Package ‘tornado’

February 12, 2023

Title Plots for Model Sensitivity and Variable Importance

Version 0.1.2

Description Draws tornado plots for model sensitivity to univariate changes. Implements methods for many modeling methods including linear models, generalized linear models, survival regression models, and arbitrary machine learning models in the caret package. Also draws variable importance plots.

License GPL-3

Encoding UTF-8

Suggests testthat, caret, glmnet, randomForest, knitr, rmarkdown

RoxygenNote 7.2.2

Imports survival, assertthat, ggplot2, scales, grid, gridExtra, rlang

VignetteBuilder knitr

URL https://github.com/bertcarnell/tornado

BugReports https://github.com/bertcarnell/tornado/issues

NeedsCompilation no

Author Rob Carnell [aut, cre]

Maintainer Rob Carnell <bertcarnell@gmail.com>

Repository CRAN

Date/Publication 2023-02-12 18:00:02 UTC

R topics documented:

importance ... 2
importance.cv.glmnet ... 3
importance.glm .. 4
importance.lm ... 5
importance.survreg ... 6
importance.train .. 7
plot.importance_plot ... 8
plot.tornado_plot .. 9
Generic Importance Plot

Description

Generic Importance Plot

Usage

importance(model_final, ...)

Arguments

model_final a model object
...

arguments passed to other methods

Value

an object of type importance_plot

type the type of importance plot
data the importance data required for the plot

See Also

importance.glm importance.lm importance.cv.glmnet importance.survreg
importance.cv.glmnet Plot Variable Importance for a GLMNET model

Description

Plot Variable Importance for a GLMNET model

Usage

S3 method for class 'cv.glmnet'
importance(model_final, model_data, form, dict = NA, nperm = 500, ...)

Arguments

- `model_final`: a model object
- `model_data`: the data used to fit the model
- `form`: the model formula
- `dict`: a variable dictionary for plotting
- `nperm`: the number of permutations used to calculate the importance
- `...`: arguments passed to other methods

Value

- an object of type `importance_plot`
- `type`: the type of importance plot
- `data`: the importance data required for the plot

See Also

- `importance`

Examples

```r
if (requireNamespace("glmnet", quietly = TRUE)) {
  form <- formula(mpg ~ cyl*wt*hp)
  mf <- model.frame(form, data = mtcars)
  mm <- model.matrix(mf, mf)
  gtest <- glmnet::cv.glmnet(x = mm, y = mtcars$mpg, family = "gaussian")
  imp <- importance(gtest, mtcars, form, nperm = 100)
  plot(imp)
}
```
importance.glm

GLM variable importance plot

Description

GLM variable importance plot

Usage

S3 method for class 'glm'
importance(model_final, model_null, dict = NA, ...)

Arguments

- `model_final`: a model object
- `model_null`: a glm object for the null model
- `dict`: a dictionary to translate the model variables to plotting variables
- `...`: arguments passed to other methods

Value

- an object of type `importance_plot`
 - `type`: the type of importance plot
 - `data`: the importance data required for the plot

See Also

- `importance`

Examples

gtest <- glm(mpg ~ cyl*wt*hp + gear + carb, data=mtcars, family=gaussian)
gtestreduced <- glm(mpg ~ 1, data=mtcars, family=gaussian)
imp <- importance(gtest, gtestreduced)
plot(imp)

gtest <- glm(mpg ~ cyl + wt + hp + gear + carb, data=mtcars, family=gaussian)
gtestreduced <- glm(mpg ~ 1, data=mtcars, family=gaussian)
imp <- importance(gtest, gtestreduced)
plot(imp)

gtest <- glm(vs ~ wt + disp + gear, data=mtcars, family=binomial(link="logit"))
gtestreduced <- glm(vs ~ 1, data=mtcars, family=binomial(link="logit"))
imp <- importance(gtest, gtestreduced)
plot(imp)
importance.lm

Linear Model variable importance plot

Description

Linear Model variable importance plot

Usage

S3 method for class 'lm'
importance(model_final, model_null, dict = NA, ...)

