precisely described as:

\[
out(N_i, C_j, d, h, w) = \sum_{kD=0}^{kD-1} \sum_{kH=0}^{kH-1} \sum_{kW=0}^{kW-1} \frac{\text{input}(N_i, C_j, \text{stride}[0] \times d + k, \text{stride}[1] \times h + m, \text{stride}[2] \times w + n)}{kD \times kH \times kW}
\]

Usage

\[
\text{nn_avg_pool3d}(\text{kernel_size, stride = NULL, padding = 0, ceil_mode = FALSE, count_include_pad = TRUE, divisor_override = NULL})
\]

Arguments

kernel_size the size of the window
stride the stride of the window. Default value is kernel_size
padding implicit zero padding to be added on all three sides
ceil_mode when TRUE, will use ceil instead of floor to compute the output shape
count_include_pad when TRUE, will include the zero-padding in the averaging calculation
divisor_override if specified, it will be used as divisor, otherwise kernel_size will be used

Details

If padding is non-zero, then the input is implicitly zero-padded on all three sides for padding number of points.

The parameters kernel_size, stride can either be:

- a single int – in which case the same value is used for the depth, height and width dimension
- a tuple of three ints – in which case, the first int is used for the depth dimension, the second int for the height dimension and the third int for the width dimension
Shape

- Input: \((N, C, D_{in}, H_{in}, W_{in})\)
- Output: \((N, C, D_{out}, H_{out}, W_{out})\), where

\[
D_{out} = \left\lceil \frac{D_{in} + 2 \times \text{padding}[0] - \text{kernel}_\text{size}[0]}{\text{stride}[0]} + 1 \right\rceil \\
H_{out} = \left\lceil \frac{H_{in} + 2 \times \text{padding}[1] - \text{kernel}_\text{size}[1]}{\text{stride}[1]} + 1 \right\rceil \\
W_{out} = \left\lceil \frac{W_{in} + 2 \times \text{padding}[2] - \text{kernel}_\text{size}[2]}{\text{stride}[2]} + 1 \right\rceil
\]

Examples

```r
if (torch_is_installed()) {
  # pool of square window of size=3, stride=2
  m = nn_avg_pool3d(3, stride=2)
  # pool of non-square window
  m = nn_avg_pool3d(c(3, 2, 2), stride=c(2, 1, 2))
  input = torch_randn(20, 16, 50, 44, 31)
  output = m(input)
}
```

nn_batch_norm1d

BatchNorm1D module

Description

Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputs with optional additional channel dimension) as described in the paper *Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift*

Usage

```r
nn_batch_norm1d(
  num_features,
  eps = 1e-05,
  momentum = 0.1,
  affine = TRUE,
  track_running_stats = TRUE
)
```
Arguments

num_features

C from an expected input of size \((N, C, L)\) or \(L\) from input of size \((N, L)\)

eps
a value added to the denominator for numerical stability. Default: \(1e-5\)

momentum
the value used for the running_mean and running_var computation. Can be set to NULL for cumulative moving average (i.e. simple average). Default: 0.1

affine
a boolean value that when set to TRUE, this module has learnable affine parameters. Default: TRUE

track_running_stats
a boolean value that when set to TRUE, this module tracks the running mean and variance, and when set to FALSE, this module does not track such statistics and always uses batch statistics in both training and eval modes. Default: TRUE

Details

\[
y = \frac{x - E[x]}{\sqrt{\text{Var}[x]} + \epsilon} \ast \gamma + \beta
\]

The mean and standard-deviation are calculated per-dimension over the mini-batches and \(\gamma\) and \(\beta\) are learnable parameter vectors of size \(C\) (where \(C\) is the input size). By default, the elements of \(\gamma\) are set to 1 and the elements of \(\beta\) are set to 0.

Also by default, during training this layer keeps running estimates of its computed mean and variance, which are then used for normalization during evaluation. The running estimates are kept with a default :attr:`momentum` of 0.1. If \(\text{track_running_stats}\) is set to FALSE, this layer then does not keep running estimates, and batch statistics are instead used during evaluation time as well.

Note

This momentum argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is \(\hat{x}_{\text{new}} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t\), where \(\hat{x}\) is the estimated statistic and \(x_t\) is the new observed value.

Because the Batch Normalization is done over the \(C\) dimension, computing statistics on \((N, L)\) slices, it’s common terminology to call this Temporal Batch Normalization.

Shape

- Input: \((N, C)\) or \((N, C, L)\)
- Output: \((N, C)\) or \((N, C, L)\) (same shape as input)

Examples

```r
if (torch_is_installed()) {
  # With Learnable Parameters
  m <- nn_batch_norm1d(100)
  # Without Learnable Parameters
  m <- nn_batch_norm1d(100, affine = FALSE)
  input <- torch_randn(20, 100)
}
Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

Usage

```r
nn_batch_norm2d(
 num_features,
 eps = 1e-05,
 momentum = 0.1,
 affine = TRUE,
 track_running_stats = TRUE
)
```

Arguments

- `num_features`: `C` from an expected input of size `(N, C, H, W)`
- `eps`: a value added to the denominator for numerical stability. Default: `1e-5`
- `momentum`: the value used for the running_mean and running_var computation. Can be set to `None` for cumulative moving average (i.e. simple average). Default: `0.1`
- `affine`: a boolean value that when set to `TRUE`, this module has learnable affine parameters. Default: `TRUE`
- `track_running_stats`: a boolean value that when set to `TRUE`, this module tracks the running mean and variance, and when set to `FALSE`, this module does not track such statistics and uses batch statistics instead in both training and eval modes if the running mean and variance are `None`. Default: `TRUE`

Details

\[
y = \frac{x - \mathbb{E}[x]}{\sqrt{\text{Var}[x] + \epsilon}} \ast \gamma + \beta
\]

The mean and standard-deviation are calculated per-dimension over the mini-batches and `\gamma` and `\beta` are learnable parameter vectors of size `C` (where `C` is the input size). By default, the elements of `\gamma` are set to 1 and the elements of `\beta` are set to 0. The standard-deviation is calculated via the biased estimator, equivalent to `torch_var(input, unbiased=FALSE)`. Also by default, during training this layer
keeps running estimates of its computed mean and variance, which are then used for normalization during evaluation. The running estimates are kept with a default momentum of 0.1.

If `track_running_stats` is set to `FALSE`, this layer then does not keep running estimates, and batch statistics are instead used during evaluation time as well.

**Shape**

- Input: \((N, C, H, W)\)
- Output: \((N, C, H, W)\) (same shape as input)

**Note**

This momentum argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is 
\[
\hat{x}_{\text{new}} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t,
\]
where \(\hat{x}\) is the estimated statistic and \(x_t\) is the new observed value. Because the Batch Normalization is done over the \(C\) dimension, computing statistics on \((N, H, W)\) slices, it’s common terminology to call this Spatial Batch Normalization.

**Examples**

```r
if (torch_is_installed()) {
 # With Learnable Parameters
 m <- nn_batch_norm2d(100)
 # Without Learnable Parameters
 m <- nn_batch_norm2d(100, affine=FALSE)
 input <- torch_randn(20, 100, 35, 45)
 output <- m(input)
}
```

---

### nn_batch_norm3d

**BatchNorm3D**

**Description**

Applies Batch Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

**Usage**

```r
nn_batch_norm3d(
 num_features,
 eps = 1e-05,
 momentum = 0.1,
 affine = TRUE,
 track_running_stats = TRUE
)
```
Arguments

num_features \( C \) from an expected input of size \((N, C, D, H, W)\)
eps a value added to the denominator for numerical stability. Default: 1e-5
momentum the value used for the running_mean and running_var computation. Can be set to None for cumulative moving average (i.e. simple average). Default: 0.1
affine a boolean value that when set to TRUE, this module has learnable affine parameters. Default: TRUE
track_running_stats a boolean value that when set to TRUE, this module tracks the running mean and variance, and when set to FALSE, this module does not track such statistics and uses batch statistics instead in both training and eval modes if the running mean and variance are None. Default: TRUE

Details

\[ y = \frac{x - E[x]}{\sqrt{\text{Var}[x] + \epsilon}} \star \gamma + \beta \]

The mean and standard-deviation are calculated per-dimension over the mini-batches and \( \gamma \) and \( \beta \) are learnable parameter vectors of size \( C \) (where \( C \) is the input size). By default, the elements of \( \gamma \) are set to 1 and the elements of \( \beta \) are set to 0. The standard-deviation is calculated via the biased estimator, equivalent to \( \text{torch_var}(\text{input}, \text{unbiased} = \text{FALSE}) \).

Also by default, during training this layer keeps running estimates of its computed mean and variance, which are then used for normalization during evaluation. The running estimates are kept with a default momentum of 0.1.

If \( \text{track\_running\_stats} \) is set to FALSE, this layer then does not keep running estimates, and batch statistics are instead used during evaluation time as well.

Shape

- Input: \((N, C, D, H, W)\)
- Output: \((N, C, D, H, W)\) (same shape as input)

Note

This momentum argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is: \( \hat{x}_{\text{new}} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t \), where \( \hat{x} \) is the estimated statistic and \( x_t \) is the new observed value.

Because the Batch Normalization is done over the \( C \) dimension, computing statistics on \((N, D, H, W)\) slices, it’s common terminology to call this Volumetric Batch Normalization or Spatio-temporal Batch Normalization.
nn_bce_loss

Binary cross entropy loss

Description

Creates a criterion that measures the Binary Cross Entropy between the target and the output:

Usage

nn_bce_loss(weight = NULL, reduction = "mean")

Arguments

weight (Tensor, optional): a manual rescaling weight given to the loss of each batch element. If given, has to be a Tensor of size nbatch.

reduction (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

Details

The unreduced (i.e. with reduction set to 'none') loss can be described as:

\[ \ell(x, y) = L = \{l_1, \ldots, l_N\}^{\top}, \quad l_n = -w_n \left[ y_n \cdot \log x_n + (1 - y_n) \cdot \log(1 - x_n) \right] \]

where \( N \) is the batch size. If reduction is not 'none' (default 'mean'), then

\[ \ell(x, y) = \begin{cases} 
\text{mean}(L), & \text{if reduction = 'mean'}; \\
\text{sum}(L), & \text{if reduction = 'sum'}.
\end{cases} \]

This is used for measuring the error of a reconstruction in for example an auto-encoder. Note that the targets \( y \) should be numbers between 0 and 1.

Notice that if \( x_n \) is either 0 or 1, one of the log terms would be mathematically undefined in the above loss equation. PyTorch chooses to set \( \log(0) = -\infty \), since \( \lim_{x \to 0} \log(x) = -\infty \).
However, an infinite term in the loss equation is not desirable for several reasons. For one, if either $y_n = 0$ or $(1 - y_n) = 0$, then we would be multiplying 0 with infinity. Secondly, if we have an infinite loss value, then we would also have an infinite term in our gradient, since $\lim_{x \to 0} \frac{d}{dx} \log(x) = \infty$.

This would make BCELoss’s backward method nonlinear with respect to $x_n$, and using it for things like linear regression would not be straight-forward. Our solution is that BCELoss clamps its log function outputs to be greater than or equal to -100. This way, we can always have a finite loss value and a linear backward method.

**Shape**

- Input: $(N, *)$ where * means, any number of additional dimensions
- Target: $(N, *)$, same shape as the input
- Output: scalar. If reduction is 'none', then $(N, *)$, same shape as input.

**Examples**

```r
if (torch_is_installed()) {
 m <- nn_sigmoid()
 loss <- nn_bce_loss()
 input <- torch_randn(3, requires_grad=TRUE)
 target <- torch_rand(3)
 output <- loss(m(input), target)
 output$backward()
}
```

**nn_bce_with_logits_loss**

*BCE with logits loss*

**Description**

This loss combines a Sigmoid layer and the BCELoss in one single class. This version is more numerically stable than using a plain Sigmoid followed by a BCELoss as, by combining the operations into one layer, we take advantage of the log-sum-exp trick for numerical stability.

**Usage**

```r
nn_bce_with_logits_loss(weight = NULL, reduction = "mean", pos_weight = NULL)
```

**Arguments**

- `weight` (Tensor, optional): a manual rescaling weight given to the loss of each batch element. If given, has to be a Tensor of size nbatch.
nn_bce_with_logits_loss

reduction (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

pos_weight (Tensor, optional): a weight of positive examples. Must be a vector with length equal to the number of classes.

Details

The unreduced (i.e. with reduction set to 'none') loss can be described as:

\[ \ell(x, y) = L = \{l_1, \ldots, l_N\}^T, \quad l_n = -w_n \left[ y_n \cdot \log \sigma(x_n) + (1 - y_n) \cdot \log(1 - \sigma(x_n)) \right], \]

where \( N \) is the batch size. If reduction is not 'none' (default 'mean'), then

\[ \ell(x, y) = \begin{cases} \text{mean}(L), & \text{if reduction = 'mean'}; \\ \text{sum}(L), & \text{if reduction = 'sum'}. \end{cases} \]

This is used for measuring the error of a reconstruction in for example an auto-encoder. Note that the targets \( t[i] \) should be numbers between 0 and 1. It’s possible to trade off recall and precision by adding weights to positive examples. In the case of multi-label classification the loss can be described as:

\[ \ell_c(x, y) = L_c = \{l_{1,c}, \ldots, l_{N,c}\}^T, \quad l_{n,c} = -w_{n,c} \left[ p_c y_{n,c} \cdot \log \sigma(x_{n,c}) + (1 - y_{n,c}) \cdot \log(1 - \sigma(x_{n,c})) \right], \]

where \( c \) is the class number (\( c > 1 \) for multi-label binary classification), \( c = 1 \) for single-label binary classification, \( n \) is the number of the sample in the batch and \( p_c \) is the weight of the positive answer for the class \( c \). \( p_c \geq 1 \) increases the recall, \( p_c < 1 \) increases the precision. For example, if a dataset contains 100 positive and 300 negative examples of a single class, then pos_weight for the class should be equal to \( \frac{300}{100} = 3 \). The loss would act as if the dataset contains \( 3 \times 100 = 300 \) positive examples.

Shape

- Input: \((N, *)\) where \(*\) means, any number of additional dimensions
- Target: \((N, *)\), same shape as the input
- Output: scalar. If reduction is 'none', then \((N, *)\), same shape as input.

Examples

```r
if (torch_is_installed()) {
 loss <- nn_bce_with_logits_loss()
 input <- torch_randn(3, requires_grad=TRUE)
 target <- torch_empty(3)$random_(1, 2)
 output <- loss(input, target)
 output$backward()
```
target <- torch_ones(10, 64, dtype=torch_float32())  # 64 classes, batch size = 10
output <- torch_full(c(10, 64), 1.5)  # A prediction (logit)
pos_weight <- torch_ones(64)  # All weights are equal to 1
criterion <- nn_bce_with_logits_loss(pos_weight=pos_weight)
criterion(output, target)  # -log(sigmoid(1.5))

nn_bilinear

Bilinear module

Description

Applies a bilinear transformation to the incoming data $y = x_1^T A x_2 + b$

Usage

nn_bilinear(in1_features, in2_features, out_features, bias = TRUE)

Arguments

in1_features  size of each first input sample
in2_features  size of each second input sample
out_features  size of each output sample
bias          If set to FALSE, the layer will not learn an additive bias. Default: TRUE

Shape

- Input1: $(N, *, H_{in1})$ $H_{in1} = \text{in1_features}$ and $*$ means any number of additional dimensions. All but the last dimension of the inputs should be the same.
- Input2: $(N, *, H_{in2})$ where $H_{in2} = \text{in2_features}$.
- Output: $(N, *, H_{out})$ where $H_{out} = \text{out_features}$ and all but the last dimension are the same shape as the input.

Attributes

- weight: the learnable weights of the module of shape $(\text{out_features}, \text{in1_features}, \text{in2_features})$. The values are initialized from $\mathcal{U}(-\sqrt{k}, \sqrt{k})$, where $k = \frac{1}{\text{in1_features}}$
- bias: the learnable bias of the module of shape $(\text{out_features})$. If bias is TRUE, the values are initialized from $\mathcal{U}(-\sqrt{k}, \sqrt{k})$, where $k = \frac{1}{\text{in1_features}}$
Examples

```r
if (torch_is_installed()) {
 m <- nn_bilinear(20, 30, 50)
 input1 <- torch_randn(128, 20)
 input2 <- torch_randn(128, 30)
 output = m(input1, input2)
 print(output$size())
}
```

nn_buffer  

*Creates a nn_buffer*

Description

Indicates that a tensor is a buffer in a nn_module

Usage

```r
nn_buffer(x, persistent = TRUE)
```

Arguments

- `x`: the tensor that will be converted to nn_buffer
- `persistent`: whether the buffer should be persistent or not.

nn_celu  

*CELU module*

Description

Applies the element-wise function:

```r
CELU(x) = \max(0, x) + \min(0, \alpha \cdot (\exp(x/\alpha) - 1))
```

Details

More details can be found in the paper *Continuously Differentiable Exponential Linear Units.*
**Shape**

- Input: \((N, *)\) where * means, any number of additional dimensions
- Output: \((N, *)\), same shape as the input

**Examples**

```r
if (torch_is_installed()) {
 m <- nn_celu()
 input <- torch_randn(2)
 output <- m(input)
}
```

---

**nn_contrib_sparsemax**  
*Sparsemax activation*

**Description**

Sparsemax activation module.

**Usage**

```r
nn_contrib_sparsemax(dim = -1)
```

**Arguments**

- `dim`  
The dimension over which to apply the sparsemax function. (-1)

**Details**

The SparseMax activation is described in 'From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification' The implementation is based on aced125/sparsemax

---

**nn_conv1d**  
*Conv1D module*

**Description**

Applies a 1D convolution over an input signal composed of several input planes. In the simplest case, the output value of the layer with input size \((N, C_{in}, L)\) and output \((N, C_{out}, L_{out})\) can be precisely described as:
nn_conv1d

Usage

nn_conv1d(
    in_channels, out_channels, kernel_size, stride = 1, padding = 0, dilation = 1, groups = 1, bias = TRUE, padding_mode = "zeros"
)

Arguments

- in_channels (int): Number of channels in the input image
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
- dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
- groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
- bias (bool, optional): If TRUE, adds a learnable bias to the output. Default: TRUE
- padding_mode (string, optional): 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

Details

\[
\text{out}(N_i, C_{out, j}) = \text{bias}(C_{out, j}) + \sum_{k=0}^{C_{in}-1} \text{weight}(C_{out, j}, k) \ast \text{input}(N_i, k)
\]

where \( \ast \) is the valid cross-correlation operator, \( N \) is a batch size, \( C \) denotes a number of channels, \( L \) is a length of signal sequence.

- stride controls the stride for the cross-correlation, a single number or a one-element tuple.
- padding controls the amount of implicit zero-paddings on both sides for padding number of points.
- dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what dilation does.
- groups controls the connections between inputs and outputs. in_channels and out_channels must both be divisible by groups. For example,
  - At groups=1, all inputs are convolved to all outputs.
At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.

At groups= in_channels, each input channel is convolved with its own set of filters, of size \( \left\lfloor \frac{\text{out_channels}}{\text{in_channels}} \right\rfloor \).

**Note**

Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, *and not a full cross-correlation*. It is up to the user to add proper padding.

When groups == in_channels and out_channels == K * in_channels, where K is a positive integer, this operation is also termed in literature as depthwise convolution. In other words, for an input of size \((N, C_{\text{in}}, L_{\text{in}})\), a depthwise convolution with a depthwise multiplier K, can be constructed by arguments \((C_{\text{in}} = C_{\text{in}}, C_{\text{out}} = C_{\text{in}} \times K, ..., \text{groups} = C_{\text{in}})\).

**Shape**

- Input: \((N, C_{\text{in}}, L_{\text{in}})\)
- Output: \((N, C_{\text{out}}, L_{\text{out}})\) where

\[
L_{\text{out}} = \left\lfloor \frac{L_{\text{in}} + 2 \times \text{padding} - \text{dilation} \times (\text{kernel_size} - 1) - 1}{\text{stride}} + 1 \right\rfloor
\]

**Attributes**

- weight (Tensor): the learnable weights of the module of shape \((\text{out_channels}, \frac{\text{in_channels}}{\text{groups}}, \text{kernel_size})\).
  
  The values of these weights are sampled from \(U(-\sqrt{k}, \sqrt{k})\) where \(k = \frac{C_{\text{in}} \times \text{kernel_size}}{C_{\text{in}} \times \text{kernel_size}}\).

- bias (Tensor): the learnable bias of the module of shape \((\text{out_channels})\). If bias is TRUE, then the values of these weights are sampled from \(U(-\sqrt{k}, \sqrt{k})\) where \(k = \frac{C_{\text{in}} \times \text{kernel_size}}{C_{\text{in}} \times \text{kernel_size}}\).

**Examples**

```r
if (torch_is_installed()) {
 m <- nn.conv1d(16, 33, 3, stride=2)
 input <- torch.randn(20, 16, 50)
 output <- m(input)
}
```
nn_conv2d

Conv2D module

Description
Applies a 2D convolution over an input signal composed of several input planes.

Usage
nn_conv2d(
    in_channels,
    out_channels,
    kernel_size,
    stride = 1,
    padding = 0,
    dilation = 1,
    groups = 1,
    bias = TRUE,
    padding_mode = "zeros"
)

Arguments
- in_channels (int): Number of channels in the input image
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
- dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
- groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
- bias (bool, optional): If TRUE, adds a learnable bias to the output. Default: TRUE

Details
In the simplest case, the output value of the layer with input size \((N, C_{in}, H, W)\) and output size \((N, C_{out}, H_{out}, W_{out})\) can be precisely described as:

\[
\text{out}(N_i, C_{out,j}) = \text{bias}(C_{out,j}) + \sum_{k=0}^{C_{in}-1} \text{weight}(C_{out,j}, k) \star \text{input}(N_i, k)
\]

where \(\star\) is the valid 2D cross-correlation operator, \(N\) is a batch size, \(C\) denotes a number of channels, \(H\) is a height of input planes in pixels, and \(W\) is width in pixels.
• stride controls the stride for the cross-correlation, a single number or a tuple.
• padding controls the amount of implicit zero-paddings on both sides for padding number of points for each dimension.
• dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this [link](https://example.com) has a nice visualization of what dilation does.
• groups controls the connections between inputs and outputs. in_channels and out_channels must both be divisible by groups. For example,
  – At groups=1, all inputs are convolved to all outputs.
  – At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
  – At groups= in_channels, each input channel is convolved with its own set of filters, of size: $\left\lceil \frac{\text{out_channels}}{\text{in_channels}} \right\rceil$.

The parameters kernel_size, stride, padding, dilation can either be:

• a single int – in which case the same value is used for the height and width dimension
• a tuple of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension

Note

Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.

When groups == in_channels and out_channels == K * in_channels, where K is a positive integer, this operation is also termed in literature as depthwise convolution. In other words, for an input of size $(N, C_{in}, H_{in}, W_{in})$, a depthwise convolution with a depthwise multiplier K, can be constructed by arguments $(\text{in_channels} = C_{in}, \text{out_channels} = C_{in} \times K,...,\text{groups} = C_{in})$.

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting backends.cudnn.deterministic = TRUE.

Shape

• Input: $(N, C_{in}, H_{in}, W_{in})$
• Output: $(N, C_{out}, H_{out}, W_{out})$ where

$$H_{out} = \left\lceil \frac{H_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] \times (\text{kernel_size}[0] - 1) - 1}{\text{stride}[0]} + 1 \right\rceil$$

$$W_{out} = \left\lceil \frac{W_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] \times (\text{kernel_size}[1] - 1) - 1}{\text{stride}[1]} + 1 \right\rceil$$
Attributes

- weight (Tensor): the learnable weights of the module of shape (out_channels, \( \frac{\text{in\_channels}}{\text{groups}} \), kernel_size[0], kernel_size[1]). The values of these weights are sampled from \( U(-\sqrt{k}, \sqrt{k}) \) where \( k = \frac{\text{in} \cdot \prod_{i=0}^{\text{groups}} \text{kernel\_size}[i]}{\text{groups}} \).

- bias (Tensor): the learnable bias of the module of shape (out_channels). If bias is TRUE, then the values of these weights are sampled from \( U(-\sqrt{k}, \sqrt{k}) \) where \( k = \frac{\text{in} \cdot \prod_{i=0}^{\text{groups}} \text{kernel\_size}[i]}{\text{groups}} \).

Examples

```r
if (torch_is_installed()) {

 # With square kernels and equal stride
 m <- nn_conv2d(16, 33, 3, stride = 2)
 # non-square kernels and unequal stride and with padding
 m <- nn_conv2d(16, 33, c(3, 5), stride=c(2, 1), padding=c(4, 2))
 # non-square kernels and unequal stride and with padding and dilation
 m <- nn_conv2d(16, 33, c(3, 5), stride=c(2, 1), padding=c(4, 2), dilation=c(3, 1))
 input <- torch_randn(20, 16, 50, 100)
 output <- m(input)
}
```

nn_conv3d

Conv3D module

Description

Applies a 3D convolution over an input signal composed of several input planes. In the simplest case, the output value of the layer with input size \( (N, C_{in}, D, H, W) \) and output \( (N, C_{out}, D_{out}, H_{out}, W_{out}) \) can be precisely described as:

Usage

```r
nn_conv3d(
 in_channels,
 out_channels,
 kernel_size,
 stride = 1,
 padding = 0,
 dilation = 1,
 groups = 1,
 bias = TRUE,
 padding_mode = "zeros"
)
```
Arguments

- `in_channels` (int): Number of channels in the input image.
- `out_channels` (int): Number of channels produced by the convolution.
- `kernel_size` (int or tuple): Size of the convolving kernel.
- `stride` (int or tuple, optional): Stride of the convolution. Default: 1
- `padding` (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0
- `dilation` (int or tuple, optional): Spacing between kernel elements. Default: 1
- `groups` (int, optional): Number of blocked connections from input channels to output channels. Default: 1
- `bias` (bool, optional): If TRUE, adds a learnable bias to the output. Default: TRUE
- `padding_mode` (string, optional): 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

Details

\[
out(N_i, C_{out_j}) = bias(C_{out_j}) + \sum_{k=0}^{C_{in}-1} weight(C_{out_j}, k) \star input(N_i, k)
\]

where \( \star \) is the valid 3D cross-correlation operator.

- `stride` controls the stride for the cross-correlation.
- `padding` controls the amount of implicit zero-paddings on both sides for padding number of points for each dimension.
- `dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what dilation does.
- `groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`. For example,
  - At `groups=1`, all inputs are convolved to all outputs.
  - At `groups=2`, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
  - At `groups= in_channels`, each input channel is convolved with its own set of filters, of size \( \frac{out_channels}{in_channels} \).

The parameters `kernel_size`, `stride`, `padding`, `dilation` can either be:

- a single int – in which case the same value is used for the depth, height and width dimension
- a tuple of three ints – in which case, the first int is used for the depth dimension, the second int for the height dimension and the third int for the width dimension
Shape

- Input: \((N, C_{in}, D_{in}, H_{in}, W_{in})\)
- Output: \((N, C_{out}, D_{out}, H_{out}, W_{out})\) where

\[
D_{out} = \left\lfloor \frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] \times (\text{kernel_size}[0] - 1) - 1}{\text{stride}[0]} + 1 \right\rfloor
\]
\[
H_{out} = \left\lfloor \frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] \times (\text{kernel_size}[1] - 1) - 1}{\text{stride}[1]} + 1 \right\rfloor
\]
\[
W_{out} = \left\lfloor \frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2] \times (\text{kernel_size}[2] - 1) - 1}{\text{stride}[2]} + 1 \right\rfloor
\]

Attributes

- weight (Tensor): the learnable weights of the module of shape \(\text{out_channels}, \frac{\text{in_channels}}{\text{groups}}, \text{kernel_size}[0], \text{kernel_size}[1], \text{kernel_size}[2]\). The values of these weights are sampled from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where \(k = \frac{\text{groups}}{\text{in_channels}} \prod_{i=0}^{2} \text{kernel_size}[i]\)
- bias (Tensor): the learnable bias of the module of shape \(\text{out_channels}\). If \(\text{bias} = \text{True}\), then the values of these weights are sampled from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where \(k = \frac{\text{groups}}{\text{in_channels}} \prod_{i=0}^{2} \text{kernel_size}[i]\)

Note

Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.

When \(\text{groups} == \text{in_channels} \text{ and } \text{out_channels} == \text{K} \times \text{in_channels}\), where \(\text{K}\) is a positive integer, this operation is also termed in literature as depthwise convolution. In other words, for an input of size \((N, C_{in}, D_{in}, H_{in}, W_{in})\), a depthwise convolution with a depthwise multiplier \(\text{K}\), can be constructed by arguments \((\text{in_channels} = C_{in}, \text{out_channels} = C_{in} \times \text{K}, ..., \text{groups} = C_{in})\).

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting \(\text{torch.backends.cudnn.deterministic} = \text{TRUE}\). Please see the notes on \:doc:/notes/randomness for background.

Examples

```r
if (torch_is_installed()) {
 # With square kernels and equal stride
 m <- nn_conv3d(16, 33, 3, stride=2)
 # non-square kernels and unequal stride and with padding
 m <- nn_conv3d(16, 33, c(3, 5, 2), stride=c(2, 1, 1), padding=c(4, 2, 0))
 input <- torch_randn(20, 16, 10, 50, 100)
 output <- m(input)
}
```
**Description**

Applies a 1D transposed convolution operator over an input image composed of several input planes.

**Usage**

```python
nen_conv_transpose1d(
 in_channels,
 out_channels,
 kernel_size,
 stride = 1,
 padding = 0,
 output_padding = 0,
 groups = 1,
 bias = TRUE,
 dilation = 1,
 padding_mode = "zeros"
)
```

**Arguments**

- `in_channels` (int): Number of channels in the input image
- `out_channels` (int): Number of channels produced by the convolution
- `kernel_size` (int or tuple): Size of the convolving kernel
- `stride` (int or tuple, optional): Stride of the convolution. Default: 1
- `padding` (int or tuple, optional): dilation * (kernel_size -1) - padding zero-padding will be added to both sides of the input. Default: 0
- `output_padding` (int or tuple, optional): Additional size added to one side of the output shape. Default: 0
- `groups` (int, optional): Number of blocked connections from input channels to output channels. Default: 1
- `bias` (bool, optional): If True, adds a learnable bias to the output. Default: TRUE
- `dilation` (int or tuple, optional): Spacing between kernel elements. Default: 1
- `padding_mode` (string, optional): 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

**Details**

This module can be seen as the gradient of Conv1d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation).
• stride controls the stride for the cross-correlation.
• padding controls the amount of implicit zero-paddings on both sides for dilation \times (kernel\_size -1) -padding number of points. See note below for details.
• output_padding controls the additional size added to one side of the output shape. See note below for details.
• dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what dilation does.
• groups controls the connections between inputs and outputs. in\_channels and out\_channels must both be divisible by groups. For example,
  – At groups=1, all inputs are convolved to all outputs.
  – At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
  – At groups= in\_channels, each input channel is convolved with its own set of filters (of size \lfloor \frac{\text{out\_channels}}{\text{in\_channels}} \rfloor).

Shape
• Input: (N, C_{in}, L_{in})
• Output: (N, C_{out}, L_{out}) where

\[ L_{out} = (L_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} \times (\text{kernel\_size} - 1) + \text{output\_padding} + 1 \]

Attributes
• weight (Tensor): the learnable weights of the module of shape (in\_channels, \frac{\text{out\_channels}}{\text{groups}}, \text{kernel\_size}). The values of these weights are sampled from \mathcal{U}(-\sqrt{k}, \sqrt{k}) where \( k = \frac{\text{groups}}{c_{\text{out}} \times \text{kernel\_size}} \)
• bias (Tensor): the learnable bias of the module of shape (out\_channels). If bias is TRUE, then the values of these weights are sampled from \mathcal{U}(-\sqrt{k}, \sqrt{k}) where \( k = \frac{\text{groups}}{c_{\text{out}} \times \text{kernel\_size}} \)

Note
Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.

The padding argument effectively adds dilation \times (kernel\_size -1) -padding amount of zero padding to both sizes of the input. This is set so that when a `torch.nn.Conv1d` and a `torch.nn.ConvTranspose1d` are initialized with same parameters, they are inverses of each other in regard to the input and output shapes. However, when stride > 1, `torch.nn.Conv1d` maps multiple input shapes to the same output shape. output_padding is provided to resolve this ambiguity by effectively increasing the calculated output shape on one side. Note that output_padding is only used to find output shape, but does not actually add zero-padding to output.

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting `torch.backends.cudnn.deterministic` = TRUE.
Examples

```r
if (torch_is_installed()) {
 m <- nn_conv_transpose1d(32, 16, 2)
 input <- torch_randn(10, 32, 2)
 output <- m(input)
}
```

### nn_conv_transpose2d

**ConvTranpose2D module**

**Description**

Applies a 2D transposed convolution operator over an input image composed of several input planes.

**Usage**

```r
nn_conv_transpose2d(
 in_channels, # (int): Number of channels in the input image
 out_channels, # (int): Number of channels produced by the convolution
 kernel_size, # (int or tuple): Size of the convolving kernel
 stride = 1, # (int or tuple, optional): Stride of the convolution. Default: 1
 padding = 0, # (int or tuple, optional): dilation * (kernel_size -1) -padding zero-padding will be added to both sides of each dimension in the input. Default: 0
 output_padding = 0, # (int or tuple, optional): Additional size added to one side of each dimension in the output shape. Default: 0
 groups = 1, # (int, optional): Number of blocked connections from input channels to output channels. Default: 1
 bias = TRUE, # (bool, optional): If True, adds a learnable bias to the output. Default: True
 dilation = 1, # (int or tuple, optional): Spacing between kernel elements. Default: 1
 padding_mode = "zeros" # (string, optional): 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'
)
```

**Arguments**

- `in_channels`: (int): Number of channels in the input image
- `out_channels`: (int): Number of channels produced by the convolution
- `kernel_size`: (int or tuple): Size of the convolving kernel
- `stride`: (int or tuple, optional): Stride of the convolution. Default: 1
- `padding`: (int or tuple, optional): dilation * (kernel_size -1) -padding zero-padding will be added to both sides of each dimension in the input. Default: 0
- `output_padding`: (int or tuple, optional): Additional size added to one side of each dimension in the output shape. Default: 0
- `groups`: (int, optional): Number of blocked connections from input channels to output channels. Default: 1
- `bias`: (bool, optional): If True, adds a learnable bias to the output. Default: True
- `dilation`: (int or tuple, optional): Spacing between kernel elements. Default: 1
- `padding_mode`: (string, optional): 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'
Details

This module can be seen as the gradient of Conv2d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation).

- **stride** controls the stride for the cross-correlation.
- **padding** controls the amount of implicit zero-paddings on both sides for dilation \( (\text{kernel\_size}-1) \cdot \text{padding} \) number of points. See note below for details.
- **output\_padding** controls the additional size added to one side of the output shape. See note below for details.
- **dilation** controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this [link](#) has a nice visualization of what dilation does.
- **groups** controls the connections between inputs and outputs. in\_channels and out\_channels must both be divisible by groups. For example,
  - At groups=1, all inputs are convolved to all outputs.
  - At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
  - At groups= in\_channels, each input channel is convolved with its own set of filters (of size \( \frac{\text{out\_channels}}{\text{in\_channels}} \)).

The parameters kernel\_size, stride, padding, output\_padding can either be:

- a single int – in which case the same value is used for the height and width dimensions
- a tuple of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension

Shape

- Input: \((N, C_{in}, H_{in}, W_{in})\)
- Output: \((N, C_{out}, H_{out}, W_{out})\) where

\[
H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0] \times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1
\]
\[
W_{out} = (W_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1] \times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1
\]

Attributes

- **weight** (Tensor): the learnable weights of the module of shape \((\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}}, \text{kernel\_size}[0], \text{kernel\_size}[1])\). The values of these weights are sampled from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where \(k = \frac{\text{out\_channels} \cdot \prod_{i=0}^{\text{groups}} \text{kernel\_size}[i]}{\text{in\_channels}}\)
- **bias** (Tensor): the learnable bias of the module of shape \((\text{out\_channels})\) If bias is True, then the values of these weights are sampled from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where \(k = \frac{\text{out\_channels} \cdot \prod_{i=0}^{\text{groups}} \text{kernel\_size}[i]}{\text{groups}}\)
Note

Depending on the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.

The padding argument effectively adds dilation * (kernel_size - 1) - padding amount of zero padding to both sizes of the input. This is set so that when a `nn_conv2d` and a `nn_conv_transpose2d` are initialized with same parameters, they are inverses of each other in regard to the input and output shapes. However, when stride > 1, `nn_conv2d` maps multiple input shapes to the same output shape. `output_padding` is provided to resolve this ambiguity by effectively increasing the calculated output shape on one side. Note that `output_padding` is only used to find output shape, but does not actually add zero-padding to output.

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting `torch.backends.cudnn.deterministic = TRUE`.

Examples

```r
if (torch_is_installed()) {

 # With square kernels and equal stride
 m <- nn_conv_transpose2d(16, 33, 3, stride=2)
 m <- nn_conv_transpose2d(16, 33, 3, stride=2)
 m <- nn_conv_transpose2d(16, 33, 3, stride=2, padding=c(4, 2))
 input <- torch_randn(20, 16, 50, 100)
 output <- m(input)

 # exact output size can be also specified as an argument
 input <- torch_randn(1, 16, 12, 12)
 downsample <- nn_conv2d(16, 16, 3, stride=2, padding=1)
 upsample <- nn_conv_transpose2d(16, 16, 3, stride=2, padding=1)
 h <- downsample(input)
 h$size()
 output <- upsample(h, output_size=input$size())
 output$size()
}
```

---

nn_conv_transpose3d  
ConvTranpose3D module

Description

Applies a 3D transposed convolution operator over an input image composed of several input planes.

Usage

```r
nn_conv_transpose3d(
 in_channels,
```
out_channels,
kernel_size,
stride = 1,
padding = 0,
output_padding = 0,
groups = 1,
bias = TRUE,
dilation = 1,
padding_mode = "zeros"
)

Arguments

in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): dilation * (kernel_size -1) -padding zero-padding will be added to both sides of each dimension in the input. Default: 0
output_padding (int or tuple, optional): Additional size added to one side of each dimension in the output shape. Default: 0

Arguments

out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): dilation * (kernel_size -1) -padding zero-padding will be added to both sides of each dimension in the input. Default: 0
output_padding (int or tuple, optional): Additional size added to one side of each dimension in the output shape. Default: 0

Arguments

out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): dilation * (kernel_size -1) -padding zero-padding will be added to both sides of each dimension in the input. Default: 0
output_padding (int or tuple, optional): Additional size added to one side of each dimension in the output shape. Default: 0

Arguments

out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): dilation * (kernel_size -1) -padding zero-padding will be added to both sides of each dimension in the input. Default: 0
output_padding (int or tuple, optional): Additional size added to one side of each dimension in the output shape. Default: 0

Arguments

in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): dilation * (kernel_size -1) -padding zero-padding will be added to both sides of each dimension in the input. Default: 0
output_padding (int or tuple, optional): Additional size added to one side of each dimension in the output shape. Default: 0

details

The transposed convolution operator multiplies each input value element-wise by a learnable kernel, and sums over the outputs from all input feature planes.

This module can be seen as the gradient of Conv3d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation).

• stride controls the stride for the cross-correlation.
• padding controls the amount of implicit zero-paddings on both sides for dilation * (kernel_size -1) -padding number of points. See note below for details.
• output_padding controls the additional size added to one side of the output shape. See note below for details.
• dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what dilation does.
• groups controls the connections between inputs and outputs. in_channels and out_channels must both be divisible by groups. For example,
  – At groups=1, all inputs are convolved to all outputs.
  – At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
  – At groups= in_channels, each input channel is convolved with its own set of filters (of size $\left\lceil \frac{\text{out_channels}}{\text{in_channels}} \right\rceil$).

The parameters kernel_size, stride, padding, output_padding can either be:
• a single int – in which case the same value is used for the depth, height and width dimensions
• a tuple of three ints – in which case, the first int is used for the depth dimension, the second int for the height dimension and the third int for the width dimension

Shape

• Input: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
• Output: $(N, C_{out}, D_{out}, H_{out}, W_{out})$ where
  
  \[
  D_{out} = (D_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0] \times (\text{kernel_size}[0] - 1) + \text{output_padding}[0] + 1
  \]
  
  \[
  H_{out} = (H_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1] \times (\text{kernel_size}[1] - 1) + \text{output_padding}[1] + 1
  \]
  
  \[
  W_{out} = (W_{in} - 1) \times \text{stride}[2] - 2 \times \text{padding}[2] + \text{dilation}[2] \times (\text{kernel_size}[2] - 1) + \text{output_padding}[2] + 1
  \]

Attributes

• weight (Tensor): the learnable weights of the module of shape $(\text{in_channels}, \frac{\text{out_channels}}{\text{groups}}, \text{kernel_size}[0], \text{kernel_size}[1], \text{kernel_size}[2])$. The values of these weights are sampled from $\mathcal{U}(-\sqrt{k}, \sqrt{k})$ where $k = \frac{C_{out} \times \prod_{i=0}^{\text{groups}} \text{kernel_size}[i]}{C_{in} \times \prod_{i=0}^{\text{groups}} \text{kernel_size}[i]}$

• bias (Tensor): the learnable bias of the module of shape $(\text{out_channels})$ If bias is True, then the values of these weights are sampled from $\mathcal{U}(-\sqrt{k}, \sqrt{k})$ where $k = \frac{C_{out} \times \prod_{i=0}^{\text{groups}} \text{kernel_size}[i]}{C_{in} \times \prod_{i=0}^{\text{groups}} \text{kernel_size}[i]}$

Note

Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.

The padding argument effectively adds $\text{dilation} \times (\text{kernel_size} - 1) - \text{padding}$ amount of zero padding to both sizes of the input. This is set so that when a `torch.nn.Conv3d` and a `torch.nn.ConvTranspose3d` are initialized with same parameters, they are inverses of each other in regard to the input and output shapes. However, when stride > 1, `torch.nn.Conv3d` maps multiple input shapes to the same output shape. output_padding is provided to resolve this ambiguity by effectively increasing the calculated output shape on one side. Note that output_padding is only used to find output shape, but does not actually add zero-padding to output.

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the
operation deterministic (potentially at a performance cost) by setting `torch.backends.cudnn.deterministic` = TRUE.

Examples

```r
if (torch_is_installed()) {
 ## Not run:
 # With square kernels and equal stride
 m <- nn_conv_transpose3d(16, 33, 3, stride=2)
 # non-square kernels and unequal stride and with padding
 m <- nn_conv_transpose3d(16, 33, c(3, 5, 2), stride=c(2, 1, 1), padding=c(0, 4, 2))
 input <- torch_randn(20, 16, 10, 50, 100)
 output <- m(input)
 ## End(Not run)
}
```

---

**nn_cosine_embedding_loss**

**Cosine embedding loss**

**Description**

Creates a criterion that measures the loss given input tensors \(x_1, x_2\) and a Tensor label \(y\) with values 1 or -1. This is used for measuring whether two inputs are similar or dissimilar, using the cosine distance, and is typically used for learning nonlinear embeddings or semi-supervised learning. The loss function for each sample is:

**Usage**

```r
nn_cosine_embedding_loss(margin = 0, reduction = "mean")
```

**Arguments**

- **margin** *(float, optional)*: Should be a number from \(-1\) to \(1\), \(0\) to \(0.5\) is suggested. If margin is missing, the default value is 0.
- **reduction** *(string, optional)*: Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

**Details**

\[
\text{loss}(x, y) = \begin{cases} 
1 - \cos(x_1, x_2), & \text{if } y = 1 \\
\max(0, \cos(x_1, x_2) - \text{margin}), & \text{if } y = -1 
\end{cases}
\]
**nn_cross_entropy_loss**  
*CrossEntropyLoss module*

**Description**

This criterion combines `nn_log_softmax()` and `nn_nll_loss()` in one single class. It is useful when training a classification problem with \( C \) classes.

**Usage**

```python
nn_cross_entropy_loss(weight = NULL, ignore_index = -100, reduction = "mean")
```

**Arguments**

- `weight` (Tensor, optional): a manual rescaling weight given to each class. If given, has to be a Tensor of size \( C \)
- `ignore_index` (int, optional): Specifies a target value that is ignored and does not contribute to the input gradient. When `size_average` is `TRUE`, the loss is averaged over non-ignored targets.
- `reduction` (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: 'mean'

**Details**

If provided, the optional argument `weight` should be a 1D Tensor assigning weight to each of the classes.

This is particularly useful when you have an unbalanced training set. The input is expected to contain raw, unnormalized scores for each class. Input has to be a Tensor of size either \((\text{minibatch}, C)\) or \((\text{minibatch}, C, d_1, d_2, ..., d_K)\) with \( K \geq 1 \) for the \( K \)-dimensional case (described later).

This criterion expects a class index in the range \([0, C - 1]\) as the target for each value of a 1D tensor of size minibatch; if `ignore_index` is specified, this criterion also accepts this class index (this index may not necessarily be in the class range).

The loss can be described as:

\[
\text{loss}(x, \text{class}) = - \log \left( \frac{\exp(x[\text{class}])}{\sum_j \exp(x[j])} \right) = -x[\text{class}] + \log \left( \sum_j \exp(x[j]) \right)
\]

or in the case of the `weight` argument being specified:

\[
\text{loss}(x, \text{class}) = weight[\text{class}] \left( -x[\text{class}] + \log \left( \sum_j \exp(x[j]) \right) \right)
\]
The losses are averaged across observations for each minibatch. Can also be used for higher dimension inputs, such as 2D images, by providing an input of size \((\text{minibatch}, C, d_1, d_2, \ldots, d_K)\) with \(K \geq 1\), where \(K\) is the number of dimensions, and a target of appropriate shape (see below).

**Shape**
- Input: \((N, C)\) where \(C = \) number of classes, or \((N, C, d_1, d_2, \ldots, d_K)\) with \(K \geq 1\) in the case of K-dimensional loss.
- Target: \((N)\) where each value is \(0 \leq \text{targets}[i] \leq C - 1\), or \((N, d_1, d_2, \ldots, d_K)\) with \(K \geq 1\) in the case of K-dimensional loss.
- Output: scalar. If \texttt{reduction} is 'none', then the same size as the target: \((N)\), or \((N, d_1, d_2, \ldots, d_K)\) with \(K \geq 1\) in the case of K-dimensional loss.

**Examples**
```r
if (torch_is_installed()) {
 loss <- nn_cross_entropy_loss()
 input <- torch_randn(3, 5, requires_grad=TRUE)
 target <- torch_randint(low = 1, high = 5, size = 3, dtype = torch_long())
 output <- loss(input, target)
 output$backward()
}
```

---

**nn_ctc_loss**

The **Connectionist Temporal Classification loss**.

**Description**
Calculates loss between a continuous (unsegmented) time series and a target sequence. CTCLoss sums over the probability of possible alignments of input to target, producing a loss value which is differentiable with respect to each input node. The alignment of input to target is assumed to be "many-to-one", which limits the length of the target sequence such that it must be \(\leq\) the input length.

**Usage**

`nn_ctc_loss(blank = 0, reduction = "mean", zero_infinity = FALSE)`

**Arguments**
- **blank** (int, optional): blank label. Default 0.
- **reduction** (string, optional): Specifies the reduction to apply to the output: 'none' l 'mean' l 'sum'. 'none': no reduction will be applied, 'mean': the output losses will be divided by the target lengths and then the mean over the batch is taken. Default: 'mean'
- **zero_infinity** (bool, optional): Whether to zero infinite losses and the associated gradients. Default: FALSE Infinite losses mainly occur when the inputs are too short to be aligned to the targets.
**Shape**

- **Log_probs**: Tensor of size \((T, N, C)\), where \(T = \) input length, \(N = \) batch size, and \(C = \) number of classes (including blank). The logarithmized probabilities of the outputs (e.g. obtained with `nnf.log_softmax()`).

- **Targets**: Tensor of size \((N, S)\) or \((\text{sum}(\text{target_lengths}))\), where \(N = \) batch size and \(S = \) max target length, if shape is \((N, S)\). It represent the target sequences. Each element in the target sequence is a class index. And the target index cannot be blank (default=0). In the \((N, S)\) form, targets are padded to the length of the longest sequence, and stacked. In the \((\text{sum}(\text{target_lengths}))\) form, the targets are assumed to be un-padded and concatenated within 1 dimension.

- **Input_lengths**: Tuple or tensor of size \((N)\), where \(N = \) batch size. It represent the lengths of the inputs (must each be \(\leq T\)). And the lengths are specified for each sequence to achieve masking under the assumption that sequences are padded to equal lengths.

- **Target_lengths**: Tuple or tensor of size \((N)\), where \(N = \) batch size. It represent lengths of the targets. Lengths are specified for each sequence to achieve masking under the assumption that sequences are padded to equal lengths. If target shape is \((N, S)\), target_lengths are effectively the stop index \(s_n\) for each target sequence, such that \(\text{target}_n = \text{targets}[n, 0:s_n]\) for each target in a batch. Lengths must each be \(\leq S\) If the targets are given as a 1d tensor that is the concatenation of individual targets, the target_lengths must add up to the total length of the tensor.

- **Output**: scalar. If `reduction` is 'none', then \((N)\), where \(N = \) batch size.

- `nnf.log_softmax()`: \(R:nnf)log_softmax()\) \([n,0:s_n]\): \(R:n,0:s_n\)

**Note**

In order to use CuDNN, the following must be satisfied: targets must be in concatenated format, all input_lengths must be \(T\). blank = 0, target_lengths \(\leq 256\), the integer arguments must be of The regular implementation uses the (more common in PyTorch) `torch_long` dtype. dtype `torch_int32`.

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting `torch.backends.cudnn.deterministic = TRUE`.

**References**


**Examples**

```r
if (torch_is_installed()) {
 # Target are to be padded
 T <- 50 # Input sequence length
 C <- 20 # Number of classes (including blank)
 N <- 16 # Batch size
 S <- 30 # Target sequence length of longest target in batch (padding length)
```
nn_dropout

Dropout module

Description

During training, randomly zeroes some of the elements of the input tensor with probability $p$ using samples from a Bernoulli distribution. Each channel will be zeroed out independently on every forward call.

Usage

```
n_dropout(p = 0.5, inplace = FALSE)
```

Arguments

- $p$ probability of an element to be zeroed. Default: 0.5
- `inplace` If set to TRUE, will do this operation in-place. Default: FALSE.
nn_dropout2d

Details
This has proven to be an effective technique for regularization and preventing the co-adaptation of neurons as described in the paper *Improving neural networks by preventing co-adaptation of feature detectors*.

Furthermore, the outputs are scaled by a factor of \(\frac{1}{1-p}\) during training. This means that during evaluation the module simply computes an identity function.

Shape
- Input: (*) Input can be of any shape
- Output: (*) Output is of the same shape as input

Examples
if (torch_is_installed()) {
m <- nn_dropout(p = 0.2)
input <- torch_randn(20, 16)
output <- m(input)
}

**nn_dropout2d**  
*Dropout2D module*

Description
Randomly zero out entire channels (a channel is a 2D feature map, e.g., the \(j\)-th channel of the \(i\)-th sample in the batched input is a 2D tensor \(i,j\)).

Usage

\[
nn_dropout2d(p = 0.5, inplace = FALSE)
\]

Arguments
- \(p\) (float, optional): probability of an element to be zero-ed.
- \(inplace\) (bool, optional): If set to TRUE, will do this operation in-place

Details
Each channel will be zeroed out independently on every forward call with probability \(p\) using samples from a Bernoulli distribution. Usually the input comes from *nn_conv2d* modules.

As described in the paper *Efficient Object Localization Using Convolutional Networks*, if adjacent pixels within feature maps are strongly correlated (as is normally the case in early convolution layers) then i.i.d. dropout will not regularize the activations and will otherwise just result in an effective learning rate decrease. In this case, *nn_dropout2d* will help promote independence between feature maps and should be used instead.
nn_dropout3d

Shape

- Input: \((N, C, D, H, W)\)
- Output: \((N, C, D, H, W)\) (same shape as input)

Examples

```r
if (torch_is_installed()) {
 m <- nn_dropout2d(p = 0.2)
 input <- torch_randn(20, 16, 32, 32)
 output <- m(input)
}
```

nn_dropout3d  Dropout3D module

Description

Randomly zero out entire channels (a channel is a 3D feature map, e.g., the \(j\)-th channel of the \(i\)-th sample in the batched input is a 3D tensor \(i[j]\)).

Usage

`nn_dropout3d(p = 0.5, inplace = FALSE)`

Arguments

- \(p\) (float, optional): probability of an element to be zeroed.
- \(inplace\) (bool, optional): If set to TRUE, will do this operation in-place

Details

Each channel will be zeroed out independently on every forward call with probability \(p\) using samples from a Bernoulli distribution. Usually the input comes from `nn_conv2d` modules.

As described in the paper Efficient Object Localization Using Convolutional Networks, if adjacent pixels within feature maps are strongly correlated (as is normally the case in early convolution layers) then i.i.d. dropout will not regularize the activations and will otherwise just result in an effective learning rate decrease.

In this case, `nn_dropout3d` will help promote independence between feature maps and should be used instead.

Shape

- Input: \((N, C, D, H, W)\)
- Output: \((N, C, D, H, W)\) (same shape as input)
nn_elu

Examples
if (torch_is_installed()) {
  m <- nn_dropout3d(p = 0.2)
  input <- torch_randn(20, 16, 4, 32, 32)
  output <- m(input)
}

nn_elu  

ELU module

Description
Applies the element-wise function:

Usage
nn_elu(alpha = 1, inplace = FALSE)

Arguments
alpha  the $\alpha$ value for the ELU formulation. Default: 1.0
inplace  can optionally do the operation in-place. Default: FALSE

Details
ELU($x$) = max(0, $x$) + min(0, $\alpha$ * (exp($x$) − 1))

Shape
• Input: ($N, *$) where $*$ means, any number of additional dimensions
• Output: ($N, *$), same shape as the input

Examples
if (torch_is_installed()) {
  m <- nn_elu()
  input <- torch_randn(2)
  output <- m(input)
}

nn_embedding

Embedding module

Description

A simple lookup table that stores embeddings of a fixed dictionary and size. This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings.

Usage

nn_embedding(
    num_embeddings,
    embedding_dim,
    padding_idx = NULL,
    max_norm = NULL,
    norm_type = 2,
    scale_grad_by_freq = FALSE,
    sparse = FALSE,
    .weight = NULL
)

Arguments

num_embeddings (int): size of the dictionary of embeddings
embedding_dim (int): the size of each embedding vector
padding_idx (int, optional): If given, pads the output with the embedding vector at padding_idx (initialized to zeros) whenever it encounters the index.
max_norm (float, optional): If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm.
norm_type (float, optional): The p of the p-norm to compute for the max_norm option. Default 2.
scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False.
sparse (bool, optional): If True, gradient w.r.t. weight matrix will be a sparse tensor.
.weight (Tensor) embeddings weights (in case you want to set it manually)

See Notes for more details regarding sparse gradients.

Attributes

- weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) initialized from $\mathcal{N}(0, 1)$
Shape

- Input: (*), LongTensor of arbitrary shape containing the indices to extract
- Output: (*, H), where * is the input shape and H = embedding_dim

Note

Keep in mind that only a limited number of optimizers support sparse gradients: currently it’s optim.SGD (CUDA and CPU), optim.SparseAdam (CUDA and CPU) and optim.Adagrad (CPU).

With padding_idx set, the embedding vector at padding_idx is initialized to all zeros. However, note that this vector can be modified afterwards, e.g., using a customized initialization method, and thus changing the vector used to pad the output. The gradient for this vector from nn_embedding is always zero.

Examples

```r
if (torch_is_installed()) {
 # an Embedding module containing 10 tensors of size 3
 embedding <- nn_embedding(10, 3)
 # a batch of 2 samples of 4 indices each
 input <- torch_tensor(rbind(c(1,2,4,5),c(4,3,2,9)), dtype = torch_long())
 embedding(input)
 # example with padding_idx
 embedding <- nn_embedding(10, 3, padding_idx=1)
 input <- torch_tensor(matrix(c(1,3,1,6), nrow = 1), dtype = torch_long())
 embedding(input)
}
```

nn_fractional_max_pool2d

Applies a 2D fractional max pooling over an input signal composed of several input planes.

Description

Fractional MaxPooling is described in detail in the paper Fractional MaxPooling by Ben Graham.

Usage

```r
nn_fractional_max_pool2d(
 kernel_size,
 output_size = NULL,
 output_ratio = NULL,
 return_indices = FALSE
)
```
**Arguments**

- **kernel_size**
  - the size of the window to take a max over. Can be a single number \( k \) (for a square kernel of \( k \times k \)) or a tuple \((k_h, k_w)\).

- **output_size**
  - the target output size of the image of the form \( o_H \times o_W \). Can be a tuple \((o_H, o_W)\) or a single number \( o_H \) for a square image \( o_H \times o_H \).

- **output_ratio**
  - If one wants to have an output size as a ratio of the input size, this option can be given. This has to be a number or tuple in the range \((0, 1)\).

- **return_indices**
  - if `TRUE`, will return the indices along with the outputs. Useful to pass to `nn_max_unpool2d()`. Default: `FALSE`.

**Details**

The max-pooling operation is applied in \( k_H \times k_W \) regions by a stochastic step size determined by the target output size. The number of output features is equal to the number of input planes.

**Examples**

