Package ‘tornado’

January 10, 2022

Title Plots for Model Sensitivity and Variable Importance
Version 0.1.1
Description Draws tornado plots for model sensitivity to univariate changes. Implements methods for many modeling methods including linear models, generalized linear models, survival regression models, and arbitrary machine learning models in the caret package. Also draws variable importance plots.
License GPL-3
Encoding UTF-8
Suggests testthat, covr, caret, glmnet, randomForest, knitr, rmarkdown
RoxygenNote 7.1.1
Imports survival, assertthat, ggplot2, scales, grid, gridExtra
VignetteBuilder knitr
URL https://github.com/bertcarnell/tornado
BugReports https://github.com/bertcarnell/tornado/issues
NeedsCompilation no
Author Rob Carnell [aut, cre]
Maintainer Rob Carnell <bertcarnell@gmail.com>
Repository CRAN
Date/Publication 2022-01-10 18:50:02 UTC

R topics documented:

 importance ... 2
 importance.cv.glmnet ... 3
 importance.glm .. 4
 importance.lm ... 5
 importance.survreg .. 6
 importance.train ... 7
 plot.importance_plot .. 8
 plot.tornado_plot .. 9
importance

Description

Generic Importance Plot

Usage

importance(model_final, ...)

Arguments

model_final a model object
...
... arguments passed to other methods

Value

an object of type importance_plot

type the type of importance plot

data the importance data required for the plot

See Also

importance.glm importance.lm importance.cv.glmnet importance.survreg
importance.cv.glmnet Plot Variable Importance for a GLMNET model

Description

Plot Variable Importance for a GLMNET model

Usage

S3 method for class 'cv.glmnet'
importance(model_final, model_data, form, dict = NA, nperm = 500, ...)

Arguments

- `model_final` a model object
- `model_data` the data used to fit the model
- `form` the model formula
- `dict` a variable dictionary for plotting
- `nperm` the number of permutations used to calculate the importance
- `...` arguments passed to other methods

Value

- An object of type `importance_plot`
 - `type` the type of importance plot
 - `data` the importance data required for the plot

See Also

- `importance`

Examples

```r
if (requireNamespace("glmnet", quietly = TRUE))
{
  form <- formula(mpg ~ cyl*wt*hp)
  mf <- model.frame(form, data = mtcars)
  mm <- model.matrix(mf, mf)
  gtest <- glmnet::cv.glmnet(x = mm, y = mtcars$mpg, family = "gaussian")
  imp <- importance(gtest, mtcars, form, nperm = 100)
  plot(imp)
}
```
importance.glm

GLM variable importance plot

Description

GLM variable importance plot

Usage

S3 method for class 'glm'
importance(model_final, model_null, dict = NA, ...)

Arguments

- model_final: a model object
- model_null: a glm object for the null model
- dict: a dictionary to translate the model variables to plotting variables
- ...: arguments passed to other methods

Value

- an object of type importance_plot
 - type: the type of importance plot
 - data: the importance data required for the plot

See Also

importance

Examples

gtest <- glm(mpg ~ cyl*wt*hp + gear + carb, data=mtcars, family=gaussian)
gtestreduced <- glm(mpg ~ 1, data=mtcars, family=gaussian)
imp <- importance(gtest, gtestreduced)
plot(imp)

gtest <- glm(mpg ~ cyl + wt + hp + gear + carb, data=mtcars, family=gaussian)
gtestreduced <- glm(mpg ~ 1, data=mtcars, family=gaussian)
imp <- importance(gtest, gtestreduced)
plot(imp)

gtest <- glm(vs ~ wt + disp + gear, data=mtcars, family=binomial(link="logit"))
gtestreduced <- glm(vs ~ 1, data=mtcars, family=binomial(link="logit"))
imp <- importance(gtest, gtestreduced)
plot(imp)
importance.lm

importance.lm
Linear Model variable importance plot

Description

Linear Model variable importance plot

Usage

```r
## S3 method for class 'lm'
importance(model_final, model_null, dict = NA, ...)
```