Arguments

model_final a model object
model_null a lm object for the null model
dict a dictionary to translate the model variables to plotting variables
... arguments passed to other methods

Value

an object of type importance_plot

 type the type of importance plot
data the importance data required for the plot

See Also

importance

Examples

gtest <- lm(mpg ~ cyl*wt*hp + gear + carb, data=mtcars)
gtestreduced <- lm(mpg ~ 1, data=mtcars)
imp <- importance(gtest, gtestreduced)
plot(imp)

gtest <- lm(mpg ~ cyl + wt + hp + gear + carb, data=mtcars)
gtestreduced <- lm(mpg ~ 1, data=mtcars)
imp <- importance(gtest, gtestreduced)
plot(imp)
importance.survreg Create a variable importance plot for a survreg model

Description
Create a variable importance plot for a survreg model

Usage
S3 method for class 'survreg'
importance(model_final, model_data, dict = NA, nperm = 500, ...)

Arguments
- model_final: a model object
- model_data: the data used to fit the model
- dict: a plotting dictionary for models terms
- nperm: the number of permutations used to calculate the importance
- ... arguments passed to other methods

Value
- an object of type importance_plot
- type: the type of importance plot
- data: the importance data required for the plot

See Also
importance

Examples
model_final <- survival::survreg(survival::Surv(futime, fustat) ~ ecog.ps*rx + age,
data = survival::ovarian,
dist = "weibull")
imp <- importance(model_final, survival::ovarian, nperm = 500)
plot(imp)
Importance Plot for the caret::train objects

Description

Importance Plot for the caret::train objects

Usage

```r
## S3 method for class 'train'
importance(model_final, ...)
```

Arguments

- `model_final`: a model object
- `...`: arguments passed to other methods

Value

- `importance_plot`: an object of type importance_plot
- `type`: the type of importance plot
- `data`: the importance data required for the plot

See Also

- `importance`

Examples

```r
if (requireNamespace("caret", quietly = TRUE) &
    requireNamespace("randomForest", quietly = TRUE))
{
  model_final <- caret::train(x = subset(mtcars, select = -mpg), y = mtcars$mpg, method = "rf")
  imp <- importance(model_final)
  plot(imp)
}
```
Description

Plot an Importance Plot object

Usage

```r
## S3 method for class 'importance_plot'
plot(
  x,
  plot = TRUE,
  nvar = NA,
  col_imp_alone = "#69BE28",
  col_imp_cumulative = "#427730",
  geom_bar_control = list(fill = "#69BE28"),
  ...
)
```

Arguments

- `x`: a `importance_plot` object
- `plot`: boolean to determine if the plot is displayed, or just returned
- `nvar`: the number of variables to plot in order of importance
- `col_imp_alone`: the color used for the variance explained by each variable alone
- `col_imp_cumulative`: the color used for the cumulative variance explained
- `geom_bar_control`: list of arguments to control the plotting of `ggplot2::geom_bar`
- `...`: future arguments

Value

the plot

Examples

```r
gtest <- lm(mpg ~ cyl + wt + hp + gear + carb, data = mtcars)
gtestreduced <- lm(mpg ~ 1, data = mtcars)
imp <- importance(gtest, gtestreduced)
plot(imp)

gtest <- survival::survreg(survival::Surv(futime, fustat) ~ ecog.ps*rx + age,
data = survival::ovarian,
dist = "weibull")
imp <- importance(gtest, survival::ovarian, nperm = 50)
plot(imp)
```
plot.tornado_plot

Plot a Tornado Plot object

Description
Plot a Tornado Plot object

Usage

S3 method for class 'tornado_plot'
plot(
 x,
 plot = TRUE,
 nvar = NA,
 xlabel = "Model Response",
 sensitivity_colors = c("grey", "#69BE28"),
 geom_bar_control = list(width = NULL),
 geom_point_control = list(fill = "black", col = "black"),
 ...
)

Arguments

 x a tornado_plot object
 plot boolean to determine if the plot is displayed, or just returned
 nvar the number of variables to plot
 xlabel a label for the x-axis
 sensitivity_colors a two element character vector of the bar colors for a lower value and upper value
 geom_bar_control a list of ggplot2::geom_bar options
 geom_point_control a list of ggplot2::geom_point
 ... future arguments

Value
the plot

Examples

gtest <- lm(mpg ~ cyl*wt*hp, data = mtcars)
tp <- tornado(gtest, type = "PercentChange", alpha = 0.10, xlabel = "MPG")
plot(tp)
print.importance_plot