```r
if (torch_is_installed()) {
}
```

---

**Description**

Fractional MaxPooling is described in detail in the paper *Fractional MaxPooling* by Ben Graham.

**Usage**

```r
nn_fractional_max_pool3d(
 kernel_size,
 output_size = NULL,
 output_ratio = NULL,
 return_indices = FALSE
)
```

**Arguments**

- **kernel_size**
  - the size of the window to take a max over. Can be a single number \( k \) (for a square kernel of \( k \times k \times k \)) or a tuple \((k_t \times k_h \times k_w)\).

- **output_size**
  - the target output size of the image of the form \( o_T \times o_H \times o_W \). Can be a tuple \((o_T, o_H, o_W)\) or a single number \( o_H \) for a square image \( o_H \times o_H \times o_H \).
output_ratio If one wants to have an output size as a ratio of the input size, this option can be given. This has to be a number or tuple in the range (0, 1).

return_indices if TRUE, will return the indices along with the outputs. Useful to pass to nn_max_unpool3d(). Default: FALSE

Details

The max-pooling operation is applied in $kT \times kH \times kW$ regions by a stochastic step size determined by the target output size. The number of output features is equal to the number of input planes.

Examples

```python
if (torch_is_installed()) {
 # pool of cubic window of size=3, and target output size 13x12x11
 m = nn_fractional_max_pool3d(3, output_size=c(13, 12, 11))
 # pool of cubic window and target output size being half of input size
 m = nn_fractional_max_pool3d(3, output_ratio=c(0.5, 0.5, 0.5))
 input = torch.randn(20, 16, 50, 32, 16)
 output = m(input)
}
```

---

**nn_gelu**

**GELU module**

**Description**

Applies the Gaussian Error Linear Units function:

$$\text{GELU}(x) = x \cdot \Phi(x)$$

**Usage**

`nn_gelu()`

**Details**

where $\Phi(x)$ is the Cumulative Distribution Function for Gaussian Distribution.

**Shape**

- Input: $(N, \ast)$ where $\ast$ means, any number of additional dimensions
- Output: $(N, \ast)$, same shape as the input
nn_glu

GLU module

Description

Applies the gated linear unit function $GLU(a, b) = a \otimes \sigma(b)$ where $a$ is the first half of the input matrices and $b$ is the second half.

Usage

nn_glu(dim = -1)

Arguments

dim (int): the dimension on which to split the input. Default: -1

Shape

- Input: $(\ast_1, N, \ast_2)$ where $\ast$ means, any number of additional dimensions
- Output: $(\ast_1, M, \ast_2)$ where $M = N/2$

Examples

```r
if (torch_is_installed()) {
 m <- nn_glu()
 input <- torch_randn(4, 2)
 output <- m(input)
}
```
Group normalization

Description

Applies Group Normalization over a mini-batch of inputs as described in the paper Group Normalization.

Usage

nn_group_norm(num_groups, num_channels, eps = 1e-05, affine = TRUE)

Arguments

- **num_groups**: (int) number of groups to separate the channels into
- **num_channels**: (int) number of channels expected in input
- **eps**: a value added to the denominator for numerical stability. Default: 1e-5
- **affine**: a boolean value that when set to TRUE, this module has learnable per-channel affine parameters initialized to ones (for weights) and zeros (for biases). Default: TRUE.

Details

\[ y = \frac{x - \mathbb{E}[x]}{\sqrt{\text{Var}[x] + \epsilon}} \ast \gamma + \beta \]

The input channels are separated into num_groups groups, each containing num_channels / num_groups channels. The mean and standard-deviation are calculated separately over the each group. \( \gamma \) and \( \beta \) are learnable per-channel affine transform parameter vectors of size num_channels if affine is TRUE. The standard-deviation is calculated via the biased estimator, equivalent to torch_var(input, unbiased=FALSE).

Shape

- Input: \((N, C, *)\) where \(C = \text{num_channels}\)
- Output: \((N, C, *)\)' (same shape as input)

Note

This layer uses statistics computed from input data in both training and evaluation modes.
Examples

```r
if (torch_is_installed()) {

 input <- torch_randn(20, 6, 10, 10)
 # Separate 6 channels into 3 groups
 m <- nn_group_norm(3, 6)
 # Separate 6 channels into 6 groups (equivalent with [nn_instance_morm])
 m <- nn_group_norm(6, 6)
 # Put all 6 channels into a single group (equivalent with [nn_layer_norm])
 m <- nn_group_norm(1, 6)
 # Activating the module
 output <- m(input)

}
```

**nn_gru**

 Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.

Description

For each element in the input sequence, each layer computes the following function:

Usage

```r
nn_gru(
 input_size,
 hidden_size,
 num_layers = 1,
 bias = TRUE,
 batch_first = FALSE,
 dropout = 0,
 bidirectional = FALSE,
 ...
)
```

Arguments

- `input_size` The number of expected features in the input \( x \)
- `hidden_size` The number of features in the hidden state \( h \)
- `num_layers` Number of recurrent layers. E.g., setting `num_layers=2` would mean stacking two GRUs together to form a stacked GRU, with the second GRU taking in outputs of the first GRU and computing the final results. Default: 1
- `bias` If `FALSE`, then the layer does not use bias weights \( b_{ih} \) and \( b_{hh} \). Default: `TRUE`
- `batch_first` If `TRUE`, then the input and output tensors are provided as (batch, seq, feature). Default: `FALSE`
**nn_gru**

- **dropout**: If non-zero, introduces a Dropout layer on the outputs of each GRU layer except the last layer, with dropout probability equal to dropout. Default: 0
- **bidirectional**: If TRUE, becomes a bidirectional GRU. Default: FALSE

... currently unused.

**Details**

\[
\begin{align*}
    r_t &= \sigma(W_{ir}x_t + b_{ir} + W_{hr}h_{(t-1)} + b_{hr}) \\
    z_t &= \sigma(W_{iz}x_t + b_{iz} + W_{hz}h_{(t-1)} + b_{hz}) \\
    n_t &= \tanh(W_{in}x_t + b_{in} + r_t(W_{hn}h_{(t-1)} + b_{hn})) \\
    h_t &= (1 - z_t)n_t + z_t h_{(t-1)}
\end{align*}
\]

where \(h_t\) is the hidden state at time \(t\), \(x_t\) is the input at time \(t\), \(h_{(t-1)}\) is the hidden state of the previous layer at time \(t-1\) or the initial hidden state at time \(0\), and \(r_t, z_t, n_t\) are the reset, update, and new gates, respectively. \(\sigma\) is the sigmoid function.

**Inputs**

- **input** of shape \((seq_len, batch, input_size)\): tensor containing the features of the input sequence. The input can also be a packed variable length sequence. See `nn_utils.rnn_pack_padded_sequence()` for details.
- **h_0** of shape \((num_layers * num_directions, batch, hidden_size)\): tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided.

**Outputs**

- **output** of shape \((seq_len, batch, num_directions * hidden_size)\): tensor containing the output features \(h_t\) from the last layer of the GRU, for each \(t\). If a PackedSequence has been given as the input, the output will also be a packed sequence. For the unpacked case, the directions can be separated using `output$view(c(seq_len,batch,num_directions,hidden_size))`, with forward and backward being direction \(0\) and \(1\) respectively. Similarly, the directions can be separated in the packed case.
- **h_n** of shape \((num_layers * num_directions, batch, hidden_size)\): tensor containing the hidden state for \(t = seq_len\). Like output, the layers can be separated using `h_n$view(num_layers,num_directions,batch,hidden_size)`.

**Attributes**

- **weight_ih_l[k]**: the learnable input-hidden weights of the \(k^{th}\) layer \((W_{ir}|W_{iz}|W_{in})\), of shape \((3*hidden_size \times input_size)\)
- **weight_hh_l[k]**: the learnable hidden-hidden weights of the \(k^{th}\) layer \((W_{hr}|W_{hz}|W_{hn})\), of shape \((3*hidden_size \times hidden_size)\)
- **bias_ih_l[k]**: the learnable input-hidden bias of the \(k^{th}\) layer \((b_{ir}|b_{iz}|b_{in})\), of shape \((3*hidden_size)\)
- **bias_hh_l[k]**: the learnable hidden-hidden bias of the \(k^{th}\) layer \((b_{hr}|b_{hz}|b_{hn})\), of shape \((3*hidden_size)\)
Note

All the weights and biases are initialized from $\mathcal{U}(-\sqrt{k}, \sqrt{k})$ where $k = \frac{1}{\text{hidden_size}}$

Examples

```r
if (torch_is_installed()) {
 rnn <- nn_gru(10, 20, 2)
 input <- torch_randn(5, 3, 10)
 h0 <- torch_randn(2, 3, 20)
 output <- rnn(input, h0)
}
```

---

nn_hardshrink

Hardshrink module

Description

Applies the hard shrinkage function element-wise:

Usage

```r
nn_hardshrink(lambd = 0.5)
```

Arguments

- `lambd` the $\lambda$ value for the Hardshrink formulation. Default: 0.5

Details

$$\text{HardShrink}(x) = \begin{cases} 
  x, & \text{if } x > \lambda \\
  x, & \text{if } x < -\lambda \\
  0, & \text{otherwise}
\end{cases}$$

Shape

- Input: $(N, *)$ where * means, any number of additional dimensions
- Output: $(N, *)$, same shape as the input

Examples

```r
if (torch_is_installed()) {
 m <- nn_hardshrink()
 input <- torch_randn(2)
 output <- m(input)
}
```
**nn_hardsigmoid**  

**Hardsigmoid module**

**Description**

Applies the element-wise function:

**Usage**

```
nn_hardsigmoid()
```

**Details**

\[
\text{Hardsigmoid}(x) = \begin{cases} 
0 & \text{if } x \leq -3, \\
1 & \text{if } x \geq +3, \\
x/6 + 1/2 & \text{otherwise}
\end{cases}
\]

**Shape**

- Input: \((N, *)\) where * means, any number of additional dimensions
- Output: \((N, *)\), same shape as the input

**Examples**

```
if (torch_is_installed()) {
 m <- nn_hardsigmoid()
 input <- torch_randn(2)
 output <- m(input)
}
```

---

**nn_hardswish**  

**Hardswish module**

**Description**

Applies the hardswish function, element-wise, as described in the paper: Searching for MobileNetV3

**Usage**

```
nn_hardswish()
```

**Details**

\[
\text{Hardswish}(x) = \begin{cases} 
0 & \text{if } x \leq -3, \\
x & \text{if } x \geq +3, \\
x \cdot (x + 3)/6 & \text{otherwise}
\end{cases}
\]
Shape

- Input: $(N, *)$ where $*$ means, any number of additional dimensions
- Output: $(N, *)$, same shape as the input

Examples

```r
if (torch_is_installed()) {
 ## Not run:
 m <- nn_hardswish()
 input <- torch_randn(2)
 output <- m(input)

 ## End(Not run)
}
```

---

### nn_hardtanh  
**Hardtanh module**

**Description**

Applies the HardTanh function element-wise. HardTanh is defined as:

$$\text{HardTanh}(x) = \begin{cases} 
1 & \text{if } x > 1 \\
-1 & \text{if } x < -1 \\
x & \text{otherwise}
\end{cases}$$

The range of the linear region $[-1, 1]$ can be adjusted using `min_val` and `max_val`.

**Usage**

```r
nn_hardtanh(min_val = -1, max_val = 1, inplace = FALSE)
```

**Arguments**

- `min_val`: minimum value of the linear region range. Default: -1
- `max_val`: maximum value of the linear region range. Default: 1
- `inplace`: can optionally do the operation in-place. Default: FALSE

**Shape**

- Input: $(N, *)$ where $*$ means, any number of additional dimensions
- Output: $(N, *)$, same shape as the input
Examples

```
if (torch_is_installed()) {
 m <- nn_hardtanh(-2, 2)
 input <- torch_randn(2)
 output <- m(input)
}
```

### Description

Measures the loss given an input tensor $x$ and a labels tensor $y$ (containing 1 or -1).

### Usage

```r
nn_hinge_embedding_loss(margin = 1, reduction = "mean")
```

### Arguments

- **margin** (float, optional): Has a default value of 1.
- **reduction** (string, optional): Specifies the reduction to apply to the output: 'none', 'mean', 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

### Details

This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as $x$, and is typically used for learning nonlinear embeddings or semi-supervised learning. The loss function for $n$-th sample in the mini-batch is

$$ l_n = \begin{cases} 
  x_n, & \text{if } y_n = 1, \\
  \max\{0, \Delta - x_n\}, & \text{if } y_n = -1,
\end{cases} $$

and the total loss functions is

$$ \ell(x, y) = \begin{cases} 
  \text{mean}(L), & \text{if reduction = 'mean'}; \\
  \text{sum}(L), & \text{if reduction = 'sum'}.
\end{cases} $$

where $L = \{l_1, \ldots, l_N\}^\top$. 

Shape

- Input: \((\ast)\) where \(\ast\) means, any number of dimensions. The sum operation operates over all the elements.
- Target: \((\ast)\), same shape as the input
- Output: scalar. If reduction is 'none', then same shape as the input

nn_identity

**Identity module**

**Description**

A placeholder identity operator that is argument-insensitive.

**Usage**

```r
nn_identity(...)
```

**Arguments**

```r
... any arguments (unused)
```

**Examples**

```r
if (torch_is_installed()) {
 m <- nn_identity(54, unused_argument1 = 0.1, unused_argument2 = FALSE)
 input <- torch_randn(128, 20)
 output <- m(input)
 print(output$size())
}
```

nn_init_calculate_gain

**Calculate gain**

**Description**

Return the recommended gain value for the given nonlinearity function.

**Usage**

```r
nn_init_calculate_gain(nonlinearity, param = NULL)
```

**Arguments**

```r
nonlinearity the non-linear function
param optional parameter for the non-linear function
```
**nn_init_constant_**  
*Constant initialization*

**Description**

Fills the input Tensor with the value `val`.

**Usage**

```r
nn_init_constant_(tensor, val)
```

**Arguments**

- `tensor` an `n`-dimensional `torch.Tensor`
- `val` the value to fill the tensor with

**Examples**

```r
if (torch_is_installed()) {
 w <- torch_empty(3, 5)
 nn_init_constant_(w, 0.3)
}
```

---

**nn_init_dirac_**  
*Dirac initialization*

**Description**

Fills the 3, 4, 5-dimensional input `Tensor` with the Dirac delta function. Preserves the identity of the inputs in Convolutional layers, where as many input channels are preserved as possible. In case of `groups > 1`, each group of channels preserves identity.

**Usage**

```r
nn_init_dirac_(tensor, groups = 1)
```

**Arguments**

- `tensor` a 3, 4, 5-dimensional `torch.Tensor`
- `groups` (optional) number of groups in the conv layer (default: 1)
Examples

```r
if (torch_is_installed()) {
 ## Not run:
 w <- torch_empty(3, 16, 5, 5)
 nn_init_dirac_(w)

 ## End(Not run)
}
```

---

**nn_init_eye_**  
**Eye initialization**

### Description

Fills the 2-dimensional input Tensor with the identity matrix. Preserves the identity of the inputs in Linear layers, where as many inputs are preserved as possible.

### Usage

```r
nn_init_eye_(tensor)
```

### Arguments

- `tensor`  
a 2-dimensional torch tensor.

### Examples

```r
if (torch_is_installed()) {
 w <- torch_empty(3, 5)
 nn_init_eye_(w)
}
```

---

**nn_init_kaiming_normal_**  
**Kaiming normal initialization**

### Description

Fills the input Tensor with values according to the method described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015), using a normal distribution.
nn_init_kaiming_uniform

Usage

```r
nn_init_kaiming_normal_(
 tensor,
 a = 0,
 mode = "fan_in",
 nonlinearity = "leaky_relu"
)
```

Arguments

tensor an n-dimensional `torch.Tensor`
a the negative slope of the rectifier used after this layer (only used with 'leaky_relu')
mode either 'fan_in' (default) or 'fan_out'. Choosing 'fan_in' preserves the magnitude of the variance of the weights in the forward pass. Choosing 'fan_out' preserves the magnitudes in the backwards pass.
nonlinearity the non-linear function. recommended to use only with 'relu' or 'leaky_relu' (default).

Examples

```r
if (torch_is_installed()) {
 w <- torch_empty(3, 5)
 nn_init_kaiming_normal_(w, mode = "fan_in", nonlinearity = "leaky_relu")
}
```

---

nn_init_kaiming_uniform

*Kaiming uniform initialization*

Description

Fills the input Tensor with values according to the method described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015), using a uniform distribution.

Usage

```r
nn_init_kaiming_uniform_(
 tensor,
 a = 0,
 mode = "fan_in",
 nonlinearity = "leaky_relu"
)
```
nn_init_normal_

**Arguments**

- **tensor**: an n-dimensional torch.Tensor
- **a**: the negative slope of the rectifier used after this layer (only used with 'leaky_relu')
- **mode**: either 'fan_in' (default) or 'fan_out'. Choosing 'fan_in' preserves the magnitude of the variance of the weights in the forward pass. Choosing 'fan_out' preserves the magnitudes in the backwards pass.
- **nonlinearity**: the non-linear function. recommended to use only with 'relu' or 'leaky_relu' (default).

**Examples**

```r
if (torch_is_installed()) {
 w <- torch_empty(3, 5)
 nn_init_kaiming_uniform_(w, mode = "fan_in", nonlinearity = "leaky_relu")
}
```

---

**nn_init_normal_ Normal initialization**

**Description**

Fills the input Tensor with values drawn from the normal distribution

**Usage**

```
nn_init_normal_(tensor, mean = 0, std = 1)
```

**Arguments**

- **tensor**: an n-dimensional Tensor
- **mean**: the mean of the normal distribution
- **std**: the standard deviation of the normal distribution

**Examples**

```r
if (torch_is_installed()) {
 w <- torch_empty(3, 5)
 nn_init_normal_(w)
}
```
**nn_init_ones_**  
*Ones initialization*

**Description**
Fills the input Tensor with the scalar value 1

**Usage**
```
nn_init_ones_(tensor)
```

**Arguments**
- **tensor** an n-dimensional Tensor

**Examples**
```
if (torch_is_installed()) {
 w <- torch_empty(3, 5)
 nn_init_ones_(w)
}
```

---

**nn_init_orthogonal_**  
*Orthogonal initialization*

**Description**
Fills the input Tensor with a (semi) orthogonal matrix, as described in Exact solutions to the non-linear dynamics of learning in deep linear neural networks - Saxe, A. et al. (2013). The input tensor must have at least 2 dimensions, and for tensors with more than 2 dimensions the trailing dimensions are flattened.

**Usage**
```
nn_init_orthogonal_(tensor, gain = 1)
```

**Arguments**
- **tensor** an n-dimensional Tensor
- **gain** optional scaling factor
nn_init_sparse_

Examples

if (torch_is_installed()) {
    w <- torch_empty(3, 5)
    nn_init_orthogonal_(w)
}

---

nn_init_sparse_  Sparse initialization

Description

Fills the 2D input Tensor as a sparse matrix, where the non-zero elements will be drawn from the normal distribution as described in Deep learning via Hessian-free optimization - Martens, J. (2010).

Usage

nn_init_sparse_(tensor, sparsity, std = 0.01)

Arguments

tensor  an n-dimensional Tensor
sparsity  The fraction of elements in each column to be set to zero
std  the standard deviation of the normal distribution used to generate the non-zero values

Examples

if (torch_is_installed()) {
    # Not run:
    w <- torch_empty(3, 5)
    nn_init_sparse_(w, sparsity = 0.1)

    # End(Not run)
}
nn_init_trunc_normal_  Truncated normal initialization

Description

Fills the input Tensor with values drawn from a truncated normal distribution.

Usage

    nn_init_trunc_normal_(tensor, mean = 0, std = 1, a = -2, b = 2)

Arguments

tensor  an n-dimensional Tensor
mean  the mean of the normal distribution
std  the standard deviation of the normal distribution
a  the minimum cutoff value
b  the maximum cutoff value

Examples

    if (torch_is_installed()) {
        w <- torch_empty(3, 5)
        nn_init_trunc_normal_(w)
    }

nn_init_uniform_  Uniform initialization

Description

Fills the input Tensor with values drawn from the uniform distribution.

Usage

    nn_init_uniform_(tensor, a = 0, b = 1)

Arguments

tensor  an n-dimensional Tensor
a  the lower bound of the uniform distribution
b  the upper bound of the uniform distribution
Examples

```r
if (torch_is_installed()) {
 w <- torch_empty(3, 5)
 nn_init_uniform_(w)
}
```

**nn_init_xavier_normal_**

*Xavier normal initialization*

**Description**

Fills the input Tensor with values according to the method described in Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010), using a normal distribution.

**Usage**

```r
nn_init_xavier_normal_(tensor, gain = 1)
```

**Arguments**

- `tensor`: an n-dimensional Tensor
- `gain`: an optional scaling factor

**Examples**

```r
if (torch_is_installed()) {
 w <- torch_empty(3, 5)
 nn_init_xavier_normal_(w)
}
```

**nn_init_xavier_uniform_**

*Xavier uniform initialization*

**Description**

Fills the input Tensor with values according to the method described in Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010), using a uniform distribution.
**nn_init_xavier_uniform_**

**Usage**

```
nn_init_xavier_uniform_(tensor, gain = 1)
```

**Arguments**

- tensor: an n-dimensional Tensor
- gain: an optional scaling factor

**Examples**

```
if (torch_is_installed()) {
 w <- torch_empty(3, 5)
 nn_init_xavier_uniform_(w)
}
```

---

**nn_init_zeros_**

**Zeros initialization**

**Description**

Fills the input Tensor with the scalar value 0

**Usage**

```
nn_init_zeros_(tensor)
```

**Arguments**

- tensor: an n-dimensional tensor

**Examples**

```
if (torch_is_installed()) {
 w <- torch_empty(3, 5)
 nn_init_zeros_(w)
}
```
nn_kl_div_loss  

Kullback-Leibler divergence loss

Description

The Kullback-Leibler divergence loss measure Kullback-Leibler divergence is a useful distance measure for continuous distributions and is often useful when performing direct regression over the space of (discretely sampled) continuous output distributions.

Usage

```
nn_kl_div_loss(reduction = "mean")
```

Arguments

- **reduction**: (string, optional) Specifies the reduction to apply to the output: 'none' | 'batchmean' | 'sum' | 'mean'. 'none': no reduction will be applied. 'batchmean': the sum of the output will be divided by batchsize. 'sum': the output will be summed. 'mean': the output will be divided by the number of elements in the output. Default: 'mean'

Details

As with `nn_nll_loss()`, the input given is expected to contain log-probabilities and is not restricted to a 2D Tensor.

The targets are interpreted as probabilities by default, but could be considered as log-probabilities with log_target set to TRUE.

This criterion expects a target Tensor of the same size as the input Tensor.

The unreduced (i.e. with reduction set to 'none') loss can be described as:

```
\ell(x, y) = L = \{l_1, \ldots, l_N\}, \quad l_n = y_n \cdot (\log y_n - x_n)
```

where the index $N$ spans all dimensions of input and $L$ has the same shape as input. If reduction is not 'none' (default 'mean'), then:

```
\ell(x, y) = \begin{cases}
\text{mean}(L), & \text{if reduction = 'mean'}; \\
\text{sum}(L), & \text{if reduction = 'sum'}.
\end{cases}
```

In default reduction mode 'mean', the losses are averaged for each minibatch over observations as well as over dimensions. 'batchmean' mode gives the correct KL divergence where losses are averaged over batch dimension only. 'mean' mode’s behavior will be changed to the same as 'batchmean' in the next major release.
Shape

- Input: \((N, \ast)\) where \(\ast\) means, any number of additional dimensions
- Target: \((N, \ast)\), same shape as the input
- Output: scalar by default. If reduction is 'none', then \((N, \ast)\), the same shape as the input

Note

reduction = 'mean' doesn't return the true kl divergence value, please use reduction = 'batchmean' which aligns with KL math definition. In the next major release, 'mean' will be changed to be the same as 'batchmean'.

\[
\text{nn\_l1\_loss}
\]

\( L1 \) loss

Description

Creates a criterion that measures the mean absolute error (MAE) between each element in the input \(x\) and target \(y\).

Usage

\[
\text{nn\_l1\_loss(\text{reduction = "mean"})}
\]

Arguments

reduction (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

Details

The unreduced (i.e. with reduction set to 'none') loss can be described as:

\[
\ell(x, y) = L = \{l_1, \ldots, l_N\}^\top, \quad l_n = |x_n - y_n|,
\]

where \(N\) is the batch size. If reduction is not 'none' (default 'mean'), then:

\[
\ell(x, y) = \begin{cases} 
\frac{\text{mean}(L)}{\text{sum}(L)}, & \text{if reduction = 'mean'}; \\
\text{sum}(L), & \text{if reduction = 'sum'}. 
\end{cases}
\]

\(x\) and \(y\) are tensors of arbitrary shapes with a total of \(n\) elements each.

The sum operation still operates over all the elements, and divides by \(n\). The division by \(n\) can be avoided if one sets reduction = 'sum'.
Shape

- Input: \((N, \ast)\) where \(\ast\) means, any number of additional dimensions
- Target: \((N, \ast)\), same shape as the input
- Output: scalar. If reduction is 'none', then \((N, \ast)\), same shape as the input

Examples

```r
if (torch_is_installed()) {
 loss <- nn_l1_loss()
 input <- torch_randn(3, 5, requires_grad=TRUE)
 target <- torch_randn(3, 5)
 output <- loss(input, target)
 output$backward()
}
```

---

**nn_layer_norm**  
*Layer normalization*

Description

Applies Layer Normalization over a mini-batch of inputs as described in the paper *Layer Normalization*

Usage

```r
nn_layer_norm(normalized_shape, eps = 1e-05, elementwise_affine = TRUE)
```

Arguments

- **normalized_shape**
  (int or list): input shape from an expected input of size \([\ast \times \text{normalized}_\text{shape}[0] \times \text{normalized}_\text{shape}[1] \times \ldots \times \text{normalized}_\text{shape}[\text{-}1]]\) If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size.

- **eps**
  a value added to the denominator for numerical stability. Default: 1e-5

- **elementwise_affine**
  a boolean value that when set to TRUE, this module has learnable per-element affine parameters initialized to ones (for weights) and zeros (for biases). Default: TRUE.
Details

\[ y = \frac{x - E[x]}{\sqrt{\text{Var}[x] + \epsilon}} \cdot \gamma + \beta \]

The mean and standard-deviation are calculated separately over the last certain number dimensions which have to be of the shape specified by `normalized_shape`.

\( \gamma \) and \( \beta \) are learnable affine transform parameters of `normalized_shape` if `elementwise_affine` is `TRUE`.

The standard-deviation is calculated via the biased estimator, equivalent to `torch_var(input, unbiased=FALSE)`.

Shape

- Input: \((N,*)\)
- Output: \((N,*)\) (same shape as input)

Note

Unlike Batch Normalization and Instance Normalization, which applies scalar scale and bias for each entire channel/plane with the `affine` option, Layer Normalization applies per-element scale and bias with `elementwise_affine`.

This layer uses statistics computed from input data in both training and evaluation modes.

Examples

```r
if (torch_is_installed()) {

 input <- torch_randn(20, 5, 10, 10)
 # With Learnable Parameters
 m <- nn_layer_norm(input$size()[-1])
 # Without Learnable Parameters
 m <- nn_layer_norm(input$size()[-1], elementwise_affine=FALSE)
 # Normalize over last two dimensions
 m <- nn_layer_norm(c(10, 10))
 # Normalize over last dimension of size 10
 m <- nn_layer_norm(10)
 # Activating the module
 output <- m(input)
}
```
**Description**

Applies the element-wise function:

**Usage**

```r
nen_leaky_relu(negative_slope = 0.01, inplace = FALSE)
```

**Arguments**

- **negative_slope** Controls the angle of the negative slope. Default: 1e-2
- **inplace** can optionally do the operation in-place. Default: FALSE

**Details**

\[
\text{LeakyReLU}(x) = \max(0, x) + \text{negative_slope} \times \min(0, x)
\]

or

\[
\text{LeakyReLU}(x) = \begin{cases} 
  x, & \text{if } x \geq 0 \\
  \text{negative_slope} \times x, & \text{otherwise}
\end{cases}
\]

**Shape**

- Input: \((N, *)\) where * means, any number of additional dimensions
- Output: \((N, \ast)\), same shape as the input

**Examples**

```r
if (torch_is_installed()) {
 m <- nn_leaky_relu(0.1)
 input <- torch_randn(2)
 output <- m(input)
}
```
nn_linear

Linear module

Description
Applies a linear transformation to the incoming data: \( y = xA^T + b \)

Usage
nn_linear(in_features, out_features, bias = TRUE)

Arguments
in_features  size of each input sample
out_features  size of each output sample
bias  If set to FALSE, the layer will not learn an additive bias. Default: TRUE

Shape
- Input: \((N, *, H_{in})\) where * means any number of additional dimensions and \(H_{in} = in\_features\).
- Output: \((N, *, H_{out})\) where all but the last dimension are the same shape as the input and \(H_{out} = out\_features\).

Attributes
- weight: the learnable weights of the module of shape \((out\_features, in\_features)\). The values are initialized from \(U(-\sqrt{k}, \sqrt{k})\), where \(k = \frac{1}{\text{in\_features}}\)
- bias: the learnable bias of the module of shape \((out\_features)\). If bias is TRUE, the values are initialized from \(U(-\sqrt{k}, \sqrt{k})\) where \(k = \frac{1}{\text{in\_features}}\)

Examples
```r
if (torch_is_installed()) {
 m <- nn_linear(20, 30)
 input <- torch_randn(128, 20)
 output <- m(input)
 print(output$size())
}
```
**nn_log_sigmoid**  
*LogSigmoid module*

**Description**  
Applies the element-wise function:

\[
\text{LogSigmoid}(x) = \log \left( \frac{1}{1 + \exp(-x)} \right)
\]

**Usage**  
\[nn\_log\_sigmoid()\]

**Shape**  
- Input: \((N, *)\) where * means, any number of additional dimensions
- Output: \((N, *)\), same shape as the input

**Examples**  
```python
if (torch_is_installed()) {
 m <- nn_log_sigmoid()
 input <- torch_randn(2)
 output <- m(input)
}
```

---

**nn_log_softmax**  
*LogSoftmax module*

**Description**  
Applies the \(\log(\text{Softmax}(x))\) function to an n-dimensional input Tensor. The LogSoftmax formulation can be simplified as:

**Usage**  
\[nn\_log\_softmax(dim)\]

**Arguments**  
\[dim \quad \text{(int): A dimension along which LogSoftmax will be computed.}\]
Details

\[
\text{LogSoftmax}(x_i) = \log \left( \frac{\exp(x_i)}{\sum_j \exp(x_j)} \right)
\]

Value

A Tensor of the same dimension and shape as the input with values in the range [-inf, 0)

Shape

- Input: (\ast) where \ast means, any number of additional dimensions
- Output: (\ast), same shape as the input

Examples

```r
if (torch_is_installed()) {
 m <- nn_log_softmax()
 input <- torch_randn(2, 3)
 output <- m(input)
}
```

\textbf{nn\_lp\_pool1d} \hspace{1cm} Applies a 1D power-average pooling over an input signal composed of several input planes.

Description

On each window, the function computed is:

\[
f(X) = \sqrt[p]{\sum_{x \in X} x^p}
\]

Usage

\texttt{nn\_lp\_pool1d(norm\_type, kernel\_size, stride = NULL, ceil\_mode = FALSE)}

Arguments

- \texttt{norm\_type} if inf than one gets max pooling if 0 you get sum pooling (proportional to the avg pooling)
- \texttt{kernel\_size} a single int, the size of the window
- \texttt{stride} a single int, the stride of the window. Default value is \texttt{kernel\_size}
- \texttt{ceil\_mode} when \texttt{TRUE}, will use \texttt{ceil} instead of \texttt{floor} to compute the output shape
**Details**

- At $p = \infty$, one gets Max Pooling
- At $p = 1$, one gets Sum Pooling (which is proportional to Average Pooling)

**Shape**

- Input: $(N, C, L_{in})$
- Output: $(N, C, L_{out})$, where

$$L_{out} = \left\lfloor \frac{L_{in} - \text{kernel\_size}}{\text{stride}} + 1 \right\rfloor$$

**Note**

If the sum to the power of $p$ is zero, the gradient of this function is not defined. This implementation will set the gradient to zero in this case.

**Examples**

```r
if (torch_is_installed()) {
 # power-2 pool of window of length 3, with stride 2.
 m <- nn_lp_pool1d(2, 3, stride=2)
 input <- torch_randn(20, 16, 50)
 output <- m(input)
}
```

---

**nn_lp_pool2d**

Applies a 2D power-average pooling over an input signal composed of several input planes.

**Description**

On each window, the function computed is:

$$f(X) = \sqrt[p]{\sum_{x \in X} x^p}$$

**Usage**

```r
nn_lp_pool2d(norm_type, kernel_size, stride = NULL, ceil_mode = FALSE)
```
nn_lp_pool2d

Arguments

- **norm_type**: if inf than one gets max pooling if 0 you get sum pooling (proportional to the avg pooling)
- **kernel_size**: the size of the window
- **stride**: the stride of the window. Default value is kernel_size
- **ceil_mode**: when TRUE, will use ceil instead of floor to compute the output shape

Details

- At $p = \infty$, one gets Max Pooling
- At $p = 1$, one gets Sum Pooling (which is proportional to average pooling)

The parameters kernel_size, stride can either be:

- a single int – in which case the same value is used for the height and width dimension
- a tuple of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension

Shape

- Input: $(N, C, H_{in}, W_{in})$
- Output: $(N, C, H_{out}, W_{out})$, where

$$H_{out} = \left\lfloor \frac{H_{in} - \text{kernel}\_size[0]}{\text{stride}[0]} + 1 \right\rfloor$$

$$W_{out} = \left\lfloor \frac{W_{in} - \text{kernel}\_size[1]}{\text{stride}[1]} + 1 \right\rfloor$$

Note

If the sum to the power of $p$ is zero, the gradient of this function is not defined. This implementation will set the gradient to zero in this case.

Examples

```r
if (torch_is_installed()) {

power-2 pool of square window of size=3, stride=2
m <- nn_lp_pool2d(2, 3, stride=2)

pool of non-square window of power 1.2
m <- nn_lp_pool2d(1.2, c(3, 2), stride=c(2, 1))

input <- torch_randn(20, 16, 50, 32)
output <- m(input)
}
```
Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence.

Description

For each element in the input sequence, each layer computes the following function:

Usage

```r
nn_lstm(
 input_size,
 hidden_size,
 num_layers = 1,
 bias = TRUE,
 batch_first = FALSE,
 dropout = 0,
 bidirectional = FALSE,
 ...
)
```

Arguments

- `input_size`: The number of expected features in the input \( x \)
- `hidden_size`: The number of features in the hidden state \( h \)
- `num_layers`: Number of recurrent layers. E.g., setting `num_layers=2` would mean stacking two LSTMs together to form a stacked LSTM, with the second LSTM taking in outputs of the first LSTM and computing the final results. Default: 1
- `bias`: If FALSE, then the layer does not use bias weights \( b_{ih} \) and \( b_{hh} \). Default: TRUE
- `batch_first`: If TRUE, then the input and output tensors are provided as (batch, seq, feature). Default: FALSE
- `dropout`: If non-zero, introduces a Dropout layer on the outputs of each LSTM layer except the last layer, with dropout probability equal to dropout. Default: 0
- `bidirectional`: If TRUE, becomes a bidirectional LSTM. Default: FALSE
- `...`: currently unused.

Details

\[
\begin{align*}
  i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \\
  f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \\
  g_t &= \tanh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \\
  o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \\
  c_t &= f_t c_{(t-1)} + i_t g_t \\
  h_t &= o_t \tanh(c_t)
\end{align*}
\]
where $h_t$ is the hidden state at time $t$, $c_t$ is the cell state at time $t$, $x_t$ is the input at time $t$, $h_{(t-1)}$ is the hidden state of the previous layer at time $t-1$ or the initial hidden state at time $0$, and $i_t, f_t, g_t, o_t$ are the input, forget, cell, and output gates, respectively. $\sigma$ is the sigmoid function.

Inputs

Inputs: input, $(h_0, c_0)$

- **input** of shape (seq_len, batch, input_size): tensor containing the features of the input sequence. The input can also be a packed variable length sequence. See `nn_utils.rnn_pack_padded_sequence()` or `nn_utils.rnn_pack_sequence()` for details.

- $h_0$ of shape (num_layers * num_directions, batch, hidden_size): tensor containing the initial hidden state for each element in the batch.

- $c_0$ of shape (num_layers * num_directions, batch, hidden_size): tensor containing the initial cell state for each element in the batch.

If $(h_0, c_0)$ is not provided, both $h_0$ and $c_0$ default to zero.

Outputs

Outputs: output, $(h_n, c_n)$

- **output** of shape (seq_len, batch, num_directions * hidden_size): tensor containing the output features ($h_t$) from the last layer of the LSTM, for each $t$. If a `torch.nn.utils.rnn.PackedSequence` has been given as the input, the output will also be a packed sequence. For the unpacked case, the directions can be separated using `output$\text{view}(c(\text{seq_len}, \text{batch}, \text{num_directions}, \text{hidden_size}))`, with forward and backward being direction 0 and 1 respectively. Similarly, the directions can be separated in the packed case.

- $h_n$ of shape (num_layers * num_directions, batch, hidden_size): tensor containing the hidden state for $t = \text{seq_len}$. Like output, the layers can be separated using $h_n$\$\text{view}(c(\text{num_layers}, \text{num_directions}, \text{batch}, \text{hidden_size}))$ and similarly for $c_n$.

- $c_n$ (num_layers * num_directions, batch, hidden_size): tensor containing the cell state for $t = \text{seq_len}$

Attributes

- `weight_ih_l[k]`: the learnable input-hidden weights of the $k^{th}$ layer ($W_{ii}|W_{if}|W_{ig}|W_{io}$), of shape $(4\times\text{hidden_size x input_size})$

- `weight_hh_l[k]`: the learnable hidden-hidden weights of the $k^{th}$ layer ($W_{hi}|W_{hf}|W_{hg}|W_{ho}$), of shape $(4\times\text{hidden_size x hidden_size})$

- `bias_ih_l[k]`: the learnable input-hidden bias of the $k^{th}$ layer ($b_{ii}|b_{if}|b_{ig}|b_{io}$), of shape $(4\times\text{hidden_size})$

- `bias_hh_l[k]`: the learnable hidden-hidden bias of the $k^{th}$ layer ($b_{hi}|b_{hf}|b_{hg}|b_{ho}$), of shape $(4\times\text{hidden_size})$

Note

All the weights and biases are initialized from $\mathcal{U}(-\sqrt{k}, \sqrt{k})$ where $k = \frac{1}{\text{hidden_size}}$
Examples

```r
if (torch_is_installed()) {
 rnn <- nn_lstm(10, 20, 2)
 input <- torch_randn(5, 3, 10)
 h0 <- torch_randn(2, 3, 20)
 c0 <- torch_randn(2, 3, 20)
 output <- rnn(input, list(h0, c0))
}
```

**nn_margin_ranking_loss**

*Margin ranking loss*

**Description**

Creates a criterion that measures the loss given inputs \(x_1, x_2,\) two 1D mini-batch Tensors, and a label 1D mini-batch tensor \(y\) (containing 1 or -1). If \(y = 1\) then it assumed the first input should be ranked higher (have a larger value) than the second input, and vice-versa for \(y = -1\).

**Usage**

```r
nn_margin_ranking_loss(margin = 0, reduction = "mean")
```

**Arguments**

- **margin** (float, optional): Has a default value of 0.
- **reduction** (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

**Details**

The loss function for each pair of samples in the mini-batch is:

\[
loss(x_1, x_2, y) = \max(0, -y \ast (x_1 - x_2) + \text{margin})
\]

**Shape**

- Input1: \((N)\) where \(N\) is the batch size.
- Input2: \((N)\), same shape as the Input1.
- Target: \((N)\), same shape as the inputs.
- Output: scalar. If reduction is 'none', then \((N)\).
Examples

```r
if (torch_is_installed()) {
 loss <- nn_margin_ranking_loss()
 input1 <- torch_randn(3, requires_grad=TRUE)
 input2 <- torch_randn(3, requires_grad=TRUE)
 target <- torch_randn(3)$sign()
 output <- loss(input1, input2, target)
 output$backward()
}
```

---

**nn_max_pool1d**

*MaxPool1D module*

### Description

Applies a 1D max pooling over an input signal composed of several input planes.

### Usage

```r
nn_max_pool1d(
 kernel_size,
 stride = NULL,
 padding = 0,
 dilation = 1,
 return_indices = FALSE,
 ceil_mode = FALSE
)
```

### Arguments

- `kernel_size`: the size of the window to take a max over
- `stride`: the stride of the window. Default value is `kernel_size`
- `padding`: implicit zero padding to be added on both sides
- `dilation`: a parameter that controls the stride of elements in the window
- `return_indices`: if TRUE, will return the max indices along with the outputs. Useful for `nn_max_unpool1d()` later.
- `ceil_mode`: when TRUE, will use `ceil` instead of `floor` to compute the output shape

### Details

In the simplest case, the output value of the layer with input size \((N, C, L)\) and output \((N, C, L_{out})\) can be precisely described as:

\[
out(N_i, C_j, k) = \max_{m=0,...,kernel\_size-1} input(N_i, C_j, stride \times k + m)
\]
If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points. dilation controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of what dilation does.

**Shape**

- Input: \((N, C, L_{in})\)
- Output: \((N, C, L_{out})\), where

\[
L_{out} = \left\lfloor \frac{L_{in} + 2 \times \text{padding} - \text{dilation} \times (\text{kernel\_size} - 1) - 1}{\text{stride}} \right\rfloor + 1
\]

**Examples**

```r
if (torch_is_installed()) {
 # pool of size=3, stride=2
 m <- nn_max_pool2d(3, stride=2)
 input <- torch_randn(20, 16, 50)
 output <- m(input)
}
```

---

**nn_max_pool2d**

**MaxPool2D module**

**Description**

Applies a 2D max pooling over an input signal composed of several input planes.

**Usage**

```r
nn_max_pool2d(
 kernel_size,
 stride = NULL,
 padding = 0,
 dilation = 1,
 return_indices = FALSE,
 ceil_mode = FALSE
)
```

**Arguments**

- `kernel_size`: the size of the window to take a max over
- `stride`: the stride of the window. Default value is `kernel_size`
- `padding`: implicit zero padding to be added on both sides
- `dilation`: a parameter that controls the stride of elements in the window
- `return_indices`: if TRUE, will return the max indices along with the outputs. Useful for `nn_max_unpool2d()` later.
- `ceil_mode`: when TRUE, will use ceil instead of floor to compute the output shape
Details

In the simplest case, the output value of the layer with input size \((N, C, H, W)\), output \((N, C, H_{\text{out}}, W_{\text{out}})\) and kernel size \((kH, kW)\) can be precisely described as:

\[
    \text{out}(N, C, h, w) = \max_{m=0,\ldots,kH-1} \max_{n=0,\ldots,kW-1} \text{input}(N, C, \text{stride}[0] \times h + m, \text{stride}[1] \times w + n)
\]

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points. dilation controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of what dilation does.

The parameters kernel_size, stride, padding, dilation can either be:

- a single int – in which case the same value is used for the height and width dimension
- a tuple of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension

Shape

- Input: \((N, C, H_{\text{in}}, W_{\text{in}})\)
- Output: \((N, C, H_{\text{out}}, W_{\text{out}})\), where

\[
    H_{\text{out}} = \left\lfloor \frac{H_{\text{in}} + 2 \times \text{padding}[0] - \text{dilation}[0] \times (\text{kernel_size}[0] - 1) - 1}{\text{stride}[0]} + 1 \right\rfloor
\]

\[
    W_{\text{out}} = \left\lfloor \frac{W_{\text{in}} + 2 \times \text{padding}[1] - \text{dilation}[1] \times (\text{kernel_size}[1] - 1) - 1}{\text{stride}[1]} + 1 \right\rfloor
\]

Examples

```r
if (torch_is_installed()) {
 # pool of square window of size=3, stride=2
 m <- nn_max_pool2d(3, stride=2)
 # pool of non-square window
 m <- nn_max_pool2d(c(3, 2), stride=c(2, 1))
 input <- torch_randn(20, 16, 50, 32)
 output <- m(input)
}
```
nn_max_pool3d

Applies a 3D max pooling over an input signal composed of several input planes.

Description

In the simplest case, the output value of the layer with input size \((N, C, D, H, W)\), output \((N, C, D_{out}, H_{out}, W_{out})\) and kernel_size \((kD, kH, kW)\) can be precisely described as:

**Usage**

```python
nn_max_pool3d(
 kernel_size,
 stride = NULL,
 padding = 0,
 dilation = 1,
 return_indices = FALSE,
 ceil_mode = FALSE
)
```

**Arguments**

- **kernel_size**: the size of the window to take a max over
- **stride**: the stride of the window. Default value is `kernel_size`
- **padding**: implicit zero padding to be added on all three sides
- **dilation**: a parameter that controls the stride of elements in the window
- **return_indices**: if `TRUE`, will return the max indices along with the outputs. Useful for `torch.nn.MaxUnpool3d` later
- **ceil_mode**: when `TRUE`, will use `ceil` instead of `floor` to compute the output shape

**Details**

\[
\text{out}(N_i, C_j, d, h, w) = \max_{k=0, \ldots, kD-1} \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \text{input}(N_i, C_j, \text{stride}[0] \times d + k, \text{stride}[1] \times h + m, \text{stride}[2] \times w + n)
\]

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points. `dilation` controls the spacing between the kernel points. It is harder to describe, but [this link](#) has a nice visualization of what `dilation` does. The parameters `kernel_size`, `stride`, `padding`, `dilation` can either be:

- a single int – in which case the same value is used for the depth, height and width dimension
- a tuple of three ints – in which case, the first int is used for the depth dimension, the second int for the height dimension and the third int for the width dimension
Shape

- Input: \((N, C, D_{in}, H_{in}, W_{in})\)
- Output: \((N, C, D_{out}, H_{out}, W_{out})\), where

\[
D_{out} = \left\lfloor \frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] \times (\text{kernel}_\text{size}[0] - 1) - 1 }{\text{stride}[0]} + 1 \right\rfloor
\]

\[
H_{out} = \left\lfloor \frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] \times (\text{kernel}_\text{size}[1] - 1) - 1 }{\text{stride}[1]} + 1 \right\rfloor
\]

\[
W_{out} = \left\lfloor \frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2] \times (\text{kernel}_\text{size}[2] - 1) - 1 }{\text{stride}[2]} + 1 \right\rfloor
\]

Examples

```r
if (torch_is_installed()) {
 # pool of square window of size=3, stride=2
 m <- nn_max_pool3d(3, stride=2)
 # pool of non-square window
 m <- nn_max_pool3d(c(3, 2, 2), stride=c(2, 1, 2))
 input <- torch_randn(20, 16, 50,44, 31)
 output <- m(input)
}
```

---

**nn_max_unpool1d**  Computes a partial inverse of MaxPool1d.

**Description**

MaxPool1d is not fully invertible, since the non-maximal values are lost. MaxUnpool1d takes in as input the output of MaxPool1d including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero.

**Usage**

```r
nn_max_unpool1d(kernel_size, stride = NULL, padding = 0)
```

**Arguments**

- **kernel_size**  (int or tuple): Size of the max pooling window.
- **stride**  (int or tuple): Stride of the max pooling window. It is set to `kernel_size` by default.
- **padding**  (int or tuple): Padding that was added to the input
**Inputs**
- input: the input Tensor to invert
- indices: the indices given out by nn_max_pool1d()
- output_size (optional): the targeted output size

**Shape**
- Input: \((N, C, H_{in})\)
- Output: \((N, C, H_{out})\), where
  \[ H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{kernel_size}[0] \]
  or as given by output_size in the call operator

**Note**
MaxPool1d can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argument output_size in the forward call. See the Inputs and Example below.

**Examples**
```python
if (torch_is_installed()) {
 pool <- nn_max_pool1d(2, stride=2, return_indices=TRUE)
 unpool <- nn_max_unpool1d(2, stride=2)

 input <- torch_tensor(array(1:8/1, dim = c(1,1,8)))
 out <- pool(input)
 unpool(out[[1]], out[[2]])

 # Example showcasing the use of output_size
 input <- torch_tensor(array(1:8/1, dim = c(1,1,8)))
 out <- pool(input)
 unpool(out[[1]], out[[2]], output_size=input$size())
 unpool(out[[1]], out[[2]])
}
```

**nn_max_unpool1d** Computes a partial inverse of MaxPool1d.

**Description**
MaxPool1d is not fully invertible, since the non-maximal values are lost. MaxUnpool1d takes in as input the output of MaxPool1d including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero.
Usage

`nn_max_unpool2d(kernel_size, stride = NULL, padding = 0)`

Arguments

- `kernel_size` (int or tuple): Size of the max pooling window.
- `stride` (int or tuple): Stride of the max pooling window. It is set to `kernel_size` by default.
- `padding` (int or tuple): Padding that was added to the input

Inputs

- `input`: the input Tensor to invert
- `indices`: the indices given out by `nn_max_pool2d()`
- `output_size` (optional): the targeted output size

Shape

- Input: `(N, C, H_{in}, W_{in})`
- Output: `(N, C, H_{out}, W_{out})`, where
  
  \[
  H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{kernel size}[0]
  \]
  
  \[
  W_{out} = (W_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{kernel size}[1]
  \]

  or as given by `output_size` in the call operator

Note

MaxPool2d can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argument `output_size` in the forward call. See the Inputs and Example below.

Examples

```r
if (torch_is_installed()) {

 pool <- nn_max_pool2d(2, stride=2, return_indices=TRUE)
 unpool <- nn_max_unpool2d(2, stride=2)
 input <- torch_randn(1,1,4,4)
 out <- pool(input)
 unpool(out[[1]], out[[2]])

 # specify a different output size than input size
 unpool(out[[1]], out[[2]], output_size=c(1, 1, 5, 5))
}
```
nn_max_unpool3d

*Comes a partial inverse of MaxPool3d.*

**Description**

MaxPool3d is not fully invertible, since the non-maximal values are lost. MaxUnpool3d takes in as input the output of MaxPool3d including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero.

**Usage**

\`
\text{nn}\_\text{max}\_\text{unpool3d}(\text{kernel\_size, stride = NULL, padding = 0})
\`\n
**Arguments**

- `kernel_size` (int or tuple): Size of the max pooling window.
- `stride` (int or tuple): Stride of the max pooling window. It is set to `kernel_size` by default.
- `padding` (int or tuple): Padding that was added to the input

**Inputs**

- `input`: the input Tensor to invert
- `indices`: the indices given out by `nn_max_pool3d()`
- `output_size` (optional): the targeted output size

**Shape**

- Input: \((N, C, D_{in}, H_{in}, W_{in})\)
- Output: \((N, C, D_{out}, H_{out}, W_{out})\), where

\[
D_{out} = (D_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{kernel\_size}[0]
\]

\[
H_{out} = (H_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{kernel\_size}[1]
\]

\[
W_{out} = (W_{in} - 1) \times \text{stride}[2] - 2 \times \text{padding}[2] + \text{kernel\_size}[2]
\]

or as given by `output_size` in the call operator

**Note**

MaxPool3d can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argument `output_size` in the forward call. See the Inputs section below.
Examples

```r
if (torch_is_installed()) {

 # pool of square window of size=3, stride=2
 pool <- nn_max_pool3d(3, stride=2, return_indices=TRUE)
 unpool <- nn_max_unpool3d(3, stride=2)
 out <- pool(torch_randn(20, 16, 51, 33, 15))
 unpooled_output <- unpool(out[[1]], out[[2]])
 unpooled_output$size()
}
```

---

**nn_module** Base class for all neural network modules.

**Description**

Your models should also subclass this class.

**Usage**

```r
nn_module(
 classname = NULL,
 inherit = nn_Module,
 ...,
 private = NULL,
 active = NULL,
 parent_env = parent.frame()
)
```

**Arguments**

- **classname**: an optional name for the module
- **inherit**: an optional module to inherit from
- **...**: methods implementation
- **private**: passed to `R6::R6Class()`.
- **active**: passed to `R6::R6Class()`.
- **parent_env**: passed to `R6::R6Class()`.

**Details**

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes.

You are expected to implement the `initialize` and the `forward` to create a new `nn_module`.  

**Initialize**

The initialize function will be called whenever a new instance of the `nn_module` is created. We use the initialize functions to define submodules and parameters of the module. For example:

```r
initialize = function(input_size, output_size) {
 self$conv1 <- nn_conv2d(input_size, output_size, 5)
 self$conv2 <- nn_conv2d(output_size, output_size, 5)
}
```

The initialize function can have any number of parameters. All objects assigned to `self$` will be available for other methods that you implement. Tensors wrapped with `nn_parameter()` or `nn_buffer()` and submodules are automatically tracked when assigned to `self$`.

The initialize function is optional if the module you are defining doesn’t have weights, submodules or buffers.

**Forward**

The forward method is called whenever an instance of `nn_module` is called. This is usually used to implement the computation that the module does with the weights ad submodules defined in the initialize function.

For example:

```r
forward = function(input) {
 input <- self$conv1(input)
 input <- nnf_relu(input)
 input <- self$conv2(input)
 input <- nnf_relu(input)
 input
}
```

The forward function can use the `self$training` attribute to make different computations depending whether the model is training or not, for example if you were implementing the dropout module.

**Examples**

```r
if (torch_is_installed()) {
 model <- nn_module(
 initialize = function() {
 self$conv1 <- nn_conv2d(1, 20, 5)
 self$conv2 <- nn_conv2d(20, 20, 5)
 },
 forward = function(input) {
 input <- self$conv1(input)
 input <- nnf_relu(input)
 input <- self$conv2(input)
 input <- nnf_relu(input)
 input
 }
)
}
```
**nn_module_list**

*Holds submodules in a list.*

**Description**

*nn_module_list* can be indexed like a regular R list, but modules it contains are properly registered, and will be visible by all *nn_module* methods.

**Usage**

```r
nn_module_list(modules = list())
```

**Arguments**

- `modules` a list of modules to add

**Examples**

```r
if (torch_is_installed()) {
 my_module <- nn_module(
 initialize = function() {
 self$linears <- nn_module_list(lapply(1:10, function(x) nn_linear(10, 10)))
 },
 forward = function(x) {
 for (i in 1:length(self$linears))
 x <- self$linears[[i]](x)
 x
 }
)
}
```

**nn_mse_loss**

*MSE loss*

**Description**

Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input $x$ and target $y$. The unreduced (i.e. with `reduction` set to 'none') loss can be described as:

$$\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2$$
Usage

nn_mse_loss(reduction = "mean")

Arguments

reduction (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

Details

$$\ell(x, y) = L = \{l_1, \ldots, l_N\}^T, \quad l_n = (x_n - y_n)^2,$$

where $N$ is the batch size. If reduction is not 'none' (default 'mean'), then:

$$\ell(x, y) = \begin{cases} 
\text{mean}(L), & \text{if } \text{reduction} = \text{'mean'}; \\
\text{sum}(L), & \text{if } \text{reduction} = \text{'sum'}. 
\end{cases}$$

$x$ and $y$ are tensors of arbitrary shapes with a total of $n$ elements each.

The mean operation still operates over all the elements, and divides by $n$. The division by $n$ can be avoided if one sets reduction = 'sum'.

Shape

- Input: $(N, \ast)$ where $\ast$ means, any number of additional dimensions
- Target: $(N, \ast)$, same shape as the input

Examples

```r
if (torch_is_installed()) {
 loss <- nn_mse_loss()
 input <- torch_randn(3, 5, requires_grad=TRUE)
 target <- torch_randn(3, 5)
 output <- loss(input, target)
 output$backward()
}
```
**MultiHead attention**

**Description**

Allows the model to jointly attend to information from different representation subspaces. See reference: Attention Is All You Need

**Usage**

```r
nn_multihead_attention(
 embed_dim, # total dimension of the model.
 num_heads, # parallel attention heads.
 dropout = 0, # a Dropout layer on attn_output_weights. Default: 0.0.
 bias = TRUE, # add bias as module parameter. Default: True.
 add_bias_kv = FALSE, # add bias to the key and value sequences at dim=0.
 add_zero_attn = FALSE, # add a new batch of zeros to the key and value sequences at dim=1.
 kdim = NULL, # total number of features in key. Default: NULL
 vdim = NULL # total number of features in value. Default: NULL. Note: if kdim and vdim are NULL, they will be set to embed_dim such that query, key, and value have the same number of features.
)
```

**Arguments**

- `embed_dim`: total dimension of the model.
- `num_heads`: parallel attention heads.
- `dropout`: a Dropout layer on attn_output_weights. Default: 0.0.
- `bias`: add bias as module parameter. Default: True.
- `add_bias_kv`: add bias to the key and value sequences at dim=0.
- `add_zero_attn`: add a new batch of zeros to the key and value sequences at dim=1.
- `kdim`: total number of features in key. Default: NULL
- `vdim`: total number of features in value. Default: NULL. Note: if kdim and vdim are NULL, they will be set to embed_dim such that query, key, and value have the same number of features.

**Details**

$$\text{MultiHead}(Q, K, V) = \text{Concat}(head_1, \ldots, head_h)W^O \text{where} head_i = \text{Attention}(QW^Q_i, KW^K_i, VW^V_i)$$

**Shape**

Inputs:

- query: \((L, N, E)\) where \(L\) is the target sequence length, \(N\) is the batch size, \(E\) is the embedding dimension.
• key: \((S, N, E)\), where \(S\) is the source sequence length, \(N\) is the batch size, \(E\) is the embedding dimension.

• value: \((S, N, E)\) where \(S\) is the source sequence length, \(N\) is the batch size, \(E\) is the embedding dimension.

• key_padding_mask: \((N, S)\) where \(N\) is the batch size, \(S\) is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of True will be ignored while the position with the value of False will be unchanged.

• attn_mask: 2D mask \((L, S)\) where \(L\) is the target sequence length, \(S\) is the source sequence length. 3D mask \((N \times \text{num_heads}, L, S)\) where \(N\) is the batch size, \(L\) is the target sequence length, \(S\) is the source sequence length. attn_mask ensure that position \(i\) is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with True is not allowed to attend while False values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight.

Outputs:

• attn_output: \((L, N, E)\) where \(L\) is the target sequence length, \(N\) is the batch size, \(E\) is the embedding dimension.

• attn_output_weights:
  – if \(\text{avg\_weights}\) is TRUE (the default), the output attention weights are averaged over the attention heads, giving a tensor of shape \((N, L, S)\) where \(N\) is the batch size, \(L\) is the target sequence length, \(S\) is the source sequence length.
  – if \(\text{avg\_weights}\) is FALSE, the attention weight tensor is output as-is, with shape \((N, H, L, S)\), where \(H\) is the number of attention heads.

Examples

```r
if (torch_is_installed()) {
 ## Not run:
 multihead_attn = nn_multihead_attention(embed_dim, num_heads)
 out <- multihead_attn(query, key, value)
 attn_output <- out[[1]]
 attn_output_weights <- out[[2]]

 ## End(Not run)
}
```

\textit{nn_multilabel_margin_loss} \\
\textit{Multilabel margin loss}
**Description**

Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between input $x$ (a 2D mini-batch Tensor) and output $y$ (which is a 2D Tensor of target class indices). For each sample in the mini-batch:

**Usage**

```r
nn_multilabel_margin_loss(reduction = "mean")
```

**Arguments**

- `reduction` (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

**Details**

$$loss(x, y) = \sum_{ij} \max(0, 1 - (x[y[j]] - x[i]))$$

where $x \in \{0, \cdots, x.size(0) - 1\}$, $y \in \{0, \cdots, y.size(0) - 1\}$, $0 \leq y[j] \leq x.size(0) - 1$, and $i \neq y[j]$ for all $i$ and $j$. $y$ and $x$ must have the same size.

The criterion only considers a contiguous block of non-negative targets that starts at the front. This allows for different samples to have variable amounts of target classes.

**Shape**

- **Input:** $(C)$ or $(N, C)$ where $N$ is the batch size and $C$ is the number of classes.
- **Target:** $(C)$ or $(N, C)$, label targets padded by -1 ensuring same shape as the input.
- **Output:** scalar. If `reduction` is 'none', then $(N)$.

**Examples**

```r
if (torch_is_installed()) {
 loss <- nn_multilabel_margin_loss()
 x <- torch_tensor(c(0.1, 0.2, 0.4, 0.8))$view(c(1,4))
 # for target y, only consider labels 4 and 1, not after label -1
 y <- torch_tensor(c(4, 1, -1, 2), dtype = torch_long())$view(c(1,4))
 loss(x, y)
}
```
nn_multilabel_soft_margin_loss

Multi label soft margin loss

Description

Creates a criterion that optimizes a multi-label one-versus-all loss based on max-entropy, between input \( x \) and target \( y \) of size \( (N, C) \).

Usage

\[
\text{nn_multilabel_soft_margin_loss(weight = NULL, reduction = "mean")}
\]

Arguments

- **weight**: (Tensor, optional): a manual rescaling weight given to each class. If given, it has to be a Tensor of size \( C \). Otherwise, it is treated as if having all ones.
- **reduction**: (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

Details

For each sample in the minibatch:

\[
\text{loss}(x, y) = -\frac{1}{C} \sum_{i} y[i] \log((1 + \exp(-x[i]))^{-1}) + (1 - y[i]) \log\left(\frac{\exp(-x[i])}{1 + \exp(-x[i])}\right)
\]

where \( i \in \{0, \cdots, \text{x.nElement}(x) - 1\} \), \( y[i] \in \{0, 1\} \).

Shape

- Input: \( (N, C) \) where \( N \) is the batch size and \( C \) is the number of classes.
- Target: \( (N, C) \), label targets padded by -1 ensuring same shape as the input.
- Output: scalar. If reduction is 'none', then \( (N) \).
**nn_multi_margin_loss**  Multi margin loss

**Description**

Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input $x$ (a 2D mini-batch Tensor) and output $y$ (which is a 1D tensor of target class indices, $0 \leq y \leq x$.size(1) − 1):

**Usage**

```
nn_multi_margin_loss(p = 1, margin = 1, weight = NULL, reduction = "mean")
```

**Arguments**

- $p$ (int, optional): Has a default value of 1. 1 and 2 are the only supported values.
- $margin$ (float, optional): Has a default value of 1.
- $weight$ (Tensor, optional): a manual rescaling weight given to each class. If given, it has to be a Tensor of size C. Otherwise, it is treated as if having all ones.
- $reduction$ (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

**Details**

For each mini-batch sample, the loss in terms of the 1D input $x$ and scalar output $y$ is:

$$
loss(x, y) = \sum_i \max(0, \text{margin} - x[y] + x[i])^p
$$

where $x \in \{0, \cdots, x$.size(0) − 1\}$ and $i \neq y$.

Optionally, you can give non-equal weighting on the classes by passing a 1D weight tensor into the constructor. The loss function then becomes:

$$
loss(x, y) = \sum_i \max(0, w[y] * (\text{margin} - x[y] + x[i]))^p
$$

where $x \in \{0, \cdots, x$.size(0) − 1\}$ and $i \neq y$. 