Arguments

- `model_final`: a model object
- `model_null`: a `lm` object for the null model
- `dict`: a dictionary to translate the model variables to plotting variables
- `...`: arguments passed to other methods

Value

- an object of type `importance_plot`
 - `type`: the type of importance plot
 - `data`: the importance data required for the plot

See Also

- `importance`

Examples

```r
gtest <- lm(mpg ~ cyl*wt*hp + gear + carb, data=mtcars)  
gtestnull <- lm(mpg ~ 1, data=mtcars)  
imp <- importance(gtest, gtestnull)  
plot(imp)

gtest <- lm(mpg ~ cyl + wt + hp + gear + carb, data=mtcars)  
gtestnull <- lm(mpg ~ 1, data=mtcars)  
imp <- importance(gtest, gtestnull)  
plot(imp)
```
importance.survreg
Create a variable importance plot for a survreg model

Description
Create a variable importance plot for a survreg model

Usage
S3 method for class 'survreg'
importance(model_final, model_data, dict = NA, nperm = 500, ...)

Arguments
- model_final: a model object
- model_data: the data used to fit the model
- dict: a plotting dictionary for models terms
- nperm: the number of permutations used to calculate the importance
- ...: arguments passed to other methods

Value
an object of type importance_plot

type: the type of importance plot
data: the importance data required for the plot

See Also
importance

Examples
model_final <- survival::survreg(survival::Surv(futime, fustat) ~ ecog.ps*rx + age,
data = survival::ovarian,
dist = "weibull")
imp <- importance(model_final, survival::ovarian, nperm = 500)
plot(imp)
importance.train

importance.train Importance Plot for the caret::train objects

Description

Importance Plot for the caret::train objects

Usage

S3 method for class 'train'
importance(model_final, ...)

Arguments

- `model_final`: a model object
- `...`: arguments passed to other methods

Value

an object of type importance_plot

- `type`: the type of importance plot
- `data`: the importance data required for the plot

See Also

importance

Examples

```r
if (requireNamespace("caret", quietly = TRUE) &
  requireNamespace("randomForest", quietly = TRUE))
{
  model_final <- caret::train(x = subset(mtcars, select = -mpg), y = mtcars$mpg, method = "rf")
  imp <- importance(model_final)
  plot(imp)
}
```
plot.importance_plot

Plot an Importance Plot object

Description

Plot an Importance Plot object

Usage

S3 method for class 'importance_plot'
plot(
 x,
 plot = TRUE,
 nvar = NA,
 col_imp_alone = "#69BE28",
 col_imp_cumulative = "#427730",
 geom_bar_control = list(fill = "#69BE28"),
 ...
)

Arguments

x a importance_plot object
plot boolean to determine if the plot is displayed, or just returned
nvar the number of variables to plot in order of importance
col_imp_alone the color used for the variance explained by each variable alone
col_imp_cumulative the color used for the cumulative variance explained
geom_bar_control list of arguments to control the plotting of ggplot2::geom_bar
...

Value

the plot

Examples

gtest <- lm(mpg ~ cyl + wt + hp + gear + carb, data = mtcars)
gtestreduced <- lm(mpg ~ 1, data = mtcars)
imp <- importance(gtest, gtestreduced)
plot(imp)

gtest <- survival::survreg(survival::Surv(futime, fustat) ~ ecog.ps*rx + age,
data = survival::ovarian,
dist = "weibull")
imp <- importance(gtest, survival::ovarian, nperm = 50)
plot(imp)
plot.tornado_plot

Plot a Tornado Plot object

Description
Plot a Tornado Plot object

Usage

```r
## S3 method for class 'tornado_plot'
plot(
x, 
plot = TRUE,
nvar = NA,
xlabel = "Model Response",
sensitivity_colors = c("grey", 
#69BE28"),
geom_bar_control = list(width = NULL),
geom_point_control = list(fill = "black", col = "black"),
...
)
```