Description

print data in an importance_plot

Usage

```r
## S3 method for class 'importance_plot'
print(x, ...)
```

Arguments

- `x` the object to be printed
- `...` further arguments passed to `print.data.frame`

Examples

```r
gtest <- glm(vs ~ wt + disp + gear, data=mtcars, family=binomial(link="logit"))
gtestreduced <- glm(vs ~ 1, data=mtcars, family=binomial(link="logit"))
g <- importance(gtest, gtestreduced)
print(g)
```

print.tornado_plot

Description

print data in a tornado_plot

Usage

```r
## S3 method for class 'tornado_plot'
print(x, ...)
```

Arguments

- `x` the object to be printed
- `...` further arguments passed to `print.data.frame`

Examples

```r
gtest <- lm(mpg ~ cyl*wt*hp, data = mtcars)
tp <- tornado(gtest, type = "PercentChange", alpha = 0.10, xlabel = "MPG")
print(tp)
```
quantile.ordered

Quantile for Ordered Factors

Description

Quantile for Ordered Factors

Usage

```r
## S3 method for class 'ordered'
quantile(x, probs = seq(0, 1, 0.25), ...)
```

Arguments

- `x`: an ordered factor
- `probs`: the desired quantiles
- `...`: arguments passed on

Value

ordered factor levels at the desired quantiles

Examples

```r
quantile(ordered(rep(c("C","B","A"), each=30), levels=c("C","B","A")),
probs <- seq(0, 1, 0.25))
```

tornado

Generic tornado plotting method

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

```r
tornado(model, type, alpha, dict, ...)
```
Arguments

- `model`: a model object
- `type`: PercentChange, percentiles, or ranges
- `alpha`: the level of change
- `dict`: a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
- `...`: further arguments, not used

Value

- a `tornado_plot` object

Returns

- `type`: the type of tornado plot
- `data`: the data required for the plot
- `family`: the model family if available

See Also

tornado.lm, tornado.glm, tornado.cv.glmnet, tornado.survreg, tornado.coxph, tornado.train

tornado.coxph

Cox Proportional Hazards Tornado Diagram

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

```r
## S3 method for class 'coxph'
tornado(model, type = "PercentChange", alpha = 0.1, dict = NA, modedata, ...)
```
Arguments

- **model**: a model object
- **type**: PercentChange, percentiles, or ranges
- **alpha**: the level of change
- **dict**: a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
- **modeldata**: the data used to fit the model
- **...**: further arguments, not used

Value

- a **tornado_plot** object
- **type**: the type of tornado plot
- **data**: the data required for the plot
- **family**: the model family if available

Examples

```r
gtest <- survival::coxph(survival::Surv(stop, event) ~ rx + size + number, survival::bladder)
torn <- tornado(gtest, modeldata = survival::bladder, type = "PercentChange", alpha = 0.10)
plot(torn, xlabel = "Risk")
```

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.
Usage

```r
## S3 method for class 'cv.glmnet'
tornado(
  model,
  type = "PercentChange",
  alpha = 0.1,
  dict = NA,
  modeldata,
  form,
  s = "lambda.1se",
  ...
)
```

Arguments

- `model`: a model object
- `type`: PercentChange, percentiles, or ranges
- `alpha`: the level of change
- `dict`: a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
- `modeldata`: the raw data used to fit the glmnet model
- `form`: the model formula
- `s`: Value(s) of the penalty parameter lambda at which predictions are required. Default is the value s="lambda.1se" stored on the CV object. Alternatively s="lambda.min" can be used. If s is numeric, it is taken as the value(s) of lambda to be used.
- `...`: further arguments, not used

Value

- a `tornado_plot` object

- `type`: the type of tornado plot
- `data`: the data required for the plot
- `family`: the model family if available

See Also

- `tornado`

Examples

```r
if (requireNamespace("glmnet", quietly = TRUE))
{
  form <- formula(mpg ~ cyl*wt*hp)
  mf <- model.frame(form, data = mtcars)
```
```r
mm <- model.matrix(form, data = mf)
gtest <- glmnet::cv.glmnet(x = mm, y = mtcars$mpg, family = "gaussian")
torn <- tornado(gtest, modeldata = mtcars, form = formula(mpg ~ cyl*wt*hp), s = "lambda.1se", type = "PercentChange", alpha = 0.10)
plot(torn, xlabel = "MPG")
```

tornado.glm

GLM Tornado Diagram

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

```r
## S3 method for class 'glm'
tornado(model, type = "PercentChange", alpha = 0.1, dict = NA, ...)
```