```
```
**Description**

The negative log likelihood loss. It is useful to train a classification problem with $C$ classes.

**Usage**

```python
nn_nll_loss(weight = NULL, ignore_index = -100, reduction = "mean")
```

**Arguments**

- **weight** (Tensor, optional): a manual rescaling weight given to each class. If given, it has to be a Tensor of size $C$. Otherwise, it is treated as if having all ones.
- **ignore_index** (int, optional): Specifies a target value that is ignored and does not contribute to the input gradient.
- **reduction** (string, optional): Specifies the reduction to apply to the output: 'none', 'mean', 'sum'. 'none': no reduction will be applied, 'mean': the weighted mean of the output is taken, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

**Details**

If provided, the optional argument weight should be a 1D Tensor assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set.

The input given through a forward call is expected to contain log-probabilities of each class. input has to be a Tensor of size either $(minibatch, C)$ or $(minibatch, C, d_1, d_2, ..., d_K)$ with $K \geq 1$ for the K-dimensional case (described later).

Obtaining log-probabilities in a neural network is easily achieved by adding a LogSoftmax layer in the last layer of your network.

You may use CrossEntropyLoss instead, if you prefer not to add an extra layer.

The target that this loss expects should be a class index in the range $[0, C - 1]$ where $C$ = number of classes; if ignore_index is specified, this loss also accepts this class index (this index may not necessarily be in the class range).

The unreduced (i.e. with reduction set to 'none') loss can be described as:

$$
\ell(x, y) = L = \{l_1, \ldots, l_N\}^\top, \quad l_n = -w_{y_n}x_{n,y_n}, \quad w_c = \text{weight}[c] \cdot 1\{c \neq \text{ignore\_index}\},
$$

where $x$ is the input, $y$ is the target, $w$ is the weight, and $N$ is the batch size. If reduction is not 'none' (default 'mean'), then

$$
\ell(x, y) = \frac{\sum_{n=1}^{N} l_n}{\sum_{n=1}^{N} w_{yn}}, \quad \text{if reduction = 'mean'};
$$

$$
\sum_{n=1}^{N} l_n, \quad \text{if reduction = 'sum'}.
$$
Can also be used for higher dimension inputs, such as 2D images, by providing an input of size $(\text{minibatch}, C, d_1, d_2, ..., d_K)$ with $K \geq 1$, where $K$ is the number of dimensions, and a target of appropriate shape (see below). In the case of images, it computes NLL loss per-pixel.

**Shape**

- Input: $(N, C)$ where $C =$ number of classes, or $(N, C, d_1, d_2, ..., d_K)$ with $K \geq 1$ in the case of K-dimensional loss.
- Target: $(N)$ where each value is $0 \leq \text{targets}[i] \leq C - 1$, or $(N, d_1, d_2, ..., d_K)$ with $K \geq 1$ in the case of K-dimensional loss.
- Output: scalar.

If reduction is 'none', then the same size as the target: $(N)$, or $(N, d_1, d_2, ..., d_K)$ with $K \geq 1$ in the case of K-dimensional loss.

**Examples**

```r
if (torch_is_installed()) {
 m <- nn_log_softmax(dim=2)
 loss <- nn_nll_loss()
 # input is of size N x C = 3 x 5
 input <- torch_randn(3, 5, requires_grad=TRUE)
 # each element in target has to have 0 <= value < C
 target <- torch_tensor(c(2, 1, 5), dtype = torch_long())
 output <- loss(m(input), target)
 output$backward()

 # 2D loss example (used, for example, with image inputs)
 N <- 5
 C <- 4
 loss <- nn_nll_loss()
 # input is of size N x C x height x width
 data <- torch_randn(N, 16, 10, 10)
 conv <- nn_conv2d(16, C, c(3, 3))
 m <- nn_log_softmax(dim=1)
 # each element in target has to have 0 <= value < C
 target <- torch_empty(N, 8, 8, dtype=torch_long())$random_(1, C)
 output <- loss(m(conv(data)), target)
 output$backward()
}
```

**nn_pairwise_distance**    
**Pairwise distance**

**Description**

Computes the batchwise pairwise distance between vectors $v_1, v_2$ using the p-norm:
Usage

nn_pairwise_distance(p = 2, eps = 1e-06, keepdim = FALSE)

Arguments

p (real): the norm degree. Default: 2
eps (float, optional): Small value to avoid division by zero. Default: 1e-6
keepdim (bool, optional): Determines whether or not to keep the vector dimension. Default: FALSE

Details

\[ \|x\|_p = \left( \sum_{i=1}^{n} |x_i|^p \right)^{1/p}. \]

Shape

- Input1: \((N, D)\) where \(D = \) vector dimension
- Input2: \((N, D)\), same shape as the Input1
- Output: \((N)\). If keepdim is TRUE, then \((N, 1)\).

Examples

```r
if (torch_is_installed()) {
 pdist <- nn_pairwise_distance(p=2)
 input1 <- torch_randn(100, 128)
 input2 <- torch_randn(100, 128)
 output <- pdist(input1, input2)
}
```

---

**nn_parameter**

*Creates an nn_parameter*

**Description**

Indicates to nn_module that \(x\) is a parameter

**Usage**

nn_parameter(x, requires_grad = TRUE)

**Arguments**

- \(x\) the tensor that you want to indicate as parameter
- requires_grad whether this parameter should have requires_grad = TRUE
nn_poisson_nll_loss

Poisson NLL loss

Description

Negative log likelihood loss with Poisson distribution of target. The loss can be described as:

Usage

```r
nn_poisson_nll_loss(
 log_input = TRUE,
 full = FALSE,
 eps = 1e-08,
 reduction = "mean"
)
```

Arguments

- `log_input` (bool, optional): if TRUE the loss is computed as \( \exp(\text{input}) - \text{target} \times \text{input} \), if FALSE the loss is \( \text{input} - \text{target} \times \log(\text{input} + \text{eps}) \).
- `full` (bool, optional): whether to compute full loss, i.e. to add the Stirling approximation term \( \text{target} \times \log(\text{target}) - \text{target} + 0.5 \times \log(2\pi \text{target}) \).
- `eps` (float, optional): Small value to avoid evaluation of \( \log(0) \) when `log_input` = FALSE. Default: 1e-8
- `reduction` (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: 'mean'

Details

\[ \text{target} \sim \text{Poisson}(\text{input}) \text{loss}(\text{input}, \text{target}) = \text{input} - \text{target} \times \log(\text{input}) + \log(\text{target}!) \]

The last term can be omitted or approximated with Stirling formula. The approximation is used for target values more than 1. For targets less or equal to 1 zeros are added to the loss.

Shape

- Input: \((N, *)\) where * means, any number of additional dimensions
- Target: \((N, *)\), same shape as the input
- Output: scalar by default. If `reduction` is 'none', then \((N, *)\), the same shape as the input
Examples

```r
if (torch_is_installed()) {
 loss <- nn_poisson_nll_loss()
 log_input <- torch_randn(5, 2, requires_grad=TRUE)
 target <- torch_randn(5, 2)
 output <- loss(log_input, target)
 output$backward()
}
```

nn_prelu  

**PReLU module**

**Description**

Applies the element-wise function:

\[
PReLU(x) = \max(0, x) + a \times \min(0, x)
\]

or

\[
PReLU(x) = \begin{cases} 
    x, & \text{if } x \geq 0 \\
    ax, & \text{otherwise}
\end{cases}
\]

**Usage**

`nn_prelu(num_parameters = 1, init = 0.25)`

**Arguments**

- `num_parameters` (int): number of \( a \) to learn. Although it takes an int as input, there is only two values are legitimate: 1, or the number of channels at input. Default: 1
- `init` (float): the initial value of \( a \). Default: 0.25

**Details**

Here \( a \) is a learnable parameter. When called without arguments, `nn.prelu()` uses a single parameter \( a \) across all input channels. If called with `nn.prelu(n_channels)`, a separate \( a \) is used for each input channel.

**Shape**

- Input: \((N, *)\) where * means, any number of additional dimensions
- Output: \((N, *)\), same shape as the input

**Attributes**

- weight (Tensor): the learnable weights of shape \((\text{num\_parameters})\).
Note

weight decay should not be used when learning $a$ for good performance.
Channel dim is the 2nd dim of input. When input has dims $< 2$, then there is no channel dim and
the number of channels = 1.

Examples

```r
if (torch_is_installed()) {
 m <- nn_prelu()
 input <- torch_randn(2)
 output <- m(input)
}
```

---

### nn_relu

**ReLU module**

**Description**

Applies the rectified linear unit function element-wise

$$ReLU(x) = (x)^+ = \max(0, x)$$

**Usage**

```r
nn_relu(inplace = FALSE)
```

**Arguments**

- `inplace` can optionally do the operation in-place. Default: FALSE

**Shape**

- Input: $(N, \ast)$ where $\ast$ means, any number of additional dimensions
- Output: $(N, \ast)$, same shape as the input

**Examples**

```r
if (torch_is_installed()) {
 m <- nn_relu()
 input <- torch_randn(2)
 m(input)
}
```
nn_relu6  

**ReLU6 module**

**Description**

Applies the element-wise function:

**Usage**

```r
nn_relu6(inplace = FALSE)
```

**Arguments**

- `inplace` can optionally do the operation in-place. Default: FALSE

**Details**

\[ \text{ReLU6}(x) = \min(\max(0, x), 6) \]

**Shape**

- Input: \((N, *)\) where \(*\) means, any number of additional dimensions
- Output: \((N, *)\), same shape as the input

**Examples**

```r
if (torch_is_installed()) {
 m <- nn_relu6()
 input <- torch_randn(2)
 output <- m(input)
}
```

---

nn_rnn  

**RNN module**

**Description**

Applies a multi-layer Elman RNN with tanh or ReLU non-linearity to an input sequence.
**nn_rnn**

**Usage**

```r
nn_rnn(
 input_size,
 hidden_size,
 num_layers = 1,
 nonlinearity = NULL,
 bias = TRUE,
 batch_first = FALSE,
 dropout = 0,
 bidirectional = FALSE,
 ...
)
```

**Arguments**

- **input_size**: The number of expected features in the input $x$
- **hidden_size**: The number of features in the hidden state $h$
- **num_layers**: Number of recurrent layers. E.g., setting `num_layers=2` would mean stacking two RNNs together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and computing the final results. Default: 1
- **nonlinearity**: The non-linearity to use. Can be either `tanh` or `relu`. Default: `tanh`
- **bias**: If `FALSE`, then the layer does not use bias weights $b_{ih}$ and $b_{hh}$. Default: `TRUE`
- **batch_first**: If `TRUE`, then the input and output tensors are provided as (batch, seq, feature). Default: `FALSE`
- **dropout**: If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last layer, with dropout probability equal to dropout. Default: `0`
- **bidirectional**: If `TRUE`, becomes a bidirectional RNN. Default: `FALSE`
- **...**: other arguments that can be passed to the super class.

**Details**

For each element in the input sequence, each layer computes the following function:

$$ h_t = \tanh(W_{ih}x_t + b_{ih} + W_{hh}h_{(t-1)} + b_{hh}) $$

where $h_t$ is the hidden state at time $t$, $x_t$ is the input at time $t$, and $h_{(t-1)}$ is the hidden state of the previous layer at time $t-1$ or the initial hidden state at time $0$. If `nonlinearity` is `relu`, then ReLU is used instead of `tanh`.

**Inputs**

- **input** of shape (seq_len, batch, input_size): tensor containing the features of the input sequence. The input can also be a packed variable length sequence.
- **h_0** of shape (num_layers * num_directions, batch, hidden_size): tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. If the RNN is bidirectional, num_directions should be 2, else it should be 1.
Outputs

- **output** of shape (seq_len, batch, num_directions * hidden_size): tensor containing the output features \( (h_t) \) from the last layer of the RNN, for each \( t \). If a :class:`nn_packed_sequence` has been given as the input, the output will also be a packed sequence. For the unpacked case, the directions can be separated using `output$\text{view}(\text{seq_len, batch, num_directions, hidden_size})`, with forward and backward being direction 0 and 1 respectively. Similarly, the directions can be separated in the packed case.

- **h_n** of shape (num_layers * num_directions, batch, hidden_size): tensor containing the hidden state for \( t = \text{seq_len} \). Like `output`, the layers can be separated using `h_n$\text{view}(\text{num_layers, num_directions, batch, hidden_size})`.

Shape

- **Input1:** \((L, N, H_{in})\) tensor containing input features where \( H_{in} = \text{input_size} \) and \( L \) represents a sequence length.

- **Input2:** \((S, N, H_{out})\) tensor containing the initial hidden state for each element in the batch. \( H_{out} = \text{hidden_size} \) Defaults to zero if not provided. where \( S = \text{num_layers} \ast \text{num_directions} \) If the RNN is bidirectional, num_directions should be 2, else it should be 1.

- **Output1:** \((L, N, H_{all})\) where \( H_{all} = \text{num_directions} \ast \text{hidden_size} \)

- **Output2:** \((S, N, H_{out})\) tensor containing the next hidden state for each element in the batch

Attributes

- **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer, of shape \((\text{hidden_size, input_size})\) for \( k = 0 \). Otherwise, the shape is \((\text{hidden_size, num_directions} \ast \text{hidden_size})\)

- **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, of shape \((\text{hidden_size, hidden_size})\)

- **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, of shape \((\text{hidden_size})\)

- **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, of shape \((\text{hidden_size})\)

Note

All the weights and biases are initialized from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where \( k = \frac{1}{\text{hidden_size}} \)

Examples

```r
if (torch_is_installed()) {
 rnn <- nn_rnn(10, 20, 2)
 input <- torch_randn(5, 3, 10)
 h0 <- torch_randn(2, 3, 20)
 rnn(input, h0)
}
```
**nn_relu**

nn_relu | RReLU module

**Description**
Applies the randomized leaky rectified liner unit function, element-wise, as described in the paper:

**Usage**
nn_relu(lower = \(1/8\), upper = \(1/3\), inplace = FALSE)

**Arguments**
- lower: lower bound of the uniform distribution. Default: \(1/8\)
- upper: upper bound of the uniform distribution. Default: \(1/3\)
- inplace: can optionally do the operation in-place. Default: FALSE

**Details**
The function is defined as:

\[
RReLU(x) = \begin{cases} 
  x & \text{if } x \geq 0 \\
  ax & \text{otherwise}
\end{cases}
\]

where \(a\) is randomly sampled from uniform distribution \(U(\text{lower}, \text{upper})\). See: https://arxiv.org/pdf/1505.00853.pdf

**Shape**
- Input: \((N, *)\) where \(*\) means, any number of additional dimensions
- Output: \((N, *)\), same shape as the input

**Examples**

```r
if (torch_is_installed()) {
 m <- nn_relu(0.1, 0.3)
 input <- torch_randn(2)
 m(input)
}
```
**Description**

Applied element-wise, as:

**Usage**

```python
nn_selu(inplace = FALSE)
```

**Arguments**

- `inplace` (bool, optional): can optionally do the operation in-place. Default: FALSE

**Details**

\[
\text{SELU}(x) = \text{scale} \times (\max(0, x) + \min(0, \alpha \times (\exp(x) - 1)))
\]

with \( \alpha = 1.6732632423543772848170429916717 \) and \( \text{scale} = 1.0507009873554804934193349852946 \).

More details can be found in the paper *Self-Normalizing Neural Networks*.  

**Shape**

- **Input**: \((N, *)\) where * means, any number of additional dimensions
- **Output**: \((N, *)\), same shape as the input

**Examples**

```python
if (torch_is_installed()) {
 m <- nn_selu()
 input <- torch_randn(2)
 output <- m(input)
}
```
nn_sequential

A sequential container

Description
A sequential container. Modules will be added to it in the order they are passed in the constructor. See examples.

Usage
nn_sequential(..., name = NULL)

Arguments
... sequence of modules to be added
name optional name for the generated module.

Examples
if (torch_is_installed()) {
  model <- nn_sequential(
    nn_conv2d(1, 20, 5),
    nn_relu(),
    nn_conv2d(20, 64, 5),
    nn_relu()
  )
  input <- torch_randn(32, 1, 28, 28)
  output <- model(input)
}

nn_sigmoid

Sigmoid module

Description
Applies the element-wise function:

Usage
nn_sigmoid()

Details
\[
\text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)}
\]
Shape

- Input: \((N, *)\) where * means, any number of additional dimensions
- Output: \((N, *)\), same shape as the input

Examples

```r
if (torch_is_installed()) {
 m <- nn.sigmoid()
 input <- torch_randn(2)
 output <- m(input)
}
```

### nn_smooth_l1_loss

**Smooth L1 loss**

**Description**

Creates a criterion that uses a squared term if the absolute element-wise error falls below 1 and an L1 term otherwise. It is less sensitive to outliers than the `MSELoss` and in some cases prevents exploding gradients (e.g. see Fast R-CNN paper by Ross Girshick). Also known as the Huber loss:

**Usage**

```r
nn_smooth_l1_loss(reduction = "mean")
```

**Arguments**

- **reduction** (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: 'mean'

**Details**

\[
loss(x, y) = \frac{1}{n} \sum_i z_i
\]

where \(z_i\) is given by:

\[
z_i = \begin{cases} 
  0.5(x_i - y_i)^2, & \text{if } |x_i - y_i| < 1 \\
  |x_i - y_i| - 0.5, & \text{otherwise}
\end{cases}
\]

\(x\) and \(y\) arbitrary shapes with a total of \(n\) elements each the sum operation still operates over all the elements, and divides by \(n\). The division by \(n\) can be avoided if sets `reduction = 'sum'`. 
Shape
- Input: \((N, *)\) where \(*\) means, any number of additional dimensions
- Target: \((N, \ast)\), same shape as the input
- Output: scalar. If reduction is 'none', then \((N, \ast)\), same shape as the input

**nn_softmax**  
**Softmax module**

Description
Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range \([0, 1]\) and sum to 1. Softmax is defined as:

**Usage**

\[
\text{nn_softmax}(\text{dim})
\]

**Arguments**

- \( \text{dim} \) (int): A dimension along which Softmax will be computed (so every slice along \( \text{dim} \) will sum to 1).

**Details**

\[
\text{Softmax}(x_i) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
\]

When the input Tensor is a sparse tensor then the unspecified values are treated as \(-\text{Inf}\).

Value
- a Tensor of the same dimension and shape as the input with values in the range \([0, 1]\)

Shape
- Input: \((\ast)\) where \(\ast\) means, any number of additional dimensions
- Output: \((\ast)\), same shape as the input

**Note**
This module doesn’t work directly with NLLLoss, which expects the Log to be computed between the Softmax and itself. Use LogSoftmax instead (it’s faster and has better numerical properties).
Examples

```r
if (torch_is_installed()) {
 m <- nn_softmax()
 input <- torch_randn(2, 3)
 output <- m(input)
}
```

---

### nn_softmax2d

**Softmax2d module**

**Description**

Applies SoftMax over features to each spatial location. When given an image of Channels x Height x Width, it will apply Softmax to each location \((Channels, h_i, w_j)\).

**Usage**

```r
nn_softmax2d()
```

**Value**

a Tensor of the same dimension and shape as the input with values in the range \([0, 1]\)

**Shape**

- Input: \((N, C, H, W)\)
- Output: \((N, C, H, W)\) (same shape as input)

**Examples**

```r
if (torch_is_installed()) {
 m <- nn_softmax2d()
 input <- torch_randn(2, 3, 12, 13)
 output <- m(input)
}
```
**nn_softmin**  

| nn_softmin | Softmin |

**Description**

Applies the Softmin function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0, 1] and sum to 1. Softmin is defined as:

**Usage**

```
nn_softmin(dim)
```

**Arguments**

- `dim` (int): A dimension along which Softmin will be computed (so every slice along dim will sum to 1).

**Details**

\[
\text{Softmin}(x_i) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}
\]

**Value**

A Tensor of the same dimension and shape as the input, with values in the range [0, 1].

**Shape**

- Input: (*) where * means, any number of additional dimensions
- Output: (*), same shape as the input

**Examples**

```c
if (torch_is_installed()) {
 m <- nn_softmin(dim = 1)
 input <- torch_randn(2, 2)
 output <- m(input)
}
```
nn_softplus  

**Softplus module**

### Description

Applies the element-wise function:

\[
\text{Softplus}(x) = \frac{1}{\beta} \log(1 + \exp(\beta \cdot x))
\]

### Usage

```
nn_softplus(beta = 1, threshold = 20)
```

### Arguments

- **beta**
  - the \( \beta \) value for the Softplus formulation. Default: 1
- **threshold**
  - values above this revert to a linear function. Default: 20

### Details

SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive. For numerical stability the implementation reverts to the linear function when \( \text{input} \times \beta > \text{threshold} \).

### Shape

- Input: \((N, *)\) where \(*\) means, any number of additional dimensions
- Output: \((N, *)\), same shape as the input

### Examples

```r
if (torch_is_installed()) {
 m <- nn_softplus()
 input <- torch_randn(2)
 output <- m(input)
}
```
nn_softshrink

Softshrink module

Description
Applies the soft shrinkage function elementwise:

Usage
nn_softshrink(lambda = 0.5)

Arguments
lambda the \( \lambda \) (must be no less than zero) value for the Softshrink formulation. Default: 0.5

Details
\[
\text{SoftShrinkage}(x) = \begin{cases} 
    x - \lambda, & \text{if } x > \lambda \\
    x + \lambda, & \text{if } x < -\lambda \\
    0, & \text{otherwise}
\end{cases}
\]

Shape
- Input: \((N, *)\) where * means, any number of additional dimensions
- Output: \((N, *)\), same shape as the input

Examples
if (torch_is_installed()) {
  m <- nn_softshrink()
  input <- torch_randn(2)
  output <- m(input)
}

nn_softsign
Softsign module

Description
Applies the element-wise function:
\[
\text{SoftSign}(x) = \frac{x}{1 + |x|}
\]
nn_soft_margin_loss

Usage

nn_soft_margin_loss(reduction = "mean")

Arguments

reduction (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

Details

\[
\text{loss}(x, y) = \sum_{i} \frac{\log(1 + \exp(-y[i] \cdot x[i]))}{x\text{.nelement()}}
\]

Shape

- Input: (*) where * means, any number of additional dimensions
- Target: (*), same shape as the input
- Output: scalar. If reduction is 'none', then same shape as the input
nn_tanh  

Tanh module

Description

Applies the element-wise function:

Usage

nn_tanh()

Details

\[
\text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}
\]

Shape

- Input: \((N, *)\) where * means, any number of additional dimensions
- Output: \((N, \ast)\), same shape as the input

Examples

if (torch_is_installed()) {
  m <- nn_tanh()
  input <- torch_randn(2)
  output <- m(input)
}

nn_tanhshrink  

Tanhshrink module

Description

Applies the element-wise function:

Usage

nn_tanhshrink()

Details

\[
\text{Tanhshrink}(x) = x - \tanh(x)
\]
Shape

- Input: $(N, *)$ where $*$ means, any number of additional dimensions
- Output: $(N, *)$, same shape as the input

Examples

```r
if (torch_is_installed()) {
 m <- nn_tanhshrink()
 input <- torch_randn(2)
 output <- m(input)
}
```

### nn_threshold

**Threshold module**

**Description**

Thresholds each element of the input Tensor.

**Usage**

```r
nn_threshold(threshold, value, inplace = FALSE)
```

**Arguments**

- `threshold`: The value to threshold at
- `value`: The value to replace with
- `inplace`: can optionally do the operation in-place. Default: FALSE

**Details**

Threshold is defined as:

$$y = \begin{cases} 
  x, & \text{if } x > \text{threshold} \\
  \text{value}, & \text{otherwise}
\end{cases}$$

**Shape**

- Input: $(N, *)$ where $*$ means, any number of additional dimensions
- Output: $(N, *)$, same shape as the input

**Examples**

```r
if (torch_is_installed()) {
 m <- nn_threshold(0.1, 20)
 input <- torch_randn(2)
 output <- m(input)
}
```
nn_triplet_margin_loss

Triplet margin loss

Description

Creates a criterion that measures the triplet loss given an input tensors $x_1, x_2, x_3$ and a margin with a value greater than 0. This is used for measuring a relative similarity between samples. A triplet is composed by a, p and n (i.e., anchor, positive examples and negative examples respectively). The shapes of all input tensors should be $(N, D)$.

Usage

```r
nn_triplet_margin_loss(
 margin = 1,
 p = 2,
 eps = 1e-06,
 swap = FALSE,
 reduction = "mean"
)
```

Arguments

- `eps` (constant to avoid NaN's
- `swap` (bool, optional): The distance swap is described in detail in the paper Learning shallow convolutional feature descriptors with triplet losses by V. Balntas, E. Riba et al. Default: FALSE.
- `reduction` (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

Details

The distance swap is described in detail in the paper Learning shallow convolutional feature descriptors with triplet losses by V. Balntas, E. Riba et al.

The loss function for each sample in the mini-batch is:

$$L(a, p, n) = \max\{d(a_i, p_i) - d(a_i, n_i) + \text{margin}, 0\}$$

where
\[ d(x_i, y_i) = |x_i - y_i|^p \]

See also `nn_triplet_margin_with_distance_loss()`, which computes the triplet margin loss for input tensors using a custom distance function.

**Shape**

- Input: \((N, D)\) where \(D\) is the vector dimension.
- Output: A Tensor of shape \((N)\) if reduction is 'none', or a scalar otherwise.

**Examples**

```r
if (torch_is_installed()) {
 triplet_loss <- nn_triplet_margin_loss(margin = 1, p = 2)
 anchor <- torch_randn(100, 128, requires_grad=TRUE)
 positive <- torch_randn(100, 128, requires_grad=TRUE)
 negative <- torch_randn(100, 128, requires_grad=TRUE)
 output <- triplet_loss(anchor, positive, negative)
 output$backward()
}
```

---

**nn_triplet_margin_with_distance_loss**

*Triplet margin with distance loss*

**Description**

Creates a criterion that measures the triplet loss given input tensors \(a, p,\) and \(n\) (representing anchor, positive, and negative examples, respectively), and a nonnegative, real-valued function ("distance function") used to compute the relationship between the anchor and positive example ("positive distance") and the anchor and negative example ("negative distance").

**Usage**

```r
nn_triplet_margin_with_distance_loss(
 distance_function = NULL,
 margin = 1,
 swap = FALSE,
 reduction = "mean"
)
```
Arguments

- **distance_function** (callable, optional): A nonnegative, real-valued function that quantifies the closeness of two tensors. If not specified, `nn_pairwise_distance()` will be used. Default: None

- **margin** (float, optional): A non-negative margin representing the minimum difference between the positive and negative distances required for the loss to be 0. Larger margins penalize cases where the negative examples are not distant enough from the anchors, relative to the positives. Default: 1.

- **swap** (bool, optional): Whether to use the distance swap described in the paper Learning shallow convolutional feature descriptors with triplet losses by V. Balntas, E. Riba et al. If TRUE, and if the positive example is closer to the negative example than the anchor is, swaps the positive example and the anchor in the loss computation. Default: FALSE.

- **reduction** (string, optional): Specifies the (optional) reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'

Details

The unreduced loss (i.e., with reduction set to 'none') can be described as:

\[
\ell(a, p, n) = L = \{l_1, \ldots, l_N\}^\top, \quad l_i = \max\{d(a_i, p_i) - d(a_i, n_i) + \text{margin}, 0\}
\]

where \( N \) is the batch size; \( d \) is a nonnegative, real-valued function quantifying the closeness of two tensors, referred to as the distance_function; and \( \text{margin} \) is a non-negative margin representing the minimum difference between the positive and negative distances that is required for the loss to be 0. The input tensors have \( N \) elements each and can be of any shape that the distance function can handle. If reduction is not 'none' (default 'mean'), then:

\[
\ell(x, y) = \begin{cases} 
\text{mean}(L), & \text{if reduction = 'mean'}; \\
\text{sum}(L), & \text{if reduction = 'sum'}. 
\end{cases}
\]

See also `nn_triplet_margin_loss()`, which computes the triplet loss for input tensors using the \( l_p \) distance as the distance function.

Shape

- Input: \((N, *)\) where * represents any number of additional dimensions as supported by the distance function.

- Output: A Tensor of shape \((N)\) if reduction is 'none', or a scalar otherwise.
Examples

```r
if (torch_is_installed()) {
 # Initialize embeddings
 embedding <- nn_embedding(1000, 128)
 anchor_ids <- torch_randint(1, 1000, 1, dtype = torch_long())
 positive_ids <- torch_randint(1, 1000, 1, dtype = torch_long())
 negative_ids <- torch_randint(1, 1000, 1, dtype = torch_long())
 anchor <- embedding(anchor_ids)
 positive <- embedding(positive_ids)
 negative <- embedding(negative_ids)

 # Built-in Distance Function
 triplet_loss <- nn_triplet_margin_with_distance_loss(
 distance_function=nn_pairwise_distance()
)
 output <- triplet_loss(anchor, positive, negative)

 # Custom Distance Function
 l_infinity <- function(x1, x2) {
 torch_max(torch_abs(x1 - x2), dim = 1)[[1]]
 }
 triplet_loss <- nn_triplet_margin_with_distance_loss(
 distance_function=l_infinity, margin=1.5
)
 output <- triplet_loss(anchor, positive, negative)

 # Custom Distance Function (Lambda)
 triplet_loss <- nn_triplet_margin_with_distance_loss(
 distance_function = function(x, y) {
 1 - nnf_cosine_similarity(x, y)
 }
)
 output <- triplet_loss(anchor, positive, negative)
}
```

---

nn_utils_clip_grad_norm_

*Clips gradient norm of an iterable of parameters.*

---

**Description**

The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place.

**Usage**

```
nn_utils_clip_grad_norm_(parameters, max_norm, norm_type = 2)
```
Arguments

parameters (Iterable(Tensor) or Tensor): an iterable of Tensors or a single Tensor that will have gradients normalized

max_norm (float or int): max norm of the gradients

norm_type (float or int): type of the used p-norm. Can be Inf for infinity norm.

Value

Total norm of the parameters (viewed as a single vector).

---

nn_utils_clip_grad_value_

*Clips gradient of an iterable of parameters at specified value.*

---

Description

Gradients are modified in-place.

Usage

nn_utils_clip_grad_value_(parameters, clip_value)

Arguments

parameters (Iterable(Tensor) or Tensor): an iterable of Tensors or a single Tensor that will have gradients normalized

clip_value (float or int): maximum allowed value of the gradients.

Details

The gradients are clipped in the range [-clip_value, clip_value]

---

nn_utils_rnn_pack_padded_sequence

* Packs a Tensor containing padded sequences of variable length.*

---

Description

input can be of size T x B x * where T is the length of the longest sequence (equal to lengths[1]), B is the batch size, and * is any number of dimensions (including 0). If batch_first is TRUE, B x T x * input is expected.
nn_utils.rnn_pack_sequence

Usage

nn_utils.rnn_pack_padded_sequence(
    input,
    lengths,
    batch_first = FALSE,
    enforce_sorted = TRUE
)

Arguments

input (Tensor): padded batch of variable length sequences.
lengths (Tensor): list of sequences lengths of each batch element.
batch_first (bool, optional): if TRUE, the input is expected in B x T x * format.
enforce_sorted (bool, optional): if TRUE, the input is expected to contain sequences sorted by length in a decreasing order. If FALSE, the input will get sorted unconditionally. Default: TRUE.

Details

For unsorted sequences, use enforce_sorted = FALSE. If enforce_sorted is TRUE, the sequences should be sorted by length in a decreasing order, i.e. input[,1] should be the longest sequence, and input[,B] the shortest one. enforce_sorted = TRUE is only necessary for ONNX export.

Value

a PackedSequence object

Note

This function accepts any input that has at least two dimensions. You can apply it to pack the labels, and use the output of the RNN with them to compute the loss directly. A Tensor can be retrieved from a PackedSequence object by accessing its .data attribute.

nn_utils.rnn_pack_sequence

Packs a list of variable length Tensors

Description

sequences should be a list of Tensors of size L x *, where L is the length of a sequence and * is any number of trailing dimensions, including zero.

Usage

nn_utils.rnn_pack_sequence(sequences, enforce_sorted = TRUE)
Arguments

sequences (list[Tensor]): A list of sequences of decreasing length.

enforce_sorted (bool, optional): if TRUE, checks that the input contains sequences sorted by length in a decreasing order. If FALSE, this condition is not checked. Default: TRUE.

Details

For unsorted sequences, use enforce_sorted = FALSE. If enforce_sorted is TRUE, the sequences should be sorted in the order of decreasing length. enforce_sorted = TRUE is only necessary for ONNX export.

Value

a PackedSequence object

Examples

if (torch_is_installed()) {
  x <- torch_tensor(c(1,2,3), dtype = torch_long())
  y <- torch_tensor(c(4, 5), dtype = torch_long())
  z <- torch_tensor(c(6), dtype = torch_long())

  p <- nn_utils_rnn_pack_sequence(list(x, y, z))
}

nn_utils_rnn_pad_packed_sequence

Pads a packed batch of variable length sequences.

Description

It is an inverse operation to nn_utils_rnn_pack_padded_sequence().

Usage

nn_utils_rnn_pad_packed_sequence(
  sequence,
  batch_first = FALSE,
  padding_value = 0,
  total_length = NULL
)
Arguments

sequence (PackedSequence): batch to pad
batch_first (bool, optional): if True, the output will be in “B x T x *” format.
padding_value (float, optional): values for padded elements.
total_length (int, optional): if not NULL, the output will be padded to have length total_length. This method will throw ValueError if total_length is less than the max sequence length in sequence.

Details

The returned Tensor's data will be of size T x B x *, where T is the length of the longest sequence and B is the batch size. If batch_first is TRUE, the data will be transposed into B x T x * format.

Value

Tuple of Tensor containing the padded sequence, and a Tensor containing the list of lengths of each sequence in the batch. Batch elements will be re-ordered as they were ordered originally when the batch was passed to `nn_utils_rnn_pack_padded_sequence()` or `nn_utils_rnn_pack_sequence()`.

Note

total_length is useful to implement the pack sequence -> recurrent network -> unpack sequence pattern in a `nn_module` wrapped in `torch.nn.DataParallel`.

Examples

```r
if (torch_is_installed()) {
 seq <- torch_tensor(rbind(c(1,2,0), c(3,0,0), c(4,5,6)))
 lens <- c(2,1,3)
 packed <- nn_utils_rnn_pack_padded_sequence(seq, lens, batch_first = TRUE,
 enforce_sorted = FALSE)
 packed
 nn_utils_rnn_pad_packed_sequence(packed, batch_first=TRUE)
}
```

---

**nn_utils_rnn_pad_sequence**

*Pad a list of variable length Tensors with padding_value*

Description

`pad_sequence` stacks a list of Tensors along a new dimension, and pads them to equal length. For example, if the input is list of sequences with size L x * and if batch_first is False, and T x B x * otherwise.
Usage

```r
nn_utils_rnn_pad_sequence(sequences, batch_first = FALSE, padding_value = 0)
```

Arguments

- `sequences` (list[Tensor]): list of variable length sequences.
- `batch_first` (bool, optional): output will be in B x T x * if TRUE, or in T x B x * otherwise
- `padding_value` (float, optional): value for padded elements. Default: 0.

Details

B is batch size. It is equal to the number of elements in `sequences`. T is length of the longest sequence. L is length of the sequence. * is any number of trailing dimensions, including none.

Value

Tensor of size T x B x * if `batch_first` is FALSE. Tensor of size B x T x * otherwise.

Note

This function returns a Tensor of size T x B x * or B x T x * where T is the length of the longest sequence. This function assumes trailing dimensions and type of all the Tensors in sequences are same.

Examples

```r
if (torch_is_installed()) {
 a <- torch_ones(25, 300)
 b <- torch_ones(22, 300)
 c <- torch_ones(15, 300)
 nn_utils_rnn_pad_sequence(list(a, b, c))$size()
}
```

optimizer

`optimizer` creates a custom optimizer

Description

When implementing custom optimizers you will usually need to implement the `initialize` and `step` methods. See the example section below for a full example.
Usage

optimizer(
  name = NULL,
  inherit = Optimizer,
  ..., 
  private = NULL,
  active = NULL,
  parent_env = parent.frame()
)

Arguments

name (optional) name of the optimizer
inherit (optional) you can inherit from other optimizers to re-use some methods.
... Pass any number of fields or methods. You should at least define the initialize and step methods. See the examples section.
private (optional) a list of private methods for the optimizer.
active (optional) a list of active methods for the optimizer.
parent_env used to capture the right environment to define the class. The default is fine for most situations.

Examples

if (torch_is_installed()) {

  # In this example we will create a custom optimizer
  # that's just a simplified version of the `optim_sgd` function.

  optim_sgd2 <- optimizer(
    initialize = function(params, learning_rate) {
      defaults <- list(
        learning_rate = learning_rate
      )
      super$initialize(params, defaults)
    },
    step = function() {
      with_no_grad({
        for (g in seq_along(self$param_groups)) {
          group <- self$param_groups[[g]]
          for (p in seq_along(group$params)) {
            param <- group$params[[p]]

            if (is.null(param$grad) || is_undefined_tensor(param$grad))
              next
            param$add_(param$grad, alpha = -group$learning_rate)
          }
          }
      })
  )
}
x <- torch_randn(1, requires_grad = TRUE)
opt <- optim_sgd2(x, learning_rate = 0.1)
for (i in 1:100) {
  opt$zero_grad()
  y <- x^2
  y$backward()
  opt$step()
}
all.equal(x$item(), 0, tolerance = 1e-9)

optim_adadelta

Adadelta optimizer

Description

It has been proposed in ADADELTA: An Adaptive Learning Rate Method

Usage

optim_adadelta(params, lr = 1, rho = 0.9, eps = 1e-06, weight_decay = 0)

Arguments

params (iterable): list of parameters to optimize or list defining parameter groups
lr (float, optional): learning rate (default: 1e-3)
rho (float, optional): coefficient used for computing a running average of squared gradients (default: 0.9)
eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-6)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)

Note

According to the original paper, decaying average of the squared gradients is computed as follows:

\[ E[g^2]_t = \rho E[g^2]_{t-1} + (1 - \rho) g_t^2 \]

RMS of previous squared gradients up to time t:

\[ RMS[g_t] = \sqrt{E[g^2]_t + \epsilon} \]

Adadelta update rule:

\[ \Delta \theta_t = -\frac{RMS[\Delta \theta]_t}{RMS[\theta]_t} \theta_{t+1} = \theta_t + \Delta \theta_t \]
Examples

```r
if (torch_is_installed()) {
 ## Not run:
 optimizer <- optim_adadelta(model$parameters, lr = 0.1)
 optimizer$zero_grad()
 loss_fn(model(input), target)$backward()
 optimizer$step()

 ## End(Not run)
}
```

---

**optim_adagrad**  
*Adagrad optimizer*

---

**Description**

Proposed in *Adaptive Subgradient Methods for Online Learning and Stochastic Optimization*

**Usage**

```r
optim_adagrad(
 params,
 lr = 0.01,
 lr_decay = 0,
 weight_decay = 0,
 initial_accumulator_value = 0,
 eps = 1e-10
)
```

**Arguments**

- `params` *(iterable)*: list of parameters to optimize or list parameter groups
- `lr` *(float, optional)*: learning rate (default: 1e-2)
- `lr_decay` *(float, optional)*: learning rate decay (default: 0)
- `weight_decay` *(float, optional)*: weight decay (L2 penalty) (default: 0)
- `initial_accumulator_value`  
  the initial value for the accumulator. (default: 0)

Adagrad is an especially good optimizer for sparse data. It individually modifies learning rate for every single parameter, dividing the original learning rate value by sum of the squares of the gradients. It causes that the rarely occurring features get greater learning rates. The main downside of this method is the fact that learning rate may be getting small too fast, so that at some point a model cannot learn anymore.

- `eps` *(float, optional)*: term added to the denominator to improve numerical stability (default: 1e-10)
Note

Update rule:

\[ \theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}} \odot g_t \]

The equation above and some remarks quoted after *An overview of gradient descent optimization algorithms* by Sebastian Ruder.

---

**optim_adam**

*Implements Adam algorithm.*

---

**Description**

It has been proposed in *Adam: A Method for Stochastic Optimization*.

**Usage**

```r
optim_adam(
 params, # (iterable): iterable of parameters to optimize or dicts defining parameter groups
 lr = 0.001, # (float, optional): learning rate (default: 1e-3)
 betas = c(0.9, 0.999), # (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
 eps = 1e-08, # (float, optional): term added to the denominator to improve numerical stability (default: 1e-8)
 weight_decay = 0, # (float, optional): weight decay (L2 penalty) (default: 0)
 amsgrad = FALSE # (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper *On the Convergence of Adam and Beyond* (default: FALSE)
)
```

**Arguments**

- **params**
  - (iterable): iterable of parameters to optimize or dicts defining parameter groups
- **lr**
  - (float, optional): learning rate (default: 1e-3)
- **betas**
  - (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
- **eps**
  - (float, optional): term added to the denominator to improve numerical stability (default: 1e-8)
- **weight_decay**
  - (float, optional): weight decay (L2 penalty) (default: 0)
- **amsgrad**
  - (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper *On the Convergence of Adam and Beyond* (default: FALSE)

**Examples**

```r
if (torch_is_installed()) {
 ## Not run:
 optimizer <- optim_adam(model$parameters(), lr=0.1)
 optimizer$zero_grad()
 loss_fn(model(input), target)$backward()
 optimizer$step()
```
optim_asgd

Description

Proposed in Acceleration of stochastic approximation by averaging

Usage

```r
optim_asgd(
 params,
 lr = 0.01,
 lambda = 1e-04,
 alpha = 0.75,
 t0 = 1e+06,
 weight_decay = 0
)
```

Arguments

- `params`: (iterable): iterable of parameters to optimize or lists defining parameter groups
- `lr`: (float): learning rate
- `lambda`: (float, optional): decay term (default: 1e-4)
- `alpha`: (float, optional): power for eta update (default: 0.75)
- `t0`: (float, optional): point at which to start averaging (default: 1e6)
- `weight_decay`: (float, optional): weight decay (L2 penalty) (default: 0)

Examples

```r
if (torch_is_installed()) {
 ## Not run:
 optimizer <- optim_asgd(model$parameters(), lr=0.1)
 optimizer$zero_grad()
 loss_fn(model(input), target)$backward()
 optimizer$step()

 ## End(Not run)
}
```
**optim_lbfgs**  

### Description

Implements L-BFGS algorithm, heavily inspired by minFunc

### Usage

```r
optim_lbfgs(
 params,
 lr = 1,
 max_iter = 20,
 max_eval = NULL,
 tolerance_grad = 1e-07,
 tolerance_change = 1e-09,
 history_size = 100,
 line_search_fn = NULL
)
```

### Arguments

- `params` (iterable): iterable of parameters to optimize or dicts defining parameter groups
- `lr` (float): learning rate (default: 1)
- `max_iter` (int): maximal number of iterations per optimization step (default: 20)
- `max_eval` (int): maximal number of function evaluations per optimization step (default: `max_iter * 1.25`).
- `tolerance_grad` (float): termination tolerance on first order optimality (default: 1e-5).
- `tolerance_change` (float): termination tolerance on function value/parameter changes (default: 1e-9).
- `history_size` (int): update history size (default: 100).
- `line_search_fn` (str): either 'strong_wolfe' or None (default: None).

### Warning

This optimizer doesn’t support per-parameter options and parameter groups (there can be only one). Right now all parameters have to be on a single device. This will be improved in the future.

### Note

This is a very memory intensive optimizer (it requires additional `param_bytes * (history_size + 1)` bytes). If it doesn’t fit in memory try reducing the history size, or use a different algorithm.
optim_required

*Dummy value indicating a required value.*

**Description**

export

**Usage**

`optim_required()`

---

optim_rmsprop

*RMSprop optimizer*

**Description**

Proposed by G. Hinton in his course.

**Usage**

```r
optim_rmsprop(
 params,
 lr = 0.01,
 alpha = 0.99,
 eps = 1e-08,
 weight_decay = 0,
 momentum = 0,
 centered = FALSE
)
```

**Arguments**

- **params**  
  (iterable): iterable of parameters to optimize or list defining parameter groups
- **lr**  
  (float, optional): learning rate (default: 1e-2)
- **alpha**  
  (float, optional): smoothing constant (default: 0.99)
- **eps**  
  (float, optional): term added to the denominator to improve numerical stability (default: 1e-8)
- **weight_decay**  
  optional weight decay penalty. (default: 0)
- **momentum**  
  (float, optional): momentum factor (default: 0)
- **centered**  
  (bool, optional): if `TRUE`, compute the centered RMSProp, the gradient is normalized by an estimation of its variance weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
Note

The centered version first appears in Generating Sequences With Recurrent Neural Networks. The implementation here takes the square root of the gradient average before adding epsilon (note that TensorFlow interchanges these two operations). The effective learning rate is thus $\frac{\alpha}{\sqrt{v + \epsilon}}$ where $\alpha$ is the scheduled learning rate and $v$ is the weighted moving average of the squared gradient.

Update rule:

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\mathbb{E}[g^2]_t + \epsilon}} * g_t$$

**Description**

Proposed first in RPROP - A Fast Adaptive Learning Algorithm

**Usage**

```r
optim_rprop(params, lr = 0.01, etas = c(0.5, 1.2), step_sizes = c(1e-06, 50))
```

**Arguments**

- `params` (iterable): iterable of parameters to optimize or lists defining parameter groups
- `lr` (float, optional): learning rate (default: 1e-2)
- `etas` (Tuple(float, float), optional): pair of (etaminus, etaplis), that are multiplicative increase and decrease factors (default: (0.5, 1.2))
- `step_sizes` (vector(float, float), optional): a pair of minimal and maximal allowed step sizes (default: (1e-6, 50))

**Examples**

```r
if (torch_is_installed()) {
 ## Not run:
 optimizer <- optim_rprop(model$parameters(), lr=0.1)
 optimizer$zero_grad()
 loss_fn(model(input), target)$backward()
 optimizer$step()

 ## End(Not run)
}
```
optimsgd SGD optimizer

Description

Implements stochastic gradient descent (optionally with momentum). Nesterov momentum is based on the formula from On the importance of initialization and momentum in deep learning.

Usage

```python
optim_sgd(
 params,
 lr = optim_required(),
 momentum = 0,
 dampening = 0,
 weight_decay = 0,
 nesterov = FALSE
)
```

Arguments

- `params` (iterable): iterable of parameters to optimize or dicts defining parameter groups
- `lr` (float): learning rate
- `momentum` (float, optional): momentum factor (default: 0)
- `dampening` (float, optional): dampening for momentum (default: 0)
- `weight_decay` (float, optional): weight decay (L2 penalty) (default: 0)
- `nesterov` (bool, optional): enables Nesterov momentum (default: FALSE)

Note

The implementation of SGD with Momentum-Nesterov subtly differs from Sutskever et. al. and implementations in some other frameworks.

Considering the specific case of Momentum, the update can be written as

\[
    v_{t+1} = \mu \ast v_t + g_{t+1},
    p_{t+1} = p_t - lr \ast v_{t+1},
\]

where \(p, g, v\) and \(\mu\) denote the parameters, gradient, velocity, and momentum respectively.

This is in contrast to Sutskever et. al. and other frameworks which employ an update of the form

\[
    v_{t+1} = \mu \ast v_t + lr \ast g_{t+1},
    p_{t+1} = p_t - v_{t+1}.
\]

The Nesterov version is analogously modified.
slc

Creates a slice

Description

Creates a slice object that can be used when indexing torch tensors.

Usage

slc(start, end, step = 1)

Arguments

- **start**: (integer) starting index.
- **end**: (integer) the last selected index.
- **step**: (integer) the step between indexes.

Examples

```r
if (torch_is_installed()) {
 x <- torch_randn(10)
 x[slc(start = 1, end = 5, step = 2)]
}
```
tensor_dataset  

*Dataset wrapping tensors.*

**Description**

Each sample will be retrieved by indexing tensors along the first dimension.

**Usage**

```python
tensor_dataset(...)```

Arguments

```python...
tensors that have the same size of the first dimension.
```

threads

Number of threads

Description

Get and set the numbers used by torch computations.

Usage

```python
torch_set_num_threads(num_threads)
torch_set_num_interop_threads(num_threads)
torch_get_num_interop_threads()
torch_get_num_threads()
```

Arguments

```python
num_threads  

number of threads to set.
```

Details

For details see the [CPU threading article](https://pytorch.org/docs/stable/notes/cpu_threading.html) in the PyTorch documentation.

Note

`torch_set_threads` do not work on macOS system as it must be 1.
torch_abs

<table>
<thead>
<tr>
<th>Description</th>
<th>Abs</th>
</tr>
</thead>
</table>

Usage

torch_abs(self)

Arguments

self (Tensor) the input tensor.

abs(input) -> Tensor

Computes the element-wise absolute value of the given input tensor.

\[
\text{out}_i = |\text{input}_i|
\]

Examples

```c
if (torch_is_installed()) {
    torch_abs(torch_tensor(c(-1, -2, 3)))
}
```

torch_absolute

<table>
<thead>
<tr>
<th>Description</th>
<th>Absolute</th>
</tr>
</thead>
</table>

Usage

torch_absolute(self)

Arguments

self (Tensor) the input tensor.

absolute(input, *, out=None) -> Tensor

Alias for torch_abs()
Description

Acos

Usage

```python
torch_acos(self)
```

Arguments

- `self` (Tensor) the input tensor.

acos(input) -> Tensor

Returns a new tensor with the arccosine of the elements of `input`.

\[
\text{out}_i = \cos^{-1}(\text{input}_i)
\]

Examples

```python
if (torch_is_installed()) {
    a = torch_randn(c(4))
    a
    torch_acos(a)
}
```

Description

Acosh

Usage

```python
torch_acosh(self)
```

Arguments

- `self` (Tensor) the input tensor.
torch_adaptive_avg_pool1d

acosh(input, *, out=None) -> Tensor

Returns a new tensor with the inverse hyperbolic cosine of the elements of input.

Note

The domain of the inverse hyperbolic cosine is [1, inf) and values outside this range will be mapped to NaN, except for + INF for which the output is mapped to + INF.

\[\text{out}_i = \cosh^{-1}(\text{input}_i) \]

Examples

```python
if (torch_is_installed()) {
    a <- torch_randn(c(4))$uniform_(1, 2)
    a
    torch_acosh(a)
}
```

torch_adaptive_avg_pool1d

Adaptive_avg_pool1d

Description

Adaptive_avg_pool1d

Usage

torch_adaptive_avg_pool1d(self, output_size)

Arguments

- **self**: the input tensor
- **output_size**: the target output size (single integer)

adaptive_avg_pool1d(input, output_size) -> Tensor

Applies a 1D adaptive average pooling over an input signal composed of several input planes. See `nn_adaptive_avg_pool1d()` for details and output shape.
torch_add

Add

Description
Add

Usage
torch_add(self, other, alpha = 1L)

Arguments
self (Tensor) the input tensor.
other (Tensor/Number) the second input tensor/number.
alpha (Number) the scalar multiplier for other

add(input, other, out=NULL)
Adds the scalar other to each element of the input input and returns a new resulting tensor.

out = input + other

If input is of type FloatTensor or DoubleTensor, other must be a real number, otherwise it should be an integer.

add(input, other, *, alpha=1, out=NULL)
Each element of the tensor other is multiplied by the scalar alpha and added to each element of the tensor input. The resulting tensor is returned.
The shapes of input and other must be broadcastable.

out = input + alpha × other

If other is of type FloatTensor or DoubleTensor, alpha must be a real number, otherwise it should be an integer.

Examples
if (torch_is_installed()) {
 a = torch_randn(c(4))
a torch_add(a, 20)
 a = torch_randn(c(4))
torch_addbmm

```python
a
b = torch.randn(c(4, 1))
b
torch_add(a, b)
}
```

Description
Addbmm

Usage
```
torch_addbmm(self, batch1, batch2, beta = 1L, alpha = 1L)
```

Arguments
- **self** (Tensor): matrix to be added
- **batch1** (Tensor): the first batch of matrices to be multiplied
- **batch2** (Tensor): the second batch of matrices to be multiplied
- **beta** (Number, optional): multiplier for input (β)
- **alpha** (Number, optional): multiplier for $\text{batch1} @ \text{batch2}$ (α)

addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=NULL) -> Tensor

Performs a batch matrix-matrix product of matrices stored in `batch1` and `batch2`, with a reduced add step (all matrix multiplications get accumulated along the first dimension). `input` is added to the final result.

`batch1` and `batch2` must be 3-D tensors each containing the same number of matrices.

If `batch1` is a $(b \times n \times m)$ tensor, `batch2` is a $(b \times m \times p)$ tensor, `input` must be broadcastable with a $(n \times p)$ tensor and `out` will be a $(n \times p)$ tensor.

$$out = \beta \text{ input} + \alpha \left(\sum_{i=0}^{b-1} \text{batch1}_i \otimes \text{batch2}_i \right)$$

For inputs of type `FloatTensor` or `DoubleTensor`, arguments `beta` and `alpha` must be real numbers, otherwise they should be integers.

Examples
```python
if (torch_is_installed()) {

M = torch.randn(c(3, 5))
batch1 = torch.randn(c(10, 3, 4))
batch2 = torch.randn(c(10, 4, 5))
torch_addbmm(M, batch1, batch2)
}
```
torch_addcdiv

Description
Addcdiv

Usage
torch_addcdiv(self, tensor1, tensor2, value = 1L)

Arguments
- self (Tensor) the tensor to be added
- tensor1 (Tensor) the numerator tensor
- tensor2 (Tensor) the denominator tensor
- value (Number, optional) multiplier for tensor1/tensor2

addcdiv(input, tensor1, tensor2, *, value=1, out=NULL) -> Tensor

Performs the element-wise division of tensor1 by tensor2, multiply the result by the scalar value and add it to input.

Warning
Integer division with addcdiv is deprecated, and in a future release addcdiv will perform a true division of tensor1 and tensor2. The current addcdiv behavior can be replicated using torch_floor_divide() for integral inputs (input + value * tensor1 // tensor2) and torch_div() for float inputs (input + value * tensor1 / tensor2). The new addcdiv behavior can be implemented with torch_true_divide()

\[
\text{out}_i = \text{input}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i}
\]

The shapes of input, tensor1, and tensor2 must be broadcastable.
For inputs of type FloatTensor or DoubleTensor, value must be a real number, otherwise an integer.

Examples
if (torch_is_installed()) {
 t = torch_randn(c(1, 3))
 t1 = torch_randn(c(3, 1))
 t2 = torch_randn(c(1, 3))
 torch_addcdiv(t, t1, t2, 0.1)
}
Addcmul

Description
Addcmul

Usage
torch_addcmul(self, tensor1, tensor2, value = 1L)

Arguments
self (Tensor) the tensor to be added
tensor1 (Tensor) the tensor to be multiplied
tensor2 (Tensor) the tensor to be multiplied
value (Number, optional) multiplier for tensor1. * tensor2

addcmul(input, tensor1, tensor2, *, value=1, out=NULL) -> Tensor

Performs the element-wise multiplication of tensor1 by tensor2, multiply the result by the scalar value and add it to input.

out_i = input_i + value * tensor1_i * tensor2_i

The shapes of tensor, tensor1, and tensor2 must be broadcastable.

For inputs of type FloatTensor or DoubleTensor, value must be a real number, otherwise an integer.

Examples
if (torch_is_installed()) {

 t = torch_randn(c(1, 3))
t1 = torch_randn(c(3, 1))
t2 = torch_randn(c(1, 3))
torch_addcmul(t, t1, t2, 0.1)
}
Description

Addmm

Usage

torch_addmm(self, mat1, mat2, beta = 1L, alpha = 1L)

Arguments

self (Tensor) matrix to be added
mat1 (Tensor) the first matrix to be multiplied
mat2 (Tensor) the second matrix to be multiplied
beta (Number, optional) multiplier for input (β)
alpha (Number, optional) multiplier for mat1 @ mat2 (α)

addmm(input, mat1, mat2, *, beta=1, alpha=1, out=NULL) -> Tensor

Performs a matrix multiplication of the matrices mat1 and mat2. The matrix input is added to the final result.

If mat1 is a (n × m) tensor, mat2 is a (m × p) tensor, then input must be broadcastable with a (n × p) tensor and out will be a (n × p) tensor.

alpha and beta are scaling factors on matrix-vector product between mat1 and mat2 and the added matrix input respectively.

out = β input + α (mat1_i @ mat2_j)

For inputs of type FloatTensor or DoubleTensor, arguments beta and alpha must be real numbers, otherwise they should be integers.

Examples

if (torch_is_installed()) {

M = torch_randn(c(2, 3))
mat1 = torch_randn(c(2, 3))
mat2 = torch_randn(c(3, 3))
torch_addmm(M, mat1, mat2)
}
torch_addmv

Description
Addmv

Usage
torch_addmv(self, mat, vec, beta = 1L, alpha = 1L)

Arguments

- `self` (Tensor) vector to be added
- `mat` (Tensor) matrix to be multiplied
- `vec` (Tensor) vector to be multiplied
- `beta` (Number, optional) multiplier for input (β)
- `alpha` (Number, optional) multiplier for $mat@vec$ (α)

addmv(input, mat, vec, *, beta=1, alpha=1, out=NULL) -> Tensor
Performs a matrix-vector product of the matrix `mat` and the vector `vec`. The vector `input` is added to the final result.

If `mat` is a ($n \times m$) tensor, `vec` is a 1-D tensor of size m, then `input` must be broadcastable with a 1-D tensor of size n and `out` will be 1-D tensor of size n.

`alpha` and `beta` are scaling factors on matrix-vector product between `mat` and `vec` and the added tensor `input` respectively.

$$out = \beta \text{input} + \alpha (mat@vec)$$

For inputs of type `FloatTensor` or `DoubleTensor`, arguments `beta` and `alpha` must be real numbers, otherwise they should be integers

Examples

```python
if (torch_is_installed()) {

M = torch_randn(c(2))
mat = torch_randn(c(2, 3))
vec = torch_randn(c(3))
torch_addmv(M, mat, vec)
}
```
torch_addr

Description

Addr

Usage

`torch_addr(self, vec1, vec2, beta = 1L, alpha = 1L)`

Arguments

- `self` (Tensor): matrix to be added
- `vec1` (Tensor): the first vector of the outer product
- `vec2` (Tensor): the second vector of the outer product
- `beta` (Number, optional): multiplier for input (β)
- `alpha` (Number, optional): multiplier for $vec1 \otimes vec2$ (α)

`addr(input, vec1, vec2, *, beta=1, alpha=1, out=NULL) -> Tensor`

Performs the outer-product of vectors `vec1` and `vec2` and adds it to the matrix `input`.

Optional values `beta` and `alpha` are scaling factors on the outer product between `vec1` and `vec2` and the added matrix `input` respectively.

\[
\text{out} = \beta \text{input} + \alpha (\text{vec1} \otimes \text{vec2})
\]

If `vec1` is a vector of size n and `vec2` is a vector of size m, then `input` must be broadcastable with a matrix of size $(n \times m)$ and `out` will be a matrix of size $(n \times m)$.

For inputs of type `FloatTensor` or `DoubleTensor`, arguments `beta` and `alpha` must be real numbers, otherwise they should be integers.

Examples

```python
if (torch_is_installed()) {

    vec1 = torch.arange(1, 3)
    vec2 = torch.arange(1, 2)
    M = torch_zeros(c(3, 2))
    torch_addr(M, vec1, vec2)
}
```
torch_allclose

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allclose</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>torch_allclose(self, other, rtol = 1e-05, atol = 0, equal_nan = FALSE)</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>self</code></td>
</tr>
<tr>
<td><code>other</code></td>
</tr>
<tr>
<td><code>rtol</code></td>
</tr>
<tr>
<td><code>atol</code></td>
</tr>
<tr>
<td><code>equal_nan</code></td>
</tr>
</tbody>
</table>

allclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> bool

This function checks if all input and other satisfy the condition:

\[|input - other| \leq atol + rtol \times |other| \]

elementwise, for all elements of input and other. The behaviour of this function is analogous to `numpy.allclose <https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html>`_.

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>if (torch_is_installed())</td>
</tr>
<tr>
<td><code>torch_allclose(torch_tensor(c(10000., 1e-07)), torch_tensor(c(10000.1, 1e-08)))</code></td>
</tr>
<tr>
<td><code>torch_allclose(torch_tensor(c(10000., 1e-08)), torch_tensor(c(10000.1, 1e-09)))</code></td>
</tr>
<tr>
<td><code>torch_allclose(torch_tensor(c(1.0, NaN)), torch_tensor(c(1.0, NaN)))</code></td>
</tr>
<tr>
<td><code>torch_allclose(torch_tensor(c(1.0, NaN)), torch_tensor(c(1.0, NaN)), equal_nan=TRUE)</code></td>
</tr>
</tbody>
</table>
| }
Description

Amax

Usage

torch_amax(self, dim = list(), keepdim = FALSE)

Arguments

- **self** (Tensor) the input tensor.
- **dim** (int or tuple of ints) the dimension or dimensions to reduce.
- **keepdim** (bool) whether the output tensor has dim retained or not.

amax(input, dim, keepdim=FALSE, *, out=None) -> Tensor

Returns the maximum value of each slice of the input tensor in the given dimension(s) dim.

Note

The difference between max/min and amax/amin is:

- amax/amin supports reducing on multiple dimensions.
- amax/amin does not return indices.
- amax/amin evenly distributes gradient between equal values, while max(dim)/min(dim) propagates gradient only to a single index in the source tensor.

If keepdim is TRUE, the output tensors are of the same size as input except in the dimension(s) dim where they are of size 1. Otherwise, dims are squeezed (see [torch_squeeze()]), resulting in the output tensors having fewer dimension than input.

Examples

```r
if (torch_is_installed()) {

  a <- torch_randn(c(4, 4))
  a
  torch_amax(a, 1)
}
```
torch_amin

Description

Amin

Usage

torch_amin(self, dim = list(), keepdim = FALSE)

Arguments

- **self** (Tensor) the input tensor.
- **dim** (int or tuple of ints) the dimension or dimensions to reduce.
- **keepdim** (bool) whether the output tensor has dim retained or not.

amin(input, dim, keepdim=FALSE, *, out=None) -> Tensor

Returns the minimum value of each slice of the input tensor in the given dimension(s) dim.

Note

The difference between max/min and amax/amin is:

- amax/amin supports reducing on multiple dimensions.
- amax/amin does not return indices,
- amax/amin evenly distributes gradient between equal values, while max(dim)/min(dim) propagates gradient only to a single index in the source tensor.

If keepdim is TRUE, the output tensors are of the same size as input except in the dimension(s) dim where they are of size 1. Otherwise, dims are squeezed (see torch_squeeze()), resulting in the output tensors having fewer dimensions than input.

Examples

```r
if (torch_is_installed()) {
  a <- torch_randn(c(4, 4))
  a
  torch_amin(a, 1)
}
```
torch_angle

Description

Angle

Usage

torch_angle(self)

Arguments

- **self** (Tensor) the input tensor.

angle(input) -> Tensor

Computes the element-wise angle (in radians) of the given input tensor.

\[\text{out}_i = \text{angle} (\text{input}_i) \]

Examples

```python
if (torch_is_installed()) {
    ## Not run:
    torch_angle(torch_tensor(c(-1 + 1i, -2 + 2i, 3 - 3i)))*180/3.14159
    ## End(Not run)
}
```

torch_arange

Description

Arange

Usage

torch_arange(
 start,
 end,
 step = 1,
 dtype = NULL,
 layout = torch_strided(),
 device = NULL,
 requires_grad = FALSE
)
torch_arccos

Arguments

- **start** (Number) the starting value for the set of points. Default: 0.
- **end** (Number) the ending value for the set of points
- **step** (Number) the gap between each pair of adjacent points. Default: 1.
- **dtype** (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type). If dtype is not given, infer the data type from the other input arguments. If any of start, end, or stop are floating-point, the dtype is inferred to be the default dtype, see ~torch.get_default_dtype. Otherwise, the dtype is inferred to be torch.int64.
- **layout** (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.
- **device** (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- **requires_grad** (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.

arange(start=0, end=5, step=1, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor

Returns a 1-D tensor of size $\left\lceil \frac{end - start}{step} \right\rceil$ with values from the interval [start, end) taken with common difference step beginning from start.

Note that non-integer step is subject to floating point rounding errors when comparing against end; to avoid inconsistency, we advise adding a small epsilon to end in such cases.

$$\text{out}_{i+1} = \text{out}_i + \text{step}$$

Examples

if (torch_is_installed()) {
 torch_arange(start = 0, end = 5)
 torch_arange(1, 4)
 torch_arange(1, 2.5, 0.5)
}

torch_arccos

Description

Arccos
torch_arccos

Usage
torch_arccos(self)

Arguments
self (Tensor) the input tensor.

arccos(input, *, out=None) -> Tensor
Alias for torch_acos().

torch_arccosh

Description
Arccosh

Usage
torch_arccosh(self)

Arguments
self (Tensor) the input tensor.

arccosh(input, *, out=None) -> Tensor
Alias for torch_acosh().

torch_arcsin

Description
Arcsin

Usage
torch_arcsin(self)

Arguments
self (Tensor) the input tensor.

arcsin(input, *, out=None) -> Tensor
Alias for torch_asin().
torch_arcsinh

Description
Arcsinh

Usage
torch_arcsinh(self)

Arguments
self (Tensor) the input tensor.

arcsinh(input, *, out=None) -> Tensor
Alias for torch_asinh().

torch_arctan

Description
Arctan

Usage
torch_arctan(self)

Arguments
self (Tensor) the input tensor.

arctan(input, *, out=None) -> Tensor
Alias for torch_atan().
torch_arctanh

Description

Arctan

Usage

torch_arctanh(self)

Arguments

- **self**
 (Tensor) the input tensor.

arctanh(input, *, out=None) -> Tensor

Alias for torch_atanh().

torch_argmax

Description

Argmax

Arguments

- **self**
 (Tensor) the input tensor.

- **dim**
 (int) the dimension to reduce. If NULL, the argmax of the flattened input is returned.

- **keepdim**
 (bool) whether the output tensor has dim retained or not. Ignored if dim=NULL.

argmax(input) -> LongTensor

Returns the indices of the maximum value of all elements in the input tensor.

This is the second value returned by torch_max. See its documentation for the exact semantics of this method.

argmax(input, dim, keepdim=False) -> LongTensor

Returns the indices of the maximum values of a tensor across a dimension.

This is the second value returned by torch_max. See its documentation for the exact semantics of this method.
torch_argmin

Examples

```r
if (torch_is_installed()) {

## Not run:
a = torch_rands(c(4, 4))
a
torch_argmax(a)

## End(Not run)

a = torch_rands(c(4, 4))
a
torch_argmax(a, dim=1)
}
```

Description

Argmin

Arguments

- **self** (Tensor) the input tensor.
- **dim** (int) the dimension to reduce. If NULL, the argmin of the flattened input is returned.
- **keepdim** (bool) whether the output tensor has dim retained or not. Ignored if dim=NULL.

argmin(input) -> LongTensor

Returns the indices of the minimum value of all elements in the input tensor.

This is the second value returned by torch_min. See its documentation for the exact semantics of this method.

argmin(input, dim, keepdim=False, out=NULL) -> LongTensor

Returns the indices of the minimum values of a tensor across a dimension.

This is the second value returned by torch_min. See its documentation for the exact semantics of this method.
torch_argsort

Examples
if (torch_is_installed()) {
 a = torch_randn(c(4, 4))
a
 torch_argmin(a)

 a = torch_randn(c(4, 4))
a
 torch_argmin(a, dim=1)
}

Description
Argsort

Usage
torch_argsort(self, dim = -1L, descending = FALSE)

Arguments

self (Tensor) the input tensor.
dim (int, optional) the dimension to sort along
descending (bool, optional) controls the sorting order (ascending or descending)

argsort(input, dim=-1, descending=False) -> LongTensor
Returns the indices that sort a tensor along a given dimension in ascending order by value.
This is the second value returned by torch_sort. See its documentation for the exact semantics of
this method.

Examples
if (torch_is_installed()) {
 a = torch_randn(c(4, 4))
a
 torch_argsort(a, dim=1)
}
torch_asin

| torch_asin | Asin |

Description
Asin

Usage
`torch_asin(self)`

Arguments
- `self` (Tensor) the input tensor.

asin(input, out=NULL) -> Tensor
Returns a new tensor with the arcsine of the elements of `input`.

\[
\text{out}_i = \sin^{-1}(\text{input}_i)
\]

Examples
```
if (torch_is_installed()) {
  a = torch_randn(c(4))
a  torch_asin(a)
}
```

torch_asinh

| torch_asinh | Asinh |

Description
Asinh

Usage
`torch_asinh(self)`

Arguments
- `self` (Tensor) the input tensor.
asinh(input, *, out=None) -> Tensor

Returns a new tensor with the inverse hyperbolic sine of the elements of input.

\[
\text{out}_i = \sinh^{-1}(\text{input}_i)
\]

Examples

```python
if (torch_is_installed()) {
  a <- torch_randn(c(4))
  a
  torch_asinh(a)
}
```

torch_as_strided

As_strided

Description

As_strided

Usage

```
torch_as_strided(self, size, stride, storage_offset = NULL)
```

Arguments

- `self` (Tensor) the input tensor.
- `size` (tuple or ints) the shape of the output tensor
- `stride` (tuple or ints) the stride of the output tensor
- `storage_offset` (int, optional) the offset in the underlying storage of the output tensor

as_strided(input, size, stride, storage_offset=0) -> Tensor

Create a view of an existing torch_Tensor input with specified size, stride and storage_offset.

Warning

More than one element of a created tensor may refer to a single memory location. As a result, in-place operations (especially ones that are vectorized) may result in incorrect behavior. If you need to write to the tensors, please clone them first.

Many PyTorch functions, which return a view of a tensor, are internally implemented with this function. Those functions, like `torch_Tensor.expand`, are easier to read and are therefore more advisable to use.
torch_atan

Examples

if (torch_is_installed()) {
 x = torch_randn(c(3, 3))
 x
 t = torch_as_strided(x, list(2, 2), list(1, 2))
 t
 t = torch_as_strided(x, list(2, 2), list(1, 2), 1)
 t
}

torch_atan Atan

Description
Atan

Usage
torch_atan(self)

Arguments
self (Tensor) the input tensor.

atan(input, out=NULL) -> Tensor

Returns a new tensor with the arctangent of the elements of input.

\[\text{out}_i = \tan^{-1}(\text{input}_i) \]

Examples

if (torch_is_installed()) {
 a = torch_randn(c(4))
 a
 torch_atan(a)
 }

torch_atan2

Description
Atan2

Usage
torch_atan2(self, other)

Arguments
self (Tensor) the first input tensor
other (Tensor) the second input tensor

atan2(input, other, out=NULL) -> Tensor
Element-wise arctangent of input_i/other_i with consideration of the quadrant. Returns a new tensor with the signed angles in radians between vector (other_i, input_i) and vector (1, 0). (Note that other_i, the second parameter, is the x-coordinate, while input_i, the first parameter, is the y-coordinate.) The shapes of input and other must be broadcastable.

Examples
if (torch_is_installed()) {
 a = torch_randn(c(4))
 a
 torch_atan2(a, torch_randn(c(4)))
}

torch_atanh

Description
Atanh

Usage
torch_atanh(self)

Arguments
self (Tensor) the input tensor.
atanh(input, *, out=None) -> Tensor

Returns a new tensor with the inverse hyperbolic tangent of the elements of input.

Note

The domain of the inverse hyperbolic tangent is \((-1, 1)\) and values outside this range will be mapped to NaN, except for the values 1 and -1 for which the output is mapped to +/-INF respectively.

\[
\text{out}_i = \tanh^{-1}(\text{input}_i)
\]

Examples

```r
if (torch_is_installed()) {
  a = torch_randn(c(4))$uniform_(-1, 1)
  a
  torch_atanh(a)
}
```

torch_atleast_1d

Atleast_1d

Description

Returns a 1-dimensional view of each input tensor with zero dimensions. Input tensors with one or more dimensions are returned as-is.

Usage

torch_atleast_1d(self)

Arguments

self (Tensor or list of Tensors)

Examples

```r
if (torch_is_installed()) {
  x <- torch_randn(c(2))
  x
  torch_atleast_1d(x)
  x <- torch_tensor(1.)
  x
  torch_atleast_1d(x)
  x <- torch_tensor(0.5)
  y <- torch_tensor(1.)
  torch_atleast_1d(list(x, y))
}
```
torch_atleast_2d
Atleast_2d

Description

Returns a 2-dimensional view of each each input tensor with zero dimensions. Input tensors with two or more dimensions are returned as-is.

Usage

```python
torch_atleast_2d(self)
```

Arguments

- `self` *(Tensor or list of Tensors)*

Examples

```python
if (torch_is_installed()) {
    x <- torch_tensor(1.)
x
    torch_atleast_2d(x)
x <- torch.randn(c(2,2))
x
    torch_atleast_2d(x)
x <- torch_tensor(0.5)
y <- torch_tensor(1.)
torch_atleast_2d(list(x,y))
}
```

torch_atleast_3d
Atleast_3d

Description

Returns a 3-dimensional view of each each input tensor with zero dimensions. Input tensors with three or more dimensions are returned as-is.

Usage

```python
torch_atleast_3d(self)
```

Arguments

- `self` *(Tensor or list of Tensors)*
torch_avg_pool1d

Description

Avg_pool1d

Usage

torch_avg_pool1d(
 self,
 kernel_size,
 stride = list(),
 padding = 0L,
 ceil_mode = FALSE,
 count_include_pad = TRUE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>input tensor of shape (minibatch, in_channels, iW)</td>
</tr>
<tr>
<td>kernel_size</td>
<td>the size of the window. Can be a single number or a tuple (kW,)</td>
</tr>
<tr>
<td>stride</td>
<td>the stride of the window. Can be a single number or a tuple (sW,). Default:</td>
</tr>
<tr>
<td>padding</td>
<td>implicit zero paddings on both sides of the input. Can be a single number or a tuple (padW,). Default: 0</td>
</tr>
<tr>
<td>ceil_mode</td>
<td>when TRUE, will use ceil instead of floor to compute the output shape. Default: FALSE</td>
</tr>
<tr>
<td>count_include_pad</td>
<td>when TRUE, will include the zero-padding in the averaging calculation. Default: TRUE</td>
</tr>
</tbody>
</table>

avg_pool1d(input, kernel_size, stride=NULL, padding=0, ceil_mode=FALSE, count_include_pad=TRUE)
-> Tensor

Applies a 1D average pooling over an input signal composed of several input planes.

See nn_avg_pool1d() for details and output shape.
Description

Baddbmm

Usage

torch_baddbmm(self, batch1, batch2, beta = 1L, alpha = 1L)

Arguments

- **self** (Tensor): the tensor to be added
- **batch1** (Tensor): the first batch of matrices to be multiplied
- **batch2** (Tensor): the second batch of matrices to be multiplied
- **beta** (Number, optional): multiplier for input (β)
- **alpha** (Number, optional): multiplier for batch1 @ batch2 (α)

baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=NULL) -> Tensor

Performs a batch matrix-matrix product of matrices in batch1 and batch2. input is added to the final result.

batch1 and batch2 must be 3-D tensors each containing the same number of matrices.

If batch1 is a ($b \times n \times m$) tensor, batch2 is a ($b \times m \times p$) tensor, then input must be broadcastable with a ($b \times n \times p$) tensor and out will be a ($b \times n \times p$) tensor. Both alpha and beta mean the same as the scaling factors used in torch_addbmm.

$$\text{out}_i = \beta \text{input}_i + \alpha (\text{batch1}_i \odot \text{batch2}_i)$$

For inputs of type FloatTensor or DoubleTensor, arguments beta and alpha must be real numbers, otherwise they should be integers.

Examples

```python
if (torch_is_installed()) {

M = torch_randn(c(10, 3, 5))
batch1 = torch_randn(c(10, 3, 4))
batch2 = torch_randn(c(10, 4, 5))
torch_baddbmm(M, batch1, batch2)
}
```
torch_bartlett_window Bartlett_window

Description
Bartlett_window

Usage

torch_bartlett_window(
 window_length,
 periodic = TRUE,
 dtype = NULL,
 layout = torch_strided(),
 device = NULL,
 requires_grad = FALSE
)

Arguments

window_length (int) the size of returned window
periodic (bool, optional) If TRUE, returns a window to be used as periodic function. If False, return a symmetric window.
dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type). Only floating point types are supported.
layout (torch.layout, optional) the desired layout of returned window tensor. Only torch_strided (dense layout) is supported.
device (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.

bartlett_window(window_length, periodic=TRUE, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor

Bartlett window function.

\[w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases}
\frac{2n}{N-1} - 1 & \text{if } 0 \leq n \leq \frac{N-1}{2} \\
2 - \frac{2n}{N-1} & \text{if } \frac{N-1}{2} < n < N \end{cases}, \]

where \(N \) is the full window size.

The input window_length is a positive integer controlling the returned window size. periodic flag determines whether the returned window trims off the last duplicate value from the symmetric
window and is ready to be used as a periodic window with functions like torch_stft. Therefore, if periodic is true, the N in above formula is in fact window_length + 1. Also, we always have torch_bartlett_window(L, periodic=True) equal to torch_bartlett_window(L + 1, periodic=False)[-1].

Note

If `window_length` $\equiv 1$, the returned window contains a single value 1.

<table>
<thead>
<tr>
<th>torch_bernoulli</th>
<th>Bernoulli</th>
</tr>
</thead>
</table>

Description

Bernoulli

Usage

torch_bernoulli(self, p, generator = NULL)

Arguments

self (Tensor) the input tensor of probability values for the Bernoulli distribution

p (Number) a probability value. If p is passed than it’s used instead of the values in self tensor.

generator (torch.Generator, optional) a pseudorandom number generator for sampling

bernoulli(input, *, generator=NULL, out=NULL) -> Tensor

Draws binary random numbers (0 or 1) from a Bernoulli distribution.

The input tensor should be a tensor containing probabilities to be used for drawing the binary random number. Hence, all values in input have to be in the range: $0 \leq \text{input}_i \leq 1$.

The i^{th} element of the output tensor will draw a value 1 according to the i^{th} probability value given in input.

\[
\text{out}_i \sim \text{Bernoulli}(p = \text{input}_i)
\]

The returned out tensor only has values 0 or 1 and is of the same shape as input. out can have integral dtype, but input must have floating point dtype.
Examples

```python
if (torch_is_installed()) {
    a = torch_empty(c(3, 3))$uniform_(0, 1)  # generate a uniform random matrix with range c(0, 1)
a torch_bernoulli(a)
a = torch_ones(c(3, 3))  # probability of drawing "1" is 1
torch_bernoulli(a)
a = torch_zeros(c(3, 3))  # probability of drawing "1" is 0
torch_bernoulli(a)
}
```

torch_bincount
Burncount

Description

Bincount

Usage

torch_bincount(self, weights = list(), minlength = 0L)

Arguments

self
(Tensor) 1-d int tensor

weights
(Tensor) optional, weight for each value in the input tensor. Should be of same size as input tensor.

minlength
(int) optional, minimum number of bins. Should be non-negative.

bincount(input, weights=NULL, minlength=0) -> Tensor

Count the frequency of each value in an array of non-negative ints.

The number of bins (size 1) is one larger than the largest value in input unless input is empty, in which case the result is a tensor of size 0. If minlength is specified, the number of bins is at least minlength and if input is empty, then the result is tensor of size minlength filled with zeros. If n is the value at position i, out[n] += weights[i] if weights is specified else out[n] += 1.

.. include:: cuda_deterministic.rst

Examples

```python
if (torch_is_installed()) {
    input = torch_randint(0, 8, list(5), dtype=torch_int64())
    weights = torch_linspace(0, 1, steps=5)
    input
    weights
```
torch_bitwise_not

Description
Bitwise_not

Usage
torch_bitwise_not(self)

Arguments

self (Tensor) the input tensor.

bitwise_not(input, out=NULL) -> Tensor
Computes the bitwise NOT of the given input tensor. The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical NOT.
torch_bitwise_or

Description

Bitwise_or

Usage

torch_bitwise_or(self, other)

Arguments

<table>
<thead>
<tr>
<th>self</th>
<th>NA the first input tensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>other</td>
<td>NA the second input tensor</td>
</tr>
</tbody>
</table>

bitwise_or(input, other, out=NULL) -> Tensor

Computes the bitwise OR of input and other. The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical OR.

torch_bitwise_xor

Description

Bitwise_xor

Usage

torch_bitwise_xor(self, other)

Arguments

<table>
<thead>
<tr>
<th>self</th>
<th>NA the first input tensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>other</td>
<td>NA the second input tensor</td>
</tr>
</tbody>
</table>

bitwise_xor(input, other, out=NULL) -> Tensor

Computes the bitwise XOR of input and other. The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical XOR.
torch_blackman_window Blackman_window

Description

Blackman_window

Usage

torch_blackman_window(
 window_length,
 periodic = TRUE,
 dtype = NULL,
 layout = torch_strided(),
 device = NULL,
 requires_grad = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>window_length</td>
<td>(int) the size of returned window</td>
</tr>
<tr>
<td>periodic</td>
<td>(bool, optional) If TRUE, returns a window to be used as periodic function. If False, return a symmetric window.</td>
</tr>
<tr>
<td>dtype</td>
<td>(torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type). Only floating point types are supported.</td>
</tr>
<tr>
<td>layout</td>
<td>(torch.layout, optional) the desired layout of returned window tensor. Only torch_strided (dense layout) is supported.</td>
</tr>
<tr>
<td>device</td>
<td>(torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.</td>
</tr>
<tr>
<td>requires_grad</td>
<td>(bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.</td>
</tr>
</tbody>
</table>

blackman_window(window_length, periodic=TRUE, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor

Blackman window function.

\[w[n] = 0.42 - 0.5 \cos \left(\frac{2\pi n}{N - 1} \right) + 0.08 \cos \left(\frac{4\pi n}{N - 1} \right) \]

where \(N \) is the full window size.

The input window_length is a positive integer controlling the returned window size. periodic flag determines whether the returned window trims off the last duplicate value from the symmetric
window and is ready to be used as a periodic window with functions like torch_stft. Therefore, if periodic is true, the \(N \) in above formula is in fact window_length + 1. Also, we always have torch_blackman_window(L, periodic=TRUE) equal to torch_blackman_window(L + 1, periodic=False)[:-1]).

Note

If `window_length` \(=1 \), the returned window contains a single value 1.

torch_block_diag

Description

Create a block diagonal matrix from provided tensors.

Usage

```r
torch_block_diag(tensors)
```

Arguments

- `tensors` (list of tensors) One or more tensors with 0, 1, or 2 dimensions.

Examples

```r
if (torch_is_installed()) {

A <- torch_tensor(rbind(c(0, 1), c(1, 0)))
B <- torch_tensor(rbind(c(3, 4, 5), c(6, 7, 8)))
C <- torch_tensor(7)
D <- torch_tensor(rbind(4, 5, 6))
E <- torch_tensor(rbind(1, 2, 3))

torch_block_diag(list(A, B, C, D, E))
}
```

torch_bmm

Description

Bmm

Usage

```r
torch_bmm(self, mat2)
```
Arguments

self (Tensor) the first batch of matrices to be multiplied
mat2 (Tensor) the second batch of matrices to be multiplied

`bmm(input, mat2, out=NULL) -> Tensor`

Performs a batch matrix-matrix product of matrices stored in `input` and `mat2`. `input` and `mat2` must be 3-D tensors each containing the same number of matrices. If `input` is a \((b \times n \times m)\) tensor, `mat2` is a \((b \times m \times p)\) tensor, `out` will be a \((b \times n \times p)\) tensor.

\[
\text{out}_i = \text{input}_i @ \text{mat2}_i
\]

Note

This function does not broadcast. For broadcasting matrix products, see `torch_matmul`.

Examples

```r
if (torch_is_installed()) {
  input = torch_randn(c(10, 3, 4))
  mat2 = torch_randn(c(10, 4, 5))
  res = torch_bmm(input, mat2)
  res
}
```

```
torch_broadcast_tensors
	Broadcast_tensors
```

Description

Broadcast_tensors

Usage

`torch_broadcast_tensors(tensors)`

Arguments

tensors a list containing any number of tensors of the same type

`broadcast_tensors(tensors) -> List of Tensors`

Broadcasts the given tensors according to broadcasting-semantics.
torch_bucketize

Examples

```r
if (torch_is_installed()) {

  x = torch_arange(0, 3)$view(c(1, 4))
  y = torch_arange(0, 2)$view(c(3, 1))
  out = torch_broadcast_tensors(list(x, y))
  out[[1]]
}
```

torch_bucketize

Bucketize

Description

Bucketize

Usage

```r
torch_bucketize(self, boundaries, out_int32 = FALSE, right = FALSE)
```

Arguments

- `self` (Tensor or Scalar) N-D tensor or a Scalar containing the search value(s).
- `boundaries` (Tensor) 1-D tensor, must contain a monotonically increasing sequence.
- `out_int32` (bool, optional) – indicate the output data type. `torch_int32()` if True, `torch_int64()` otherwise. Default value is FALSE, i.e. default output data type is `torch_int64()`.
- `right` (bool, optional) – if False, return the first suitable location that is found. If True, return the last such index. If no suitable index found, return 0 for non-numerical value (e.g. nan, inf) or the size of boundaries (one pass the last index). In other words, if False, gets the lower bound index for each value in input from boundaries. If True, gets the upper bound index instead. Default value is False.

```r
bucketize(input, boundaries, *, out_int32=FALSE, right=FALSE, out=None) -> Tensor
```

Returns the indices of the buckets to which each value in the input belongs, where the boundaries of the buckets are set by boundaries. Return a new tensor with the same size as input. If right is FALSE (default), then the left boundary is closed.

Examples

```r
if (torch_is_installed()) {

  boundaries <- torch_tensor(c(1, 3, 5, 7, 9))
  boundaries
  v <- torch_tensor(rbind(c(3, 6, 9), c(3, 6, 9)))
  v
  torch_bucketize(v, boundaries)
  torch_bucketize(v, boundaries, right=TRUE)
}
```
torch_can_cast Can_cast

Description
Can_cast

Usage
torch_can_cast(from, to)

Arguments
from (dtype) The original torch_dtype.
to (dtype) The target torch_dtype.

can_cast(from, to) -> bool
Determines if a type conversion is allowed under PyTorch casting rules described in the type promotion documentation.

Examples
if (torch_is_installed()) {
 torch_can_cast(torch_double(), torch_float())
 torch_can_cast(torch_float(), torch_int())
}

torch_cartesian_prod Cartesian_prod

Description
Do cartesian product of the given sequence of tensors.

Usage
torch_cartesian_prod(tensors)

Arguments
tensors a list containing any number of 1 dimensional tensors.
Examples

```r
if (torch_is_installed()) {
    a = c(1, 2, 3)
    b = c(4, 5)
    tensor_a = torch_tensor(a)
    tensor_b = torch_tensor(b)
    torch_cartesian_prod(list(tensor_a, tensor_b))
}
```

```
torch_cat               Cat

Description

Cat

Usage

torch_cat(tensors, dim = 1L)

Arguments

tensors (sequence of Tensors) any python sequence of tensors of the same type. Non-empty tensors provided must have the same shape, except in the cat dimension.
dim (int, optional) the dimension over which the tensors are concatenated

cat(tensors, dim=0, out=NULL) -> Tensor

Concatenates the given sequence of seq tensors in the given dimension. All tensors must either have the same shape (except in the concatenating dimension) or be empty.

torch_cat can be seen as an inverse operation for torch_split() and torch_chunk.
torch_cat can be best understood via examples.

Examples

```r
if (torch_is_installed()) {
 x = torch_randn(c(2, 3))
 x
 torch_cat(list(x, x, x), 1)
 torch_cat(list(x, x, x), 2)
}
```
torch_cdist  Cdist

Description
Cdist

Usage
torch_cdist(x1, x2, p = 2L, compute_mode = NULL)

Arguments
- x1 (Tensor) input tensor of shape $B \times P \times M$.
- x2 (Tensor) input tensor of shape $B \times R \times M$.
- p NA p value for the p-norm distance to calculate between each vector pair $\in [0, \infty]$.
- compute_mode NA 'use_mm_for_euclid_dist_if_necessary' - will use matrix multiplication approach to calculate euclidean distance $(p = 2)$ if $P > 25$ or $R > 25$ 'use_mm_for_euclid_dist' - will always use matrix multiplication approach to calculate euclidean distance $(p = 2)$ 'donot_use_mm_for_euclid_dist' - will never use matrix multiplication approach to calculate euclidean distance $(p = 2)$ Default: use_mm_for_euclid_dist_if_necessary.

TEST
Computes batched the p-norm distance between each pair of the two collections of row vectors.

torch_ceil  Ceil

Description
Ceil

Usage
torch_ceil(self)

Arguments
- self (Tensor) the input tensor.
ceil(input, out=NULL) -> Tensor

Returns a new tensor with the ceil of the elements of input, the smallest integer greater than or equal to each element.

\[ \text{out}_i = \lceil \text{input}_i \rceil = \lfloor \text{input}_i \rfloor + 1 \]

**Examples**

```r
if (torch_is_installed()) {
 a = torch_randn(c(4))
 a
 torch_ceil(a)
}
```

**Description**

Celu

**Usage**

torch_celu(self, alpha = 1)

**Arguments**

- **self**
  - the input tensor
- **alpha**
  - the alpha value for the CELU formulation. Default: 1.0

**celu(input, alpha=1.) -> Tensor**

See `nnf_celu()` for more info.
**torch_celu_**  
*Description*  
Celu_

**Usage**  
torch_celu_(self, alpha = 1)

**Arguments**  
self  
the input tensor

alpha  
the alpha value for the CELU formulation. Default: 1.0

**celu_(input, alpha=1.) -> Tensor**  
In-place version of torch_celu().

---

**torch_chain_matmul**  
*Description*  
Chain_matmul

**Usage**  
torch_chain_matmul(matrices)

**Arguments**  
matrices  
(Tensors...) a sequence of 2 or more 2-D tensors whose product is to be determined.

**TEST**  
Returns the matrix product of the \( N \) 2-D tensors. This product is efficiently computed using the matrix chain order algorithm which selects the order in which incurs the lowest cost in terms of arithmetic operations ([CLRS]_). Note that since this is a function to compute the product, \( N \) needs to be greater than or equal to 2; if equal to 2 then a trivial matrix-matrix product is returned. If \( N \) is 1, then this is a no-op - the original matrix is returned as is.
Examples

```r
if (torch_is_installed()) {
 a = torch_randn(c(3, 4))
 b = torch_randn(c(4, 5))
 c = torch_randn(c(5, 6))
 d = torch_randn(c(6, 7))
 torch_chain_matmul(list(a, b, c, d))
}
```

---

torch_channel_shuffle  Channel_shuffle

Description

Channel_shuffle

Usage

`torch_channel_shuffle(self, groups)`

Arguments

- `self`  
  (Tensor) the input tensor
- `groups`  
  (int) number of groups to divide channels in and rearrange.

Divide the channels in a tensor of shape

Math: `(*, C, H, W)`:

Divide the channels in a tensor of shape `(*, C, H, W)` into `g` groups and rearrange them as `(*, C^g, g, H, W)`, while keeping the original tensor shape.

Examples

```r
if (torch_is_installed()) {
 input <- torch_randn(c(1, 4, 2, 2))
 print(input)
 output <- torch_channel_shuffle(input, 2)
 print(output)
}
```
**torch_chololesky**

**Description**

Cholesky

**Usage**

```r
torch_chololesky(self, upper = FALSE)
```

**Arguments**

- **self** (Tensor) the input tensor of size (*, n, n) where * is zero or more batch dimensions consisting of symmetric positive-definite matrices.
- **upper** (bool, optional) flag that indicates whether to return a upper or lower triangular matrix. Default: FALSE

**cholesky(input, upper=FALSE, out=NULL) -> Tensor**

Computes the Cholesky decomposition of a symmetric positive-definite matrix \( A \) or for batches of symmetric positive-definite matrices.

If `upper` is `TRUE`, the returned matrix \( U \) is upper-triangular, and the decomposition has the form:

\[
A = U^T U
\]

If `upper` is `FALSE`, the returned matrix \( L \) is lower-triangular, and the decomposition has the form:

\[
A = LL^T
\]

If `upper` is `TRUE`, and \( A \) is a batch of symmetric positive-definite matrices, then the returned tensor will be composed of upper-triangular Cholesky factors of each of the individual matrices. Similarly, when `upper` is `FALSE`, the returned tensor will be composed of lower-triangular Cholesky factors of each of the individual matrices.

**Examples**

```r
if (torch_is_installed()) {

 a = torch_rands(c(3, 3))
 a = torch_mm(a, a$t()) # make symmetric positive-definite
 l = torch_chololesky(a)
 l
 torch_mm(l, l$t())
 a = torch_rands(c(3, 2, 2))
 # Not run:

}
torch_cholesky_inverse

Cholesky_inverse

Description

Cholesky_inverse

Usage

torch_cholesky_inverse(self, upper = FALSE)

Arguments

self (Tensor) the input 2-D tensor a, a upper or lower triangular Cholesky factor
upper (bool, optional) whether to return a lower (default) or upper triangular matrix

torch_cholesky_inverse(input, upper=False, out=NULL) -> Tensor

Computes the inverse of a symmetric positive-definite matrix A using its Cholesky factor u: returns matrix inv. The inverse is computed using LAPACK routines dpotri and spotri (and the corresponding MAGMA routines).

If upper is FALSE, u is lower triangular such that the returned tensor is

$$inv = (uu^T)^{-1}$$

If upper is TRUE or not provided, u is upper triangular such that the returned tensor is

$$inv = (u^Tu)^{-1}$$

Examples

if (torch_is_installed()) {

Not run:
a = torch_randn(c(3, 3))
a = torch_mm(a, a$t()) + 1e-05 * torch_eye(3) # make symmetric positive definite
u = torch_cholesky(a)
a torch_cholesky_inverse(u)
torch_cholesky_solve

A function for solving a linear system of equations with a positive semidefinite matrix to be inverted given its Cholesky factor matrix \(u \).

If \(\text{upper} \) is \(\text{FALSE} \), \(u \) is lower triangular and \(c \) is returned such that:

\[
c = (uu^T)^{-1}b
\]

If \(\text{upper} \) is \(\text{TRUE} \) or not provided, \(u \) is upper triangular and \(c \) is returned such that:

\[
c = (u^Tu)^{-1}b
\]

torch_cholesky_solve(b, u) can take in 2D inputs \(b \), \(u \) or inputs that are batches of 2D matrices. If the inputs are batches, then returns batched outputs \(c \).
Examples

```r
if (torch_is_installed()) {

  a = torch_randn(c(3, 3))
  a = torch_mm(a, a$t()) # make symmetric positive definite
  u = torch_cholesky(a)
  a

  b = torch_randn(c(3, 2))
  b
  torch_cholesky_solve(b, u)
  torch_mm(a$inverse(), b)
}
```

Description

Chunk

Usage

```r
torch_chunk(self, chunks, dim = 1L)
```

Arguments

- **self**: (Tensor) the tensor to split
- **chunks**: (int) number of chunks to return
- **dim**: (int) dimension along which to split the tensor

chunk(input, chunks, dim=0) -> List of Tensors

Splits a tensor into a specific number of chunks. Each chunk is a view of the input tensor.

Last chunk will be smaller if the tensor size along the given dimension `dim` is not divisible by `chunks`.
torch_clamp

Description

Clamp

Usage

torch_clamp(self, min = NULL, max = NULL)

Arguments

self (Tensor) the input tensor.
min (Number) lower-bound of the range to be clamped to
max (Number) upper-bound of the range to be clamped to

clamp(input, min, max, out=NULL) -> Tensor

Clamp all elements in input into the range [min, max] and return a resulting tensor:

\[
y_i = \begin{cases}
\text{min} & \text{if } x_i < \text{min} \\
 x_i & \text{if } \text{min} \leq x_i \leq \text{max} \\
\text{max} & \text{if } x_i > \text{max}
\end{cases}
\]

If input is of type FloatTensor or DoubleTensor, args min and max must be real numbers, otherwise they should be integers.

clamp(input, *, min, out=NULL) -> Tensor

Clamps all elements in input to be larger or equal min.

If input is of type FloatTensor or DoubleTensor, value should be a real number, otherwise it should be an integer.

clamp(input, *, max, out=NULL) -> Tensor

Clamps all elements in input to be smaller or equal max.

If input is of type FloatTensor or DoubleTensor, value should be a real number, otherwise it should be an integer.
torch_clip

Examples

```r
if (torch_is_installed()) {

  a = torch_randn(c(4))
  a
  torch_clamp(a, min=-0.5, max=0.5)

  a = torch_randn(c(4))
  a
  torch_clamp(a, min=0.5)

  a = torch_randn(c(4))
  a
  torch_clamp(a, max=0.5)
```

Description

Clip

Usage

```r
torch_clip(self, min = NULL, max = NULL)
```

Arguments

- `self` (Tensor) the input tensor.
- `min` (Number) lower-bound of the range to be clamped to
- `max` (Number) upper-bound of the range to be clamped to

```r
clip(input, min, max, *, out=None) -> Tensor
```

Alias for `torch_clamp()`.
torch_combinations

torch_clone Clone

Description
Clone

Usage
torch_clone(self, memory_format = NULL)

Arguments
self (Tensor) the input tensor.
memory_format a torch memory format. see torch_preserve_format().

clone(input, *, memory_format=torch.preserve_format) -> Tensor

Returns a copy of input.

Note
This function is differentiable, so gradients will flow back from the result of this operation to input. To create a tensor without an autograd relationship to input see Tensor$detach.

torch_combinations Combinations

Description
Combinations

Usage
torch_combinations(self, r = 2L, with_replacement = FALSE)

Arguments
self (Tensor) 1D vector.
r (int, optional) number of elements to combine
with_replacement (boolean, optional) whether to allow duplication in combination
combinations(input, r=2, with_replacement=False) -> seq

Compute combinations of length \(r \) of the given tensor. The behavior is similar to python's `itertools.combinations` when `with_replacement` is set to False, and `itertools.combinations_with_replacement` when `with_replacement` is set to TRUE.

Examples

```python
if (torch_is_installed()) {
    a = c(1, 2, 3)
tensor_a = torch_tensor(a)
torch_combinations(tensor_a)
torch_combinations(tensor_a, r=3)
torch_combinations(tensor_a, with_replacement=TRUE)
}
```

torch_complex

Description

Complex

Usage

`torch_complex(real, imag)`

Arguments

- `real` (Tensor) The real part of the complex tensor. Must be float or double.
- `imag` (Tensor) The imaginary part of the complex tensor. Must be same dtype as `real`.

complex(real, imag, *, out=None) -> Tensor

Constructs a complex tensor with its real part equal to `real` and its imaginary part equal to `imag`.

Examples

```python
if (torch_is_installed()) {
    real <- torch_tensor(c(1, 2), dtype=torch_float32())
    imag <- torch_tensor(c(3, 4), dtype=torch_float32())
    z <- torch_complex(real, imag)
    z
    z$dtype
}
```
torch_conj

Description

Conj

Usage

torch_conj(self)

Arguments

self
(Tensor) the input tensor.

conj(input) -> Tensor

Computes the element-wise conjugate of the given input tensor.

\[\text{out}_i = \text{conj}(\text{input}_i) \]

Examples

```python
if (torch_is_installed()) {
    ## Not run:
    torch_conj(torch_tensor(c(-1 + 1i, -2 + 2i, 3 - 3i)))
    ## End(Not run)
}
```

torch_conv1d

Description

Conv1d

Usage

torch_conv1d(
 input,
 weight,
 bias = list(),
 stride = 1L,
 padding = 0L,
 dilation = 1L,
 groups = 1L
)
torch_conv2d

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>input tensor of shape <code>(minibatch, in_channels, iW)</code></td>
</tr>
<tr>
<td>weight</td>
<td>filters of shape <code>(out_channels, in_channels/groups, kW)</code></td>
</tr>
<tr>
<td>bias</td>
<td>optional bias of shape <code>(out_channels)</code>. Default: NULL</td>
</tr>
<tr>
<td>stride</td>
<td>the stride of the convolving kernel. Can be a single number or a one-element tuple <code>(sW,)</code>. Default: 1</td>
</tr>
<tr>
<td>padding</td>
<td>implicit paddings on both sides of the input. Can be a single number or a one-element tuple <code>(padW,)</code>. Default: 0</td>
</tr>
<tr>
<td>dilation</td>
<td>the spacing between kernel elements. Can be a single number or a one-element tuple <code>(dW,)</code>. Default: 1</td>
</tr>
<tr>
<td>groups</td>
<td>split input into groups, <code>in_channels</code> should be divisible by the number of groups. Default: 1</td>
</tr>
</tbody>
</table>

`conv1d(input, weight, bias=NULL, stride=1, padding=0, dilation=1, groups=1) -> Tensor`

Applies a 1D convolution over an input signal composed of several input planes. See `nn.conv1d()` for details and output shape.

Examples

```r
if (torch_is_installed()) {
  filters = torch_randn(c(33, 16, 3))
  inputs = torch_randn(c(20, 16, 50))
  nnf_conv1d(inputs, filters)
}
```

torch_conv2d

Conv2d

Description

Conv2d

Usage

```r
torch_conv2d(
  input,
  weight,
  bias = list(),
  stride = 1L,
  padding = 0L,
  dilation = 1L,
  groups = 1L
)
```
torch_conv3d

Arguments

- **input**: input tensor of shape \((\text{minibatch}, \text{in_channels}, iH, iW)\)
- **weight**: filters of shape \((\text{out_channels}, \frac{\text{in_channels}}{\text{groups}}, kH, kW)\)
- **bias**: optional bias tensor of shape \((\text{out_channels})\). Default: NULL
- **stride**: the stride of the convolving kernel. Can be a single number or a tuple \((sH, sW)\). Default: 1
- **padding**: implicit paddings on both sides of the input. Can be a single number or a tuple \((padH, padW)\). Default: 0
- **dilation**: the spacing between kernel elements. Can be a single number or a tuple \((dH, dW)\). Default: 1
- **groups**: split input into groups, \(\text{in_channels}\) should be divisible by the number of groups. Default: 1

conv2d(input, weight, bias=NULL, stride=1, padding=0, dilation=1, groups=1) -> Tensor

Applies a 2D convolution over an input image composed of several input planes.
See `nn.conv2d()` for details and output shape.

Examples

```r
if (torch_is_installed()) {

  # With square kernels and equal stride
  filters = torch_randn(c(8, 4, 3, 3))
  inputs = torch_randn(c(1, 4, 5, 5))
  nnf_conv2d(inputs, filters, padding=1)
}
```

Description

Conv3d

Usage

```r
torch_conv3d(
  input,
  weight,
  bias = list(),
  stride = 1L,
  padding = 0L,
  dilation = 1L,
  groups = 1L
)
```
torch_conv_tbc

Arguments

input
input tensor of shape (minibatch, in_channels, iT, iH, iW)

weight
filters of shape (out_channels, in_channels \(\frac{\text{groups}}{\text{out_channels}}\), kT, kH, kW)

bias
optional bias tensor of shape (out_channels). Default: NULL

stride
the stride of the convolving kernel. Can be a single number or a tuple (sT, sH, sW). Default: 1

padding
implicit paddings on both sides of the input. Can be a single number or a tuple (padT, padH, padW). Default: 0

dilation
the spacing between kernel elements. Can be a single number or a tuple (dT, dH, dW). Default: 1

groups
split input into groups, in_channels should be divisible by the number of groups. Default: 1

conv3d(input, weight, bias=NULL, stride=1, padding=0, dilation=1, groups=1) -> Tensor

Applies a 3D convolution over an input image composed of several input planes.
See \texttt{nn.conv3d()} for details and output shape.

Examples

```r
if (torch_is_installed()) {
  # filters = torch_randn(c(33, 16, 3, 3, 3))
  # inputs = torch_randn(c(20, 16, 50, 10, 20))
  # nnf_conv3d(inputs, filters)
}
```

torch_conv_tbc
Conv_tbc

Description

Conv_tbc

Usage

torch_conv_tbc(self, weight, bias, pad = 0L)

Arguments

self
NA input tensor of shape (sequence length \(\times\) batch \(\times\) in_channels)

weight
NA filter of shape (kernel width \(\times\) in_channels \(\times\) out_channels)

bias
NA bias of shape (out_channels)

pad
NA number of timesteps to pad. Default: 0
torch_conv_transpose1d

Applies a 1-dimensional sequence convolution over an input sequence. Input and output dimensions are (Time, Batch, Channels) - hence TBC.

Description

Conv_transpose1d

Usage

```python
torch_conv_transpose1d(
    input,
    weight,
    bias = list(),
    stride = 1L,
    padding = 0L,
    output_padding = 0L,
    groups = 1L,
    dilation = 1L
)
```

Arguments

- **input**: input tensor of shape `(minibatch, in_channels, iW)`
- **weight**: filters of shape `(in_channels, out_channels, kW, groups)`
- **bias**: optional bias of shape `(out_channels)`. Default: NULL
- **stride**: the stride of the convolving kernel. Can be a single number or a tuple `(sW,)`. Default: 1
- **padding**: `dilation * (kernel_size -1) - padding` zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple `(padW,)`. Default: 0
- **output_padding**: additional size added to one side of each dimension in the output shape. Can be a single number or a tuple `(out_padW,)`. Default: 0
- **groups**: split input into groups, in_channels should be divisible by the number of groups. Default: 1
- **dilation**: the spacing between kernel elements. Can be a single number or a tuple `(dW,)`. Default: 1
conv_transpose1d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor

Applies a 1D transposed convolution operator over an input signal composed of several input planes, sometimes also called "deconvolution".
See nn_conv_transpose1d() for details and output shape.

Examples
if (torch_is_installed()) {

 inputs = torch_randn(c(20, 16, 50))
 weights = torch_randn(c(16, 33, 5))
 nnf_conv_transpose1d(inputs, weights)
}

torch_conv_transpose2d

Description

Conv_transpose2d

Usage

torch_conv_transpose2d(
 input,
 weight,
 bias = list(),
 stride = 1L,
 padding = 0L,
 output_padding = 0L,
 groups = 1L,
 dilation = 1L
)

Arguments

input input tensor of shape (minibatch, in_channels, iH, iW)
weight filters of shape (in_channels, out_channels, groups, kH, kW)
bias optional bias of shape (out_channels). Default: NULL
stride the stride of the convolving kernel. Can be a single number or a tuple (sH, sW).
 Default: 1
padding dilation * (kernel_size -1) -padding zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple (padH, padW).
 Default: 0
output_padding: additional size added to one side of each dimension in the output shape. Can be a single number or a tuple \((\text{out_padH}, \text{out_padW})\). Default: 0

groups: split input into groups, \(\text{in_channels}\) should be divisible by the number of groups. Default: 1

dilation: the spacing between kernel elements. Can be a single number or a tuple \((\text{dH}, \text{dW})\). Default: 1

conv_transpose2d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor

Applies a 2D transposed convolution operator over an input image composed of several input planes, sometimes also called “deconvolution”.

See \texttt{nn.conv_transpose2d()} for details and output shape.

Examples

```r
if (torch_is_installed()) {

    # With square kernels and equal stride
    inputs = torch_randn(c(1, 4, 5, 5))
    weights = torch_randn(c(4, 8, 3, 3))
    nnf_conv_transpose2d(inputs, weights, padding=1)
}
```

torch_conv_transpose3d

Conv_transpose3d

Description

Conv_transpose3d

Usage

```r
torch_conv_transpose3d(
    input, weight, bias = list(), stride = 1L, padding = 0L, output_padding = 0L, groups = 1L, dilation = 1L
)
```
Arguments

- **input**: input tensor of shape (minibatch, in_channels, iT, iH, iW)
- **weight**: filters of shape (in_channels, out_channels/groups, kT, kH, kW)
- **bias**: optional bias of shape (out_channels). Default: NULL
- **stride**: the stride of the convolving kernel. Can be a single number or a tuple (sT, sH, sW). Default: 1
- **padding**: dilation * (kernel_size -1) -padding zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple (padT, padH, padW). Default: 0
- **output_padding**: additional size added to one side of each dimension in the output shape. Can be a single number or a tuple (out_padT, out_padH, out_padW). Default: 0
- **groups**: split input into groups, in_channels should be divisible by the number of groups. Default: 1
- **dilation**: the spacing between kernel elements. Can be a single number or a tuple (dT, dH, dW). Default: 1

```
conv_transpose3d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
```

Applies a 3D transposed convolution operator over an input image composed of several input planes, sometimes also called "deconvolution"

See `nn_conv_transpose3d()` for details and output shape.