Arguments

- `model` a model object
- `type` PercentChange, percentiles, or ranges
- `alpha` the level of change
- `dict` a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
- `...` further arguments, not used

Value

A `tornado_plot` object

- `type` the type of tornado plot
- `data` the data required for the plot
- `family` the model family if available
tornado.lm

See Also
tornado

Examples
gtest <- glm(mpg ~ cyl*wt*hp, data = mtcars, family = gaussian)
torn <- tornado(gtest, type = "PercentChange", alpha = 0.10)
plot(torn, xlabel = "MPG")

Description
A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage
S3 method for class 'lm'
tornado(model, type = "PercentChange", alpha = 0.1, dict = NA, ...)

Arguments
model a model object
type PercentChange, percentiles, or ranges
alpha the level of change
dict a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
... further arguments, not used

Value
a tornado_plot object
type the type of tornado plot
data the data required for the plot
family the model family if available
See Also

\texttt{tornado}

Examples

\begin{verbatim}
gtest <- lm(mpg ~ cyl*wt*hp, data = mtcars)
torn <- tornado(gtest, type = "PercentChange", alpha = 0.10)
plot(torn, xlabel = "MPG")
\end{verbatim}

\texttt{tornado.survreg}

Survreg Tornado Diagram

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

\begin{verbatim}
S3 method for class 'survreg'
tornado(model, type = "PercentChange", alpha = 0.1, dict = NA, modeldata, ...)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{model} a model object
 \item \texttt{type} \texttt{PercentChange, percentiles, or ranges}
 \item \texttt{alpha} the level of change
 \item \texttt{dict} a dictionary to translate variables for the plot. The dictionary must be a list or \texttt{data.frame} with elements \texttt{old} and \texttt{new}. The \texttt{old} element must contain each variable in the model.
 \item \texttt{modeldata} the data used to fit the model
 \item \ldots further arguments, not used
\end{itemize}

Value

\begin{itemize}
 \item a \texttt{tornado_plot} object
 \item \texttt{type} the type of tornado plot
 \item \texttt{data} the data required for the plot
 \item \texttt{family} the model family if available
\end{itemize}
See Also

tornado

Examples

gtest <- survival::survreg(survival::Surv(futime, fustat) ~ ecog.ps + rx,
 survival::ovarian,
 dist='weibull', scale=1)
torn <- tornado(gtest, modeldata = survival::ovarian, type = "PercentChange",
 alpha = 0.10, xlabel = "futime")
plot(torn, xlabel = "Survival Time")

tornado.train Caret Tornado Diagram

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

S3 method for class 'train'
tornado(
 model,
 type = "PercentChange",
 alpha = 0.1,
 dict = NA,
 class_number = NA,
 ...
)

Arguments

model a model object

type PercentChange, percentiles, or ranges

alpha the level of change

dict a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
class_number for classification models, which number of the class that will be plotted

... further arguments, not used

Value

a tornado_plot object

type the type of tornado plot
data the data required for the plot
family the model family if available

See Also
tornado

Examples

if (requireNamespace("caret", quietly = TRUE) &
 requireNamespace("randomForest", quietly = TRUE))
{
 gtest <- caret::train(x = subset(mtcars, select = -mpg), y = mtcars$mpg, method = "rf")
 torn <- tornado(gtest, type = "PercentChange", alpha = 0.10)
 plot(torn, xlabel = "MPG")
}
Index

importance, 2, 3–7
importance.cv.glmnet, 2, 3
importance.glm, 2, 4
importance.lm, 2, 5
importance.survreg, 2, 6
importance.train, 7

plot.importance_plot, 8
plot.tornado_plot, 9
print.importance_plot, 10
print.tornado_plot, 10

quantile.ordered, 11

tornado, 11, 14, 16–19
tornado.coxph, 12, 12
tornado.cv.glmnet, 12, 13
tornado.glm, 12, 15
tornado.lm, 12, 16
tornado.survreg, 12, 17
tornado.train, 12, 18