Examples

```
if (torch_is_installed()) {
  ## Not run:
  inputs = torch_randn(c(20, 16, 50, 10, 20))
  weights = torch_randn(c(16, 33, 3, 3, 3))
  nnf_conv_transpose3d(inputs, weights)

  ## End(Not run)
}
```

```
torch_cos Cos
```

Description

Cos

Usage

```
torch_cos(self)
```
torch_cosh

Arguments

self (Tensor) the input tensor.

cos(input, out=NULL) -> Tensor

Returns a new tensor with the cosine of the elements of input.

\[\text{out}_i = \cos(\text{input}_i) \]

Examples

```r
if (torch_is_installed()) {
  a = torch_randn(c(4))
  a
torch_cos(a)
}
```

torch_cosh

Cosh

Description

Cosh

Usage

torch_cosh(self)

Arguments

self (Tensor) the input tensor.

cosh(input, out=NULL) -> Tensor

Returns a new tensor with the hyperbolic cosine of the elements of input.

\[\text{out}_i = \cosh(\text{input}_i) \]

Examples

```r
if (torch_is_installed()) {
  a = torch_randn(c(4))
  a
torch_cosh(a)
}
```
torch_cosine_similarity

Cosine_similarity

Description

Cosine_similarity

Usage

torch_cosine_similarity(x1, x2, dim = 2L, eps = 0)

Arguments

- x1 (Tensor) First input.
- x2 (Tensor) Second input (of size matching x1).
- dim (int, optional) Dimension of vectors. Default: 1
- eps (float, optional) Small value to avoid division by zero. Default: 1e-8

cosine_similarity(x1, x2, dim=1, eps=1e-8) -> Tensor

Returns cosine similarity between x1 and x2, computed along dim.

\[
\text{similarity} = \frac{x_1 \cdot x_2}{\max(\|x_1\|_2 \cdot \|x_2\|_2, \epsilon)}
\]

Examples

if (torch_is_installed()) {

 input1 = torch.randn(c(100, 128))
 input2 = torch.randn(c(100, 128))
 output = torch_cosine_similarity(input1, input2)
 output
 }

torch_count_nonzero

Count_nonzero

Description

Count_nonzero

Usage

torch_count_nonzero(self, dim = NULL)
Arguments

self (Tensor) the input tensor.

dim (int or tuple of ints, optional) Dim or tuple of dims along which to count non-zeros.

count_nonzero(input, dim=None) -> Tensor

Counts the number of non-zero values in the tensor input along the given dim. If no dim is specified then all non-zeros in the tensor are counted.

Examples

if (torch_is_installed()) {
 x <- torch_zeros(3,3)
 x[torch_randn(3,3) > 0.5] = 1
 x
 torch_count_nonzero(x)
 torch_count_nonzero(x, dim=1)
}

torch_cross Cross

Description

Cross

Usage

torch_cross(self, other, dim = NULL)

Arguments

self (Tensor) the input tensor.

other (Tensor) the second input tensor

dim (int, optional) the dimension to take the cross-product in.

cross(input, other, dim=-1, out=NULL) -> Tensor

Returns the cross product of vectors in dimension dim of input and other.

input and other must have the same size, and the size of their dim dimension should be 3.

If dim is not given, it defaults to the first dimension found with the size 3.
Examples

```python
if (torch_is_installed()) {
    a = torch.randn(c(4, 3))
    a
    b = torch.randn(c(4, 3))
    b
    torch_cross(a, b, dim=2)
    torch_cross(a, b)
}
```

Description

Cummax

Usage

torch_cummax(self, dim)

Arguments

- **self** (Tensor) the input tensor.
- **dim** (int) the dimension to do the operation over

cummax(input, dim) -> (Tensor, LongTensor)

Returns a namedtuple (values, indices) where values is the cumulative maximum of elements of input in the dimension dim. And indices is the index location of each maximum value found in the dimension dim.

\[y_i = \max(x_1, x_2, x_3, \ldots, x_i) \]

Examples

```python
if (torch_is_installed()) {
    a = torch.randn(c(10))
    a
    torch_cummax(a, dim=1)
}
```
torch_cummin
Cummin

Description

Cummin

Usage

```python
torch_cummin(self, dim)
```

Arguments

- `self` (Tensor) the input tensor.
- `dim` (int) the dimension to do the operation over

cummin(input, dim) -> (Tensor, LongTensor)

Returns a namedtuple (values, indices) where values is the cumulative minimum of elements of `input` in the dimension `dim`. And indices is the index location of each maximum value found in the dimension `dim`.

\[y_i = \min(x_1, x_2, x_3, \ldots, x_i) \]

Examples

```python
if (torch_is_installed()) {
    a = torch.randn(c(10))
a
    torch_cummin(a, dim=1)
}
```

torch_cumprod
Cumprod

Description

Cumprod

Usage

```python
torch_cumprod(self, dim, dtype = NULL)
```
torch_cumsum

Arguments

self (Tensor) the input tensor.
dim (int) the dimension to do the operation over
dtype (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: NULL.

cumprod(input, dim, out=NULL, dtype=NULL) -> Tensor

Returns the cumulative product of elements of input in the dimension dim.
For example, if input is a vector of size N, the result will also be a vector of size N, with elements.

\[y_i = x_1 \times x_2 \times x_3 \times \ldots \times x_i \]

Examples

if (torch_is_installed()) {
 a = torch_randn(c(10))
a
torch_cumprod(a, dim=1)
}

torch_cumsum (Cumsum)

Description

Cumsum

Usage

torch_cumsum(self, dim, dtype = NULL)

Arguments

self (Tensor) the input tensor.
dim (int) the dimension to do the operation over
dtype (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: NULL.

cumsum(input, dim, out=NULL, dtype=NULL) -> Tensor

Returns the cumulative sum of elements of input in the dimension dim.
For example, if input is a vector of size N, the result will also be a vector of size N, with elements.

\[y_i = x_1 + x_2 + x_3 + \ldots + x_i \]
Examples

```python
if (torch_is_installed()) {
    a = torch_randn(c(10))
a    torch_cumsum(a, dim=1)
}
```

torch_deg2rad

Deg2rad

Description

Deg2rad

Usage

```python
torch_deg2rad(self)
```

Arguments

- **self**
 (Tensor) the input tensor.

deg2rad(input, *, out=None) -> Tensor

Returns a new tensor with each of the elements of input converted from angles in degrees to radians.

Examples

```python
if (torch_is_installed()) {
    a <- torch_tensor(rbind(c(180.0, -180.0), c(360.0, -360.0), c(90.0, -90.0)))
torch_deg2rad(a)
}
```

torch_dequantize

Dequantize

Description

Dequantize

Usage

```python
torch_dequantize(tensor)
```
torch_det

Arguments
 tensor (Tensor) A quantized Tensor or a list of quantized tensors

dequantize(tensor) -> Tensor
 Returns an fp32 Tensor by dequantizing a quantized Tensor

dequantize(tensors) -> sequence of Tensors
 Given a list of quantized Tensors, dequantize them and return a list of fp32 Tensors

Description
 Det

Usage
 torch_det(self)

Arguments
 self (Tensor) the input tensor of size (*, n, n) where * is zero or more batch dimensions.

det(input) -> Tensor
 Calculates determinant of a square matrix or batches of square matrices.

Note
 Backward through `det` internally uses SVD results when `input` is not invertible. In this case, double backward through `det` will be unstable in when `input` doesn't have distinct singular values. See `torch.svd` for details.

Examples
 if (torch_is_installed()) {
 A = torch_randn(c(3, 3))
 torch_det(A)
 A = torch_randn(c(3, 2, 2))
 A$det()
 }
torch_device Create a Device object

Description

A torch_device is an object representing the device on which a torch_tensor is or will be allocated.

Usage

torch_device(type, index = NULL)

Arguments

type (character) a device type "cuda" or "cpu"
index (integer) optional device ordinal for the device type. If the device ordinal is not present, this object will always represent the current device for the device type, even after torch_cuda_set_device() is called; e.g., a torch_tensor constructed with device 'cuda' is equivalent to 'cuda:X' where X is the result of torch_cuda_current_device().

A torch_device can be constructed via a string or via a string and device ordinal

Examples

if (torch_is_installed()) {

 # Via string
 torch_device("cuda:1")
 torch_device("cpu")
 torch_device("cuda") # current cuda device

 # Via string and device ordinal
 torch_device("cuda", 0)
 torch_device("cpu", 0)

}

torch_diag Diag

Description

Diag
Usage

torch.diag(self, diagonal = 0L)

Arguments

self (Tensor) the input tensor.
diagonal (int, optional) the diagonal to consider

diag(input, diagonal=0, out=NULL) -> Tensor

- If input is a vector (1-D tensor), then returns a 2-D square tensor with the elements of input as the diagonal.
- If input is a matrix (2-D tensor), then returns a 1-D tensor with the diagonal elements of input.

The argument diagonal controls which diagonal to consider:

- If diagonal = 0, it is the main diagonal.
- If diagonal > 0, it is above the main diagonal.
- If diagonal < 0, it is below the main diagonal.

Description

Diagflat

Usage

torch.diagflat(self, offset = 0L)

Arguments

self (Tensor) the input tensor.
offset (int, optional) the diagonal to consider. Default: 0 (main diagonal).

diagflat(input, offset=0) -> Tensor

- If input is a vector (1-D tensor), then returns a 2-D square tensor with the elements of input as the diagonal.
- If input is a tensor with more than one dimension, then returns a 2-D tensor with diagonal elements equal to a flattened input.

The argument offset controls which diagonal to consider:

- If offset = 0, it is the main diagonal.
- If offset > 0, it is above the main diagonal.
- If offset < 0, it is below the main diagonal.
Examples

```python
if (torch_is_installed()) {
    a = torch_randn(c(3))
    a
    torch_diagflat(a)
    torch_diagflat(a, 1)
    a = torch_randn(c(2, 2))
    a
    torch_diagflat(a)
}
```

torch_diagonal

Description

Diagonal

Usage

`torch_diagonal(self, outdim, dim1 = 1L, dim2 = 2L, offset = 0L)`

Arguments

- `self` (Tensor): the input tensor. Must be at least 2-dimensional.
- `outdim` (int, optional): dimension name if `self` is a named tensor.
- `dim1` (int, optional): first dimension with respect to which to take diagonal. Default: 0.
- `dim2` (int, optional): second dimension with respect to which to take diagonal. Default: 1.
- `offset` (int, optional): which diagonal to consider. Default: 0 (main diagonal).

diagonal(input, offset=0, dim1=0, dim2=1) -> Tensor

Returns a partial view of `input` with the its diagonal elements with respect to `dim1` and `dim2` appended as a dimension at the end of the shape.

The argument `offset` controls which diagonal to consider:

- If `offset = 0`, it is the main diagonal.
- If `offset > 0`, it is above the main diagonal.
- If `offset < 0`, it is below the main diagonal.

Applying `torch_diag_embed` to the output of this function with the same arguments yields a diagonal matrix with the diagonal entries of the input. However, `torch_diag_embed` has different default dimensions, so those need to be explicitly specified.
Examples

```r
if (torch_is_installed()) {

  a = torch_randn(c(3, 3))
  a
  torch_diagonal(a, offset = 0)
  torch_diagonal(a, offset = 1)
  x = torch_randn(c(2, 5, 4, 2))
  torch_diagonal(x, offset=-1, dim1=1, dim2=2)
}
```

torch_diag_embed

Diag_embed

Description

Diag_embed

Usage

torch_diag_embed(self, offset = 0L, dim1 = -2L, dim2 = -1L)

Arguments

- `self` *(Tensor)*: the input tensor. Must be at least 1-dimensional.
- `offset` *(int, optional)*: which diagonal to consider. Default: 0 (main diagonal).
- `dim1` *(int, optional)*: first dimension with respect to which to take diagonal. Default: -2.
- `dim2` *(int, optional)*: second dimension with respect to which to take diagonal. Default: -1.

`diag_embed(input, offset=0, dim1=-2, dim2=-1) -> Tensor`

Creates a tensor whose diagonals of certain 2D planes (specified by `dim1` and `dim2`) are filled by `input`. To facilitate creating batched diagonal matrices, the 2D planes formed by the last two dimensions of the returned tensor are chosen by default.

The argument `offset` controls which diagonal to consider:

- If `offset = 0`, it is the main diagonal.
- If `offset > 0`, it is above the main diagonal.
- If `offset < 0`, it is below the main diagonal.

The size of the new matrix will be calculated to make the specified diagonal of the size of the last input dimension. Note that for `offset` other than 0, the order of `dim1` and `dim2` matters. Exchanging them is equivalent to changing the sign of `offset`.

Applying `torch_diagonal` to the output of this function with the same arguments yields a matrix identical to `input`. However, `torch_diagonal` has different default dimensions, so those need to be explicitly specified.
torch_diff

Examples

```r
if (torch_is_installed()) {
  a = torch_randn(c(2, 3))
  torch_diag_embed(a)
  torch_diag_embed(a, offset=1, dim1=1, dim2=3)
}
```

Description

The first-order differences are given by `\text{out}[i] = \text{input}[i + 1] - \text{input}[i]`. Higher-order differences are calculated by using `torch_diff()` recursively.

Usage

```r
torch_diff(self, n = 1L, dim = -1L, prepend = list(), append = list())
```

Arguments

- **self**: the tensor to compute the differences on
- **n**: the number of times to recursively compute the difference
- **dim**: the dimension to compute the difference along. Default is the last dimension.
- **prepend**: values to prepend to input along dim before computing the difference. Their dimensions must be equivalent to that of input, and their shapes must match input’s shape except on dim.
- **append**: values to append to input along dim before computing the difference. Their dimensions must be equivalent to that of input, and their shapes must match input’s shape except on dim.

Note

Only `n = 1` is currently supported

Examples

```r
if (torch_is_installed()) {
  a <- torch_tensor(c(1,2,3))
  torch_diff(a)

  b <- torch_tensor(c(4, 5))
  torch_diff(a, append = b)

  c <- torch_tensor(rbind(c(1,2,3), c(3,4,5)))
  torch_diff(c, dim = 1)
```
torch_diff(c, dim = 2)
}

digamma(input, out=NULL) -> Tensor
Computes the logarithmic derivative of the gamma function on input.

\[
\psi(x) = \frac{d}{dx} \ln (\Gamma (x)) = \frac{\Gamma'(x)}{\Gamma(x)}
\]

Examples
if (torch_is_installed()) {
 a = torch_tensor(c(1, 0.5))
 torch_digamma(a)
}

dist

torch_dist(self, other, p = 2L)

Examples
if (torch_is_installed()) {
 a = torch_tensor(c(1, 0.5))
 b = torch_tensor(c(2, 0.5))
 torch_dist(a, b, p = 2L)
}
torch_div

Arguments

- **self** (Tensor) the input tensor.
- **other** (Tensor) the Right-hand-side input tensor
- **p** (float, optional) the norm to be computed

dist(input, other, p=2) -> Tensor

Returns the p-norm of (input - other)

The shapes of input and other must be broadcastable.

Examples

```python
if (torch_is_installed()) {
    x = torch_randn(c(4))
    x
    y = torch_randn(c(4))
    y
    torch_dist(x, y, 3.5)
    torch_dist(x, y, 3)
    torch_dist(x, y, 0)
    torch_dist(x, y, 1)
}
```

torch_div

Div

Description

Div

Usage

torch_div(self, other, rounding_mode)

Arguments

- **self** (Tensor) the input tensor.
- **other** (Number) the number to be divided to each element of input
- **rounding_mode** (str, optional) – Type of rounding applied to the result:
 - NULL - default behavior. Performs no rounding and, if both input and other are integer types, promotes the inputs to the default scalar type. Equivalent to true division in Python (the / operator) and NumPy’s np.true_divide.
 - "trunc" - rounds the results of the division towards zero. Equivalent to C-style integer division.
 - "floor" - rounds the results of the division down. Equivalent to floor division in Python (the // operator) and NumPy’s np.floor_divide.
torch_divide

div(input, other, out=NULL) -> Tensor

Divides each element of the input `input` with the scalar `other` and returns a new resulting tensor. Each element of the tensor `input` is divided by each element of the tensor `other`. The resulting tensor is returned.

\[
\text{out}_i = \frac{\text{input}_i}{\text{other}_i}
\]

The shapes of `input` and `other` must be broadcastable. If the `torch_dtype` of `input` and `other` differ, the `torch_dtype` of the result tensor is determined following rules described in the type promotion documentation. If `out` is specified, the result must be castable to the `torch_dtype` of the specified output tensor. Integral division by zero leads to undefined behavior.

Warning

Integer division using `div` is deprecated, and in a future release `div` will perform true division like `torch_true_divide()`. Use `torch_floor_divide()` to perform integer division, instead.

\[
\text{out}_i = \frac{\text{input}_i}{\text{other}_i}
\]

If the `torch_dtype` of `input` and `other` differ, the `torch_dtype` of the result tensor is determined following rules described in the type promotion documentation. If `out` is specified, the result must be castable to the `torch_dtype` of the specified output tensor. Integral division by zero leads to undefined behavior.

Examples

```python
if (torch_is_installed()) {
    a = torch_randn(c(5))
a
    torch_div(a, 0.5)

    a = torch_randn(c(4, 4))
a
    b = torch_randn(c(4))
b
    torch_div(a, b)
}
```

torch_divide

Description

Divide
Usage

```
torch_divide(self, other, rounding_mode)
```

Arguments

- **self** (Tensor) the input tensor.
- **other** (Number) the number to be divided to each element of input.
- **rounding_mode** (str, optional) – Type of rounding applied to the result:
 - **NULL** - default behavior. Performs no rounding and, if both input and other are integer types, promotes the inputs to the default scalar type. Equivalent to true division in Python (the `/` operator) and NumPy’s `np.true_divide`.
 - **"trunc"** - rounds the results of the division towards zero. Equivalent to C-style integer division.
 - **"floor"** - rounds the results of the division down. Equivalent to floor division in Python (the `//` operator) and NumPy’s `np.floor_divide`.

```
divide(input, other, *, out=None) -> Tensor
```

Alias for `torch_div()`.

torch_dot ________ Dot

Description

Dot

Usage

```
torch_dot(self, tensor)
```

Arguments

- **self** the input tensor.
- **tensor** the other input tensor.

```
dot(input, tensor) -> Tensor
```

Computes the dot product (inner product) of two tensors.

Note

This function does not broadcast.
torch_dstack

Examples

```r
if (torch_is_installed()) {
  torch_dot(torch_tensor(c(2, 3)), torch_tensor(c(2, 1)))
}
```

torch_dstack
Dstack

Description

Dstack

Usage

`torch_dstack(tensors)`

Arguments

`tensors`
(sequence of Tensors) sequence of tensors to concatenate

`torch_dstack(tensors, *, out=None) -> Tensor`

Stack tensors in sequence depthwise (along third axis).

This is equivalent to concatenation along the third axis after 1-D and 2-D tensors have been reshaped by `torch_atleast_3d()`.

Examples

```r
if (torch_is_installed()) {
  a <- torch_tensor(c(1, 2, 3))
  b <- torch_tensor(c(4, 5, 6))
  torch_dstack(list(a, b))
  a <- torch_tensor(rbind(1, 2, 3))
  b <- torch_tensor(rbind(4, 5, 6))
  torch_dstack(list(a, b))
}
```
torch_dtype Torch data types

Description
Returns the correspondent data type.

Usage
torch_float32()
torch_float()
torch_float64()
torch_double()
torch_float16()
torch_half()
torch_uint8()
torch_int8()
torch_int16()
torch_short()
torch_int32()
torch_int()
torch_int64()
torch_long()
torch_bool()
torch_quint8()
torch_qint8()
torch_qint32()
torch_eig

torch_eig

Description

Eig

Usage

torch_eig(self, eigenvectors = FALSE)

Arguments

- **self**: (Tensor) the square matrix of shape \((n \times n)\) for which the eigenvalues and eigenvectors will be computed

- **eigenvectors**: (bool) TRUE to compute both eigenvalues and eigenvectors; otherwise, only eigenvalues will be computed

```
eig(input, eigenvectors=False, out=NULL) -> (Tensor, Tensor)
```

Computes the eigenvalues and eigenvectors of a real square matrix.

Note

Since eigenvalues and eigenvectors might be complex, backward pass is supported only for \[\text{\texttt{torch_symeig}}\]

torch_einsum

torch_einsum

Description

Einsum

Usage

torch_einsum(equation, tensors)

```
Arguments

- **equation** *(string)* The equation is given in terms of lower case letters (indices) to be associated with each dimension of the operands and result. The left hand side lists the operands dimensions, separated by commas. There should be one index letter per tensor dimension. The right hand side follows after `->` and gives the indices for the output. If the `->` and right hand side are omitted, it implicitly defined as the alphabetically sorted list of all indices appearing exactly once in the left hand side. The indices not appearing in the output are summed over after multiplying the operands entries. If an index appears several times for the same operand, a diagonal is taken. Ellipses ... represent a fixed number of dimensions. If the right hand side is inferred, the ellipsis dimensions are at the beginning of the output.

- **tensors** *(Tensor)* The operands to compute the Einstein sum of.

### einsum(equation, *operands) -> Tensor

This function provides a way of computing multilinear expressions (i.e. sums of products) using the Einstein summation convention.

### Examples

```python
if (torch_is_installed()) {

 x = torch_randn(c(5))
 y = torch_randn(c(4))
 torch_einsum('i,j->ij', list(x, y)) # outer product
 A = torch_randn(c(3,5,4))
 l = torch_randn(c(2,5))
 r = torch_randn(c(2,4))
 torch_einsum('bn,anm,bm->ba', list(l, A, r)) # compare torch_nn$functional$bilinear
 As = torch_randn(c(3,2,5))
 Bs = torch_randn(c(3,5,4))
 torch_einsum('bij,bjk->bik', list(As, Bs)) # batch matrix multiplication
 A = torch_randn(c(3, 3))
 torch_einsum('i->i', list(A)) # diagonal
 A = torch_randn(c(4, 3, 3))
 torch_einsum('...i->...', list(A)) # batch diagonal
 A = torch_randn(c(2, 3, 4, 5))
 torch_einsum('...ij->...', list(A))$shape # batch permute
}
```

---

**torch_empty**

**Empty**

### Description

Empty
torch_empty_like

Usage

torch_empty(
    ..., 
    names = NULL,
    dtype = NULL,
    layout = torch_strided(),
    device = NULL,
    requires_grad = FALSE
)

Arguments

... a sequence of integers defining the shape of the output tensor.

names optional character vector naming each dimension.

dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type).

layout (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

device (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

requires_grad (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.

empty(*size, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False, pin_memory=False) -> Tensor

Returns a tensor filled with uninitialized data. The shape of the tensor is defined by the variable argument size.

Examples

if (torch_is_installed()) {

    torch_empty(c(2, 3))
}

torch_empty_like Empty_like

Description

Empty_like
torch_empty_strided

Usage

torch_empty_strided(
    input,
    dtype = NULL,
    layout = torch_strided(),
    device = NULL,
    requires_grad = FALSE,
    memory_format = torch_preserve_format()
)

Arguments

input (Tensor) the size of input will determine size of the output tensor.
dtype (torch.dtype, optional) the desired data type of returned Tensor. Default: if NULL, defaults to the dtype of input.
layout (torch.layout, optional) the desired layout of returned tensor. Default: if NULL, defaults to the layout of input.
device (torch.device, optional) the desired device of returned tensor. Default: if NULL, defaults to the device of input.
requires_grad (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.
memory_format (torch.memory_format, optional) the desired memory format of returned Tensor. Default: torch_preserve_format.

empty_like(input, dtype=NULL, layout=NULL, device=NULL, requires_grad=False, memory_format=torch.preserve_format) -> Tensor

Returns an uninitialized tensor with the same size as input. torch_empty_like(input) is equivalent to torch_empty(input.size(),dtype=input.dtype,layout=input.layout,device=input.device).

Examples

if (torch_is_installed()) {

    torch_empty(list(2,3), dtype = torch_int64())
}

---

torch_empty_strided Empty_strided

Description

Empty_strided
torch_empty_strided

Usage

```
torch_empty_strided(
 size,
 stride,
 dtype = NULL,
 layout = torch_strided(),
 device = NULL,
 requires_grad = FALSE,
 pin_memory = FALSE
)
```

Arguments

- **size** (tuple of ints) the shape of the output tensor
- **stride** (tuple of ints) the strides of the output tensor
- **dtype** (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type).
- **layout** (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.
- **device** (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- **requires_grad** (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.
- **pin_memory** (bool, optional) If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: FALSE.

```
empty_strided(size, stride, dtype=NULL, layout=NULL, device=NULL, requires_grad=False, pin_memory=False)
```

-> Tensor

Returns a tensor filled with uninitialized data. The shape and strides of the tensor is defined by the variable argument size and stride respectively. `torch_empty_strided(size, stride)` is equivalent to `torch_empty(size).as_strided(size, stride).

Warning

More than one element of the created tensor may refer to a single memory location. As a result, in-place operations (especially ones that are vectorized) may result in incorrect behavior. If you need to write to the tensors, please clone them first.

Examples

```
if (torch_is_installed()) {
 a = torch_empty_strided(list(2, 3), list(1, 2))
 a
 a$stride(1)
```
torch_equal

Description
Equal

Usage
torch_equal(self, other)

Arguments
- self (Tensor) the input tensor
- other (Tensor or float) the other input tensor

eq(input, other, out=NULL) -> Tensor
Computes element-wise equality
The second argument can be a number or a tensor whose shape is broadcastable with the first argument.

Examples
if (torch_is_installed()) {
    torch_equal(torch_tensor(c(1,2,3,4)), torch_tensor(c(1,3,2,4)))
}

torch_eq

Description
Eq

Usage
torch_eq(self, other)

Arguments
- self (Tensor) the tensor to compare
- other (Tensor or float) the tensor or value to compare Must be a ByteTensor

eq(input, other, out=NULL) -> Tensor
Computes element-wise equality
The second argument can be a number or a tensor whose shape is broadcastable with the first argument.

Examples
if (torch_is_installed()) {
    torch_eq(torch_tensor(c(1,2,3,4)), torch_tensor(c(1,3,2,4)))
}
equal(input, other) -> bool

TRUE if two tensors have the same size and elements, FALSE otherwise.

Examples

if (torch_is_installed()) {

torch_equal(torch_tensor(c(1, 2)), torch_tensor(c(1, 2)))
}

torch_erf  

Erf

Description

Erf

Usage

torch_erf(self)

Arguments

self (Tensor) the input tensor.

erf(input, out=NULL) -> Tensor

Computes the error function of each element. The error function is defined as follows:

\[
erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt
\]

Examples

if (torch_is_installed()) {

torch_erf(torch_tensor(c(0, -1., 10.)))
}
torch_erfc

Description
Erfc

Usage
torch_erfc(self)

Arguments
self (Tensor) the input tensor.

erfc(input, out=NULL) -> Tensor
Computes the complementary error function of each element of input. The complementary error function is defined as follows:

\[ \text{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt \]

Examples
if (torch_is_installed()) {
   torch_erfc(torch_tensor(c(0, -1., 10.)))
}

torch_erfinv

Description
Erfinv

Usage
torch_erfinv(self)

Arguments
self (Tensor) the input tensor.
erfinv(input, out=NULL) -> Tensor

Computes the inverse error function of each element of input. The inverse error function is defined in the range $(-1, 1)$ as:

$$erfinv(erf(x)) = x$$

Examples

```r
if (torch_is_installed()) {
 torch_erfinv(torch_tensor(c(0, 0.5, -1.)))
}
```

---

torch_exp  

$Exp$

Description

Exp

Usage

```r
torch_exp(self)
```

Arguments

- `self` (Tensor) the input tensor.

exp(input, out=NULL) -> Tensor

Returns a new tensor with the exponential of the elements of the input tensor input.

$$y_i = e^{x_i}$$

Examples

```r
if (torch_is_installed()) {
 torch_exp(torch_tensor(c(0, log(2))))
}
```
torch_expm1

**torch_expm1**

Description

Expm1

Usage

torch_expm1(self)

Arguments

- self (Tensor) the input tensor.

**exp2(input, *, out=None) -> Tensor**

Computes the base two exponential function of input.

\[ y_i = 2^{x_i} \]

Examples

```cpp
if (torch_is_installed()) {
 torch_exp2(torch_tensor(c(0, log2(2.), 3, 4)))
}
```

torch_expm2

**torch_expm2**

Description

Exp2

Usage

torch_exp2(self)

Arguments

- self (Tensor) the input tensor.
torch_eye

expm1(input, out=NULL) -> Tensor

Returns a new tensor with the exponential of the elements minus 1 of input.

\[ y_i = e^{x_i} - 1 \]

Examples

```r
if (torch_is_installed()) {
 torch_expm1(torch_tensor(c(0, log(2))))
}
```

torch_eye

Description

Eye

Usage

```r
torch_eye(
 n,
 m = n,
 dtype = NULL,
 layout = torch_strided(),
 device = NULL,
 requires_grad = FALSE
)
```

Arguments

- `n` (int) the number of rows
- `m` (int, optional) the number of columns with default being `n`
- `dtype` (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see `torch_set_default_tensor_type`).
- `layout` (torch.layout, optional) the desired layout of returned Tensor. Default: `torch_strided`.
- `device` (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see `torch_set_default_tensor_type`). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- `requires_grad` (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.
eye(n, m=NULL, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor

Returns a 2-D tensor with ones on the diagonal and zeros elsewhere.

Examples

```python
if (torch_is_installed()) {
 torch_eye(3)
}
```

description

Computes the one dimensional discrete Fourier transform of input.

Usage

```python
torch_fft_fft(self, n = NULL, dim = -1L, norm = NULL)
```

Arguments

- **self** (Tensor) the input tensor
- **n** (int) Signal length. If given, the input will either be zero-padded or trimmed to this length before computing the FFT.
- **dim** (int, optional) The dimension along which to take the one dimensional FFT.
- **norm** (str, optional) Normalization mode. For the forward transform, these correspond to:
  - "forward" - normalize by 1/n
  - "backward" - no normalization
  - "ortho" - normalize by 1/sqrt(n) (making the FFT orthonormal) Calling the backward transform (ifft()) with the same normalization mode will apply an overall normalization of 1/n between the two transforms. This is required to make IFFT the exact inverse. Default is "backward" (no normalization).

Note

The Fourier domain representation of any real signal satisfies the Hermitian property: $X[i] = \text{conj}(X[-i])$. This function always returns both the positive and negative frequency terms even though, for real inputs, the negative frequencies are redundant. rfft() returns the more compact one-sided representation where only the positive frequencies are returned.
torch_fft_ifft

Examples

```r
if (torch_is_installed()) {
 t <- torch_arange(start = 0, end = 3)
 t
 torch_fft_fft(t, norm = "backward")
}
```

torch_fft_ifft  Ifft

Description

Computes the one dimensional inverse discrete Fourier transform of input.

Usage

torch_fft_ifft(self, n = NULL, dim = -1L, norm = NULL)

Arguments

- `self` (Tensor) the input tensor
- `n` (int, optional) – Signal length. If given, the input will either be zero-padded or trimmed to this length before computing the IFFT.
- `dim` (int, optional) – The dimension along which to take the one dimensional IFFT.
- `norm` (str, optional) – Normalization mode. For the backward transform, these correspond to:
  - "forward" - no normalization
  - "backward" - normalize by 1/n
  - "ortho" - normalize by 1/sqrt(n) (making the IFFT orthonormal) Calling the forward transform with the same normalization mode will apply an overall normalization of 1/n between the two transforms. This is required to make ifft() the exact inverse. Default is "backward" (normalize by 1/n).

Examples

```r
if (torch_is_installed()) {
 t <- torch_arange(start = 0, end = 3)
 t
 x <- torch_fft_fft(t, norm = "backward")
 torch_fft_ifft(x)
}
```
**torch_fft_irfft**

**Description**

Computes the inverse of `torch_fft_rfft()`. Input is interpreted as a one-sided Hermitian signal in the Fourier domain, as produced by `torch_fft_rfft()`. By the Hermitian property, the output will be real-valued.

**Usage**

```python
torch_fft_irfft(self, n = NULL, dim = -1L, norm = NULL)
```

**Arguments**

- **self**
  - (Tensor) the input tensor representing a half-Hermitian signal

- **n**
  - (int) Output signal length. This determines the length of the output signal. If given, the input will either be zero-padded or trimmed to this length before computing the real IFFT. Defaults to even output: `n=2*(input.size(dim) -1)`.

- **dim**
  - (int, optional) – The dimension along which to take the one dimensional real IFFT.

- **norm**
  - (str, optional) – Normalization mode. For the backward transform, these correspond to:
    - "forward" - no normalization
    - "backward" - normalize by 1/n
    - "ortho" - normalize by 1/sqrt(n) (making the real IFFT orthonormal) Calling the forward transform (`torch_fft_rfft()`) with the same normalization mode will apply an overall normalization of 1/n between the two transforms. This is required to make irfft() the exact inverse. Default is "backward" (normalize by 1/n).

**Note**

Some input frequencies must be real-valued to satisfy the Hermitian property. In these cases the imaginary component will be ignored. For example, any imaginary component in the zero-frequency term cannot be represented in a real output and so will always be ignored.

The correct interpretation of the Hermitian input depends on the length of the original data, as given by `n`. This is because each input shape could correspond to either an odd or even length signal. By default, the signal is assumed to be even length and odd signals will not round-trip properly. So, it is recommended to always pass the signal length `n`.
torch_fft_rfft

Examples

```r
if (torch_is_installed()) {
 t <- torch_arange(start = 0, end = 4)
 x <- torch_fft_rfft(t)
 torch_fft_irfft(x)
 torch_fft_irfft(x, n = t$numel())
}
```

torch_fft_rfft  Rfft

Description

Computes the one dimensional Fourier transform of real-valued input.

Usage

```r
torch_fft_rfft(self, n = NULL, dim = -1L, norm = NULL)
```

Arguments

- `self`  (Tensor) the real input tensor
- `n`  (int) Signal length. If given, the input will either be zero-padded or trimmed to this length before computing the real FFT.
- `dim`  (int, optional) – The dimension along which to take the one dimensional real FFT.
- `norm`  (str, optional) – Normalization mode. For the forward transform, these correspond to:
  - "forward" - normalize by 1/n
  - "backward" - no normalization
  - "ortho" - normalize by 1/sqrt(n) (making the FFT orthonormal) Calling the backward transform (torch_fft_irfft()) with the same normalization mode will apply an overall normalization of 1/n between the two transforms. This is required to make irfft() the exact inverse. Default is "backward" (no normalization).

Details

The FFT of a real signal is Hermitian-symmetric, \( \hat{x}[i] = \text{conj}(\hat{x}[-i]) \) so the output contains only the positive frequencies below the Nyquist frequency. To compute the full output, use torch_fft_fft().
Examples
if (torch_is_installed()) {
  t <- torch_arange(start = 0, end = 3)
  torch_fft_rfft(t)
}

torch_finfo
Floating point type info

Description
A list that represents the numerical properties of a floating point torch.dtype

Usage
torch_finfo(dtype)

Arguments
dtype dtype to check information

torch_fix
Fix

Description
Fix

Usage
torch_fix(self)

Arguments
self (Tensor) the input tensor.

fix(input, *, out=None) -> Tensor

Alias for torch_trunc()
torch_flatten  Flatten

Description
Flatten

Usage
torch_flatten(self, dims, start_dim = 1L, end_dim = -1L, out_dim)

Arguments
- self: (Tensor) the input tensor.
- dims: if tensor is named you can pass the name of the dimensions to flatten
- start_dim: (int) the first dim to flatten
- end_dim: (int) the last dim to flatten
- out_dim: the name of the resulting dimension if a named tensor.

flatten(input, start_dim=0, end_dim=-1) -> Tensor
Flattens a contiguous range of dims in a tensor.

Examples
if (torch_is_installed()) {
  t = torch_tensor(matrix(c(1, 2), ncol = 2))
  torch_flatten(t)
  torch_flatten(t, start_dim=2)
}

torch_flip  Flip

Description
Flip

Usage
torch_flip(self, dims)
Arguments

- **self**: (Tensor) the input tensor.
- **dims**: (a list or tuple) axis to flip on

**flip(input, dims) -> Tensor**

Reverse the order of a n-D tensor along given axis in dims.

**Examples**

```python
if (torch_is_installed()) {
 x <- torch_arange(1, 8)$view(c(2, 2, 2))
 x
 torch_flip(x, c(1, 2))
}
```

---

**torch_fliplr**

**Fliplr**

**Description**

Fliplr

**Usage**

torch_fliplr(self)

**Arguments**

- **self**: (Tensor) Must be at least 2-dimensional.

**fliplr(input) -> Tensor**

Flip array in the left/right direction, returning a new tensor.

Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before.

**Note**

Equivalent to `input[:, -1]`. Requires the array to be at least 2-D.
torch_flipud

Examples

```r
if (torch_is_installed()) {

 x <- torch_arange(start = 1, end = 4)$view(c(2, 2))
 x
 torch_fliplr(x)
}
```

---

### torch_flipud

**Description**

Flipud

**Usage**

torch_flipud(self)

**Arguments**

- **self** (Tensor) Must be at least 1-dimensional.

**flipud(input) -> Tensor**

Flip array in the up/down direction, returning a new tensor.

Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before.

**Note**

Equivalent to input[-1,]. Requires the array to be at least 1-D.

**Examples**

```r
if (torch_is_installed()) {

 x <- torch_arange(start = 1, end = 4)$view(c(2, 2))
 x
 torch_flipud(x)
}
```
torch_floor  

**Floor**

**Description**

Floor

**Usage**

torch_floor(self)

**Arguments**

self  
(Tensor) the input tensor.

floor(input, out=NULL) -> Tensor

Returns a new tensor with the floor of the elements of input, the largest integer less than or equal to each element.

\[ \text{out}_i = \lfloor \text{input}_i \rfloor \]

**Examples**

```python
if (torch_is_installed()) {
 a = torch_randn(c(4))
 a
 torch_floor(a)
}
```

---

torch_floor_divide  

**Floor_divide**

**Description**

Floor_divide

**Usage**

torch_floor_divide(self, other)

**Arguments**

self  
(Tensor) the numerator tensor

other  
(Tensor or Scalar) the denominator
floor_divide(input, other, out=NULL) -> Tensor

Return the division of the inputs rounded down to the nearest integer. See torch_div for type promotion and broadcasting rules.

\[
\text{out}_i = \left\lfloor \frac{\text{input}_i}{\text{other}_i} \right\rfloor
\]

Examples

```python
if (torch_is_installed()) {
 a = torch_tensor(c(4.0, 3.0))
 b = torch_tensor(c(2.0, 2.0))
 torch_floor_divide(a, b)
 torch_floor_divide(a, 1.4)
}
```

fmod(input, other, out=NULL) -> Tensor

Computes the element-wise remainder of division.

The dividend and divisor may contain both for integer and floating point numbers. The remainder has the same sign as the dividend input.

When other is a tensor, the shapes of input and other must be broadcastable.

Examples

```python
if (torch_is_installed()) {
 torch_fmod(torch_tensor(c(-3., -2, -1, 1, 2, 3)), 2)
 torch_fmod(torch_tensor(c(1., 2, 3, 4, 5)), 1.5)
}
```
torchfrac

Description

Frac

Usage

torchfrac(self)

Arguments

self the input tensor.

frac(input, out=\text{NULL}) -> Tensor

Computes the fractional portion of each element in input.

\[ \text{out}_i = \text{input}_i - \lfloor |\text{input}_i| \rfloor \times \text{sgn} (\text{input}_i) \]

Examples

if (torch_is_installed()) {
    torchfrac(torch_tensor(c(1, 2.5, -3.2)))
}

torchfull

Description

Full

Usage

torchfull(
    size,
    fill_value,
    names = \text{NULL},
    dtype = \text{NULL},
    layout = \text{torch_strided()},
    device = \text{NULL},
    requires_grad = \text{FALSE}
)
torch_full_like

Arguments

- **size** (int...) a list, tuple, or torch.Size of integers defining the shape of the output tensor.
- **fill_value** NA the number to fill the output tensor with.
- **names** optional names of the dimensions
- **dtype** (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type).
- **layout** (torch.layout, optional) the desired layout of returned Tensor. Default: torch.strided.
- **device** (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- **requires_grad** (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.

**full(size, fill_value, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor**

Returns a tensor of size size filled with fill_value.

**Warning**

In PyTorch 1.5 a bool or integral fill_value will produce a warning if dtype or out are not set. In a future PyTorch release, when dtype and out are not set a bool fill_value will return a tensor of torch.bool dtype, and an integral fill_value will return a tensor of torch.long dtype.

**Examples**

```python
if (torch_is_installed()) {
 torch_full(list(2, 3), 3.141592)
}
```

Description

Full_like
Usage

torch_full_like(
    input,
    fill_value,
    dtype = NULL,
    layout = torch_strided(),
    device = NULL,
    requires_grad = FALSE,
    memory_format = torch_preserve_format()
)

Arguments

input (Tensor) the size of input will determine size of the output tensor.
fill_value the number to fill the output tensor with.
dtype (torch.dtype, optional) the desired data type of returned Tensor. Default: if NULL, defaults to the dtype of input.
layout (torch.layout, optional) the desired layout of returned tensor. Default: if NULL, defaults to the layout of input.
device (torch.device, optional) the desired device of returned tensor. Default: if NULL, defaults to the device of input.
requires_grad (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.
memory_format (torch.memory_format, optional) the desired memory format of returned Tensor. Default: torch_preserve_format.

full_like(input, fill_value, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False,
    memory_format=torch.preserve_format) -> Tensor

Returns a tensor with the same size as input filled with fill_value. torch_full_like(input, fill_value) is equivalent to torch_full(input.size(), fill_value, dtype=input.dtype, layout=input.layout, device=input.device, requires_grad=False, memory_format=torch.preserve_format).

torch_gather

Description

Gather

Usage

torch_gather(self, dim, index, sparse_grad = FALSE)
torch_gcd

Arguments

self (Tensor) the input tensor.
other (Tensor) the second input tensor

gcd(input, other, *, out=None) -> Tensor

Computes the element-wise greatest common divisor (GCD) of input and other.
Both input and other must have integer types.
**Note**

This defines $gcd(0, 0) = 0$.

**Examples**

```r
if (torch_is_installed()) {
 if (torch::cuda_is_available()) {
 a <- torch_tensor(c(5, 10, 15), dtype = torch_long(), device = "cuda")
 b <- torch_tensor(c(3, 4, 5), dtype = torch_long(), device = "cuda")
 print(torch_gcd(a, b))
 c <- torch_tensor(c(3L), device = "cuda")
 print(torch_gcd(a, c))
 }
}
```

---

**torch_ge**

**Description**

$\ge$

**Usage**

```r
torch_ge(self, other)
```

**Arguments**

- `self` (Tensor) the tensor to compare
- `other` (Tensor or float) the tensor or value to compare

**ge(input, other, out=NULL) -> Tensor**

Computes $input \ge other$ element-wise.

The second argument can be a number or a tensor whose shape is broadcastable with the first argument.

**Examples**

```r
if (torch_is_installed()) {
 print(torch_ge(torch_tensor(matrix(1:4, ncol = 2, byrow=TRUE)),
 torch_tensor(matrix(c(1,1,4,4), ncol = 2, byrow=TRUE))))
}
```
**torch_generator**  
Create a Generator object

**Description**

A `torch_generator` is an object which manages the state of the algorithm that produces pseudo random numbers. Used as a keyword argument in many In-place random sampling functions.

**Usage**

```r
torch_generator()
```

**Examples**

```r
if (torch_is_installed()) {
 # Via string
 generator <- torch_generator()
 generator$current_seed()
 generator$set_current_seed(1234567L)
 generator$current_seed()
}
```

---

**torch_geqrf**  
*Geqrf*

**Description**

*Geqrf*

**Usage**

```r
torch_geqrf(self)
```

**Arguments**

```r
self (Tensor) the input matrix
```
geqrf(input, out=NULL) -> (Tensor, Tensor)

This is a low-level function for calling LAPACK directly. This function returns a namedtuple (a, tau) as defined in LAPACK documentation for geqrf_.
You’ll generally want to use torch_qr instead.
Computes a QR decomposition of input, but without constructing Q and R as explicit separate matrices.
Rather, this directly calls the underlying LAPACK function ?geqrf which produces a sequence of 'elementary reflectors'.
See LAPACK documentation for geqrf_ for further details.

torch_ger  Ger

Description
Ger

Usage
torch_ger(self, vec2)

Arguments
  self  (Tensor) 1-D input vector
  vec2  (Tensor) 1-D input vector

ger(input, vec2, out=NULL) -> Tensor

Outer product of input and vec2. If input is a vector of size n and vec2 is a vector of size m, then out must be a matrix of size (n x m).

Note
This function does not broadcast.

Examples
  if (torch_is_installed()) {
    v1 = torch_arange(1., 5.)
    v2 = torch_arange(1., 4.)
    torch_ger(v1, v2)
  }
torch_greater

Description
Greater

Usage
torch_greater(self, other)

Arguments
self (Tensor) the tensor to compare
other (Tensor or float) the tensor or value to compare

greater(input, other, *, out=None) -> Tensor
Alias for torch_gt().

torch_greater_equal

Description
Greater_equal

Usage
torch_greater_equal(self, other)

Arguments
self (Tensor) the tensor to compare
other (Tensor or float) the tensor or value to compare

greater_equal(input, other, *, out=None) -> Tensor
Alias for torch_ge().
torch_gt  

**Description**

Gt

**Usage**

torch_gt(self, other)

**Arguments**

self  
(Tensor) the tensor to compare

other  
(Tensor or float) the tensor or value to compare

gt(input, other, out=NULL) -> Tensor

Computes input > other element-wise.

The second argument can be a number or a tensor whose shape is broadcastable with the first argument.

**Examples**

if (torch_is_installed()) {

    torch_gt(torch_tensor(matrix(1:4, ncol = 2, byrow=TRUE)),
             torch_tensor(matrix(c(1,1,4,4), ncol = 2, byrow=TRUE)))
}

torch_hamming_window  

**Description**

Hamming_window

**Usage**

torch_hamming_window(
    window_length,
    periodic = TRUE,
    alpha = 0.54,
    beta = 0.46,
    dtype = NULL,
    layout = torch_strided(),
)
torch_hamming_window

    device = NULL,
    requires_grad = FALSE
)

Arguments

window_length (int) the size of returned window
periodic (bool, optional) If TRUE, returns a window to be used as periodic function. If False, return a symmetric window.
alpha (float, optional) The coefficient α in the equation above
beta (float, optional) The coefficient β in the equation above
dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type). Only floating point types are supported.
layout (torch.layout, optional) the desired layout of returned window tensor. Only torch_strided (dense layout) is supported.
device (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.

hamming_window(window_length, periodic=TRUE, alpha=0.54, beta=0.46, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor

Hamming window function.

\[ w[n] = \alpha - \beta \cos \left( \frac{2\pi n}{N-1} \right), \]

where \( N \) is the full window size.

The input window_length is a positive integer controlling the returned window size. periodic flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like torch_stft. Therefore, if periodic is true, the \( N \) in above formula is in fact window_length + 1. Also, we always have \( \text{torch_hamming_window}(L, \text{periodic} = \text{TRUE}) \) equal to \( \text{torch_hamming_window}(L + 1, \text{periodic} = \text{False})[:-1] \).

Note

If `window_length` \( \equiv 1 \), the returned window contains a single value 1.

This is a generalized version of `torch_hann_window`.
**Description**

Hann_window

**Usage**

```python
torch_hann_window(
 window_length,
 periodic = TRUE,
 dtype = NULL,
 layout = torch_strided(),
 device = NULL,
 requires_grad = FALSE
)
```

**Arguments**

- `window_length` (int) the size of returned window
- `periodic` (bool, optional) If TRUE, returns a window to be used as periodic function. If False, return a symmetric window.
- `dtype` (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type). Only floating point types are supported.
- `layout` (torch.layout, optional) the desired layout of returned window tensor. Only torch_strided (dense layout) is supported.
- `device` (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type for CUDA tensor types.
- `requires_grad` (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.

**hann_window(window_length, periodic=TRUE, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor**

Hann window function.

\[ w[n] = \frac{1}{2} \left[ 1 - \cos \left( \frac{2\pi n}{N-1} \right) \right] = \sin^2 \left( \frac{\pi n}{N-1} \right), \]

where \( N \) is the full window size.

The input `window_length` is a positive integer controlling the returned window size. The `periodic` flag determines whether the returned window trims off the last duplicate value from the symmetric
window and is ready to be used as a periodic window with functions like torch_stft. Therefore, if periodic is true, the $N$ in above formula is in fact window_length + 1. Also, we always have torch_hann_window(L, periodic=TRUE) equal to torch_hann_window(L + 1, periodic=FALSE)[:-1]).

Note

If `window_length` \(=1\), the returned window contains a single value 1.
torch_histc

**Description**

Histc

**Usage**

torch_histc(self, bins = 100L, min = 0L, max = 0L)

**Arguments**

 self  (Tensor) the input tensor.
 bins  (int) number of histogram bins
 min  (int) lower end of the range (inclusive)
 max  (int) upper end of the range (inclusive)

**histc(input, bins=100, min=0, max=0, out=NULL) -> Tensor**

Computes the histogram of a tensor.

The elements are sorted into equal width bins between min and max. If min and max are both zero, the minimum and maximum values of the data are used.

**Examples**

if (torch_is_installed()) {

    torch_histc(torch_tensor(c(1., 2, 1)), bins=4, min=0, max=3)
}

torch_hstack

**Description**

Hstack

**Usage**

torch_hstack(tensors)

**Arguments**

tensors  (sequence of Tensors) sequence of tensors to concatenate
torch_hypot

**hstack(tensors, *, out=None) -> Tensor**

Stack tensors in sequence horizontally (column wise).
This is equivalent to concatenation along the first axis for 1-D tensors, and along the second axis for all other tensors.

**Examples**

```python
if (torch_is_installed()) {
 a <- torch_tensor(c(1, 2, 3))
 b <- torch_tensor(c(4, 5, 6))
 torch_hstack(list(a, b))
 a <- torch_tensor(rbind(1,2,3))
 b <- torch_tensor(rbind(4,5,6))
 torch_hstack(list(a, b))
}
```

---

**torch_hypot**  

**Hypot**

**Description**

Hypot

**Usage**

```python
torch_hypot(self, other)
```

**Arguments**

- **self**  
  (Tensor) the first input tensor

- **other**  
  (Tensor) the second input tensor

**hypot(input, other, *, out=None) -> Tensor**

Given the legs of a right triangle, return its hypotenuse.

\[ \text{out}_i = \sqrt{\text{input}_i^2 + \text{other}_i^2} \]

The shapes of input and other must be broadcastable.

**Examples**

```python
if (torch_is_installed()) {
 torch_hypot(torch_tensor(c(4.0)), torch_tensor(c(3.0, 4.0, 5.0)))
}
```
torch_i0

Description

I0

Usage

torch_i0(self)

Arguments

self (Tensor) the input tensor

I0(input, *, out=None) -> Tensor

Computes the zeroth order modified Bessel function of the first kind for each element of input.

\[
\text{out}_i = I_0(\text{input}_i) = \sum_{k=0}^{\infty} \frac{(\text{input}_i^2/4)^k}{(k!)^2}
\]

Examples

if (torch_is_installed()) {
    torch_i0(torch_arange(start = 0, end = 5, dtype=torch_float32()))
}

torch_iinfo

Description

Integer type info

Usage

torch_iinfo(dtype)

Arguments

dtype dtype to get information from.
torch_imag

Description

Imag

Usage

torch_imag(self)

Arguments

self (Tensor) the input tensor.

imag(input) -> Tensor

Returns the imaginary part of the input tensor.

Warning

Not yet implemented.

\[
\text{out}_i = \text{imag(input}_i)\]

Examples

```python
if (torch_is_installed()) {
 ## Not run:
 torch_imag(torch_tensor(c(-1 + 1i, -2 + 2i, 3 - 3i)))
 ## End(Not run)
}
```

torch_index

Index torch tensors

Description

Helper functions to index tensors.

Usage

torch_index(self, indices)
Arguments

self (Tensor) Tensor that will be indexed.
indices (List[Tensor]) List of indices. Indices are torch tensors with torch_long() dtype.

torch_index_put

Modify values selected by indices.

Description

Modify values selected by indices.

Usage

torch_index_put(self, indices, values, accumulate = FALSE)

Arguments

self (Tensor) Tensor that will be indexed.
indices (List[Tensor]) List of indices. Indices are torch tensors with torch_long() dtype.
values (Tensor) values that will be replaced the indexed location. Used for torch_index_put and torch_index_put_.
accumulate (bool) Whether instead of replacing the current values with values, you want to add them.

torch_index_put_

In-place version of torch_index_put.

Description

In-place version of torch_index_put.

Usage

torch_index_put_(self, indices, values, accumulate = FALSE)

Arguments

self (Tensor) Tensor that will be indexed.
indices (List[Tensor]) List of indices. Indices are torch tensors with torch_long() dtype.
values (Tensor) values that will be replaced the indexed location. Used for torch_index_put and torch_index_put_.
accumulate (bool) Whether instead of replacing the current values with values, you want to add them.
torch_index_select  Index_select

Description

Index_select

Usage

torch_index_select(self, dim, index)

Arguments

self (Tensor) the input tensor.
dim (int) the dimension in which we index
index (LongTensor) the 1-D tensor containing the indices to index

index_select(input, dim, index, out=NULL) -> Tensor

Returns a new tensor which indexes the input tensor along dimension dim using the entries in index which is a LongTensor.

The returned tensor has the same number of dimensions as the original tensor (input). The \texttt{dim}th dimension has the same size as the length of index; other dimensions have the same size as in the original tensor.

Note

The returned tensor does \textbf{not} use the same storage as the original tensor. If out has a different shape than expected, we silently change it to the correct shape, reallocating the underlying storage if necessary.

Examples

if (torch_is_installed()) {
    x = torch_randn(c(3, 4))
    x
    indices = torch_tensor(c(1, 3), dtype = torch_int64())
    torch_index_select(x, 1, indices)
    torch_index_select(x, 2, indices)
}
torch_inverse  

Inverse

Description
Inverse

Usage
  torch_inverse(self)

Arguments
  self (Tensor) the input tensor of size $(*, n, n)$ where $*$ is zero or more batch dimensions

inverse(input, out=NULL) -> Tensor
  Takes the inverse of the square matrix input. input can be batches of 2D square tensors, in which case this function would return a tensor composed of individual inverses.

Note
Irrespective of the original strides, the returned tensors will be transposed, i.e. with strides like `input.contiguous().transpose(-2, -1).stride()`.

Examples
  if (torch_is_installed()) {
    ## Not run:
    x = torch_rand(c(4, 4))
    y = torch_inverse(x)
    z = torch_mm(x, y)
    z
    torch_max(torch_abs(z - torch_eye(4))) # Max non-zero
    # Batched inverse example
    x = torch_randn(c(2, 3, 4, 4))
    y = torch_inverse(x)
    z = torch_matmul(x, y)
    torch_max(torch_abs(z - torch_eye(4)$expand_as(x))) # Max non-zero
    
    ## End(Not run)
  }
torch_isclose

**Description**

Isclose

**Usage**

\[ \text{torch_isclose(self, other, rtol = 1e-05, atol = 0, equal_nan = FALSE)} \]

**Arguments**

- **self** (Tensor) first tensor to compare
- **other** (Tensor) second tensor to compare
- **rtol** (float, optional) relative tolerance. Default: 1e-05
- **atol** (float, optional) absolute tolerance. Default: 1e-08
- **equal_nan** (bool, optional) if TRUE, then two NaNs will be considered equal. Default: FALSE

**isclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=FALSE) -> Tensor**

Returns a new tensor with boolean elements representing if each element of input is "close" to the corresponding element of other. Closeness is defined as:

\[ |\text{input} - \text{other}| \leq \text{atol} + \text{rtol} \times |\text{other}| \]

where input and other are finite. Where input and/or other are nonfinite they are close if and only if they are equal, with NaNs being considered equal to each other when equal_nan is TRUE.

**Examples**

```
if (torch_is_installed()) {
 torch_isclose(torch_tensor(c(1., 2, 3)), torch_tensor(c(1 + 1e-10, 3, 4)))
torch_isclose(torch_tensor(c(Inf, 4)), torch_tensor(c(Inf, 6)), rtol=.5)
}
```
torch_isfinite  Isfinite

**Description**

Isfinite

**Usage**

torch_isfinite(self)

**Arguments**

self (Tensor) A tensor to check

**TEST**

Returns a new tensor with boolean elements representing if each element is Finite or not.

**Examples**

if (torch_is_installed()) {
    torch_isfinite(torch_tensor(c(1, Inf, 2, -Inf, NaN)))
}

torch_isinf  Isinf

**Description**

Isinf

**Usage**

torch_isinf(self)

**Arguments**

self (Tensor) A tensor to check

**TEST**

Returns a new tensor with boolean elements representing if each element is +/-INF or not.
torch_isnan

Examples
if (torch_is_installed()) {
    torch_isnan(torch_tensor(c(1, NaN, 2)))
}

Description
Isnans

Usage
torch_isnan(self)

Arguments
self (Tensor) A tensor to check

Returns a new tensor with boolean elements representing if each element is NaN or not.

Examples
if (torch_is_installed()) {
    torch_isnan(torch_tensor(c(1, NaN, 2)))
}

torch_isneginf

Description
Isneginf

Usage
torch_isneginf(self)

Arguments
self (Tensor) the input tensor.
isneginf(input, *, out=None) -> Tensor

Tests if each element of input is negative infinity or not.

Examples

```python
if (torch_is_installed()) {
 a <- torch_tensor(c(-Inf, Inf, 1.2))
 torch_isneginf(a)
}
```

torch_isposinf

Isposinf

Description

Isposinf

Usage

torch_isposinf(self)

Arguments

self (Tensor) the input tensor.

isposinf(input, *, out=None) -> Tensor

Tests if each element of input is positive infinity or not.

Examples

```python
if (torch_is_installed()) {
 a <- torch_tensor(c(-Inf, Inf, 1.2))
 torch_isposinf(a)
}
```
**torch_isreal**

**Description**
Isreal

**Usage**
torch_isreal(self)

**Arguments**

self (Tensor) the input tensor.

isreal(input) -> Tensor

Returns a new tensor with boolean elements representing if each element of input is real-valued or not. All real-valued types are considered real. Complex values are considered real when their imaginary part is 0.

**Examples**

if (torch_is_installed()) {
    if (FALSE) {
        torch_isreal(torch_tensor(c(1, 1+1i, 2+0i)))
    }
}

**torch_istft**

**Description**
Inverse short time Fourier Transform. This is expected to be the inverse of torch_stft().

**Usage**
torch_istft(
    self,
    n_fft,
    hop_length = NULL,
    win_length = NULL,
    window = list(),
    center = TRUE,
    normalized = FALSE,
)
torch_istft

```python
 onesided = NULL,
 length = NULL,
 return_complex = FALSE
)

Arguments

self (Tensor) The input tensor. Expected to be output of torch_stft(), can either be complex (channel, fft_size, n_frame), or real (channel, fft_size, n_frame, 2) where the channel dimension is optional.
n_fft (int) Size of Fourier transform
hop_length (Optional[int]) The distance between neighboring sliding window frames. (Default: n_fft % 4)
win_length (Optional[int]) The size of window frame and STFT filter. (Default: n_fft)
window (Optional(torch.Tensor)) The optional window function. (Default: torch.ones(win_length))
center (bool) Whether input was padded on both sides so that the t-th frame is centered at time t × hop_length. (Default: TRUE)
normalized (bool) Whether the STFT was normalized. (Default: FALSE)
onesided (Optional(bool)) Whether the STFT was onesided. (Default: TRUE if n_fft != fft_size in the input size)
length (Optional[int]) The amount to trim the signal by (i.e. the original signal length). (Default: whole signal)
return_complex (Optional(bool)) Whether the output should be complex, or if the input should be assumed to derive from a real signal and window. Note that this is incompatible with onesided=TRUE. (Default: FALSE)

Details

It has the same parameters (+ additional optional parameter of length) and it should return the least squares estimation of the original signal. The algorithm will check using the NOLA condition (nonzero overlap).

Important consideration in the parameters window and center so that the envelop created by the summation of all the windows is never zero at certain point in time. Specifically, \(\sum_{t=-\infty}^{\infty} |w|^2(n - t \times \text{hop_length}) \neq 0\).

Since torch_stft() discards elements at the end of the signal if they do not fit in a frame, istft may return a shorter signal than the original signal (can occur if center is FALSE since the signal isn’t padded).

If center is TRUE, then there will be padding e.g. 'constant', 'reflect', etc. Left padding can be trimmed off exactly because they can be calculated but right padding cannot be calculated without additional information.

Example: Suppose the last window is: [c(17, 18, 0, 0, 0) vs c(18, 0, 0, 0, 0)

The n_fft, hop_length, win_length are all the same which prevents the calculation of right padding. These additional values could be zeros or a reflection of the signal so providing length could be useful. If length is None then padding will be aggressively removed (some loss of signal).

torch_is_complex

Description
Is_complex

Usage
torch_is_complex(self)

Arguments
self (Tensor) the PyTorch tensor to test

is_complex(input) -> (bool)
Returns TRUE if the data type of input is a complex data type i.e., one of torch_complex64, and torch.complex128.

torch_is_floating_point

Description
Is_floating_point

Usage
torch_is_floating_point(self)

Arguments
self (Tensor) the PyTorch tensor to test

is_floating_point(input) -> (bool)
Returns TRUE if the data type of input is a floating point data type i.e., one of torch_float64, torch.float32 and torch.float16.
torch_is_installed

Verifies if torch is installed

Description
Verifies if torch is installed

Usage
torch_is_installed()

torch_is_nonzero

Is_nonzero

Description
Is_nonzero

Usage
torch_is_nonzero(self)

Arguments
self (Tensor) the input tensor.

is_nonzero(input) -> (bool)

Returns TRUE if the input is a single element tensor which is not equal to zero after type conversions, i.e. not equal to torch_tensor(c(0)) or torch_tensor(c(0)) or torch_tensor(c(FALSE)). Throws a RuntimeError if torch_numel() != 1 (even in case of sparse tensors).

Examples

if (torch_is_installed()) {

 torch_is_nonzero(torch_tensor(c(0.)))
 torch_is_nonzero(torch_tensor(c(1.5)))
 torch_is_nonzero(torch_tensor(c(FALSE))))
 torch_is_nonzero(torch_tensor(c(3)))
 if (FALSE) {
 torch_is_nonzero(torch_tensor(c(1, 3, 5)))
 torch_is_nonzero(torch_tensor(c())))
 }
}
torch_kaiser_window

Kaiser_window

Description

Kaiser_window

Usage

torch_kaiser_window(
 window_length,
 periodic,
 beta,
 dtype = torch_float(),
 layout = NULL,
 device = NULL,
 requires_grad = NULL
)

Arguments

window_length (int) length of the window.
periodic (bool, optional) If TRUE, returns a periodic window suitable for use in spectral
 analysis. If FALSE, returns a symmetric window suitable for use in filter design.
beta (float, optional) shape parameter for the window.
dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if
 NULL, uses a global default (see torch_set_default_tensor_type). If dtype
 is not given, infer the data type from the other input arguments. If any of
 start, end, or stop are floating-point, the dtype is inferred to be the default
dtype, see ~torch.get_default_dtype. Otherwise, the dtype is inferred to be
 torch.int64.
layout (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.
device (torch.device, optional) the desired device of returned tensor. Default: if
 NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type).
 device will be the CPU for CPU tensor types and the current CUDA device for
 CUDA tensor types.
requires_grad (bool, optional) If autograd should record operations on the returned tensor. De-
 fault: FALSE.

kaiser_window(window_length, periodic=TRUE, beta=12.0, *, dtype=None, layout=torch.strided,
device=None, requires_grad=False) -> Tensor

Computes the Kaiser window with window length window_length and shape parameter beta.

Let I_0 be the zeroth order modified Bessel function of the first kind (see torch_i0()) and N = L - 1 if
periodic is FALSE and L if periodic is TRUE, where L is the window_length. This function
computes:
\[
out_i = I_0 \left(\beta \sqrt{1 - \left(\frac{i - N/2}{N/2} \right)^2} \right) / I_0(\beta)
\]

Calling `torch_kaiser_window(L,B,periodic=TRUE)` is equivalent to calling `torch_kaiser_window(L + 1, B, periodic=FALSE)[-1]`). The periodic argument is intended as a helpful shorthand to produce a periodic window as input to functions like `torch_stft()`.

Note

If `window_length` is one, then the returned window is a single element tensor containing a one.

<table>
<thead>
<tr>
<th>torch_kthvalue</th>
<th>Kthvalue</th>
</tr>
</thead>
</table>

Description

Kthvalue

Usage

```python
torch_kthvalue(self, k, dim = -1L, keepdim = FALSE)
```

Arguments

- **self**: (Tensor) the input tensor.
- **k**: (int) k for the k-th smallest element
- **dim**: (int, optional) the dimension to find the kth value along
- **keepdim**: (bool) whether the output tensor has dim retained or not.

kthvalue(input, k, dim=NULL, keepdim=False, out=NULL) -> (Tensor, LongTensor)

Returns a namedtuple (values, indices) where values is the kth smallest element of each row of the input tensor in the given dimension dim. And indices is the index location of each element found.

If dim is not given, the last dimension of the input is chosen.

If keepdim is TRUE, both the values and indices tensors are the same size as input, except in the dimension dim where they are of size 1. Otherwise, dim is squeezed (see `torch_squeeze`), resulting in both the values and indices tensors having 1 fewer dimension than the input tensor.
Examples
if (torch_is_installed()) {
 x <- torch_arange(1, 6)
 x
 torch_kthvalue(x, 4)
 x <- torch_arange(1, 6)$resize_(c(2,3))
 x
 torch_kthvalue(x, 2, 1, TRUE)
}

torch_layout

Creates the corresponding layout

Description
Creates the corresponding layout

Usage
torch_strided()

torch_sparse_coo()

torch_lcm

Lcm

Description
Lcm

Usage
torch_lcm(self, other)

Arguments
self (Tensor) the input tensor.
other (Tensor) the second input tensor

lcm(input, other, *, out=None) -> Tensor

Computes the element-wise least common multiple (LCM) of input and other.
Both input and other must have integer types.
Note

This defines \(\text{lcm}(0, 0) = 0 \) and \(\text{lcm}(0, a) = 0 \).

Examples

```r
if (torch_is_installed()) {
  if (torch::cuda_is_available()) {
    a <- torch_tensor(c(5, 10, 15), dtype = torch_long(), device = "cuda")
    b <- torch_tensor(c(3, 4, 5), dtype = torch_long(), device = "cuda")
    torch_lcm(a, b)
    c <- torch_tensor(c(3L), device = "cuda")
    torch_lcm(a, c)
  }
}
```

torch_le
Le

Description

Le

Usage

torch_le(self, other)

Arguments

- **self** *(Tensor)* the tensor to compare
- **other** *(Tensor or float)* the tensor or value to compare

le(input, other, out=NULL) -> Tensor

Computes \(\text{input} \leq \text{other} \) element-wise.

The second argument can be a number or a tensor whose shape is broadcastable with the first argument.

Examples

```r
if (torch_is_installed()) {
  torch_le(torch_tensor(matrix(1:4, ncol = 2, byrow=TRUE)),
           torch_tensor(matrix(c(1,1,4,4), ncol = 2, byrow=TRUE)))
}
```
torch_lerp

Description

Lerp

Usage

torch_lerp(self, end, weight)

Arguments

- **self** (Tensor): the tensor with the starting points
- **end** (Tensor): the tensor with the ending points
- **weight** (float or tensor): the weight for the interpolation formula

lerp(input, end, weight, out=NULL)

Does a linear interpolation of two tensors start (given by input) and end based on a scalar or tensor weight and returns the resulting out tensor.

\[\text{out}_i = \text{start}_i + \text{weight}_i \times (\text{end}_i - \text{start}_i) \]

The shapes of start and end must be broadcastable. If weight is a tensor, then the shapes of weight, start, and end must be broadcastable.

Examples

```r
if (torch_is_installed()) {

  start = torch_arange(1, 4)
  end = torch_empty(4)$fill_(10)
  start
  end
  torch_lerp(start, end, 0.5)
  torch_lerp(start, end, torch_full_like(start, 0.5))
}
```
torch_less

Description

Less

Usage

torch_less(self, other)

Arguments

- **self** (Tensor) the tensor to compare
- **other** (Tensor or float) the tensor or value to compare

less(input, other, *, out=None) -> Tensor

Alias for torch_lt().

torch_less_equal

Description

Less_equal

Usage

torch_less_equal(self, other)

Arguments

- **self** (Tensor) the tensor to compare
- **other** (Tensor or float) the tensor or value to compare

less_equal(input, other, *, out=None) -> Tensor

Alias for torch_le().
torch_lgamma

Description
Lgamma

Usage
torch_lgamma(self)

Arguments
self (Tensor) the input tensor.

lgamma(input, out=NULL) -> Tensor
Computes the logarithm of the gamma function on input.

\[\text{out}_i = \log \Gamma(\text{input}_i) \]

Examples

```python
if (torch_is_installed()) {
    a = torch_arange(0.5, 2, 0.5)
    torch_lgamma(a)
}
```

torch_linspace

Description
Linspace

Usage
torch_linspace(
 start,
 end,
 steps = 100,
 dtype = NULL,
 layout = torch_strided(),
 device = NULL,
 requires_grad = FALSE
)
torch_load

Loads a saved object

Description

Loads a saved object

Usage

torch_load(path, device = "cpu")

Arguments

path a path to the saved object
device a device to load tensors to. By default we load to the cpu but you can also load them to any cuda device. If NULL then the device where the tensor has been saved will be reused.
torch_log

See Also
Other torch_save: torch_save()

torch_log

Description
Log

Usage
torch_log(self)

Arguments
self (Tensor) the input tensor.

log(input, out=NULL) -> Tensor

Returns a new tensor with the natural logarithm of the elements of input.

\[y_i = \log_e(x_i) \]

Examples
if (torch_is_installed()) {

 a = torch_randn(c(5))
 a
 torch_log(a)
}

torch_log10

Description
Log10

Usage
torch_log10(self)

Arguments
self (Tensor) the input tensor.
\textbf{log10(\texttt{input, out=NULL}) \rightarrow Tensor}

Returns a new tensor with the logarithm to the base 10 of the elements of \texttt{input}.

\[y_i = \log_{10}(x_i) \]

\textbf{Examples}

```r
if (torch_is_installed()) {
  a = torch_rand(5)
  a
torch_log10(a)
}
```

\textbf{torch_log1p \textit{Log1p}}

\textbf{Description}

\textit{Log1p}

\textbf{Usage}

```
torch_log1p(self)
```

\textbf{Arguments}

\texttt{self} (Tensor) the input tensor.

\textbf{log1p(\texttt{input, out=NULL}) \rightarrow Tensor}

Returns a new tensor with the natural logarithm of \(1 + \text{input}\).

\[y_i = \log_e(x_i + 1) \]

\textbf{Note}

This function is more accurate than \texttt{torch_log} for small values of \texttt{input}.

\textbf{Examples}

```r
if (torch_is_installed()) {
  a = torch_rando\texttt{c}(5)
  a
torch_log1p(a)
}
```
torch_log2

Description

Log2

Usage

```
torch_log2(self)
```

Arguments

`self` (Tensor) the input tensor.

```
log2(input, out=NULL) -> Tensor
```

Returns a new tensor with the logarithm to the base 2 of the elements of `input`.

\[y_i = \log_2(x_i) \]

Examples

```
if (torch_is_installed()) {
  a = torch_rand(5)
  a
  torch_log2(a)
}
```

torch_logaddexp

Description

Logaddexp

Usage

```
torch_logaddexp(self, other)
```

Arguments

`self` (Tensor) the input tensor.

```
other
```

(Tensor) the second input tensor.
torch_logaddexp2

logaddexp(input, other, *, out=None) -> Tensor

Logarithm of the sum of exponentiations of the inputs.

Calculates pointwise \(\log(e^x + e^y) \). This function is useful in statistics where the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the logarithm of the calculated probability is stored. This function allows adding probabilities stored in such a fashion.

This op should be disambiguated with `torch_logsumexp()` which performs a reduction on a single tensor.

Examples

```python
if (torch_is_installed()) {
    torch_logaddexp(torch_tensor(c(-1.0)), torch_tensor(c(-1.0, -2, -3)))
    torch_logaddexp(torch_tensor(c(-100.0, -200, -300)), torch_tensor(c(-1.0, -2, -3)))
    torch_logaddexp(torch_tensor(c(1.0, 2000, 30000)), torch_tensor(c(-1.0, -2, -3)))
}
```

torch_logaddexp2

Logaddexp2

Description

Logaddexp2

Usage

`torch_logaddexp2(self, other)`

Arguments

- `self` (Tensor) the input tensor.
- `other` (Tensor) the second input tensor

logaddexp2(input, other, *, out=None) -> Tensor

Logarithm of the sum of exponentiations of the inputs in base-2.

Calculates pointwise \(\log_2(2^x + 2^y) \). See `torch_logaddexp()` for more details.
torch_logcumsumexp Logcumsumexp

Description
Logcumsumexp

Usage
torch_logcumsumexp(self, dim)

Arguments
self (Tensor) the input tensor.
dim (int) the dimension to do the operation over

logcumsumexp(input, dim, *, out=None) -> Tensor

Returns the logarithm of the cumulative summation of the exponentiation of elements of input in the dimension dim.

For summation index \(j \) given by \(\text{dim} \) and other indices \(i \), the result is

\[
\log\text{cumsumexp}(x)_{ij} = \log \sum_{j=0}^{i} \exp(x_{ij})
\]

Examples
if (torch_is_installed()) {
 a <- torch_randn(c(10))
 torch_logcumsumexp(a, dim=1)
}

torch_logdet Logdet

Description
Logdet

Usage
torch_logdet(self)
torch_logical_and

Description

Logical_and

Usage

torch_logical_and(self, other)

Arguments

self (Tensor) the input tensor.
other (Tensor) the tensor to compute AND with.
torch_logical_not

torch_logical_not

Logical_not

Description

Logical_not

Arguments

self
(Tensor) the input tensor.

logical_not(input, out=NULL) -> Tensor

Computes the element-wise logical NOT of the given input tensor. If not specified, the output tensor will have the bool dtype. If the input tensor is not a bool tensor, zeros are treated as FALSE and non-zeros are treated as TRUE.

Examples

```r
if (torch_is_installed()) {
  torch_logical_not(torch_tensor(c(TRUE, FALSE)))
  torch_logical_not(torch_tensor(c(0, 1, -10), dtype=torch_int8()))
  torch_logical_not(torch_tensor(c(0., 1.5, -10.), dtype=torch_double()))
}
```
torch_logical_or Logical_or

Description
Logical_or

Usage
torch_logical_or(self, other)

Arguments
self (Tensor) the input tensor.
other (Tensor) the tensor to compute OR with

torch_logical_or(input, other, out=NULL) -> Tensor
Computes the element-wise logical OR of the given input tensors. Zeros are treated as FALSE and nonzeros are treated as TRUE.

Examples
if (torch_is_installed()) {
 torch_logical_or(torch_tensor(c(TRUE, FALSE, TRUE)), torch_tensor(c(TRUE, FALSE, FALSE)))
a = torch_tensor(c(0, 1, 10, 0), dtype=torch_int8())
b = torch_tensor(c(4, 0, 1, 0), dtype=torch_int8())
torch_logical_or(a, b)
Not run:
torch_logical_or(a$double(), b$double())
torch_logical_or(a$double(), b)
torch_logical_or(a, b, out=torch_empty(4, dtype=torch_bool()))

End(Not run)
}

torch_logical_xor Logical_xor

Description
Logical_xor

Usage
torch_logical_xor(self, other)
torch_logit

Arguments

- `self` (Tensor) the input tensor.
- `other` (Tensor) the tensor to compute XOR with

logical_xor(input, other, out=NULL) -> Tensor

Computes the element-wise logical XOR of the given input tensors. Zeros are treated as FALSE and nonzeros are treated as TRUE.

Examples

```r
if (torch_is_installed()) {
  torch_logical_xor(torch_tensor(c(TRUE, FALSE, TRUE)), torch_tensor(c(TRUE, FALSE, FALSE)))
  a = torch_tensor(c(0, 1, 10, 0), dtype=torch_int8())
  b = torch_tensor(c(4, 0, 1, 0), dtype=torch_int8())
  torch_logical_xor(a, b)
  torch_logical_xor(a$to(dtype=torch_double()), b$to(dtype=torch_double()))
  torch_logical_xor(a$to(dtype=torch_double()), b)
}
```

torch_logit

Logit

Description

- **Logit**

Usage

```r
torch_logit(self, eps = NULL)
```

Arguments

- `self` (Tensor) the input tensor.
- `eps` (float, optional) the epsilon for input clamp bound. Default: None

logit(input, eps=None, *, out=None) -> Tensor

Returns a new tensor with the logit of the elements of input. input is clamped to [eps, 1 - eps] when eps is not None. When eps is None and input < 0 or input > 1, the function will yields NaN.

\[
y_i = \ln\left(\frac{z_i}{1 - z_i}\right) = \begin{cases}
 x_i & \text{if eps is None} \\
 \text{eps} & \text{if } x_i < \text{eps} \\
 x_i & \text{if } x_i \leq x_i \leq 1 - \text{eps} \\
 1 - \text{eps} & \text{if } x_i > 1 - \text{eps}
\end{cases}
\]
Examples

```r
if (torch_is_installed()) {

  a <- torch_rand(5)
  a
  torch_logit(a, eps=1e-6)
}
```

torch_logspace

Logspace

Description

Logspace

Usage

```r
torch_logspace(
  start,
  end,
  steps = 100,
  base = 10,
  dtype = NULL,
  layout = torch_strided(),
  device = NULL,
  requires_grad = FALSE
)
```

Arguments

- **start**
 (float) the starting value for the set of points
- **end**
 (float) the ending value for the set of points
- **steps**
 (int) number of points to sample between `start` and `end`. Default: 100.
- **base**
 (float) base of the logarithm function. Default: 10.0.
- **dtype**
 (torch.dtype, optional) the desired data type of returned tensor. Default: NULL, uses a global default (see `torch_set_default_tensor_type`).
- **layout**
 (torch.layout, optional) the desired layout of returned Tensor. Default: `torch_strided`.
- **device**
 (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see `torch_set_default_tensor_type`). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- **requires_grad**
 (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.
torch_logsumexp

logspace(start, end, steps=100, base=10.0, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor

Returns a one-dimensional tensor of steps points logarithmically spaced with base base between base^{start} and base^{end}.

The output tensor is 1-D of size steps.

Examples

if (torch_is_installed()) {
 torch_logspace(start=-10, end=10, steps=5)
 torch_logspace(start=0.1, end=1.0, steps=5)
 torch_logspace(start=0.1, end=1.0, steps=1)
 torch_logspace(start=2, end=2, steps=1, base=2)
}

torch_logsumexp

Description

Logsumexp

Usage

torch_logsumexp(self, dim, keepdim = FALSE)

Arguments

self (Tensor) the input tensor.
dim (int or tuple of ints) the dimension or dimensions to reduce.
keepdim (bool) whether the output tensor has dim retained or not.

logsumexp(input, dim, keepdim=False, out=NULL)

Returns the log of summed exponentials of each row of the input tensor in the given dimension dim. The computation is numerically stabilized.

For summation index \(j \) given by \(\text{dim} \) and other indices \(i \), the result is

\[
\log\sum_{j} \exp(x_{ij})
\]

If keepdim is TRUE, the output tensor is of the same size as input except in the dimension(s) \(\text{dim} \) where it is of size 1. Otherwise, \(\text{dim} \) is squeezed (see torch_squeeze), resulting in the output tensor having 1 (or 1\(\text{len} (\text{dim}) \)) fewer dimension(s).
Examples

```python
if (torch_is_installed()) {
    a = torch_randn(c(3, 3))
    torch_logsumexp(a, 1)
}
```

torch_lstsq

Description

Lstsq

Usage

```python
torch_lstsq(self, A)
```

Arguments

- `self` (Tensor) the matrix \(B \)
- `A` (Tensor) the \(m \) by \(n \) matrix \(A \)

lstsq(input, A, out=NULL) -> Tensor

Computes the solution to the least squares and least norm problems for a full rank matrix \(A \) of size \((m \times n)\) and a matrix \(B \) of size \((m \times k)\).

If \(m \geq n \), \texttt{torch_lstsq()} solves the least-squares problem:

\[
\text{min}_X \quad \|AX - B\|_2.
\]

If \(m < n \), \texttt{torch_lstsq()} solves the least-norm problem:

\[
\text{min}_X \quad \|X\|_2 \quad \text{subject to} \quad AX = B.
\]

Returned tensor \(X \) has shape \((\max(m, n) \times k)\). The first \(n \) rows of \(X \) contains the solution. If \(m \geq n \), the residual sum of squares for the solution in each column is given by the sum of squares of elements in the remaining \(m - n \) rows of that column.

Note

The case when \(|m < n| \) is not supported on the GPU.
Examples

```r
if (torch_is_installed()) {
  A = torch_tensor(rbind(
    c(1,1,1),
    c(2,3,4),
    c(3,5,2),
    c(4,2,5),
    c(5,4,3)
  ))
  B = torch_tensor(rbind(
    c(-10, -3),
    c(12, 14),
    c(14, 12),
    c(16, 16),
    c(18, 16)
  ))
  out = torch_lstsq(B, A)
  out[[1]]
}
```

torch_lt

Description

Lt

Usage

torch_lt(self, other)

Arguments

- `self` (Tensor) the tensor to compare
- `other` (Tensor or float) the tensor or value to compare

Lt(input, other, out=NULL) -> Tensor

Computes input < other element-wise.

The second argument can be a number or a tensor whose shape is broadcastable with the first argument.

Examples

```r
if (torch_is_installed()) {
  torch_lt(torch_tensor(matrix(1:4, ncol = 2, byrow=TRUE)),
           torch_tensor(matrix(c(1,1,4,4), ncol = 2, byrow=TRUE)))
}
```
Description

Computes the LU factorization of a matrix or batches of matrices \(A \). Returns a tuple containing the LU factorization and pivots of \(A \). Pivoting is done if \(\text{pivot} \) is set to \(\text{True} \).

Usage

\[
\text{torch_lu}(A, \text{pivot} = \text{TRUE}, \text{get_infos} = \text{FALSE}, \text{out} = \text{NULL})
\]

Arguments

- **A** (Tensor) the tensor to factor of size \((m, n)\)
- **pivot** (bool, optional) – controls whether pivoting is done. Default: \(\text{TRUE} \)
- **get_infos** (bool, optional) – if set to \(\text{True} \), returns an info IntTensor. Default: \(\text{FALSE} \)
- **out** (tuple, optional) – optional output tuple. If \(\text{get_infos} \) is \(\text{True} \), then the elements in the tuple are Tensor, IntTensor, and IntTensor. If \(\text{get_infos} \) is \(\text{False} \), then the elements in the tuple are Tensor, IntTensor. Default: \(\text{NULL} \)

Examples

\[
\text{if (torch_is_installed())} \{
\text{A} = \text{torch_randn(c(2, 3, 3))}
\text{torch_lu(A)}
\}
\]

Description

Lu_solve

Usage

\[
\text{torch_lu_solve}(\text{self, LU_data, LU_pivots})
\]
torch_manual_seed

Arguments

self (Tensor) the RHS tensor of size \((\ast, m, k)\), where \(\ast\) is zero or more batch dimensions.

LU_data (Tensor) the pivoted LU factorization of \(A\) from torch_lu of size \((\ast, m, m)\), where \(\ast\) is zero or more batch dimensions.

LU_pivots (IntTensor) the pivots of the LU factorization from torch_lu of size \((\ast, m)\), where \(\ast\) is zero or more batch dimensions. The batch dimensions of LU_pivots must be equal to the batch dimensions of LU_data.

lu_solve(input, LU_data, LU_pivots, out=NULL) -> Tensor

Returns the LU solve of the linear system \(Ax = b\) using the partially pivoted LU factorization of \(A\) from torch_lu.

Examples

if (torch_is_installed()) {
 A = torch_randn(c(2, 3, 3))
 b = torch_randn(c(2, 3, 1))
 out = torch_lu(A)
 x = torch_lu_solve(b, out[[1]], out[[2]])
 torch_norm(torch_bmm(A, x) - b)
}

torch_manual_seed (Sets the seed for generating random numbers.)

description

Sets the seed for generating random numbers.

Usage

torch_manual_seed(seed)

Arguments

seed integer seed.
torch_masked_select Masked_select

Description

Masked_select

Usage

torch_masked_select(self, mask)

Arguments

self (Tensor) the input tensor.
mask (BoolTensor) the tensor containing the binary mask to index with

masked_select(input, mask, out=NULL) -> Tensor

Returns a new 1-D tensor which indexes the input tensor according to the boolean mask mask which is a BoolTensor.

The shapes of the mask tensor and the input tensor don’t need to match, but they must be broadcastable.

Note

The returned tensor does not use the same storage as the original tensor

Examples

if (torch_is_installed()) {
 x = torch_randn(c(3, 4))
 x
 mask = x$ge(0.5)
 mask
 torch_masked_select(x, mask)
}
Description

Matmul

Usage

torch_matmul(self, other)

Arguments

self (Tensor) the first tensor to be multiplied
other (Tensor) the second tensor to be multiplied

matmul(input, other, out=NULL) -> Tensor

Matrix product of two tensors.

The behavior depends on the dimensionality of the tensors as follows:

- If both tensors are 1-dimensional, the dot product (scalar) is returned.
- If both arguments are 2-dimensional, the matrix-matrix product is returned.
- If the first argument is 1-dimensional and the second argument is 2-dimensional, a 1 is prepended to its dimension for the purpose of the matrix multiply. After the matrix multiply, the prepended dimension is removed.
- If the first argument is 2-dimensional and the second argument is 1-dimensional, the matrix-vector product is returned.
- If both arguments are at least 1-dimensional and at least one argument is N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the batched matrix multiply and removed after. If the second argument is 1-dimensional, a 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. The non-matrix (i.e. batch) dimensions are broadcasted (and thus must be broadcastable). For example, if input is a \((j \times 1 \times n \times m)\) tensor and other is a \((k \times m \times p)\) tensor, out will be an \((j \times k \times n \times p)\) tensor.

Note

The 1-dimensional dot product version of this function does not support an `out` parameter.
Examples

```python
if (torch_is_installed()) {

    # vector x vector
    tensor1 = torch_randn(c(3))
    tensor2 = torch_randn(c(3))
    torch_matmul(tensor1, tensor2)
    # matrix x vector
    tensor1 = torch_randn(c(3, 4))
    tensor2 = torch_randn(c(4))
    torch_matmul(tensor1, tensor2)
    # batched matrix x broadcasted vector
    tensor1 = torch_randn(c(10, 3, 4))
    tensor2 = torch_randn(c(4))
    torch_matmul(tensor1, tensor2)
    # batched matrix x batched matrix
    tensor1 = torch_randn(c(10, 3, 4))
    tensor2 = torch_randn(c(10, 4, 5))
    torch_matmul(tensor1, tensor2)
    # batched matrix x broadcasted matrix
    tensor1 = torch_randn(c(10, 3, 4))
    tensor2 = torch_randn(c(4, 5))
    torch_matmul(tensor1, tensor2)
}
```

:`torch_matrix_exp`
:`Matrix_exp`

Description

Matrix_exp

Usage

`torch_matrix_exp(self)`

Arguments

- `self`
(Tensor) the input tensor.

matrix_power(input) -> Tensor

Returns the matrix exponential. Supports batched input. For a matrix A, the matrix exponential is defined as

$$\exp^A = \sum_{k=0}^{\infty} A^k / k!.$$

The implementation is based on: Bader, P.; Blanes, S.; Casas, F. Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation. Mathematics 2019, 7, 1174.
torch_matrix_power

Examples

```r
if (torch_is_installed()) {

  a <- torch_randn(c(2, 2, 2))
  a[1, , ] <- torch_eye(2, 2)
  a[2, , ] <- 2 * torch_eye(2, 2)
  a

torch_matrix_exp(a)

  x <- torch_tensor(rbind(c(0, pi/3), c(-pi/3, 0)))
  x$matrix_exp() # should be [[cos(pi/3), sin(pi/3)], [-sin(pi/3), cos(pi/3)]]
}
```

torch_matrix_power Matrix_power

Description

Matrix_power

Usage

```r
torch_matrix_power(self, n)
```

Arguments

- `self` (Tensor) the input tensor.
- `n` (int) the power to raise the matrix to

matrix_power(input, n) -> Tensor

Returns the matrix raised to the power n for square matrices. For batch of matrices, each individual matrix is raised to the power n.

If n is negative, then the inverse of the matrix (if invertible) is raised to the power n. For a batch of matrices, the batched inverse (if invertible) is raised to the power n. If n is 0, then an identity matrix is returned.

Examples

```r
if (torch_is_installed()) {

  a = torch_randn(c(2, 2, 2))
  a
  torch_matrix_power(a, 3)
}
```
torch_matrix_rank
Matrix_rank

Description
Matrix_rank

Usage
torch_matrix_rank(self, tol, symmetric = FALSE)

Arguments
- **self** (Tensor) the input 2-D tensor
- **tol** (float, optional) the tolerance value. Default: NULL
- **symmetric** (bool, optional) indicates whether input is symmetric. Default: FALSE

matrix_rank(input, tol=NULL, symmetric=False) -> Tensor

Returns the numerical rank of a 2-D tensor. The method to compute the matrix rank is done using SVD by default. If symmetric is TRUE, then input is assumed to be symmetric, and the computation of the rank is done by obtaining the eigenvalues.

tol is the threshold below which the singular values (or the eigenvalues when symmetric is TRUE) are considered to be 0. If tol is not specified, tol is set to S.max() * max(S.size()) * eps where S is the singular values (or the eigenvalues when symmetric is TRUE), and eps is the epsilon value for the datatype of input.

Examples
if (torch_is_installed()) {

 a = torch_eye(10)
 torch_matrix_rank(a)
}

torch_max
Max

Description
Max
torch_max

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>(Tensor) the input tensor.</td>
</tr>
<tr>
<td>dim</td>
<td>(int) the dimension to reduce.</td>
</tr>
<tr>
<td>keepdim</td>
<td>(bool) whether the output tensor has dim retained or not. Default: FALSE.</td>
</tr>
<tr>
<td>out</td>
<td>(tuple, optional) the result tuple of two output tensors (max, max_indices)</td>
</tr>
<tr>
<td>other</td>
<td>(Tensor) the second input tensor</td>
</tr>
</tbody>
</table>

max(input) -> Tensor

Returns the maximum value of all elements in the input tensor.

max(input, dim, keepdim=False, out=NULL) -> (Tensor, LongTensor)

Returns a namedtuple (values, indices) where values is the maximum value of each row of the input tensor in the given dimension dim. And indices is the index location of each maximum value found (argmax).

Warning

indices does not necessarily contain the first occurrence of each maximal value found, unless it is unique. The exact implementation details are device-specific. Do not expect the same result when run on CPU and GPU in general.

If keepdim is TRUE, the output tensors are of the same size as input except in the dimension dim where they are of size 1. Otherwise, dim is squeezed (see torch_squeeze), resulting in the output tensors having 1 fewer dimension than input.

max(input, other, out=NULL) -> Tensor

Each element of the tensor input is compared with the corresponding element of the tensor other and an element-wise maximum is taken.

The shapes of input and other don’t need to match, but they must be broadcastable.

\[\text{out}_i = \max(\text{tensor}_i, \text{other}_i) \]

Note

When the shapes do not match, the shape of the returned output tensor follows the broadcasting rules.

Examples

```python
if (torch_is_installed()) {

    a = torch.randn(c(1, 3))
    a
    torch_max(a)
```
```python
a = torch.randn(c(4, 4))
a
torch_max(a, dim = 1)

a = torch.randn(c(4))
a
b = torch.randn(c(4))
b
torch_max(a, other = b)
}
```

torch_maximum

Maximum

Description

Maximum

Usage

```python
torch_maximum(self, other)
```

Arguments

- **self** (Tensor) the input tensor.
- **other** (Tensor) the second input tensor

maximum(input, other, *, out=None) -> Tensor

Computes the element-wise maximum of `input` and `other`.

Note

If one of the elements being compared is a NaN, then that element is returned. `torch_maximum()` is not supported for tensors with complex dtypes.

Examples

```python
if (torch_is_installed()) {
    a <- torch_tensor(c(1, 2, -1))
b <- torch_tensor(c(3, 0, 4))
torch_maximum(a, b)
}
```
Description
Mean

Usage

```python
torch_mean(self, dim, keepdim = FALSE, dtype = NULL)
```

Arguments

- `self` (Tensor) the input tensor.
- `dim` (int or tuple of ints) the dimension or dimensions to reduce.
- `keepdim` (bool) whether the output tensor has `dim` retained or not.
- `dtype` the resulting data type.

mean(input) -> Tensor

Returns the mean value of all elements in the input tensor.

mean(input, dim, keepdim=False, out=NULL) -> Tensor

Returns the mean value of each row of the input tensor in the given dimension `dim`. If `dim` is a list of dimensions, reduce over all of them.

If `keepdim` is `TRUE`, the output tensor is of the same size as `input` except in the dimension(s) `dim` where it is of size 1. Otherwise, `dim` is squeezed (see `torch_squeeze`), resulting in the output tensor having 1 (or `len(dim)`) fewer dimension(s).

Examples

```python
if (torch_is_installed()) {
    a = torch_randn(c(1, 3))
    a
    torch_mean(a)

    a = torch_randn(c(4, 4))
    a
    torch_mean(a, 1)
    torch_mean(a, 1, TRUE)
}
Description

Median

Usage

torch_median(self, dim, keepdim = FALSE)

Arguments

self (Tensor) the input tensor.
dim (int) the dimension to reduce.
keepdim (bool) whether the output tensor has dim retained or not.

median(input) -> Tensor

Returns the median value of all elements in the input tensor.

median(input, dim=-1, keepdim=False, out=NULL) -> (Tensor, LongTensor)

Returns a namedtuple (values, indices) where values is the median value of each row of the input tensor in the given dimension dim. And indices is the index location of each median value found.

By default, dim is the last dimension of the input tensor.

If keepdim is TRUE, the output tensors are of the same size as input except in the dimension dim where they are of size 1. Otherwise, dim is squeezed (see torch_squeeze), resulting in the outputs tensor having 1 fewer dimension than input.

Examples

if (torch_is_installed()) {

    a = torch_randn(c(1, 3))
    a
    torch_median(a)

    a = torch_randn(c(4, 5))
    a
    torch_median(a, 1)
}

torch_memory_format

Description
Returns the correspondent memory format.

Usage
torch_contiguous_format()
torch_preserve_format()
torch_channels_last_format()

torch_meshgrid

Description
Meshgrid

Usage
torch_meshgrid(tensors)

Arguments
tensors (list of Tensor) list of scalars or 1 dimensional tensors. Scalars will be treated (1.).

TEST
Take $N$ tensors, each of which can be either scalar or 1-dimensional vector, and create $N \times \ldots \times N$-dimensional grids, where the $i$ th grid is defined by expanding the $i$ th input over dimensions defined by other inputs.

Examples
if (torch_is_installed()) {
    x = torch_tensor(c(1, 2, 3))
y = torch_tensor(c(4, 5, 6))
out = torch_meshgrid(list(x, y))
    out
}
Description

Min

Arguments

- `self` (Tensor) the input tensor.
- `dim` (int) the dimension to reduce.
- `keepdim` (bool) whether the output tensor has `dim` retained or not.
- `out` (tuple, optional) the tuple of two output tensors (min, min_indices)
- `other` (Tensor) the second input tensor

`min(input) -> Tensor`

Returns the minimum value of all elements in the `input` tensor.

`min(input, dim, keepdim=False, out=NULL) -> (Tensor, LongTensor)`

Returns a namedtuple (values, indices) where `values` is the minimum value of each row of the `input` tensor in the given dimension `dim`. And `indices` is the index location of each minimum value found (argmin).

Warning

`indices` does not necessarily contain the first occurrence of each minimal value found, unless it is unique. The exact implementation details are device-specific. Do not expect the same result when run on CPU and GPU in general.

If `keepdim` is `TRUE`, the output tensors are of the same size as `input` except in the dimension `dim` where they are of size 1. Otherwise, `dim` is squeezed (see `torch_squeeze`), resulting in the output tensors having 1 fewer dimension than `input`.

`min(input, other, out=NULL) -> Tensor`

Each element of the tensor `input` is compared with the corresponding element of the tensor `other` and an element-wise minimum is taken. The resulting tensor is returned.

The shapes of `input` and `other` don’t need to match, but they must be broadcastable.

\[
out_i = \min(tensor_i, other_i)
\]

Note

When the shapes do not match, the shape of the returned output tensor follows the broadcasting rules.
Examples

```python
if (torch_is_installed()) {
 a = torch_randn(c(1, 3))
 a
 torch_min(a)

 a = torch_randn(c(4, 4))
 a
 torch_min(a, dim = 1)

 a = torch_randn(c(4))
 a
 b = torch_randn(c(4))
 b
 torch_min(a, other = b)
}
```

---

**torch_minimum**  
*Minimum*

Description

Minimum

Usage

```python
torch_minimum(self, other)
```

Arguments

- **self**  
  (Tensor) the input tensor.

- **other**  
  (Tensor) the second input tensor

minimum(input, other, *, out=None) -> Tensor

Computes the element-wise minimum of input and other.

Note

If one of the elements being compared is a NaN, then that element is returned. `torch_minimum()` is not supported for tensors with complex dtypes.
torch_mm

Examples

```r
if (torch_is_installed()) {
 a <- torch_tensor(c(1, 2, -1))
 b <- torch_tensor(c(3, 0, 4))
 torch_minimum(a, b)
}
```

torch_mm  

Description

Mm

Usage

```r
torch_mm(self, mat2)
```

Arguments

- **self**: (Tensor) the first matrix to be multiplied
- **mat2**: (Tensor) the second matrix to be multiplied

```r
mm(input, mat2, out=NULL) -> Tensor
```

Performs a matrix multiplication of the matrices `input` and `mat2`.

If `input` is a \((n \times m)\) tensor, `mat2` is a \((m \times p)\) tensor, `out` will be a \((n \times p)\) tensor.

Note

This function does not broadcast. For broadcasting matrix products, see `torch_matmul`.

Examples

```r
if (torch_is_installed()) {
 mat1 = torch_randn(c(2, 3))
 mat2 = torch_randn(c(3, 3))
 torch_mm(mat1, mat2)
}
```
torch_mode

<table>
<thead>
<tr>
<th>Mode</th>
</tr>
</thead>
</table>

**Description**

Mode

**Usage**

torch_mode(self, dim = -1L, keepdim = FALSE)

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>(Tensor) the input tensor.</td>
</tr>
<tr>
<td>dim</td>
<td>(int) the dimension to reduce.</td>
</tr>
<tr>
<td>keepdim</td>
<td>(bool) whether the output tensor has dim retained or not.</td>
</tr>
</tbody>
</table>

mode(input, dim=-1, keepdim=False, out=NULL) -> (Tensor, LongTensor)

Returns a namedtuple (values, indices) where values is the mode value of each row of the input tensor in the given dimension dim, i.e. a value which appears most often in that row, and indices is the index location of each mode value found.

By default, dim is the last dimension of the input tensor.

If keepdim is TRUE, the output tensors are of the same size as input except in the dimension dim where they are of size 1. Otherwise, dim is squeezed (see torch_squeeze), resulting in the output tensors having 1 fewer dimension than input.

**Note**

This function is not defined for torch_cuda.Tensor yet.

**Examples**

if (torch_is_installed()) {

a = torch_randint(0, 50, size = list(5))

torch_mode(a, 1)
}
### torch_movedim: Movedim

**Description**

Movedim

**Usage**

```python
torch_movedim(self, source, destination)
```

**Arguments**

- **self**: (Tensor) the input tensor.
- **source**: (int or tuple of ints) Original positions of the dims to move. These must be unique.
- **destination**: (int or tuple of ints) Destination positions for each of the original dims. These must also be unique.

**movedim(input, source, destination) -> Tensor**

Moves the dimension(s) of input at the position(s) in source to the position(s) in destination. Other dimensions of input that are not explicitly moved remain in their original order and appear at the positions not specified in destination.

**Examples**

```python
if (torch_is_installed()) {
 t <- torch_randn(c(3,2,1))
 t
 torch_movedim(t, 2, 1)$shape
 torch_movedim(t, 2, 1)
 torch_movedim(t, c(2, 3), c(1, 2))$shape
 torch_movedim(t, c(2, 3), c(1, 2))
}
```

---

### torch_mul: Mul

**Description**

Mul
torch_multinomial

Usage

torch_multinomial(self, num_samples, replacement = FALSE, generator = NULL)

Description
Multinomial

Usage

torch_multinomial(self, num_samples, replacement = FALSE, generator = NULL)
Arguments

self  (Tensor) the input tensor containing probabilities
num_samples  (int) number of samples to draw
replacement  (bool, optional) whether to draw with replacement or not
generator  (torch.Generator, optional) a pseudorandom number generator for sampling

multinomial(input, num_samples, replacement=False, *, generator=NULL, out=NULL) -> LongTensor

Returns a tensor where each row contains num_samples indices sampled from the multinomial probability distribution located in the corresponding row of tensor input.

Note

The rows of `input` do not need to sum to one (in which case we use the values as weights), but must be non-negative, finite and have a non-zero sum.

Indices are ordered from left to right according to when each was sampled (first samples are placed in first column).

If input is a vector, out is a vector of size num_samples.

If input is a matrix with m rows, out is an matrix of shape (m x num_samples).

If replacement is TRUE, samples are drawn with replacement.

If not, they are drawn without replacement, which means that when a sample index is drawn for a row, it cannot be drawn again for that row.

When drawn without replacement, `num_samples` must be lower than number of non-zero elements in `input` (or the min number of non-zero elements in each row of `input` if it is a matrix).

Examples

```python
if (torch_is_installed()) {
 weights = torch_tensor(c(0, 10, 3, 0), dtype=torch_float()) # create a tensor of weights
 torch_multinomial(weights, 2)
 torch_multinomial(weights, 4, replacement=TRUE)
}
```
torch_multiply

Description
Multiply

Usage
torch_multiply(self, other)

Arguments
self (Tensor) the first multiplicand tensor
other (Tensor) the second multiplicand tensor

multiply(input, other, *, out=None)
Alias for torch_mul().

torch_mv

Description
Mv

Usage
torch_mv(self, vec)

Arguments
self (Tensor) matrix to be multiplied
vec (Tensor) vector to be multiplied

mv(input, vec, out=NULL) -> Tensor
Performs a matrix-vector product of the matrix input and the vector vec.
If input is a \((n \times m)\) tensor, vec is a 1-D tensor of size \(m\), out will be 1-D of size \(n\).

Note
This function does not broadcast.
Examples

if (torch_is_installed()) {
    mat = torch_randn(c(2, 3))
    vec = torch_randn(c(3))
    torch_mv(mat, vec)
}

torch_mvlgamma (Mvlgamma)

Description

Mvlgamma

Usage

torch_mvlgamma(self, p)

Arguments

self (Tensor) the tensor to compute the multivariate log-gamma function
p (int) the number of dimensions

mvlgamma(input, p) -> Tensor

Computes the multivariate log-gamma function with dimension p element-wise, given by

\[
\log(\Gamma_p(a)) = C + \sum_{i=1}^{p} \log \left( \Gamma \left( a - \frac{i - 1}{2} \right) \right)
\]

where \( C = \log(\pi) \times \frac{p(p-1)}{4} \) and \( \Gamma(\cdot) \) is the Gamma function.

All elements must be greater than \( \frac{p-1}{2} \), otherwise an error would be thrown.

Examples

if (torch_is_installed()) {
    a = torch_empty(c(2, 3))$uniform_(1, 2)
    a
    torch_mvlgamma(a, 2)
}
torch_nanquantile

Description

Nanquantile

Usage

torch_nanquantile(self, q, dim = NULL, keepdim = FALSE, interpolation)

Arguments

self (Tensor) the input tensor.
q (float or Tensor) a scalar or 1D tensor of quantile values in the range [0, 1]
dim (int) the dimension to reduce.
keepdim (bool) whether the output tensor has dim retained or not.
interpolation The interpolation method.

nanquantile(input, q, dim=None, keepdim=FALSE, *, out=None) -> Tensor

This is a variant of torch_quantile() that "ignores" NaN values, computing the quantiles q as if NaN values in input did not exist. If all values in a reduced row are NaN then the quantiles for that reduction will be NaN. See the documentation for torch_quantile().

Examples

if (torch_is_installed()) {

    t <- torch_tensor(c(NaN, 1, 2))
t$quantile(0.5)
t$nanquantile(0.5)
t <- torch_tensor(rbind(c(NaN, NaN), c(1, 2)))
t
t$nanquantile(0.5, dim=1)
t$nanquantile(0.5, dim=2)
torch_nanquantile(t, 0.5, dim = 1)
torch_nanquantile(t, 0.5, dim = 2)
}
torch_nansum

Description

Nansum

Usage

torch_nansum(self, dim, keepdim = FALSE, dtype = NULL)

Arguments

self (Tensor) the input tensor.
dim (int or tuple of ints) the dimension or dimensions to reduce.
keepdim (bool) whether the output tensor has dim retained or not.
dtype the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: NULL.

nansum(input, *, dtype=None) -> Tensor

Returns the sum of all elements, treating Not a Numbers (NaNs) as zero.

nansum(input, dim, keepdim=FALSE, *, dtype=None) -> Tensor

Returns the sum of each row of the input tensor in the given dimension dim, treating Not a Numbers (NaNs) as zero. If dim is a list of dimensions, reduce over all of them.

If keepdim is TRUE, the output tensor is of the same size as input except in the dimension(s) dim where it is of size 1. Otherwise, dim is squeezed (see torch_squeeze), resulting in the output tensor having 1 (or len(dim)) fewer dimension(s).

Examples

if (torch_is_installed()) {

  a <- torch_tensor(c(1., 2., NaN, 4.))
torch_nansum(a)

  torch_nansum(torch_tensor(c(1., NaN)))
a <- torch_tensor(rbind(c(1, 2), c(3., NaN)))
torch_nansum(a)
torch_nansum(a, dim=1)
torch_nansum(a, dim=2)
}
torch_narrow

Description
Narrow

Usage
torch_narrow(self, dim, start, length)

Arguments
self (Tensor) the tensor to narrow
dim (int) the dimension along which to narrow
start (int) the starting dimension
length (int) the distance to the ending dimension

narrow(input, dim, start, length) -> Tensor
Returns a new tensor that is a narrowed version of input tensor. The dimension dim is input from start to start + length. The returned tensor and input tensor share the same underlying storage.

Examples
if (torch_is_installed()) {
    x = torch_tensor(matrix(c(1:9), ncol = 3, byrow= TRUE))
    torch_narrow(x, 1, 1, 2)
    torch_narrow(x, 2, 2, 2)
}

torch_ne

Description
Ne

Usage
torch_ne(self, other)

Arguments
self (Tensor) the tensor to compare
other (Tensor or float) the tensor or value to compare
ne(input, other, out=NULL) -> Tensor

Computes $input \neq other$ element-wise.

The second argument can be a number or a tensor whose shape is broadcastable with the first argument.

Examples

```r
if (torch_is_installed()) {
 torch_ne(torch_tensor(matrix(1:4, ncol = 2, byrow=TRUE)),
 torch_tensor(matrix(rep(c(1,4), each = 2), ncol = 2, byrow=TRUE)))
}
```

neg(input, out=NULL) -> Tensor

Returns a new tensor with the negative of the elements of input.

$$out = -1 \times input$$

Examples

```r
if (torch_is_installed()) {
 a = torch_randn(c(5))
 a
 torch_neg(a)
}
```
torch_negative

Description
Negative

Usage
torch_negative(self)

Arguments
self (Tensor) the input tensor.

negative(input, *, out=None) -> Tensor
Alias for torch_neg()

torch_nextafter

Description
Nextafter

Usage
torch_nextafter(self, other)

Arguments
self (Tensor) the first input tensor
other (Tensor) the second input tensor

nextafter(input, other, *, out=None) -> Tensor
Return the next floating-point value after input towards other, elementwise.
The shapes of input and other must be broadcastable.

Examples
if (torch_is_installed()) {
  eps <- torch_finfo(torch_float32())$eps
torch_nextafter(torch_tensor(c(1, 2)), torch_tensor(c(2, 1))) == torch_tensor(c(eps + 1, 2 - eps))
}
torch_nonzero

**Description**
Nonzero elements of tensors.

**Usage**
```
torch_nonzero(self, as_list = FALSE)
```

**Arguments**
- `self` (Tensor) the input tensor.
- `as_list` If FALSE, the output tensor containing indices. If TRUE, one 1-D tensor for each dimension, containing the indices of each nonzero element along that dimension.

**When `as_list` is FALSE (default):**
Returns a tensor containing the indices of all non-zero elements of input. Each row in the result contains the indices of a non-zero element in input. The result is sorted lexicographically, with the last index changing the fastest (C-style).
If input has `n` dimensions, then the resulting indices tensor `out` is of size `(z × n)`, where `z` is the total number of non-zero elements in the input tensor.

**When `as_list` is TRUE:**
Returns a tuple of 1-D tensors, one for each dimension in input, each containing the indices (in that dimension) of all non-zero elements of input.
If input has `n` dimensions, then the resulting tuple contains `n` tensors of size `z`, where `z` is the total number of non-zero elements in the input tensor.
As a special case, when input has zero dimensions and a nonzero scalar value, it is treated as a one-dimensional tensor with one element.

**Examples**
```
if (torch_is_installed()) {

torch_nonzero(torch_tensor(c(1, 1, 1, 0, 1)))
}
```
torch_norm

Description
Norm

Usage
torch_norm(self, p = 2L, dim, keepdim = FALSE, dtype)

Arguments
- **self** *(Tensor)* the input tensor
- **p** *(int, float, inf, -inf, 'fro', 'nuc', optional)* the order of norm. Default: 'fro' The following norms can be calculated:

<table>
<thead>
<tr>
<th>ord</th>
<th>matrix norm</th>
<th>vector norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>Frobenius norm</td>
<td>2-norm</td>
</tr>
<tr>
<td>'fro'</td>
<td>Frobenius norm</td>
<td>–</td>
</tr>
<tr>
<td>'nuc'</td>
<td>nuclear norm</td>
<td>–</td>
</tr>
<tr>
<td>Other</td>
<td>as vec norm when dim is NULL</td>
<td>( \sum(\text{abs}(x)^{ord})^{(1./ord)} )</td>
</tr>
</tbody>
</table>

- **dim** *(int, 2-tuple of ints, 2-list of ints, optional)* If it is an int, vector norm will be calculated, if it is 2-tuple of ints, matrix norm will be calculated. If the value is NULL, matrix norm will be calculated when the input tensor only has two dimensions, vector norm will be calculated when the input tensor only has one dimension. If the input tensor has more than two dimensions, the vector norm will be applied to last dimension.

- **keepdim** *(bool, optional)* whether the output tensors have dim retained or not. Ignored if dim = NULL and out = NULL. Default: FALSE Ignored if dim = NULL and out = NULL.

- **dtype** *(torch.dtype, optional)* the desired data type of returned tensor. If specified, the input tensor is casted to 'dtype' while performing the operation. Default: NULL.

TEST
Returns the matrix norm or vector norm of a given tensor.

Examples
if (torch_is_installed()) {

a <- torch.arange(1, 9, dtype = torch_float())
b <- a$reshape(list(3, 3))
torch_norm(a)
torch_norm(b)
torch_norm(a, Inf)
torch_norm(b, Inf)
torch_normal

Description
Normal
Normal distributed

Usage
torch_normal(mean, std, size = NULL, generator = NULL, ...)

Arguments
mean (tensor or scalar double) Mean of the normal distribution. If this is a torch_tensor() then the output has the same dim as mean and it represents the per-element mean. If it’s a scalar value, it’s reused for all elements.
std (tensor or scalar double) The standard deviation of the normal distribution. If this is a torch_tensor() then the output has the same size as std and it represents the per-element standard deviation. If it’s a scalar value, it’s reused for all elements.
size (integers, optional) only used if both mean and std are scalars.
generator a random number generator created with torch_generator(). If NULL a default generator is used.
... Tensor option parameters like dtype, layout, and device. Can only be used when mean and std are both scalar numerics.

normal(mean, std, *) -> Tensor

Returns a tensor of random numbers drawn from separate normal distributions whose mean and standard deviation are given.

The mean is a tensor with the mean of each output element’s normal distribution
The std is a tensor with the standard deviation of each output element’s normal distribution
The shapes of mean and std don’t need to match, but the total number of elements in each tensor need to be the same.

normal(mean=0.0, std) -> Tensor

Similar to the function above, but the means are shared among all drawn elements.

normal(mean, std=1.0) -> Tensor

Similar to the function above, but the standard-deviations are shared among all drawn elements.
normal(mean, std, size, *) -> Tensor

Similar to the function above, but the means and standard deviations are shared among all drawn elements. The resulting tensor has size given by size.

Note

When the shapes do not match, the shape of mean is used as the shape for the returned output tensor.

Examples

if (torch_is_installed()) {

    torch_normal(mean=0, std=torch_arange(1, 0, -0.1) + 1e-6)
    torch_normal(mean=0.5, std=torch_arange(1., 6.))
    torch_normal(mean=torch_arange(1., 6.))
    torch_normal(2, 3, size=c(1, 4))
}

torch_not_equal

Description

Not_equal

Usage

torch_not_equal(self, other)

Arguments

self (Tensor) the tensor to compare
other (Tensor or float) the tensor or value to compare

not_equal(input, other, *, out=None) -> Tensor

Alias for torch_ne().
torch_ones

Ones

Description

Ones

Usage

torch_ones(
    ...,  
    names = NULL,
    dtype = NULL,
    layout = torch_strided(),
    device = NULL,
    requires_grad = FALSE
)

Arguments

...  (int...) a sequence of integers defining the shape of the output tensor. Can be a 
variable number of arguments or a collection like a list or tuple.

names  optional names for the dimensions

dtype  (torch.dtype, optional) the desired data type of returned tensor. Default: if 
NULL, uses a global default (see torch_set_default_tensor_type).

layout  (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

device  (torch.device, optional) the desired device of returned tensor. Default: if 
NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). 
device will be the CPU for CPU tensor types and the current CUDA device for 
CUDA tensor types.

requires_grad  (bool, optional) If autograd should record operations on the returned tensor. De-
fault: FALSE.

ones(*size, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False)
-> Tensor

Returns a tensor filled with the scalar value 1, with the shape defined by the variable argument size.

Examples

if (torch_is_installed()) {

    torch_ones(c(2, 3))
    torch_ones(c(5))
}
torch_ones_like

Description

Ones_like

Usage

torch_ones_like(
    input,
    dtype = NULL,
    layout = torch_strided(),
    device = NULL,
    requires_grad = FALSE,
    memory_format = torch_preserve_format()
)

Arguments

input (Tensor) the size of input will determine size of the output tensor.
dtype (torch.dtype, optional) the desired data type of returned Tensor. Default: if NULL, defaults to the dtype of input.
layout (torch.layout, optional) the desired layout of returned tensor. Default: if NULL, defaults to the layout of input.
device (torch.device, optional) the desired device of returned tensor. Default: if NULL, defaults to the device of input.
requires_grad (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.
memory_format (torch.memory_format, optional) the desired memory format of returned Tensor. Default: torch_preserve_format.

ones_like(input, dtype=NULL, layout=NULL, device=NULL, requires_grad=False, memory_format=torch.preserve_format) -> Tensor

Returns a tensor filled with the scalar value 1, with the same size as input. torch_ones_like(input) is equivalent to torch_ones(input.size(),dtype=input.dtype,layout=input.layout,device=input.device).

Warning

As of 0.4, this function does not support an out keyword. As an alternative, the old torch_ones_like(input, out=output) is equivalent to torch_ones(input.size(),out=output).
torch_ormqr

Examples
if (torch_is_installed()) {
    input = torch_empty(c(2, 3))
    torch_ones_like(input)
}

torch_orgqr  Orgqr

Description
Orgqr

Usage
torch_orgqr(self, input2)

Arguments
self  (Tensor) the a from torch_geqrf.
input2  (Tensor) the tau from torch_geqrf.

orgqr(input, input2) -> Tensor
Computes the orthogonal matrix Q of a QR factorization, from the (input, input2) tuple returned by torch_geqrf.
This directly calls the underlying LAPACK function ?orgqr. See LAPACK documentation for orgqr_ for further details.

torch_ormqr  Ormqr

Description
Ormqr

Usage
torch_ormqr(self, input2, input3, left = TRUE, transpose = FALSE)
torch_outer

Arguments

self (Tensor) the a from torch_geqrf.
input2 (Tensor) the tau from torch_geqrf.
input3 (Tensor) the matrix to be multiplied.
left see LAPACK documentation
transpose see LAPACK documentation

ormqr(input, input2, input3, left=TRUE, transpose=False) -> Tensor

Multiplies mat (given by input3) by the orthogonal Q matrix of the QR factorization formed by torch_geqrf() that is represented by (a, tau) (given by (input, input2)).

This directly calls the underlying LAPACK function ?ormqr. See LAPACK documentation for ormqr for further details.

torch_outer (Outer

Description
Outer

Usage
torch_outer(self, vec2)

Arguments

self (Tensor) 1-D input vector
vec2 (Tensor) 1-D input vector

outer(input, vec2, *, out=None) -> Tensor

Outer product of input and vec2. If input is a vector of size n and vec2 is a vector of size m, then out must be a matrix of size (n x m).

Note
This function does not broadcast.

Examples

if (torch_is_installed()) {

  v1 <- torch.arange(1., 5.)
  v2 <- torch.arange(1., 4.)
  torch_outer(v1, v2)
}
torch_pdist (Pdist)

Description

Pdist

Usage

torch_pdist(self, p = 2L)

Arguments

self NA input tensor of shape N × M.
p NA p value for the p-norm distance to calculate between each vector pair ∈ [0, ∞].

pdist(input, p=2) -> Tensor

Computes the p-norm distance between every pair of row vectors in the input. This is identical to the upper triangular portion, excluding the diagonal, of torch_norm(input[:, NULL] - input, dim=2, p=p). This function will be faster if the rows are contiguous.

If input has shape N × M then the output will have shape \( \frac{1}{2}N(N - 1) \).

This function is equivalent to scipy.spatial.distance.pdist(input, 'minkowski', p=p) if \( p \in (0, \infty) \). When \( p = 0 \) it is equivalent to scipy.spatial.distance.pdist(input, 'hamming') * M. When \( p = \infty \), the closest scipy function is scipy.spatial.distance.pdist(xn, lambda x, y: np.abs(x - y).max()).

torch_pinverse (Pinverse)

Description

Pinverse

Usage

torch_pinverse(self, rcond = 0)

Arguments

self (Tensor) The input tensor of size (*, m, n) where * is zero or more batch dimensions
rcond (float) A floating point value to determine the cutoff for small singular values. Default: 1e-15
pinverse(input, rcond=1e-15) -> Tensor

Calculates the pseudo-inverse (also known as the Moore-Penrose inverse) of a 2D tensor. Please look at Moore-Penrose inverse for more details.

Note

This method is implemented using the Singular Value Decomposition.

The pseudo-inverse is not necessarily a continuous function in the elements of the matrix \([1]\). Therefore, derivatives are not always existent, and exist for a constant rank only \([2]\). However, this method is backprop-able due to the implementation by using SVD results, and could be unstable. Double-backward will also be unstable due to the usage of SVD internally. See `~torch.svd` for more details.

Examples

```python
if (torch_is_installed()) {
 input = torch_randn(c(3, 5))
 input
 torch_pinverse(input)
 # Batched pinverse example
 a = torch_randn(c(2,6,3))
 b = torch_pinverse(a)
 torch_matmul(b, a)
}
```

torch_pixel_shuffle

**Description**

Pixel_shuffle

**Usage**

`torch_pixel_shuffle(self, upscale_factor)`

**Arguments**

- `self` (Tensor) the input tensor
- `upscale_factor` (int) factor to increase spatial resolution by

**Rearranges elements in a tensor of shape**

math: \( \times, C \times r^2, H, W \) to \(a\):

Rearranges elements in a tensor of shape \( \times, C \times r^2, H, W \) to a tensor of shape \( \times, C, H \times r, W \times r \). See `~torch.nn.PixelShuffle` for details.
torch_poisson

Description
Poisson

Usage
torch_poisson(self, generator = NULL)

Arguments
self (Tensor) the input tensor containing the rates of the Poisson distribution
generator (torch.Generator, optional) a pseudorandom number generator for sampling

poisson(input *, generator=NULL) -> Tensor

Returns a tensor of the same size as input with each element sampled from a Poisson distribution with rate parameter given by the corresponding element in input i.e.,

out, \sim \text{Poisson}(input_i)

Examples
if (torch_is_installed()) {

rates = torch_randn(c(4, 4)) * 5  # rate parameter between 0 and 5
torch_poisson(rates)
}

Examples
if (torch_is_installed()) {

input = torch_randn(c(1, 9, 4, 4))
output = nnf_pixel_shuffle(input, 3)
print(output$size())
}
torch_polar

Description

Polar

Usage

torch_polar(abs, angle)

Arguments

abs (Tensor) The absolute value the complex tensor. Must be float or double.
angle (Tensor) The angle of the complex tensor. Must be same dtype as abs.

polar(abs, angle, *, out=None) -> Tensor

Constructs a complex tensor whose elements are Cartesian coordinates corresponding to the polar coordinates with absolute value abs and angle angle.

\[
\text{out} = \text{abs} \cdot \cos(\text{angle}) + \text{abs} \cdot \sin(\text{angle}) \cdot j
\]

Examples

if (torch_is_installed()) {

    abs <- torch_tensor(c(1, 2), dtype=torch_float64())
    angle <- torch_tensor(c(pi / 2, 5 * pi / 4), dtype=torch_float64())
    z <- torch_polar(abs, angle)
    z
}

torch_polygamma

Description

Polygamma

Usage

torch_polygamma(n, input)
Arguments

- **n** (int) the order of the polygamma function
- **input** (Tensor) the input tensor.

**polygamma(n, input, out=NULL) -> Tensor**

Computes the $n^{th}$ derivative of the digamma function on input. $n \geq 0$ is called the order of the polygamma function.

$$
\psi^{(n)}(x) = \frac{d^n}{dx^n} \psi(x)
$$

**Note**

This function is not implemented for \(n \geq 2\).

**Examples**

```r
if (torch_is_installed()) {
 ## Not run:
 a = torch_tensor(c(1, 0.5))
 torch_polygamma(1, a)
 ## End(Not run)
}
```

---

torch_pow Pow

describe

**Description**

Pow

**Usage**

torch_pow(self, exponent)

**Arguments**

- **self** (float) the scalar base value for the power operation
- **exponent** (float or tensor) the exponent value
torch_pow

pow(input, exponent, out=NULL) -> Tensor

Takes the power of each element in input with exponent and returns a tensor with the result.

exponent can be either a single float number or a Tensor with the same number of elements as input.

When exponent is a scalar value, the operation applied is:

\[ \text{out}_i = x_i^{\text{exponent}} \]

When exponent is a tensor, the operation applied is:

\[ \text{out}_i = x_i^{\text{exponent}_i} \]

When exponent is a tensor, the shapes of input and exponent must be broadcastable.

pow(self, exponent, out=NULL) -> Tensor

self is a scalar float value, and exponent is a tensor. The returned tensor out is of the same shape as exponent.

The operation applied is:

\[ \text{out}_i = \text{self}^{\text{exponent}_i} \]

Examples

```
if (torch_is_installed()) {
 a = torch_randn(c(4))
 a
 torch_pow(a, 2)
 exp <- torch_arange(1, 5)
 a <- torch_arange(1, 5)
 a
 exp
 torch_pow(a, exp)

 exp <- torch_arange(1, 5)
 base <- 2
 torch_pow(base, exp)
}
```
torch_prod

Prod

Description
Prod

Usage
torch_prod(self, dim, keepdim = FALSE, dtype = NULL)

Arguments
self   (Tensor) the input tensor.
dim    (int) the dimension to reduce.
keepdim (bool) whether the output tensor has dim retained or not.
dtype  (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: NULL.

prod(input, dtype=NULL) -> Tensor
Returns the product of all elements in the input tensor.

prod(input, dim, keepdim=False, dtype=NULL) -> Tensor
Returns the product of each row of the input tensor in the given dimension dim.
If keepdim is TRUE, the output tensor is of the same size as input except in the dimension dim where it is of size 1. Otherwise, dim is squeezed (see torch_squeeze), resulting in the output tensor having 1 fewer dimension than input.

Examples
if (torch_is_installed()) {
    a = torch_randn(c(1, 3))
a
    torch_prod(a)

    a = torch_randn(c(4, 2))
a
    torch_prod(a, 1)
}
torch_promote_types

**Description**

Promote_types

**Usage**

torch_promote_types(type1, type2)

**Arguments**

- type1: (torch.dtype)
- type2: (torch.dtype)

**promote_types(type1, type2) -> dtype**

Returns the torch_dtype with the smallest size and scalar kind that is not smaller nor of lower kind than either type1 or type2. See type promotion documentation for more information on the type promotion logic.

**Examples**

```python
if (torch_is_installed()) {
 torch_promote_types(torch_int32(), torch_float32())
 torch_promote_types(torch_uint8(), torch_long())
}
```

torch_qr

**Description**

Qr

**Usage**

torch_qr(self, some = TRUE)

**Arguments**

- self: (Tensor) the input tensor of size (*, m, n) where * is zero or more batch dimensions consisting of matrices of dimension m \times n.
- some: (bool, optional) Set to TRUE for reduced QR decomposition and FALSE for complete QR decomposition.
torch_qscheme

**Description**

Creates the corresponding Scheme object

**Usage**

- `torch_per_channel_affine()`
- `torch_per_tensor_affine()`
- `torch_per_channel_symmetric()`
- `torch_per_tensor_symmetric()`
torch_quantile

Quantile

Description

Quantile

Usage

torch_quantile(self, q, dim = NULL, keepdim = FALSE, interpolation)

Arguments

- **self**: (Tensor) the input tensor.
- **q**: (float or Tensor) a scalar or 1D tensor of quantile values in the range [0, 1]
- **dim**: (int) the dimension to reduce.
- **keepdim**: (bool) whether the output tensor has dim retained or not.
- **interpolation**: The interpolation method.

quantile(input, q) -> Tensor

Returns the q-th quantiles of all elements in the input tensor, doing a linear interpolation when the q-th quantile lies between two data points.

quantile(input, q, dim=None, keepdim=False, *, out=None) -> Tensor

Returns the q-th quantiles of each row of the input tensor along the dimension dim, doing a linear interpolation when the q-th quantile lies between two data points. By default, dim is None resulting in the input tensor being flattened before computation.

If keepdim is TRUE, the output dimensions are of the same size as input except in the dimensions being reduced (dim or all if dim is NULL) where they have size 1. Otherwise, the dimensions being reduced are squeezed (see torch_squeeze). If q is a 1D tensor, an extra dimension is prepended to the output tensor with the same size as q which represents the quantiles.

Examples

```r
if (torch_is_installed()) {

 a <- torch_randn(c(1, 3))
 a
 q <- torch_tensor(c(0, 0.5, 1))
 torch_quantile(a, q)

 a <- torch_randn(c(2, 3))
 a
 q <- torch_tensor(c(0.25, 0.5, 0.75))
}
```
torch_quantile(a, q, dim=1, keepdim=TRUE)
torch_quantile(a, q, dim=1, keepdim=TRUE)$shape

torch_quantize_per_channel

Quantize_per_channel

Description

Quantize_per_channel

Usage

torch_quantize_per_channel(self, scales, zero_points, axis, dtype)

Arguments

self (Tensor) float tensor to quantize
scales (Tensor) float 1D tensor of scales to use, size should match input.size(axis)
zero_points (int) integer 1D tensor of offset to use, size should match input.size(axis)
axis (int) dimension on which apply per-channel quantization
dtype (torch.dtype) the desired data type of returned tensor. Has to be one of the quantized dtypes: torch_quint8, torch qint8, torch qint32

quantize_per_channel(input, scales, zero_points, axis, dtype) -> Tensor

Converts a float tensor to per-channel quantized tensor with given scales and zero points.

Examples

if (torch_is_installed()) {
x = torch_tensor(matrix(c(-1.0, 0.0, 1.0, 2.0), ncol = 2, byrow = TRUE))
torch_quantize_per_channel(x, torch_tensor(c(0.1, 0.01)),
                          torch_tensor(c(10L, 0L)), 0, torch_quint8())
torch_quantize_per_channel(x, torch_tensor(c(0.1, 0.01)),
                          torch_tensor(c(10L, 0L)), 0, torch_quint8())$int_repr()
}
torch_quantize_per_tensor

**Description**
Quantize_per_tensor

**Usage**
torch_quantize_per_tensor(self, scale, zero_point, dtype)

**Arguments**
- **self** (Tensor) float tensor to quantize
- **scale** (float) scale to apply in quantization formula
- **zero_point** (int) offset in integer value that maps to float zero
- **dtype** (torch.dtype) the desired data type of returned tensor. Has to be one of the quantized dtypes: torch_quint8, torch qint8, torch qint32

**quantize_per_tensor(input, scale, zero_point, dtype) -> Tensor**
Converts a float tensor to quantized tensor with given scale and zero point.

**Examples**
```python
if (torch_is_installed()) {
 torch_quantize_per_tensor(torch_tensor(c(-1.0, 0.0, 1.0, 2.0)), 0.1, 10, torch_quint8())
 torch_quantize_per_tensor(torch_tensor(c(-1.0, 0.0, 1.0, 2.0)), 0.1, 10, torch_qint8())$int_repr()
}
```

torch_rad2deg

**Description**
Rad2deg

**Usage**
torch_rad2deg(self)

**Arguments**
- **self** (Tensor) the input tensor.
torch_rad2deg(input, *, out=None) -> Tensor

Returns a new tensor with each of the elements of input converted from angles in radians to degrees.

Examples

```cpp
if (torch_is_installed()) {
 a <- torch_tensor(rbind(c(3.142, -3.142), c(6.283, -6.283), c(1.570, -1.570)))
 torch_rad2deg(a)
}
```

torch_rad2deg(input, *, out=None) -> Tensor

Description

Rand

Usage

torch_rad2deg(...,
    names = NULL,
    dtype = NULL,
    layout = torch_strided(),
    device = NULL,
    requires_grad = FALSE
)

Arguments

... (int...) a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.

names optional dimension names

dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type).

layout (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

device (torch.device, optional) the desired device of returned Tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

requires_grad (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.
torch_randint

rand(*size, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor

Returns a tensor filled with random numbers from a uniform distribution on the interval $[0, 1)$.

The shape of the tensor is defined by the variable argument size.

Examples

```python
if (torch_is_installed()) {
 torch_rand(4)
 torch_rand(c(2, 3))
}
```

description

Randint

Usage

torch_randint(
    low,
    high,
    size,
    generator = NULL,
    dtype = NULL,
    layout = torch.strided(),
    device = NULL,
    requires_grad = FALSE,
    memory_format = torch.preserve_format()
)

Arguments

- **low** (int, optional) Lowest integer to be drawn from the distribution. Default: 0.
- **high** (int) One above the highest integer to be drawn from the distribution.
- **size** (tuple) A tuple defining the shape of the output tensor.
- **generator** (torch.Generator, optional) A pseudorandom number generator for sampling.
- **dtype** (torch.dtype, optional) The desired data type of returned tensor. Default: if NULL, uses a global default (see torch.set_default_tensor_type).
torch_randint_like

```
device (torch.device, optional) the desired device of returned tensor. Default: if
 NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type).
 device will be the CPU for CPU tensor types and the current CUDA device for
 CUDA tensor types.
requires_grad (bool, optional) If autograd should record operations on the returned tensor. De-
 fault: FALSE.
memory_format memory format for the resulting tensor.
```

`torch_randint_like`

**Description**

Randint_like

**Usage**

```
torch_randint_like(
 input,
 low,
 high,
 dtype = NULL,
 layout = torch_strided(),
 device = NULL,
 requires_grad = FALSE
)
```
torch_randn

Arguments

input  (Tensor) the size of input will determine size of the output tensor.
low  (int, optional) Lowest integer to be drawn from the distribution. Default: 0.
high  (int) One above the highest integer to be drawn from the distribution.
dtype  (torch.dtype, optional) the desired data type of returned Tensor. Default: if NULL, defaults to the dtype of input.
layout  (torch.layout, optional) the desired layout of returned tensor. Default: if NULL, defaults to the layout of input.
device  (torch.device, optional) the desired device of returned tensor. Default: if NULL, defaults to the device of input.
requires_grad  (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.

randint_like(input, low=0, high, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False, memory_format=torch.preserve_format) -> Tensor

Returns a tensor with the same shape as Tensor input filled with random integers generated uniformly between low (inclusive) and high (exclusive).

.. note: With the global dtype default (torch_float32), this function returns a tensor with dtype torch_int64.

torch_randn

Randn

Description

Randn

Usage

torch_randn(
  ...,  
  names = NULL,  
  dtype = NULL,  
  layout = torch_strided(),  
  device = NULL,  
  requires_grad = FALSE
)
Arguments

... (int...) a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
	names optional names for the dimensions
dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type).

layout (torch.layout, optional) the desired layout of returned Tensor. Default: torch.strided.
device (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

requires_grad (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.

randn(*size, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False)
-> Tensor

Returns a tensor filled with random numbers from a normal distribution with mean 0 and variance 1 (also called the standard normal distribution).

\[ \text{out}_i \sim \mathcal{N}(0, 1) \]

The shape of the tensor is defined by the variable argument size.

Examples

```python
if (torch_is_installed()) {

 torch_randn(c(4))
 torch_randn(c(2, 3))
}
```

torch_randn_like Randn_like

Description

Randn_like

Usage

```python
torch_randn_like(
 input,
 dtype = NULL,
 layout = torch.strided(),
 device = NULL,
 requires_grad = FALSE,
 memory_format = torch.preserve_format()
)
```
torch_randperm

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>(Tensor) the size of input will determine size of the output tensor.</td>
</tr>
<tr>
<td>dtype</td>
<td>(torch.dtype, optional) the desired data type of returned Tensor. Default: if NULL, defaults to the dtype of input.</td>
</tr>
<tr>
<td>layout</td>
<td>(torch.layout, optional) the desired layout of returned tensor. Default: if NULL, defaults to the layout of input.</td>
</tr>
<tr>
<td>device</td>
<td>(torch.device, optional) the desired device of returned tensor. Default: if NULL, defaults to the device of input.</td>
</tr>
<tr>
<td>requires_grad</td>
<td>(bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.</td>
</tr>
<tr>
<td>memory_format</td>
<td>(torch.memory_format, optional) the desired memory format of returned Tensor. Default: torch.preserve_format.</td>
</tr>
</tbody>
</table>

randn_like(input, dtype=NULL, layout=NULL, device=NULL, requires_grad=False, memory_format=torch.preserve_format) -> Tensor

Returns a tensor with the same size as input that is filled with random numbers from a normal distribution with mean 0 and variance 1. torch_randn_like(input) is equivalent to torch.randn(input.size(),dtype=input.dtype,layout=input.layout,device=input.device).

torch_randperm

Randperm

Usage

torch_randperm(
    n,
    dtype = torch_int64(),
    layout = torch_strided(),
    device = NULL,
    requires_grad = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>(int) the upper bound (exclusive)</td>
</tr>
<tr>
<td>dtype</td>
<td>(torch.dtype, optional) the desired data type of returned tensor. Default: torch_int64.</td>
</tr>
<tr>
<td>layout</td>
<td>(torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.</td>
</tr>
<tr>
<td>device</td>
<td>(torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.</td>
</tr>
<tr>
<td>requires_grad</td>
<td>(bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.</td>
</tr>
</tbody>
</table>
torch_rand_like

randperm(n, out=NULL, dtype=torch.int64, layout=torch.strided, device=NULL, requires_grad=False) -> LongTensor

Returns a random permutation of integers from 0 to n - 1.

Examples

```r
if (torch_is_installed()) {
 torch_randperm(4)
}
```

Description

Rand_like

Usage

```r
torch_rand_like(
 input,
 dtype = NULL,
 layout = torch_strided(),
 device = NULL,
 requires_grad = FALSE,
 memory_format = torch_preserve_format()
)
```

Arguments

- **input** (Tensor) the size of input will determine size of the output tensor.
- **dtype** (torch.dtype, optional) the desired data type of returned Tensor. Default: if NULL, defaults to the dtype of input.
- **layout** (torch.layout, optional) the desired layout of returned tensor. Default: if NULL, defaults to the layout of input.
- **device** (torch.device, optional) the desired device of returned tensor. Default: if NULL, defaults to the device of input.
- **requires_grad** (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.
- **memory_format** (torch.memory_format, optional) the desired memory format of returned Tensor. Default: torch_preserve_format.
torch_range

Range

Usage

torch_range(
    start,
    end,
    step = 1,
    dtype = NULL,
    layout = torch_strided(),
    device = NULL,
    requires_grad = FALSE
)

Arguments

start (float) the starting value for the set of points. Default: 0.
end (float) the ending value for the set of points
step (float) the gap between each pair of adjacent points. Default: 1.
dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type). If dtype is not given, infer the data type from the other input arguments. If any of start, end, or stop are floating-point, the dtype is inferred to be the default dtype, see ~torch.get_default_dtype. Otherwise, the dtype is inferred to be torch.int64.
layout (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.
device (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.
torch_real

range(start=0, end, step=1, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor

Returns a 1-D tensor of size $\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1$ with values from start to end with step step. Step is the gap between two values in the tensor.

$$\text{out}_{i+1} = \text{out}_i + \text{step}.$$  

Warning

This function is deprecated in favor of torch_arange.

Examples

```python
if (torch_is_installed()) {
 torch_range(1, 4)
 torch_range(1, 4, 0.5)
}
```

real(input) -> Tensor

Returns the real part of the input tensor. If input is a real (non-complex) tensor, this function just returns it.

Warning

Not yet implemented for complex tensors.

$$\text{out}_i = \text{real}(\text{input}_i)$$
Examples

if (torch_is_installed()) {
  ## Not run:
  torch_real(torch_tensor(c(-1 + 1i, -2 + 2i, 3 - 3i)))

  ## End(Not run)
}

---

torch_reciprocal  Reciprocal

Description

Reciprocal

Usage

    torch_reciprocal(self)

Arguments

  self  (Tensor) the input tensor.

reciprocal(input, out=NULL) -> Tensor

  Returns a new tensor with the reciprocal of the elements of input

    output_i = 1 / input_i

Examples

if (torch_is_installed()) {

  a = torch_randn(c(4))
  a
  torch_reciprocal(a)
  }

torch_reduction

*Description*

Creates the reduction objet

*Usage*

torch_reduction_sum()

torch_reduction_mean()

torch_reduction_none()

torch_relu

*Description*

Relu

*Usage*

torch_relu(self)

*Arguments*

self the input tensor

relu(input) -> Tensor

Computes the relu tranformation.
### torch_relu

**Description**

Relu

**Usage**

torch_relu_(self)

**Arguments**

- `self`: the input tensor

**relu_(input) -> Tensor**

In-place version of `torch_relu()`.

### torch_remainder

**Description**

Remainder

**Usage**

torch_remainder(self, other)

**Arguments**

- `self`: (Tensor) the dividend
- `other`: (Tensor or float) the divisor that may be either a number or a Tensor of the same shape as the dividend

**remainder(input, other, out=NULL) -> Tensor**

Computes the element-wise remainder of division.

The divisor and dividend may contain both for integer and floating point numbers. The remainder has the same sign as the divisor.

When `other` is a tensor, the shapes of `input` and `other` must be broadcastable.
torch_renorm

**Examples**

```r
if (torch_is_installed()) {

 torch_remainder(torch_tensor(c(-3., -2, -1, 1, 2, 3)), 2)
 torch_remainder(torch_tensor(c(1., 2, 3, 4, 5)), 1.5)
}
```

---

**torch_renorm**

**Renorm**

**Description**

Renorm

**Usage**

```
torch_renorm(self, p, dim, maxnorm)
```

**Arguments**

- `self` (Tensor): the input tensor.
- `p` (float): the power for the norm computation
- `dim` (int): the dimension to slice over to get the sub-tensors
- `maxnorm` (float): the maximum norm to keep each sub-tensor under

```
renorm(input, p, dim, maxnorm, out=NULL) -> Tensor
```

Returns a tensor where each sub-tensor of `input` along dimension `dim` is normalized such that the `p`-norm of the sub-tensor is lower than the value `maxnorm`

**Note**

If the norm of a row is lower than `maxnorm`, the row is unchanged

**Examples**

```r
if (torch_is_installed()) {

 x = torch_ones(c(3, 3))
 x[2,]$fill_(2)
 x[3,]$fill_(3)
 x
 torch_renorm(x, 1, 1, 5)
}
```
torch_repeat_interleave

Repeat_interleave

Description

Repeat_interleave

Usage

torch_repeat_interleave(self, repeats, dim = NULL)

Arguments

self (Tensor) the input tensor.
repeats (Tensor or int) The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
dim (int, optional) The dimension along which to repeat values. By default, use the flattened input array, and return a flat output array.

repeat_interleave(input, repeats, dim=NULL) -> Tensor

Repeat elements of a tensor.

Warning

This is different from `torch_Tensor.repeat` but similar to `numpy.repeat`.

repeat_interleave(repeats) -> Tensor

If the repeats is tensor([n1, n2, n3, ...]), then the output will be tensor([0, 0, ..., 1, 1, ..., 2, 2, ..., ...]) where 0 appears n1 times, 1 appears n2 times, 2 appears n3 times, etc.

Examples

```r
if (torch_is_installed()) {
 ## Not run:
 x = torch_tensor(c(1, 2, 3))
 x$repeat_interleave(2)
 y = torch_tensor(matrix(c(1, 2, 3, 4), ncol = 2, byrow=TRUE))
 torch_repeat_interleave(y, 2)
 torch_repeat_interleave(y, 3, dim=1)
 torch_repeat_interleave(y, torch_tensor(c(1, 2)), dim=1)

 ## End(Not run)
}
```
torch_result_type

torch_result_type  Result_type

Description

Result_type

Usage

torch_result_type(tensor1, tensor2)

torch_reshape

Reshape

Description

Reshape

Usage

torch_reshape(self, shape)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>(Tensor) the tensor to be reshaped</td>
</tr>
<tr>
<td>shape</td>
<td>(tuple of ints) the new shape</td>
</tr>
</tbody>
</table>

reshape(input, shape) -> Tensor

Returns a tensor with the same data and number of elements as input, but with the specified shape. When possible, the returned tensor will be a view of input. Otherwise, it will be a copy. Contiguous inputs and inputs with compatible strides can be reshaped without copying, but you should not depend on the copying vs. viewing behavior.

See torch.Tensor.view on when it is possible to return a view.

A single dimension may be -1, in which case it’s inferred from the remaining dimensions and the number of elements in input.

Examples

```python
if (torch_is_installed()) {
 a <- torch_arange(0, 3)
 torch_reshape(a, list(2, 2))
 b <- torch_tensor(matrix(c(0, 1, 2, 3), ncol = 2, byrow=TRUE))
 torch_reshape(b, list(-1))
}
```
torch_roll

Arguments

tensor1 (Tensor or Number) an input tensor or number
tensor2 (Tensor or Number) an input tensor or number

result_type(tensor1, tensor2) -> dtype

Returns the torch_dtypes that would result from performing an arithmetic operation on the provided input tensors. See type promotion documentation for more information on the type promotion logic.

Examples

if (torch_is_installed()) {
  torch_result_type(tensor1 = torch_tensor(c(1, 2), dtype=torch_int()), tensor2 = 1)
}

torch_roll

Description

Roll

Usage

torch_roll(self, shifts, dims = list())

Arguments

self (Tensor) the input tensor.
shifts (int or tuple of ints) The number of places by which the elements of the tensor are shifted. If shifts is a tuple, dims must be a tuple of the same size, and each dimension will be rolled by the corresponding value
dims (int or tuple of ints) Axis along which to roll

roll(input, shifts, dims=NULL) -> Tensor

Roll the tensor along the given dimension(s). Elements that are shifted beyond the last position are re-introduced at the first position. If a dimension is not specified, the tensor will be flattened before rolling and then restored to the original shape.
Examples

```r
if (torch_is_installed()) {

 x = torch_tensor(c(1, 2, 3, 4, 5, 6, 7, 8))$view(c(4, 2))
 x
 torch_roll(x, 1, 1)
 torch_roll(x, -1, 1)
 torch_roll(x, shifts=list(2, 1), dims=list(1, 2))
}
```

---

`torch_rot90`  
**Rot90**

Description

Rot90

Usage

`torch_rot90(self, k = 1L, dims = c(0, 1))`

Arguments

- **self**  
  (Tensor) the input tensor.
- **k**  
  (int) number of times to rotate
- **dims**  
  (a list or tuple) axis to rotate

`rot90(input, k, dims) -> Tensor`

Rotate a n-D tensor by 90 degrees in the plane specified by dims axis. Rotation direction is from the first towards the second axis if k > 0, and from the second towards the first for k < 0.

Examples

```r
if (torch_is_installed()) {

 x <- torch_arange(1, 4)$view(c(2, 2))
 x
 torch_rot90(x, 1, c(1, 2))
 x <- torch_arange(1, 8)$view(c(2, 2, 2))
 x
 torch_rot90(x, 1, c(1, 2))
}
```
torch_round

Description
Round

Usage
torch_round(self)

Arguments

self (Tensor) the input tensor.

round(input, out=NULL) -> Tensor

Returns a new tensor with each of the elements of input rounded to the closest integer.

Examples
if (torch_is_installed()) {
    a = torch_randn(c(4))
    a
    torch_round(a)
}

torch_rrelu_

Description
Rrelu_

Usage
torch_rrelu_
    self,
    lower = 0.125,
    upper = 0.333333,
    training = FALSE,
    generator = NULL
}
Arguments

- **self**: the input tensor
- **lower**: lower bound of the uniform distribution. Default: 1/8
- **upper**: upper bound of the uniform distribution. Default: 1/3
- **training**: bool whether it’s a training pass. Default: FALSE
- **generator**: random number generator

**rrelu**(input, lower=1/8, upper=1/3, training=False) -> Tensor

In-place version of **torch_rrelu**.

**torch_rsqrt**(self, input, out=NULL) -> Tensor

Returns a new tensor with the reciprocal of the square-root of each of the elements of input.

\[
out_i = \frac{1}{\sqrt{input_i}}
\]

Examples

```r
if (torch_is_installed()) {
 a = torch_randn(c(4))
 a
 torch_rsqrt(a)
}
```
torch_save

Saves an object to a disk file.

Description

This function is experimental, don’t use for long term storage.

Usage

torch_save(obj, path, ...)

Arguments

- **obj**: the saved object
- **path**: a connection or the name of the file to save.
- **...**: not currently used.

See Also

Other torch_save: torch_load()

---

torch_scalar_tensor

Scalar tensor

Description

Creates a singleton dimension tensor.

Usage

torch_scalar_tensor(value, dtype = NULL, device = NULL, requires_grad = FALSE)

Arguments

- **value**: the value you want to use
- **dtype**: (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type).
- **device**: (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- **requires_grad**: (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.
torch_searchsorted  Searchsorted

Description

Searchsorted

Usage

torch_searchsorted(sorted_sequence, self, out_int32 = FALSE, right = FALSE)

Arguments

sorted_sequence
(Tensor) N-D or 1-D tensor, containing monotonically increasing sequence on the innermost dimension.

self
(Tensor or Scalar) N-D tensor or a Scalar containing the search value(s).

out_int32
(bool, optional) – indicate the output data type. torch_int32() if True, torch_int64() otherwise. Default value is FALSE, i.e. default output data type is torch_int64().

right
(bool, optional) – if False, return the first suitable location that is found. If True, return the last such index. If no suitable index found, return 0 for non-numerical value (eg. nan, inf) or the size of boundaries (one pass the last index). In other words, if False, gets the lower bound index for each value in input from boundaries. If True, gets the upper bound index instead. Default value is False.

searchsorted(sorted_sequence, values, *, out_int32=FALSE, right=FALSE, out=None) -> Tensor

Find the indices from the innermost dimension of sorted_sequence such that, if the corresponding values in values were inserted before the indices, the order of the corresponding innermost dimension within sorted_sequence would be preserved. Return a new tensor with the same size as values. If right is FALSE (default), then the left boundary of sorted_sequence is closed.

Examples

if (torch_is_installed()) {

  sorted_sequence <- torch_tensor(rbind(c(1, 3, 5, 7, 9), c(2, 4, 6, 8, 10)))
  sorted_sequence
  values <- torch_tensor(rbind(c(3, 6, 9), c(3, 6, 9)))
  values
  torch_searchsorted(sorted_sequence, values)
  torch_searchsorted(sorted_sequence, values, right=TRUE)
  sorted_sequence_1d <- torch_tensor(c(1, 3, 5, 7, 9))
  sorted_sequence_1d
  torch_searchsorted(sorted_sequence_1d, values)
}

torch_selu

<table>
<thead>
<tr>
<th>Description</th>
<th>Selu</th>
</tr>
</thead>
</table>

Usage

torch_selu(self)

Arguments
	self: the input tensor

selu(input) -> Tensor

Computes the selu transformation.

torch_selu_

<table>
<thead>
<tr>
<th>Description</th>
<th>Selu_</th>
</tr>
</thead>
</table>

Usage

torch_selu_(self)

Arguments
	self: the input tensor

selu_(input) -> Tensor

In-place version of torch_selu().
torch_set_default_dtype

Gets and sets the default floating point dtype.

Description

Gets and sets the default floating point dtype.

Usage

torch_set_default_dtype(d)
torch_get_default_dtype()

Arguments

d        The default floating point dtype to set. Initially set to torch_float().

torch_sgn

Description

Sgn

Usage

torch_sgn(self)

Arguments

self        (Tensor) the input tensor.

sgn(input, *, out=None) -> Tensor

For complex tensors, this function returns a new tensor whose elements have the same angle as that
of the elements of input and absolute value 1. For a non-complex tensor, this function returns the
signs of the elements of input (see torch_sign).

out_i = 0, if |input_i| == 0  out_i = \frac{\text{input}_i}{|\text{input}_i|}, otherwise
torch_sigmoid

Examples

```r
if (torch_is_installed()) {
 if (FALSE) {
 x <- torch_tensor(c(3+4i, 7-24i, 0, 1+2i))
 x$sgn()
 torch_sgn(x)
 }
}
```

torch_sigmoid  Sigmoid

Description

Sigmoid

Usage

```r
torch_sigmoid(self)
```

Arguments

- `self` (Tensor) the input tensor.

sigmoid(input, out=NULL) -> Tensor

Returns a new tensor with the sigmoid of the elements of `input`.

\[
\text{out}_i = \frac{1}{1 + e^{-\text{input}_i}}
\]

Examples

```r
if (torch_is_installed()) {
 a = torch_randn(c(4))
 a
 torch_sigmoid(a)
}
```
torch_sign

Description
Sign

Usage
torch_sign(self)

Arguments
self (Tensor) the input tensor.

sign(input, out=NULL) -> Tensor
Returns a new tensor with the signs of the elements of input.

Examples
if (torch_is_installed()) {
    a = torch_tensor(c(0.7, -1.2, 0., 2.3))
    a
    torch_sign(a)
}

torch_signbit

Description
Signbit

Usage
torch_signbit(self)

Arguments
self (Tensor) the input tensor.
signbit(input, *, out=None) -> Tensor

Tests if each element of input has its sign bit set (is less than zero) or not.

Examples

```python
if (torch_is_installed()) {
 a <- torch_tensor(c(0.7, -1.2, 0., 2.3))
 torch_signbit(a)
}
```

torch_sin

Description

Sin

Usage

torch_sin(self)

Arguments

self (Tensor) the input tensor.

sin(input, out=NULL) -> Tensor

Returns a new tensor with the sine of the elements of input.

\[ \text{out}_i = \sin(\text{input}_i) \]

Examples

```python
if (torch_is_installed()) {
 a = torch_randn(c(4))
 out = torch_sin(a)
}
```
torch_sinh  

Description

Sinh

Usage

torch_sinh(self)

Arguments

self (Tensor) the input tensor.

\text{sinh(input, out=NULL) -> Tensor}

Returns a new tensor with the hyperbolic sine of the elements of input.

\[ \text{out}_i = \text{sinh}(\text{input}_i) \]

Examples

if (torch_is_installed()) {
    a = torch_randn(c(4))
    a
    torch_sinh(a)
    }

torch_slogdet  

Description

Slogdet

Usage

torch_slogdet(self)

Arguments

self (Tensor) the input tensor of size (*, n, n) where * is zero or more batch dimensions.
slogdet(input) -> (Tensor, Tensor)
Calculates the sign and log absolute value of the determinant(s) of a square matrix or batches of
square matrices.

Note
If `input` has zero determinant, this returns `(0, -inf)`.

Backward through `slogdet` internally uses SVD results when `input` is not invertible. In this case, double backward through `slogdet` will be unstable in when `input` doesn't have distinct singular values. See `torch.svd` for details.

Examples
if (torch_is_installed()) {
    A = torch_randn(c(3, 3))
    A
    torch.det(A)
    torch.logdet(A)
    torch.slogdet(A)
}

torch_solve

Solve

Description
Solve

Usage
torch_solve(self, A)

Arguments
self (Tensor) input matrix B of size (*, m, k), where * is zero or more batch dimensions.
A (Tensor) input square matrix of size (*, m, m), where * is zero or more batch dimensions.

solve(input, A) -> (Tensor, Tensor)
This function returns the solution to the system of linear equations represented by \( AX = B \) and the
LU factorization of A, in order as a namedtuple solution, LU.
LU contains L and U factors for LU factorization of A.
torch_solve(B, A) can take in 2D inputs B, A or inputs that are batches of 2D matrices. If the
inputs are batches, then returns batched outputs solution, LU.
Note

Irrespective of the original strides, the returned matrices `solution` and `LU` will be transposed, i.e. with strides like `B$contiguous()$transpose(-1, -2)$stride()` and `A$contiguous()$transpose(-1, -2)$stride()` respectively.

Examples

```r
if (torch_is_installed()) {

A = torch_tensor(rbind(c(6.80, -2.11, 5.66, 5.97, 8.23),
 c(-6.05, -3.30, 5.36, -4.44, 1.08),
 c(-0.45, 2.58, -2.70, 0.27, 9.04),
 c(8.32, 2.71, 4.35, -7.17, 2.14),
 c(-9.67, -5.14, -7.26, 6.08, -6.87))$t()
B = torch_tensor(rbind(c(4.02, 6.19, -8.22, -7.57, -3.03),
 c(-1.56, 4.00, -8.67, 1.75, 2.86),
 c(9.81, -4.09, -4.57, -8.61, 8.99))$t()

out = torch_solve(B, A)
X = out[[1]]
LU = out[[2]]
torch_dist(B, torch_mm(A, X))

Batched solver example
A = torch_randn(c(2, 3, 1, 4, 4))
B = torch_randn(c(2, 3, 1, 4, 6))
out = torch_solve(B, A)
X = out[[1]]
LU = out[[2]]
torch_dist(B, A$matmul(X))
}
```

torch_sort  Sort

Description

Sort

Usage

```r
torch_sort(self, dim = -1L, descending = FALSE, stable)
```

Arguments

- **self** *(Tensor)* the input tensor.
- **dim** *(int, optional)* the dimension to sort along
- **descending** *(bool, optional)* controls the sorting order (ascending or descending)
- **stable** *(bool, optional)* – makes the sorting routine stable, which guarantees that the order of equivalent elements is preserved.
sort(input, dim=-1, descending=FALSE) -> (Tensor, LongTensor)

Sorts the elements of the input tensor along a given dimension in ascending order by value.
If dim is not given, the last dimension of the input is chosen.
If descending is TRUE then the elements are sorted in descending order by value.
A namedtuple of (values, indices) is returned, where the values are the sorted values and indices are the indices of the elements in the original input tensor.

Examples

```python
if (torch_is_installed()) {
 x = torch_randn(c(3, 4))
 out = torch_sort(x)
 out
 out = torch_sort(x, 1)
 out
}
```

---

torch_sparse_coo_tensor

**Sparse_coo_tensor**

**Description**

Sparse_coo_tensor

**Usage**

```python
torch_sparse_coo_tensor(
 indices,
 values,
 size = NULL,
 dtype = NULL,
 device = NULL,
 requires_grad = FALSE
)
```

**Arguments**

- **indices** (array_like) Initial data for the tensor. Can be a list, tuple, NumPy ndarray, scalar, and other types. Will be cast to a torch_LongTensor internally. The indices are the coordinates of the non-zero values in the matrix, and thus should be two-dimensional where the first dimension is the number of tensor dimensions and the second dimension is the number of non-zero values.
- **values** (array_like) Initial values for the tensor. Can be a list, tuple, NumPy ndarray, scalar, and other types.
torch_split

Splits the tensor into chunks. Each chunk is a view of the original tensor.

Description

Splits the tensor into chunks. Each chunk is a view of the original tensor.
Usage

```
torch_split(self, split_size, dim = 1L)
```

Arguments

- **self** *(Tensor)* tensor to split.
- **split_size** *(int)* size of a single chunk or list of sizes for each chunk
- **dim** *(int)* dimension along which to split the tensor.

Details

If `split_size` is an integer type, then tensor will be split into equally sized chunks (if possible). Last chunk will be smaller if the tensor size along the given dimension `dim` is not divisible by `split_size`.

If `split_size` is a list, then tensor will be split into `length(split_size)` chunks with sizes in `dim` according to `split_size_or_sections`.

---

### torch_sqrt

**Description**

Sqrt

**Usage**

```
torch_sqrt(self)
```

**Arguments**

- **self** *(Tensor)* the input tensor.

**sqrt(input, out=NULL) -> Tensor**

Returns a new tensor with the square-root of the elements of `input`.

\[
\text{out}_i = \sqrt{\text{input}_i}
\]

**Examples**

```
if (torch_is_installed()) {

 a = torch_randn(c(4))
 a
 torch_sqrt(a)
}
```
torch_square

Description
Square

Usage
torch_square(self)

Arguments
self (Tensor) the input tensor.

square(input, out=NULL) -> Tensor
Returns a new tensor with the square of the elements of input.

Examples
if (torch_is_installed()) {
  a = torch_randn(c(4))
  a
  torch_square(a)
}

torch_squeeze

Description
Squeeze

Usage
torch_squeeze(self, dim)

Arguments
self (Tensor) the input tensor.
dim (int, optional) if given, the input will be squeezed only in this dimension
**torch_stack**

**squeeze(input, dim=NULL, out=NULL) -> Tensor**

Returns a tensor with all the dimensions of input of size 1 removed.

For example, if `input` is of shape: \((A \times 1 \times B \times C \times 1 \times D)\) then the `out` tensor will be of shape: \((A \times B \times C \times D)\).

When `dim` is given, a squeeze operation is done only in the given dimension. If input is of shape: \((A\times1\times B)\), `squeeze(input, 0)` leaves the tensor unchanged, but `squeeze(input, 1)` will squeeze the tensor to the shape \((A \times B)\).

**Note**

The returned tensor shares the storage with the input tensor, so changing the contents of one will change the contents of the other.

**Examples**

```r
if (torch_is_installed()) {
 x = torch_zeros(c(2, 1, 2, 1, 2))
 x
 y = torch_squeeze(x)
 y
 y = torch_squeeze(x, 1)
 y
 y = torch_squeeze(x, 2)
 y
}
```

**torch_stack**

**Stack**

**Description**

Stack

**Usage**

`torch_stack(tensors, dim = 1L)`

**Arguments**

- `tensors` (sequence of Tensors) sequence of tensors to concatenate
- `dim` (int) dimension to insert. Has to be between 0 and the number of dimensions of concatenated tensors (inclusive)

**stack(tensors, dim=0, out=NULL) -> Tensor**

Concatenates sequence of tensors along a new dimension.

All tensors need to be of the same size.
torch_std

Std

Description
Std

Usage
torch_std(self, dim, correction, unbiased = TRUE, keepdim = FALSE)

Arguments
- **self**: (Tensor) the input tensor.
- **dim**: (int or tuple of ints) the dimension or dimensions to reduce.
- **correction**: The type of correction.
- **unbiased**: (bool) whether to use the unbiased estimation or not
- **keepdim**: (bool) whether the output tensor has dim retained or not.

std(input, unbiased=TRUE) -> Tensor

Returns the standard-deviation of all elements in the input tensor.

If unbiased is FALSE, then the standard-deviation will be calculated via the biased estimator. Otherwise, Bessel’s correction will be used.

std(input, dim, unbiased=TRUE, keepdim=False, out=NULL) -> Tensor

Returns the standard-deviation of each row of the input tensor in the dimension dim. If dim is a list of dimensions, reduce over all of them.

If keepdim is TRUE, the output tensor is of the same size as input except in the dimension(s) dim where it is of size 1. Otherwise, dim is squeezed (see torch_squeeze), resulting in the output tensor having 1 (or len(dim)) fewer dimension(s).

If unbiased is FALSE, then the standard-deviation will be calculated via the biased estimator. Otherwise, Bessel’s correction will be used.

Examples
if (torch_is_installed()) {

    a = torch_randn(c(1, 3))
a
    torch_std(a)

    a = torch_randn(c(4, 4))
a
    torch_std(a, dim=1)
}
torch_std_mean

Description

 Std_mean

Usage

torch_std_mean(self, dim, correction, unbiased = TRUE, keepdim = FALSE)

Arguments

  self  (Tensor) the input tensor.
  dim   (int or tuple of ints) the dimension or dimensions to reduce.
  correction  The type of correction.
  unbiased    (bool) whether to use the unbiased estimation or not
  keepdim    (bool) whether the output tensor has dim retained or not.

std_mean(input, unbiased=TRUE) -> (Tensor, Tensor)

Returns the standard-deviation and mean of all elements in the input tensor.
  If unbiased is FALSE, then the standard-deviation will be calculated via the biased estimator. Oth-
  erwise, Bessel's correction will be used.

std_mean(input, dim, unbiased=TRUE, keepdim=False) -> (Tensor, Tensor)

Returns the standard-deviation and mean of each row of the input tensor in the dimension dim. If
  dim is a list of dimensions, reduce over all of them.
  If keepdim is TRUE, the output tensor is of the same size as input except in the dimension(s) dim
  where it is of size 1. Otherwise, dim is squeezed (see torch_squeeze), resulting in the output
tensor having 1 (or len(dim)) fewer dimension(s).
  If unbiased is FALSE, then the standard-deviation will be calculated via the biased estimator. Oth-
  erwise, Bessel's correction will be used.

Examples

if (torch_is_installed()) {

  a = torch_randn(c(1, 3))
  a
  torch_std_mean(a)

  a = torch_randn(c(4, 4))
  a
  torch_std_mean(a, 1)
}
torch_stft

Description

Stft

Usage

torch_stft(input, n_fft, hop_length = NULL, win_length = NULL, window = NULL, center = TRUE, pad_mode = "reflect", normalized = FALSE, onesided = TRUE, return_complex = NULL)

Arguments

input (Tensor) the input tensor
n_fft (int) size of Fourier transform
hop_length (int, optional) the distance between neighboring sliding window frames. Default: NULL (treated as equal to floor(n_fft / 4))
win_length (int, optional) the size of window frame and STFT filter. Default: NULL (treated as equal to n_fft)
window (Tensor, optional) the optional window function. Default: NULL (treated as window of all 1s)
center (bool, optional) whether to pad input on both sides so that the t-th frame is centered at time t \times hop_length. Default: TRUE
pad_mode (string, optional) controls the padding method used when center is TRUE. Default: "reflect"
normalized (bool, optional) controls whether to return the normalized STFT results. Default: FALSE
onesided (bool, optional) controls whether to return half of results to avoid redundancy. Default: TRUE
return_complex (bool, optional) controls whether to return complex tensors or not.
Short-time Fourier transform (STFT).

Ignoring the optional batch dimension, this method computes the following expression:

\[
X[m, \omega] = \sum_{k=0}^{\text{win_length}-1} \text{window}[k] \text{input}[m \times \text{hop_length} + k] \exp \left(-j \frac{2\pi \cdot \omega k}{\text{win_length}}\right),
\]

where \(m\) is the index of the sliding window, and \(\omega\) is the frequency that \(0 \leq \omega < \text{n_fft}\). When \(\text{onesided}\) is the default value \(\text{TRUE}\).

* `\text{input}` must be either a 1-D time sequence or a 2-D batch of time sequences.

* If `\text{hop_length}` is `\text{NULL}` (default), it is treated as equal to `\text{floor}(\text{n_fft} / 4)`.

* If `\text{win_length}` is `\text{NULL}` (default), it is treated as equal to `\text{n_fft}`.

* `\text{window}` can be a 1-D tensor of size `\text{win_length}`, e.g., from `\text{torch_hann_window}`. If `\text{window}` is `\text{NULL}` (default), it is treated as if having \(1\) everywhere in the window. If \(\text{mbox}(\text{win\_length}) < \text{mbox}(\text{n\_fft})\), `\text{window}` will be padded on both sides to length \(\text{n\_fft}\) before being applied.

* If `\text{center}` is `\text{TRUE}` (default), `\text{input}` will be padded on both sides so that the \(\text{eqn}(t)\)-th frame is centered at time \(\text{eqn}(t \times \text{mbox}(\text{hop\_length}))\). Otherwise, the \(\text{eqn}(t)\)-th frame begins at time \(\text{eqn}(t \times \text{mbox}(\text{hop\_length}))\).

* `\text{pad_mode}` determines the padding method used on `\text{input}` when `\text{center}` is `\text{TRUE}`. See `\text{torch.nn.functional.pad}` for all available options. Default is "reflect".

* If `\text{onesided}` is `\text{TRUE}` (default), only values for \(\text{eqn}(\text{omega})\) in \(\text{left}[0, 1, 2, \text{dots}, \text{left}\lfloor \text{frac}\text{mbox}(\text{n\_fft})\rfloor + 1\text{\rfloor}]\) are returned because the real-to-complex Fourier transform satisfies the conjugate symmetry, i.e., \(\text{eqn}(X[m, \text{omega}] = X[m, \text{mbox}(\text{n\_fft}) - \text{omega}]^*\).

* If `\text{normalized}` is `\text{TRUE}` (default is `\text{FALSE}`), the function returns the normalized STFT results, i.e., multiplied by \(\text{eqn}(\text{\text{mbox}(\text{frame\_length}))^{-0.5}}\).

Returns the real and the imaginary parts together as one tensor of size \(\text{(*) \times N \times T \times 2}\), where \(\text{eqn(*)}\) is the optional batch size of `\text{input}`. \(\text{eqn}(N)\) is the number of frequencies where
STFT is applied, \( T \) is the total number of frames used, and each pair in the last dimension represents a complex number as the real part and the imaginary part.

**Warning**

This function changed signature at version 0.4.1. Calling with the previous signature may cause error or return incorrect result.

### torch_sub

**Sub**

**Description**

Sub

**Usage**

```python
torch_sub(self, other, alpha = 1L)
```

**Arguments**

- `self` (Tensor) the input tensor.
- `other` (Tensor or Scalar) the tensor or scalar to subtract from input
- `alpha` the scalar multiplier for other

**sub(input, other, *, alpha=1, out=None) -> Tensor**

Subtracts `other`, scaled by `alpha`, from `input`.

\[
out_i = input_i - alpha \times other_i
\]

Supports broadcasting to a common shape, type promotion, and integer, float, and complex inputs.

**Examples**

```python
if (torch_is_installed()) {
 a <- torch_tensor(c(1, 2))
 b <- torch_tensor(c(0, 1))
 torch_sub(a, b, alpha=2)
}
```
**torch_subtract**

*Subtract*

**Description**

Subtract

**Usage**

torch_subtract(self, other, alpha = 1L)

**Arguments**

- **self** (Tensor) the input tensor.
- **other** (Tensor or Scalar) the tensor or scalar to subtract from input
- **alpha** the scalar multiplier for other

**torch_sum**

*Sum*

**Description**

Sum

**Usage**

torch_sum(self, dim, keepdim = FALSE, dtype = NULL)

**Arguments**

- **self** (Tensor) the input tensor.
- **dim** (int or tuple of ints) the dimension or dimensions to reduce.
- **keepdim** (bool) whether the output tensor has dim retained or not.
- **dtype** (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: NULL.

**sum(input, dtype=NULL) -> Tensor**

Returns the sum of all elements in the input tensor.
**sum(input, dim, keepdim=False, dtype=NULL) -> Tensor**

Returns the sum of each row of the input tensor in the given dimension dim. If dim is a list of dimensions, reduce over all of them.

If keepdim is TRUE, the output tensor is of the same size as input except in the dimension(s) dim where it is of size 1. Otherwise, dim is squeezed (see `torch_squeeze`), resulting in the output tensor having 1 (or `len(dim)`) fewer dimension(s).

**Examples**

```python
if (torch_is_installed()) {
 a = torch_randn(c(1, 3))
a
 torch_sum(a)

 a <- torch_randn(c(4, 4))
a
 torch_sum(a, 1)
b <- torch_arange(1, 4 * 5 * 6)$view(c(4, 5, 6))
torch_sum(b, list(2, 1))
}
```

---

**torch_svd**

**Svd**

**Description**

Svd

**Usage**

`torch_svd(self, some=TRUE, compute_uv=TRUE)`

**Arguments**

- **self** (Tensor) the input tensor of size (*, m, n) where * is zero or more batch dimensions consisting of m × n matrices.
- **some** (bool, optional) controls the shape of returned U and V
- **compute_uv** (bool, optional) option whether to compute U and V or not

**svd(input, some=TRUE, compute_uv=TRUE) -> (Tensor, Tensor, Tensor)**

This function returns a namedtuple (U, S, V) which is the singular value decomposition of a input real matrix or batches of real matrices input such that `input = U × diag(S) × V^T`.

If some is TRUE (default), the method returns the reduced singular value decomposition i.e., if the last two dimensions of input are m and n, then the returned U and V matrices will contain only `min(n, m)` orthonormal columns.
If `compute_uv` is `FALSE`, the returned $U$ and $V$ matrices will be zero matrices of shape $(m \times m)$ and $(n \times n)$ respectively. Some will be ignored here.

**Note**

The singular values are returned in descending order. If `input` is a batch of matrices, then the singular values of each matrix in the batch is returned in descending order.

The implementation of SVD on CPU uses the LAPACK routine `$gesdd` (a divide-and-conquer algorithm) instead of `$gesvd` for speed. Analogously, the SVD on GPU uses the MAGMA routine `$gesdd` as well.

Irrespective of the original strides, the returned matrix $U$ will be transposed, i.e. with strides $U.contiguous().transpose(-2, -1).stride()$.

Extra care needs to be taken when backward through $U$ and $V$ outputs. Such operation is really only stable when input is full rank with all distinct singular values. Otherwise, NaN can appear as the gradients are not properly defined. Also, notice that double backward will usually do an additional backward through $U$ and $V$ even if the original backward is only on $S$.

When `some = FALSE`, the gradients on $U[...,:,:\text{min}(m, n):]$ and $V[...,:,:\text{min}(m, n):]$ will be ignored in backward as those vectors can be arbitrary bases of the subspaces.

When `compute_uv = FALSE`, backward cannot be performed since $U$ and $V$ from the forward pass is required for the backward operation.

**Examples**

```python
if (torch_is_installed()) {
 a = torch_randn(c(5, 3))
 a
 out = torch_svd(a)
 u = out[[1]]
 s = out[[2]]
 v = out[[3]]
 torch_dist(a, torch_mm(torch_mm(u, torch_diag(s)), v$\text{t}()$))
 a_big = torch_randn(c(7, 5, 3))
 out = torch_svd(a_big)
 u = out[[1]]
 s = out[[2]]
 v = out[[3]]
 torch_dist(a_big, torch_matmul(torch_matmul(u, torch_diag_embed(s)), v$\text{t}(-2, -1)$))
}
```

**torch_symeig**

**Symeig**

**Description**

Symeig
torch_symeig

Usage

torch_symeig(self, eigenvectors = FALSE, upper = TRUE)

Arguments

self (Tensor) the input tensor of size \((*, n, n)\) where \(*\) is zero or more batch dimensions consisting of symmetric matrices.
eigenvectors (boolean, optional) controls whether eigenvectors have to be computed
upper (boolean, optional) controls whether to consider upper-triangular or lower-triangular region

symeig(input, eigenvectors=FALSE, upper=TRUE) -> (Tensor, Tensor)

This function returns eigenvalues and eigenvectors of a real symmetric matrix input or a batch of real symmetric matrices, represented by a namedtuple (eigenvalues, eigenvectors).

This function calculates all eigenvalues (and vectors) of input such that input = \(V\text{diag}(e)V^T\).

The boolean argument eigenvectors defines computation of both eigenvectors and eigenvalues or eigenvalues only.

If it is FALSE, only eigenvalues are computed. If it is TRUE, both eigenvalues and eigenvectors are computed.

Since the input matrix input is supposed to be symmetric, only the upper triangular portion is used by default.

If upper is FALSE, then lower triangular portion is used.

Note

The eigenvalues are returned in ascending order. If input is a batch of matrices, then the eigenvalues of each matrix in the batch is returned in ascending order.

Irrespective of the original strides, the returned matrix \(V\) will be transposed, i.e. with strides \(V\text{.contiguous().transpose(-1, -2).stride()}\).

Extra care needs to be taken when backward through outputs. Such operation is really only stable when all eigenvalues are distinct. Otherwise, NaN can appear as the gradients are not properly defined.

Examples

if (torch_is_installed()) {

    a = torch.randn(c(5, 5))
    a = a + a$t()  # To make a symmetric
    a
    o = torch_symeig(a, eigenvectors=TRUE)
    e = o[[1]]
    v = o[[2]]
    e
    v
    a_big = torch.randn(c(5, 2, 2))
}
torch_t

a_big = a_big + a_big$transpose(-2, -1) # To make a_big symmetric
o = a_big$symeig(eigenvectors=TRUE)
e = o[[1]]
v = o[[2]]
torch_allclose(torch_matmul(v, torch_matmul(e$diag_embed(), v$transpose(-2, -1))), a_big)

torch_t

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>torch_t(self)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>self        (Tensor) the input tensor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t(input) -&gt; Tensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expects input to be &lt;= 2-D tensor and transposes dimensions 0 and 1.</td>
</tr>
<tr>
<td>0-D and 1-D tensors are returned as is. When input is a 2-D tensor this is equivalent to transpose(input, 0, 1).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
</table>
| if (torch_is_installed()) {
  x = torch_randn(c(2,3))
x  torch_t(x)
x = torch_randn(c(3))
x  torch_t(x)
x = torch_randn(c(2, 3))
x  torch_t(x)
} |
## torch_take

**Description**

Take

**Usage**

`torch_take(self, index)`

**Arguments**

- `self`: (Tensor) the input tensor.
- `index`: (LongTensor) the indices into tensor

**take(input, index) -> Tensor**

Returns a new tensor with the elements of `input` at the given indices. The input tensor is treated as if it were viewed as a 1-D tensor. The result takes the same shape as the indices.

**Examples**

```python
if (torch_is_installed()) {
 src = torch_tensor(matrix(c(4,3,5,6,7,8), ncol = 3, byrow = TRUE))
 torch_take(src, torch_tensor(c(1, 2, 5), dtype = torch_int64()))
}
```

## torch_tan

**Description**

Tan

**Usage**

`torch_tan(self)`

**Arguments**

- `self`: (Tensor) the input tensor.
**torch_tanh**

**tan(input, out=NULL) -> Tensor**

Returns a new tensor with the tangent of the elements of input.

\[ \text{out}_i = \tan(\text{input}_i) \]

**Examples**

```r
if (torch_is_installed()) {
 a = torch_randn(c(4))
 a
 torch_tan(a)
}
```

---

**torch_tanh**

**Tanh**

**Description**

Tanh

**Usage**

```
torch_tanh(self)
```

**Arguments**

- **self**: (Tensor) the input tensor.

**tanh(input, out=NULL) -> Tensor**

Returns a new tensor with the hyperbolic tangent of the elements of input.

\[ \text{out}_i = \tanh(\text{input}_i) \]

**Examples**

```r
if (torch_is_installed()) {
 a = torch_randn(c(4))
 a
 torch_tanh(a)
}
```
**torch_tensor**  
*Converts R objects to a torch tensor*

**Description**  
Converts R objects to a torch tensor

**Usage**  
```r
torch_tensor(
data,
dtype = NULL,
device = NULL,
requires_grad = FALSE,
pin_memory = FALSE
)
```

**Arguments**
- **data**: an R atomic vector, matrix or array
- **dtype**: a `torch_dtype` instance
- **device**: a device created with `torch_device()`
- **requires_grad**: if autograd should record operations on the returned tensor.
- **pin_memory**: If set, returned tensor would be allocated in the pinned memory.

**Examples**
```r
if (torch_is_installed()) {
 torch_tensor(c(1,2,3,4))
 torch_tensor(c(1,2,3,4), dtype = torch_int())
}
```

**torch_tensordot**  
*Tensordot*

**Description**  
Returns a contraction of a and b over multiple dimensions. `tensordot` implements a generalized matrix product.

**Usage**  
```r
torch_tensordot(a, b, dims = 2)
```
torch_threshold

Arguments

**a**  
(Tensor) Left tensor to contract

**b**  
(Tensor) Right tensor to contract

**dims**  
(int or tuple of two lists of integers) number of dimensions to contract or explicit lists of dimensions for a and b respectively

Examples

```python
if (torch_is_installed()) {
 a <- torch_arange(start = 1, end = 60)$reshape(c(3, 4, 5))
 b <- torch_arange(start = 1, end = 24)$reshape(c(4, 3, 2))
 torch_tensordot(a, b, dims = list(c(2, 1), c(1, 2)))
 # Not run:
 a = torch_randn(3, 4, 5, device='cuda')
 b = torch_randn(4, 5, 6, device='cuda')
 c = torch_tensordot(a, b, dims=2)$cpu()

 # End(Not run)
}
```

---

torch_threshold_  

Description

Threshold_

Usage

```python
torch_threshold_(self, threshold, value)
```

Arguments

**self**  
input tensor

**threshold**  
The value to threshold at

**value**  
The value to replace with

threshold_(input, threshold, value) -> Tensor

In-place version of torch_threshold.
torch_topk

Description

Topk

Usage

torch_topk(self, k, dim = -1L, largest = TRUE, sorted = TRUE)

Arguments

self (Tensor) the input tensor.
k (int) the k in "top-k"
dim (int, optional) the dimension to sort along
largest (bool, optional) controls whether to return largest or smallest elements
sorted (bool, optional) controls whether to return the elements in sorted order

topk(input, k, dim=NULL, largest=TRUE, sorted=TRUE) -> (Tensor, LongTensor)

Returns the k largest elements of the given input tensor along a given dimension.
If dim is not given, the last dimension of the input is chosen.
If largest is FALSE then the k smallest elements are returned.
A namedtuple of (values, indices) is returned, where the indices are the indices of the elements in the original input tensor.
The boolean option sorted if TRUE, will make sure that the returned k elements are themselves sorted

Examples

if (torch_is_installed()) {
    x = torch_arange(1., 6.)
x
    torch_topk(x, 3)
}
torch_trace

Description
Trace

Usage
torch_trace(self)

Arguments
self (the input tensor)

trace(input) -> Tensor
Returns the sum of the elements of the diagonal of the input 2-D matrix.

Examples
if (torch_is_installed()) {
    x <- torch_arange(1, 9)$view(c(3, 3))
    x
    torch_trace(x)
}

torch_transpose

Description
Transpose

Usage
torch_transpose(self, dim0, dim1)

Arguments
self (Tensor) the input tensor.
dim0 (int) the first dimension to be transposed
dim1 (int) the second dimension to be transposed
**torch_transpose**

**torch_transpose(input, dim0, dim1) -> Tensor**

Returns a tensor that is a transposed version of `input`. The given dimensions `dim0` and `dim1` are swapped.

The resulting output tensor shares its underlying storage with the `input` tensor, so changing the content of one would change the content of the other.

**Examples**

```python
if (torch_is_installed()) {
 x = torch_randn(c(2, 3))
 x
 torch_transpose(x, 1, 2)
}
```

---

**torch_trapz**

**torch_trapz(y, dx = 1L, x, dim = -1L)**

**Description**

Trapz

**Usage**

`torch_trapz(y, dx = 1L, x, dim = -1L)`

**Arguments**

- `y` (Tensor) The values of the function to integrate
- `dx` (float) The distance between points at which `y` is sampled.
- `x` (Tensor) The points at which the function `y` is sampled. If `x` is not in ascending order, intervals on which it is decreasing contribute negatively to the estimated integral (i.e., the convention \( \int_a^b f = -\int_b^a f \) is followed).
- `dim` (int) The dimension along which to integrate. By default, use the last dimension.

**Example**

```python
trapz(y, x, *, dim=-1) -> Tensor
```

Estimate \( \int y \, dx \) along `dim`, using the trapezoid rule.

**Example**

```python
trapz(y, *, dx=1, dim=-1) -> Tensor
```

As above, but the sample points are spaced uniformly at a distance of `dx`.
torch_triangular_solve

Examples
if (torch_is_installed()) {
  y = torch_randn(list(2, 3))
y
  x = torch_tensor(matrix(c(1, 3, 4, 1, 2, 3), ncol = 3, byrow=TRUE))
  torch_trapz(y, x = x)
}

torch_triangular_solve

Triangular_solve

Description
Triangular_solve

Usage
torch_triangular_solve(
  self,
  A,
  upper = TRUE,
  transpose = FALSE,
  unitriangular = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>(Tensor) multiple right-hand sides of size (*, m, k) where * is zero of more batch dimensions</td>
</tr>
<tr>
<td>A</td>
<td>(Tensor) the input triangular coefficient matrix of size (*, m, m) where * is zero or more batch dimensions</td>
</tr>
<tr>
<td>upper</td>
<td>(bool, optional) whether to solve the upper-triangular system of equations (default) or the lower-triangular system of equations. Default: TRUE.</td>
</tr>
<tr>
<td>transpose</td>
<td>(bool, optional) whether A should be transposed before being sent into the solver. Default: FALSE.</td>
</tr>
<tr>
<td>unitriangular</td>
<td>(bool, optional) whether A is unit triangular. If TRUE, the diagonal elements of A are assumed to be 1 and not referenced from A. Default: FALSE.</td>
</tr>
</tbody>
</table>
torch_tril

Description

Tril

Usage

torch_tril(self, diagonal = 0L)

Arguments

self (Tensor) the input tensor.
diagonal (int, optional) the diagonal to consider

tril(input, diagonal=0, out=NULL) -> Tensor

Returns the lower triangular part of the matrix (2-D tensor) or batch of matrices input, the other elements of the result tensor out are set to 0.

The lower triangular part of the matrix is defined as the elements on and below the diagonal.

The argument diagonal controls which diagonal to consider. If diagonal = 0, all elements on and below the main diagonal are retained. A positive value includes just as many diagonals above the main diagonal, and similarly a negative value excludes just as many diagonals below the main diagonal. The main diagonal are the set of indices \{(i, i)\} for \(i \in [0, \min\{d_1, d_2\} - 1]\) where \(d_1, d_2\) are the dimensions of the matrix.

torch_tril

Examples

if (torch_is_installed()) {
    A = torch_randn(c(2, 2))$triu()
    A
    b = torch_randn(c(2, 3))
    b
    torch_triangular_solve(b, A)
}

torch_triangular_solve(input, A, upper=TRUE, transpose=False, unitriangular=False) -> (Tensor, Tensor)

Solves a system of equations with a triangular coefficient matrix \(A\) and multiple right-hand sides \(b\). In particular, solves \(AX = b\) and assumes \(A\) is upper-triangular with the default keyword arguments.

torch_triangular_solve(b, A) can take in 2D inputs \(b\), \(A\) or inputs that are batches of 2D matrices. If the inputs are batches, then returns batched outputs \(X\)
torch_tril_indices

Examples
if (torch_is_installed()) {
    a = torch_randn(c(3, 3))
    a
    torch_tril(a)
    b = torch_randn(c(4, 6))
    b
    torch_tril(b, diagonal=1)
    torch_tril(b, diagonal=-1)
}

torch_tril_indices  Tril_indices

Description
Tril_indices

Usage
torch_tril_indices(
    row,
    col,
    offset = 0,
    dtype = torch_long(),
    device = "cpu",
    layout = torch_strided()
)

Arguments
row  (int) number of rows in the 2-D matrix.
col  (int) number of columns in the 2-D matrix.
offset  (int) diagonal offset from the main diagonal. Default: if not provided, 0.
dtype  (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, torch_long.
device  (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
layout  (torch.layout, optional) currently only support torch_strided.
torch_triu

tril_indices(row, col, offset=0, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor

Returns the indices of the lower triangular part of a row-by-col matrix in a 2-by-N Tensor, where the first row contains row coordinates of all indices and the second row contains column coordinates. Indices are ordered based on rows and then columns.

The lower triangular part of the matrix is defined as the elements on and below the diagonal.

The argument offset controls which diagonal to consider. If offset = 0, all elements on and below the main diagonal are retained. A positive value includes just as many diagonals above the main diagonal, and similarly a negative value excludes just as many diagonals below the main diagonal.

The main diagonal are the set of indices \{ (i, i) \} for \( i \in [0, \min\{d_1, d_2\} - 1] \) where \( d_1, d_2 \) are the dimensions of the matrix.

Note

When running on CUDA, `row * col` must be less than \( 2^{59} \) to prevent overflow during calculation.

Examples

```python
if (torch_is_installed()) {
 ## Not run:
 a = torch_tril_indices(3, 3)
 a
 a = torch_tril_indices(4, 3, -1)
 a
 a = torch_tril_indices(4, 3, 1)
 a

 ## End(Not run)
}
```

<table>
<thead>
<tr>
<th>torch_triu</th>
<th>Triu</th>
</tr>
</thead>
</table>

Description

Triu

Usage

torch_triu(self, diagonal = 0L)

Arguments

<table>
<thead>
<tr>
<th>self</th>
<th>(Tensor) the input tensor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagonal</td>
<td>(int, optional) the diagonal to consider</td>
</tr>
</tbody>
</table>
torch_triu_indices

### triu(input, diagonal=0, out=NULL) -> Tensor

Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices `input`, the other elements of the result tensor `out` are set to 0.

The upper triangular part of the matrix is defined as the elements on and above the diagonal.

The argument `diagonal` controls which diagonal to consider. If `diagonal = 0`, all elements on and above the main diagonal are retained. A positive value excludes just as many diagonals above the main diagonal, and similarly a negative value includes just as many diagonals below the main diagonal. The main diagonal are the set of indices `{(i, i)} for i ∈ [0, min(d1, d2) − 1] where d1, d2 are the dimensions of the matrix.

### Examples

```python
if (torch_is_installed()) {

 a = torch_randn(c(3, 3))
 a
 torch_triu(a)
 torch_triu(a, diagonal=1)
 torch_triu(a, diagonal=-1)

 b = torch_randn(c(4, 6))
 b
 torch_triu(b, diagonal=1)
 torch_triu(b, diagonal=-1)
}
```

---

torch_triu_indices  Triu_indices

### Description

`Triu_indices`

### Usage

```python
torch_triu_indices(
 row,
 col,
 offset = 0,
 dtype = torch_long(),
 device = "cpu",
 layout = torch_strided()
)
```
torch_triu_indices

Arguments

row (int) number of rows in the 2-D matrix.
col (int) number of columns in the 2-D matrix.
offset (int) diagonal offset from the main diagonal. Default: if not provided, 0.
dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, torch.long.
device (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
layout (torch.layout, optional) currently only support torch.strided.

triu_indices(row, col, offset=0, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor

Returns the indices of the upper triangular part of a row by col matrix in a 2-by-N Tensor, where the first row contains row coordinates of all indices and the second row contains column coordinates. Indices are ordered based on rows and then columns.

The upper triangular part of the matrix is defined as the elements on and above the diagonal.

The argument offset controls which diagonal to consider. If offset = 0, all elements on and above the main diagonal are retained. A positive value excludes just as many diagonals above the main diagonal, and similarly a negative value includes just as many diagonals below the main diagonal. The main diagonal are the set of indices \{(i, i)\} for \(i \in [0, \min\{d_1, d_2\} - 1]\) where \(d_1, d_2\) are the dimensions of the matrix.

Note

When running on CUDA, `row * col` must be less than \(2^{59}\) to prevent overflow during calculation.

Examples

```python
if (torch_is_installed()) {
 ## Not run:
a = torch_triu_indices(3, 3)
a
 a = torch_triu_indices(4, 3, -1)
a
 a = torch_triu_indices(4, 3, 1)
a
 ## End(Not run)
}
```
**torch_true_divide**

**Description**

TRUE_divide

**Usage**

```python
torch_true_divide(self, other)
```

**Arguments**

- `self` (Tensor): the dividend
- `other` (Tensor or Scalar): the divisor

**true_divide(dividend, divisor) -> Tensor**

Performs "true division" that always computes the division in floating point. Analogous to division in Python 3 and equivalent to `torch_div` except when both inputs have bool or integer scalar types, in which case they are cast to the default (floating) scalar type before the division.

```
out = dividend / divisor
```

**Examples**

```python
if (torch_is_installed()) {

dividend = torch_tensor(c(5, 3), dtype=torch_int())
divisor = torch_tensor(c(3, 2), dtype=torch_int())
torch_true_divide(dividend, divisor)
torch_true_divide(dividend, 2)
}
```

**torch_trunc**

**Description**

Trunc

**Usage**

```python
torch_trunc(self)
```
**torch_unbind**

**Arguments**

- `self` (Tensor) the input tensor.

**trunc(input, out=NULL) -> Tensor**

Returns a new tensor with the truncated integer values of the elements of `input`.

**Examples**

```r
if (torch_is_installed()) {
 a = torch_randn(c(4))
 a
 torch_trunc(a)
}
```

---

**torch_unbind** *Unbind*

**Description**

Unbind

**Usage**

```r
torch_unbind(self, dim = 1L)
```

**Arguments**

- `self` (Tensor) the tensor to unbind
- `dim` (int) dimension to remove

**unbind(input, dim=0) -> seq**

Removes a tensor dimension.

Returns a tuple of all slices along a given dimension, already without it.

**Examples**

```r
if (torch_is_installed()) {
 torch_unbind(torch_tensor(matrix(1:9, ncol = 3, byrow=TRUE)))
}
```
torch_unique_consecutive

Description

Unique_consecutive

Usage

```
torch_unique_consecutive(
 self,
 return_inverse = FALSE,
 return_counts = FALSE,
 dim = NULL
)
```

Arguments

- `self` (Tensor) the input tensor
- `return_inverse` (bool) Whether to also return the indices for where elements in the original input ended up in the returned unique list.
- `return_counts` (bool) Whether to also return the counts for each unique element.
- `dim` (int) the dimension to apply unique. If NULL, the unique of the flattened input is returned. default: NULL

TEST

Eliminates all but the first element from every consecutive group of equivalent elements.

.. note:: This function is different from `torch_unique` in the sense that this function only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

Examples

```
if (torch_is_installed()) {
 x = torch_tensor(c(1, 1, 2, 2, 3, 1, 1, 2))
 output = torch_unique_consecutive(x)
 output
 torch_unique_consecutive(x, return_inverse=TRUE)
 torch_unique_consecutive(x, return_counts=TRUE)
}
```
torch_unsafe_chunk  Unsafe_chunk

Description
Unsafe_chunk

Usage
torch_unsafe_chunk(self, chunks, dim = 1L)

Arguments
- `self` (Tensor) the tensor to split
- `chunks` (int) number of chunks to return
- `dim` (int) dimension along which to split the tensor

unsafe_chunk(input, chunks, dim=0) -> List of Tensors
Works like torch_chunk() but without enforcing the autograd restrictions on inplace modification of the outputs.

Warning
This function is safe to use as long as only the input, or only the outputs are modified inplace after calling this function. It is user’s responsibility to ensure that is the case. If both the input and one or more of the outputs are modified inplace, gradients computed by autograd will be silently incorrect.

torch_unsafe_split  Unsafe_split

Description
Unsafe_split

Usage
torch_unsafe_split(self, split_size, dim = 1L)

Arguments
- `self` (Tensor) tensor to split.
- `split_size` (int) size of a single chunk or list of sizes for each chunk
- `dim` (int) dimension along which to split the tensor.
torch_unsqueeze

unsafe_split(tensor, split_size_or_sections, dim=0) -> List of Tensors

Works like torch_split() but without enforcing the autograd restrictions on inplace modification of the outputs.

Warning

This function is safe to use as long as only the input, or only the outputs are modified inplace after calling this function. It is user’s responsibility to ensure that is the case. If both the input and one or more of the outputs are modified inplace, gradients computed by autograd will be silently incorrect.

torch_unsqueeze  Unsqueeze

Description

Unsqueeze

Usage

torch_unsqueeze(self, dim)

Arguments

self (Tensor) the input tensor.
dim (int) the index at which to insert the singleton dimension

unsqueeze(input, dim) -> Tensor

Returns a new tensor with a dimension of size one inserted at the specified position.

The returned tensor shares the same underlying data with this tensor.

A dim value within the range [-input.dim() - 1, input.dim() + 1) can be used. Negative dim will correspond to unsqueeze applied at dim = dim + input.dim() + 1.

Examples

if (torch_is_installed()) {
    x = torch_tensor(c(1, 2, 3, 4))
    torch_unsqueeze(x, 1)
    torch_unsqueeze(x, 2)
}
Description
Vander

Usage
torch_vander(x, N = NULL, increasing = FALSE)

Arguments
x (Tensor) 1-D input tensor.
N (int, optional) Number of columns in the output. If N is not specified, a square array is returned ($N = \text{len}(x)$).
increasing (bool, optional) Order of the powers of the columns. If TRUE, the powers increase from left to right, if FALSE (the default) they are reversed.

vander(x, N=None, increasing=False) -> Tensor
Generates a Vandermonde matrix.
The columns of the output matrix are elementwise powers of the input vector $x^{(N-1)}, x^{(N-2)}, ..., x^0$.
If increasing is TRUE, the order of the columns is reversed $x^0, x^1, ..., x^{(N-1)}$. Such a matrix with a geometric progression in each row is named for Alexandre-Theophile Vandermonde.

Examples
if (torch_is_installed()) {
  x <- torch_tensor(c(1, 2, 3, 5))
torch_vander(x)
torch_vander(x, N=3)
torch_vander(x, N=3, increasing=TRUE)
}

Description
Var

Usage
torch_var(self, dim, correction, unbiased = TRUE, keepdim = FALSE)
torch_var_mean

Arguments

- **self** (Tensor) the input tensor.
- **dim** (int or tuple of ints) the dimension or dimensions to reduce.
- **correction** The type of correction.
- **unbiased** (bool) whether to use the unbiased estimation or not
- **keepdim** (bool) whether the output tensor has dim retained or not.

var(input, unbiased=TRUE) -> Tensor

Returns the variance of all elements in the input tensor.

If unbiased is FALSE, then the variance will be calculated via the biased estimator. Otherwise, Bessel's correction will be used.

var(input, dim, keepdim=False, unbiased=TRUE, out=NULL) -> Tensor

Returns the variance of each row of the input tensor in the given dimension dim.

If keepdim is TRUE, the output tensor is of the same size as input except in the dimension(s) dim where it is of size 1. Otherwise, dim is squeezed (see torch_squeeze), resulting in the output tensor having 1 (or len(dim)) fewer dimension(s).

If unbiased is FALSE, then the variance will be calculated via the biased estimator. Otherwise, Bessel's correction will be used.

Examples

```r
if (torch_is_installed()) {

 a = torch_randn(c(1, 3))
 a
 torch_var(a)

 a = torch_randn(c(4, 4))
 a
 torch_var(a, 1)
}
```

```
torch_var_mean Var_mean

<table>
<thead>
<tr>
<th>Description</th>
<th>Var_mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td>torch_var_mean(self, dim, correction, unbiased = TRUE, keepdim = FALSE)</td>
</tr>
</tbody>
</table>
torch_vdot

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>self</code></td>
<td>(Tensor) the input tensor.</td>
</tr>
<tr>
<td><code>dim</code></td>
<td>(int or tuple of ints) the dimension or dimensions to reduce.</td>
</tr>
<tr>
<td><code>correction</code></td>
<td>The type of correction.</td>
</tr>
<tr>
<td><code>unbiased</code></td>
<td>(bool) whether to use the unbiased estimation or not</td>
</tr>
<tr>
<td><code>keepdim</code></td>
<td>(bool) whether the output tensor has dim retained or not.</td>
</tr>
</tbody>
</table>

`var_mean(input, unbiased=TRUE) -> (Tensor, Tensor)`

Returns the variance and mean of all elements in the input tensor.

If unbiased is FALSE, then the variance will be calculated via the biased estimator. Otherwise, Bessel's correction will be used.

`var_mean(input, dim, keepdim=False, unbiased=TRUE) -> (Tensor, Tensor)`

Returns the variance and mean of each row of the input tensor in the given dimension dim.

If keepdim is TRUE, the output tensor is of the same size as input except in the dimension(s) dim where it is of size 1. Otherwise, dim is squeezed (see `torch_squeeze`), resulting in the output tensor having 1 (or len(dim)) fewer dimension(s).

If unbiased is FALSE, then the variance will be calculated via the biased estimator. Otherwise, Bessel's correction will be used.

Examples

```python
if (torch_is_installed()) {
    a = torch_randn(c(1, 3))
    a
    torch_var_mean(a)

    a = torch_randn(c(4, 4))
    a
    torch_var_mean(a, 1)
}
```

torch_vdot Vdot

Description

Vdot

Usage

`torch_vdot(self, other)`
torch_view_as_complex

Arguments

self (Tensor) first tensor in the dot product. Its conjugate is used if it’s complex.
other (Tensor) second tensor in the dot product.

vdot(input, other, *, out=None) -> Tensor

Computes the dot product (inner product) of two tensors. The vdot(a, b) function handles complex numbers differently than dot(a, b). If the first argument is complex, the complex conjugate of the first argument is used for the calculation of the dot product.

Note

This function does not broadcast.

Examples

if (torch_is_installed()) {
 torch_vdot(torch_tensor(c(2, 3)), torch_tensor(c(2, 1)))
 if (FALSE) {
 a <- torch_tensor(list(1 +2i, 3 - 1i))
 b <- torch_tensor(list(2 +1i, 4 - 0i))
 torch_vdot(a, b)
 torch_vdot(b, a)
 }
}

torch_view_as_complex View_as_complex

Description

View_as_complex

Usage

torch_view_as_complex(self)

Arguments

self (Tensor) the input tensor.

view_as_complex(input) -> Tensor

Returns a view of input as a complex tensor. For an input complex tensor of size $m_1, m_2, \ldots, m_i, 2$, this function returns a new complex tensor of size m_1, m_2, \ldots, m_i where the last dimension of the input tensor is expected to represent the real and imaginary components of complex numbers.
Warning

`torch_view_as_complex` is only supported for tensors with `torch_dtype` `torch_float64()` and `torch_float32()`. The input is expected to have the last dimension of size 2. In addition, the tensor must have a `stride` of 1 for its last dimension. The strides of all other dimensions must be even numbers.

Examples

```r
if (torch_is_installed()) {
  if (FALSE) {
    x <- torch_randn(c(4, 2))
    x
    torch_view_as_complex(x)
  }
}
```

cription

`View_as_real`

Usage

`torch_view_as_real(self)`

Arguments

`self` (Tensor) the input tensor.

view_as_real(input) -> Tensor

Returns a view of input as a real tensor. For an input complex tensor of size `m_1, m_2, ..., m_i`, this function returns a new real tensor of size `m_1, m_2, ..., m_i, 2`, where the last dimension of size 2 represents the real and imaginary components of complex numbers.

Warning

`torch_view_as_real()` is only supported for tensors with complex dtypes.

Examples

```r
if (torch_is_installed()) {
  if (FALSE) {
    x <- torch_randn(4, dtype=torch_cfloat())
    x
    torch_view_as_real(x)
  }
```
torch_vstack

Description

Vstack

Usage

torch_vstack(tensors)

Arguments

tensors (sequence of Tensors) sequence of tensors to concatenate

torch_vstack(tensors, *, out=None) -> Tensor

Stack tensors in sequence vertically (row wise).

This is equivalent to concatenation along the first axis after all 1-D tensors have been reshaped by torch_atleast_2d().

Examples

```r
if (torch_is_installed()) {

  a <- torch_tensor(c(1, 2, 3))
  b <- torch_tensor(c(4, 5, 6))
  torch_vstack(list(a,b))

  a <- torch_tensor(rbind(1,2,3))
  b <- torch_tensor(rbind(4,5,6))
  torch_vstack(list(a,b))
}
```

torch_where

Description

Where

Usage

torch_where(condition, self, other)
Arguments

- **condition** (BoolTensor) When TRUE (nonzero), yield x, otherwise yield y
- **self** (Tensor) values selected at indices where condition is TRUE
- **other** (Tensor) values selected at indices where condition is FALSE

where(condition, x, y) -> Tensor

Return a tensor of elements selected from either x or y, depending on condition. The operation is defined as:

\[
\text{out}_i = \begin{cases}
 x_i & \text{if } \text{condition}_i \\
 y_i & \text{otherwise}
\end{cases}
\]

where(condition) -> tuple of LongTensor

torch_where(condition) is identical to torch_nonzero(condition, as_tuple=TRUE).

Note

The tensors `condition`, `x`, `y` must be broadcastable. See also torch_nonzero().

Examples

```python
if (torch_is_installed()) {
    # Not run:
    x = torch_randn(c(3, 2))
    y = torch_ones(c(3, 2))
    x
    torch_where(x > 0, x, y)
    # End(Not run)
}
```

torch_zeros Zeros

Description

Zeros
torch_zeros_like

Usage

torch_zeros(
 ...,
 names = NULL,
 dtype = NULL,
 layout = torch_strided(),
 device = NULL,
 requires_grad = FALSE
)

Arguments

... a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.

names optional dimension names

dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type).

layout (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

device (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

requires_grad (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.

zeros(*size, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor

Returns a tensor filled with the scalar value 0, with the shape defined by the variable argument size.

Examples

if (torch_is_installed()) {
 torch_zeros(c(2, 3))
 torch_zeros(c(5))
}

torch_zeros_like Zeros_like

Description

Zeros_like
torch_zeros_like

Usage

torch_zeros_like(
 input,
 dtype = NULL,
 layout = torch_strided(),
 device = NULL,
 requires_grad = FALSE,
 memory_format = torch_preserve_format()
)

Arguments

input (Tensor) the size of input will determine size of the output tensor.
dtype (torch.dtype, optional) the desired data type of returned Tensor. Default: if NULL, defaults to the dtype of input.
layout (torch.layout, optional) the desired layout of returned tensor. Default: if NULL, defaults to the layout of input.
device (torch.device, optional) the desired device of returned tensor. Default: if NULL, defaults to the device of input.
requires_grad (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.
memory_format (torch.memory_format, optional) the desired memory format of returned Tensor. Default: torch_preserve_format.

zeros_like(input, dtype=NULL, layout=NULL, device=NULL, requires_grad=False, memory_format=torch.preserve_format) -> Tensor

Returns a tensor filled with the scalar value 0, with the same size as input. torch_zeros_like(input)
is equivalent to torch_zeros(input.size(),dtype=input.dtype,layout=input.layout,device=input.device).

Warning

As of 0.4, this function does not support an out keyword. As an alternative, the old torch_zeros_like(input,out=output)
is equivalent to torch_zeros(input.size(),out=output).

Examples

if (torch_is_installed()) {

 input = torch_empty(c(2, 3))
 torch_zeros_like(input)
}
with_detect_anomaly

Context-manager that enable anomaly detection for the autograd engine.

Description

This does two things:

- Running the forward pass with detection enabled will allow the backward pass to print the traceback of the forward operation that created the failing backward function.
- Any backward computation that generate "nan" value will raise an error.

Usage

with_detect_anomaly(code)

Arguments

code COD that will be executed in the detect anomaly context.

Warning

This mode should be enabled only for debugging as the different tests will slow down your program execution.

Examples

```r
if (torch_is_installed()) {
  x <- torch_randn(2, requires_grad = TRUE)
  y <- torch_randn(1)
  b <- (x*y)$sum()
  y$add_(1)

  try({
    b$backward()
    with_detect_anomaly({
      b$backward()
    })
  })
}
```
with_enable_grad
Enable grad

Description
Context-manager that enables gradient calculation. Enables gradient calculation, if it has been disabled via **with_no_grad**.

Usage
```python
with_enable_grad(code)
```

Arguments
- **code**: code to be executed with gradient recording.

Details
This context manager is thread local; it will not affect computation in other threads.

Examples
```python
if (torch_is_installed()) {
    x <- torch_tensor(1, requires_grad=TRUE)
    with_no_grad({
        with_enable_grad({
            y = x * 2
        })
    })
    y$backward()
    x$grad
}
```

with_no_grad
Temporarily modify gradient recording.

Description
Temporarily modify gradient recording.

Usage
```python
with_no_grad(code)
```
with_no_grad

Arguments

code

code to be executed with no gradient recording.

Examples

```r
if (torch_is_installed()) {
  x <- torch_tensor(runif(5), requires_grad = TRUE)
  with_no_grad({
    x$sub_(torch_tensor(as.numeric(1:5)))
  })
  x
  x$grad
}
```
Index

* **distributions**
 distr_bernoulli, 33
 distr_chi2, 35
 distr_gamma, 36
 distr_multivariate_normal, 37
 distr_normal, 38
 distr_poisson, 39

* **linalg**
 linalg_cholesky, 51
 linalg_cholesky_ex, 52
 linalg_det, 55
 linalg_eig, 56
 linalg_eigh, 57
 linalg_eigvals, 59
 linalg_eigvalsh, 60
 linalg_householder_product, 61
 linalg_inv, 62
 linalg_inv_ex, 63
 linalg_lsvec, 64
 linalg_matrix_norm, 66
 linalg_matrix_power, 68
 linalg_matrix_rank, 69
 linalg_multi_dot, 70
 linalg_norm, 71
 linalg_pinv, 72
 linalg_qr, 74
 linalg_slogdet, 75
 linalg_solve, 76
 linalg_svd, 77
 linalg_svdvals, 79
 linalg_tensorinv, 80
 linalg_tensorsolve, 81
 linalg_vector_norm, 82

* **serialization**
 load_state_dict, 83
 torch_load, 422
 torch_save, 501

* **tensor-attributes**
 is_torch_device, 44
 torch_dtype, 45
 torch_finfo, 382
 torch_iinfo, 402
 torch_qscheme, 478
 torch_reduction, 492
 torch_set_default_dtype, 504

* **torch-save**
 torch_device, 356

* **torch_save**
 torch_load, 422
 torch_save, 501

 as_array, 16
 autograd_backward, 18
 autograd_function, 19
 autograd_grad, 20
 autograd_set_grad_mode, 22
 AutogradContext, 16, 20

 backends_mkl_is_available, 22
 backends_mkldnn_is_available, 22
 backends_openmp_is_available, 23
 broadcast_all, 23

 Constraint, 24
 contrib_sort_vertices, 25
 cuda_current_device, 25
 cuda_device_count, 26
 cuda_is_available, 26

 dataloader, 26
 dataloader(), 29
 dataloader_make_iter, 28, 28
 dataloader_next, 28
 dataset, 29
 dataset_subset, 30
 distr_bernoulli, 33, 35, 36, 38–40
 distr_categorical, 34
 distr_chi2, 34, 35, 36, 38–40
INDEX

distr_gamma, 34, 35, 36, 38–40

distr_mixture_same_family, 36

distr_multivariate_normal, 34–36, 37, 39, 40

distr_normal, 34–36, 38, 39, 40

distr_poisson, 34–36, 38, 39, 39

Distribution, 30, 34–36, 38–40

enumerate, 40
enumerate.dataloader, 40

get_install_libs_url, 41

install_torch, 41
install_torch_from_file, 42

int, 67, 71, 81, 82

is_dataloader, 43

is_optimizer, 44

is_torch_device, 44

is_torch_dtype, 44

is_torch_layout, 45

is_torch_memory_format, 45

is_torch_qscheme, 46

is_undefined_tensor, 46

jit_compile, 46

jit_load, 47

jit_save, 47

jit_save(). 47

jit_scalar, 48

jit_trace, 48, 50

jit_trace(), 50

jit_trace_module, 50

jit_trace_module(), 49, 50

jit_tuple, 51

linalg_cholesky, 51, 53, 55, 57, 59–64, 66–70, 72–75, 77–81, 83

linalg_cholesky(), 52, 53, 58

linalg_cholesky_ex, 52, 52, 55, 57, 59–64, 66–70, 72–75, 77–81, 83

linalg_cholesky_ex(), 52

linalg_cond, 53

linalg_det, 52, 53, 55, 57, 59–64, 66–70, 72–75, 77–81, 83

linalg_eig, 52, 53, 55, 56, 59–64, 66–70, 72–75, 77–81, 83

linalg_eigh, 57, 58, 60, 78

linalg_eigh(), 52, 53, 55, 57, 59–64, 66–70, 72–75, 77–81, 83

linalg_eigh(), 52, 57, 58, 61, 73, 78

linalg_eigvals, 52, 53, 55, 57, 59, 59, 61–64, 66–70, 72–75, 77–81, 83

linalg_eigvals(), 57

linalg_eigvalsh, 52, 53, 55, 57, 59, 60, 62–64, 66–70, 72–75, 77–81, 83

linalg_eigvalsh(), 58

linalg_householder_product, 52, 53, 55, 57, 59–61, 61, 63, 64, 66–70, 72–75, 77–81, 83

linalg_inv, 52, 53, 55, 57, 59–62, 62, 64, 66–70, 72–75, 77–81, 83

linalg_inv(), 54, 64, 73

linalg_inv_ex, 52, 53, 55, 57, 59–63, 63, 66–70, 72–75, 77–81, 83

linalg_lstsq, 52, 53, 55, 57, 59–64, 64, 67–70, 72–75, 77–81, 83

linalg_lstsq(), 73

linalg_matrix_norm, 52, 53, 55, 57, 59–64, 66, 68–70, 72–75, 77–81, 83

linalg_matrix_power, 52, 53, 55, 57, 59–64, 66, 67, 68, 69, 70, 72–75, 77–81, 83

linalg_matrix_rank, 52, 53, 55, 57, 59–64, 66–68, 69, 70, 72–75, 77–81, 83

linalg_multi_dot, 52, 53, 55, 57, 59–64, 66–69, 70, 72–75, 77–81, 83

linalg_norm, 52, 53, 55, 57, 59–64, 66–70, 71, 73–75, 77–81, 83

linalg_norm(), 54, 83

linalg_pinv, 52, 53, 55, 57, 59–64, 66–70, 72, 72, 74, 75, 77–81, 83

linalg_pinv(), 63

linalg_qr, 52, 53, 55, 57, 59–64, 66–70, 72, 73, 74, 75, 77–81, 83

linalg_qr(), 57, 59, 62, 78

linalg_slogdet, 52, 53, 55, 57, 59–64, 66–70, 72–74, 75, 77–81, 83

linalg_solve, 52, 53, 55, 57, 59–64, 66–70, 72–75, 76, 78–81, 83

linalg_solve(), 63, 68

linalg_svd, 52, 53, 55, 57, 59–64, 66–70, 72–75, 77, 79–81, 83

linalg_svd(), 54, 57, 59, 73, 78, 79

linalg_svdvals, 52, 53, 55, 57, 59–64, 66–70, 72–75, 77, 78, 79, 80, 81, 83
linalg_svdvals(), 78
linalg_tensorinv, 52, 53, 55, 57, 59–64, 66–70, 72–75, 77–79, 80, 81, 83
linalg_tensorinv(), 81
linalg_tensorsolve, 52, 53, 55, 59–64, 66–70, 72–75, 77–80, 81, 83
linalg_tensorsolve(), 80
linalg_vector_norm, 52, 53, 55, 59–64, 66–70, 72–75, 77–81, 82
load_state_dict, 83
lr_lambda, 84
lr_multiplicative, 85
lr_one_cycle, 86
lr_scheduler, 88
lr_step, 89

nn_adaptive_avg_pool1d, 153
nn_adaptive_avg_pool1d(), 291
nn_adaptive_avg_pool2d, 153
nn_adaptive_avg_pool3d, 154
nn_adaptive_log_softmax_with_loss, 155
nn_adaptive_max_pool1d, 157
nn_adaptive_max_pool2d, 157
nn_adaptive_max_pool3d, 158
nn_avg_pool1d, 159
nn_avg_pool1d(), 315
nn_avg_pool2d, 160
nn_avg_pool3d, 162
nn_batch_norm1d, 163
nn_batch_norm2d, 165
nn_batch_norm3d, 166
nn_bce_loss, 168
nn_bce_with_logits_loss, 169
nn_bilinear, 171
nn_buffer, 172
nn_buffer(), 240
nn_celu, 172
nn_contrib_sparsemax, 173
nn_conv1d, 173
nn_conv1d(), 341
nn_conv2d, 176, 185, 193, 194
nn_conv2d(), 342
nn_conv3d, 178
nn_conv3d(), 343
nn_conv_transpose1d, 181
nn_conv_transpose1d(), 345
nn_conv_transpose2d, 183, 185
nn_conv_transpose2d(), 346
nn_conv_transpose3d, 185
nn_conv_transpose3d(), 347
nn_cosine_embedding_loss, 188
nn_cross_entropy_loss, 189
nn_ctc_loss, 190
nn_dropout, 192
nn_dropout2d, 193, 193
nn_dropout3d, 194, 194
nn_elu, 195
nn_embedding, 196, 197
nn_fractional_max_pool2d, 197
nn_fractional_max_pool3d, 198
nn_gelu, 199
nn_glu, 200
nn_group_norm, 201
nn_gru, 202
nn_hardshrink, 204
nn_hardsigmoid, 205
nn_hardswish, 205
nn_hardtanh, 206
nn_hinge_embedding_loss, 207
nn_identity, 208
nn_init_calculate_gain, 208
nn_init_constant_, 209
nn_init_dirac_, 209
nn_init_eye_, 210
nn_init_kaiming_normal_, 210
nn_init_kaiming_uniform_, 211
nn_init_normal_, 212
nn_init_ones_, 213
nn_init_orthogonal_, 213
nn_init_sparse_, 214
nn_init_trunc_normal_, 215
nn_init_uniform_, 215
nn_init_xavier_normal_, 216
nn_init_xavier_uniform_, 216
nn_init_zeros_, 217
nn_kl_div_loss, 218
nn_l1_loss, 219
nn_layer_norm, 220
nn_leaky_relu, 222
nn_linear, 223
nn_log_sigmoid, 224
nn_log_softmax, 224
nn_log_softmax(), 189
nn_lp_pool1d, 225
nn_lp_pool2d, 226
nn_lstm, 228
nn_margin_ranking_loss, 230
nn_max_pool1d, 231
nn_max_pool1d(), 236
nn_max_pool2d, 232
nn_max_pool2d(), 237
nn_max_pool3d, 234
nn_max_pool3d(), 238
nn_max_unpool1d, 235
nn_max_unpool1d(), 157
nn_max_unpool2d, 236
nn_max_unpool2d(), 158, 198
nn_max_unpool3d, 238
nn_max_unpool3d(), 158, 199
nn_module, 239
nn_module(), 49
nn_module_list, 241, 241
nn_mse_loss, 241
nn_multi_margin_loss, 247
nn_multihead_attention, 243
nn_multilabel_margin_loss, 244
nn_multilabel_soft_margin_loss, 246
nn_nll_loss, 248
nn_nll_loss(), 218
nn_pairwise_distance, 249
nn_pairwise_distance(), 151, 271
nn_parameter, 250
nn_parameter(), 240
nn_poisson_nll_loss, 251
nn_prelu, 252
nn_relu, 253
nn_relu6, 254
nn_rnn, 254
nn_rrelu, 257
nn_selu, 258
nn_sequential, 259
nn_sigmoid, 259
nn_smooth_l1_loss, 260
nn_soft_margin_loss, 266
nn_softmax, 261
nn_softmax2d, 262
nn_softmin, 263
nn_softplus, 264
nn_softshrink, 265
nn_softsign, 265
nn_tanh, 267
nn_tanhshrink, 267
nn_threshold, 268
nn_triplet_margin_loss, 269
nn_triplet_margin_loss(), 271
nn_triplet_margin_with_distance_loss, 270
nn_triplet_margin_with_distance_loss(), 151, 270
nn_utils_clip_grad_norm, 272
nn_utils_clip_grad_value, 273
nn_utils_rnn_pack_padded_sequence, 273
nn_utils_rnn_pack_padded_sequence(), 203, 229, 275, 276
nn_utils_rnn_pack_sequence, 274
nn_utils_rnn_pack_sequence(), 229, 276
nn_utils_rnn_pad_packed_sequence, 275
nn_utils_rnn_pad_sequence, 276
nnf_adaptive_avg_pool1d, 90
nnf_adaptive_avg_pool2d, 90
nnf_adaptive_avg_pool3d, 91
nnf_adaptive_max_pool1d, 91
nnf_adaptive_max_pool2d, 92
nnf_adaptive_max_pool3d, 92
nnf_affine_grid, 93
nnf_affine_grid(), 93, 118
nnf_alpha_dropout, 93
nnf_avg_pool1d, 94
nnf_avg_pool2d, 94
nnf_avg_pool3d, 95
nnf_batch_norm, 96
nnf_bilinear, 97
nnf_binary_cross_entropy, 97
nnf_binary_cross_entropy_with_logits, 98
nnf celu, 99
nnf celu(), 329
nnf_celu, 99
nnf_contrib_sparsemax, 99
nnf_conv1d, 100
nnf_conv2d, 100
nnf_conv3d, 101
nnf_conv_tbc, 102
nnf_conv_transpose1d, 103
nnf_conv_transpose2d, 104
nnf_conv_transpose3d, 105
nnf_cosine_embedding_loss, 106
nnf_cosine_similarity, 106
nnf_cross_entropy, 107
nnf_ctc_loss, 108
nnf_dropout, 109
nnf_dropout2d, 109
nnf_dropout3d, 110
nnf_elu, 110
nnf_elu_ (nnf_elu), 110
nnf_embedding, 111
nnf_embedding_bag, 112
nnf_fold, 113
nnf_fractional_max_pool2d, 114
nnf_fractional_max_pool3d, 115
nnf_gelu, 116
nnf_glu, 116
nnf_grid_sample, 117
nnf_grid_sample(), 93
nnf_group_norm, 118
nnf_gumbel_softmax, 119
nnf_hardshrink, 119
nnf_hardsigmoid, 120
nnf_hardswish, 120
nnf_hardtanh, 121
nnf_hardtanh_ (nnf_hardtanh), 121
nnf_hinge_embedding_loss, 121
nnf_instance_norm, 122
nnf_interpolate, 122
nnf_interpolate(), 117
nnf_kl_div, 124
nnf_l1_loss, 124
nnf_layer_norm, 125
nnf_leaky_relu, 125
nnf_linear, 126
nnf_local_response_norm, 126
nnf_log_softmax, 108, 127
nnf_logsigmoid, 127
nnf_lp_pool1d, 128
nnf_lp_pool2d, 128
nnf_margin_ranking_loss, 129
nnf_max_pool1d, 129
nnf_max_pool2d, 130
nnf_max_pool3d, 131
nnf_max_unpool1d, 131
nnf_max_unpool2d, 132
nnf_max_unpool3d, 133
nnf_mse_loss, 133
nnf_multi_head_attention_forward, 135
nnf_multi_margin_loss, 137
nnf_multilabel_margin_loss, 134
nnf_multilabel_soft_margin_loss, 134
nnf_nll_loss, 138
nnf_normalize, 138
nnf_one_hot, 139
nnf_pad, 140
nnf_pairwise_distance, 140
nnf_pdist, 141
nnf_pixel_shuffle, 141
nnf_poisson_nll_loss, 142
nnf_prelu, 142
nnf.relu, 143
nnf.relu6, 143
nnf.relu_(nnf.relu), 143
nnf.rrelu, 144
nnf.rrelu_(nnf.rrelu), 144
nnf_selu, 144
nnf_selu_ (nnf_selu), 144
nnf.sigmoid, 145
nnf.smooth_l1_loss, 145
nnf.soft_margin_loss, 149
nnf.softmax, 146, 147
nnf.softmin, 146
nnf.softplus, 147
nnf.softshrink, 148
nnf.softsign, 148
nnf.tanhshrink, 149
nnf.threshold, 150
nnf.threshold_ (nnf.threshold), 150
nnf.triplet_margin_loss, 150
nnf.triplet_margin_with_distance_loss, 151
nnf.unfold, 152
optim.adadelta, 279
optim.adagrad, 280
optim.adam, 281
optim.asgd, 282
optim.lbfgs, 283
optim_required, 284
optim.rmsprop, 284
optim.rprop, 285
optim.sgd, 286
optimizer, 277
R6::R6Class(), 29, 88, 239
slc, 287
tensor_dataset, 288
threads, 288
torch.abs, 289
torch.abs(), 289
torch.absolute, 289
torch.acos, 290
torch_cumsum, 353
torch_deg2rad, 354
torch_dequantize, 354
torch_det, 355
torch_device, 356
torch_device(), 528
torch_diag, 356
torch_diag_embed, 359
torch_diagflat, 357
torch_diagonal, 358
torch_diff, 360
torch_diff(), 360
torch_diagonal, 358
torch_diff() 360
torch_diag, 356
torch_diag_embed, 359
torch_diagflat, 357
torch_diagonal, 358
torch_diff, 360
torch_diff() 360
torch_div, 362, 387, 539
torch_div(), 294, 364
torch_divide, 364
torch_dot, 364
torch_double(torch_dtype), 366
torch_dstack, 365
torch_dtype, 366, 528
torch_diag, 356
torch_double, 366
torchEmpty, 368
torch_empty_like, 369
torch_empty_strided, 370
torch_eq, 372
torch_equal, 372
torch_erf, 373
torch_erfc, 374
torch_erfinv, 374
torch_exp, 375
torch_exp2, 376
torch_expml, 376
torch_eye, 377
torch_fft_fft, 378
torch_fft_fft(), 381
torch_fft_ifft, 379
torch_fft_irfft, 380
torch_fft_irfft(), 381
torch_fft_rfft, 381
torch_fft_rfft(), 380
torch_finfo, 382
torch_finfo(), 69
torch_fix, 382
torch_flatten, 383
torch_flip, 383
torch_flip, 384
torch_flipud, 385
torch_float(torch_dtype), 366
torch_float16(torch_dtype), 366
torch_float32(torch_dtype), 366
torch_float64(torch_dtype), 366
torch_flatten, 386
torch_flatten_divide, 386
torch_flatten_divide(), 294, 363
torch_fmod, 387
torch_frac, 388
torch_full, 388
torch_full_like, 389
torch_gather, 390
torch_gcd, 391
torch_ge, 392
torch_ge(), 395
torch_generator, 393
torch_generator(), 464
torch_geqrf, 393, 468, 469
torch_geqrf(), 62, 469
torch_ger, 394
torch_get_default_dtype
torch_set_default_dtype, 504
torch_get_num_interop_threads
torch_set_default_dtype, 504
torch_get_num_interop_threads
torch_get_num_interop_threads, 288
torch_greater, 395
torch_greater_equal, 395
torch_gt, 396
torch_gt(), 395
torch_half(torch_dtype), 366
torch_hamming_window, 396
torch_hann_window, 398
torch_heaviside, 399
torch_histc, 400
torch_hstack, 400
torch_hypot, 401
torch_i0, 402
torch_i0(), 415
torch_iinfo, 402
torch_imag, 403
torch_index, 403
torch_index_put, 404
torch_index_put, 404
torch_index_select, 405
torch_int(torch_dtype), 366
torch_int16(torch_dtype), 366
torch_int32(torch_dtype), 366
torch_orgqr, 468
torch_orgqr(), 468
torch_ormqr, 468
torch_ormqr(), 62
torch_outer, 469
torch_pdist, 470
torch_per_channel_affine
 (torch_qscheme), 478
torch_per_channel_symmetric
 (torch_qscheme), 478
torch_per_tensor_affine
 (torch_qscheme), 478
torch_per_tensor_symmetric
 (torch_qscheme), 478
torch_pinvverse, 470
torch_pixel_shuffle, 471
torch_poisson, 472
torch_polygamma, 473
torch_pow, 474
torch_preserve_format
 (torch_memory_format), 447
torch_preserve_format(), 338
torch_prod, 476
torch_promote_types, 477
torch_qint32 (torch_dtype), 366
torch_qint8 (torch_dtype), 366
torch_qr, 394, 477
torch_qscheme, 478
torch_quantile(), 457
torch_quantize_per_channel, 480
torch_quantize_per_tensor, 481
torch_quint8 (torch_dtype), 366
torch_rad2deg, 481
torch_rand, 482
torch_rand_like, 488
torch_randint, 483
torch_randint_like, 484
torch_randn, 485
torch_randn_like, 486
torch_randperm, 487
torch_range, 489
torch_real, 490
torch_reciprocal, 491
torch_reduction, 492
torch_reduction_mean (torch_reduction), 492
torch_reduction_sum (torch_reduction), 492
torch_relu, 492
torch_relu(), 493
torch_relu_, 493
torch_remainder, 493
torch_renorm, 494
torch_repeat_interleave, 495
torch_reshape, 496
torch_result_type, 496
torch_roll, 497
torch_rot90, 498
torch_round, 499
torch_rrelu_, 499
torch_rsqrt, 500
torch_save, 423, 501
torch_scalar_tensor, 501
torch_searchsorted, 502
torch_selu, 503
torch_selu(), 503
torch_selu_, 503
torch_set_default_dtype, 504
torch_set_num_interop_threads
 (threads), 288
torch_set_num_threads (threads), 288
torch_sgn, 504
torch_short (torch_dtype), 366
torch_sigmoid, 505
torch_sign, 504, 506
torch_signbit, 506
torch_sin, 507
torch_sinh, 508
torch_slogdet, 508
torch_solve, 509
torch_sort, 510
torch_sparse_coo (torch_layout), 417
torch_sparse_coo_tensor, 511
torch_split, 512
torch_split(), 327, 543
torch_sqrt, 513
torch_square, 514
torch_squeeze(), 301
torch_stack, 515
torch_std, 516
torch_std_mean, 517
torch_stft, 518
torch_stft(), 411, 412, 416
torch_strided (torch_layout), 417
torch_sub, 520
torch_sub(), 521
torch_subtract, 521
torch_sum, 521
torch_svd, 522
torch_symeig, 523
torch_t, 525
torch_take, 526
torch_tan, 526
torch_tanh, 527
torch_tensor, 528
torch_tensor(), 464
torch_tensordot, 528
torch_tensordot(), 80, 81
torch_threshold_, 529
torch_topk, 530
torch_trace, 531
torch_transpose, 531
torch_trapezoid, 532
torch_triangular solve, 533
torch_tril, 534
torch_tril_indices, 535
torch_triu, 536
torch_triu_indices, 537
torch_true_divide, 539
torch_true_divide(), 294, 363
torch_trunc, 539
torch_trunc(), 382
torch_uint8 (torch_dtype), 366
torch_unbind, 540
torch_unique_consecutive, 541
torch_unsafe_chunk, 542
torch_unsafe_split, 542
torch_unsqueeze, 543
torch_vander, 544
torch_var, 544
torch_var_mean, 545
torch_vdot, 546
torch_view_as_complex, 547, 548
torch_view_as_real, 548
torch_view_as_real(), 548
torch_vstack, 549
torch_where, 549
torch_zeros, 550
torch_zeros_like, 551
with_detect_anomaly, 553
with_enable_grad, 554
with_no_grad, 554, 554