Arguments

- `x` a `tornado_plot` object
- `plot` boolean to determine if the plot is displayed, or just returned
- `nvar` the number of variables to plot
- `xlabel` a label for the x-axis
- `sensitivity_colors` a two element character vector of the bar colors for a lower value and upper value
- `geom_bar_control` a list of `ggplot2::geom_bar` options
- `geom_point_control` a list of `ggplot2::geom_point`
- `...` future arguments

Value

the plot

Examples

gtest <- lm(mpg ~ cyl*wt*hp, data = mtcars)
tp <- tornado(gtest, type = "PercentChange", alpha = 0.10, xlabel = "MPG")
plot(tp)
print.importance_plot print data in an importance_plot

Description
print data in an importance_plot

Usage
S3 method for class 'importance_plot'
print(x, ...)

Arguments
x the object to be printed
...
 further arguments passed to print.data.frame

Examples
gtest <- glm(vs ~ wt + disp + gear, data=mtcars, family=binomial(link="logit"))
gtestreduced <- glm(vs ~ 1, data=mtcars, family=binomial(link="logit"))
g <- importance(gtest, gtestreduced)
print(g)

print.tornado_plot print data in a tornado_plot

Description
print data in a tornado_plot

Usage
S3 method for class 'tornado_plot'
print(x, ...)

Arguments
x the object to be printed
...
 further arguments passed to print.data.frame

Examples
gtest <- lm(mpg ~ cyl*wt*hp, data = mtcars)
tp <- tornado(gtest, type = "PercentChange", alpha = 0.10, xlabel = "MPG")
print(tp)
Quantile for Ordered Factors

Usage

S3 method for class 'ordered'
quantile(x, probs = seq(0, 1, 0.25), ...)

Arguments

x
an ordered factor

probs
the desired quantiles

... arguments passed on

Value

ordered factor levels at the desired quantiles

Examples

quantile(ordered(rep(c("C","B","A"), each=30), levels=c("C","B","A")),
probs <- seq(0, 1, 0.25))

tornado

Generic tornado plotting method

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

tornado(model, type, alpha, dict, ...)

tornado.coxph

Cox Proportional Hazards Tornado Diagram

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

```r
# S3 method for class 'coxph'
tornado(model, type = "PercentChange", alpha = 0.1, dict = NA, modeldata, ...)
```
Arguments

- **model**: a model object
- **type**: PercentChange, percentiles, or ranges
- **alpha**: the level of change
- **dict**: a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
- **modeldata**: the data used to fit the model
- **...**: further arguments, not used

Value

A tornado_plot object

- **type**: the type of tornado plot
- **data**: the data required for the plot
- **family**: the model family if available

Examples

```r
gtest <- survival::coxph(survival::Surv(stop, event) ~ rx + size + number, survival::bladder)
torn <- tornado(gtest, modeldata = survival::bladder, type = "PercentChange", alpha = 0.10)
plot(torn, xlabel = "Risk")
```

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.
Usage

```r
## S3 method for class 'cv.glmnet'
tornado(
  model,
  type = "PercentChange",
  alpha = 0.1,
  dict = NA,
  modeldata,
  form,
  s = "lambda.1se",
  ...
)
```

Arguments

- `model`: a model object
- `type`: PercentChange, percentiles, or ranges
- `alpha`: the level of change
- `dict`: a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
- `modeldata`: the raw data used to fit the glmnet model
- `form`: the model formula
- `s`: Value(s) of the penalty parameter lambda at which predictions are required. Default is the value s="lambda.1se" stored on the CV object. Alternatively s="lambda.min" can be used. If s is numeric, it is taken as the value(s) of lambda to be used.

... further arguments, not used

Value

- a tornado_plot object
 - `type`: the type of tornado plot
 - `data`: the data required for the plot
 - `family`: the model family if available

See Also

- `tornado`

Examples

```r
if (requireNamespace("glmnet", quietly = TRUE))
{
  form <- formula(mpg ~ cyl*wt*hp)
  mf <- model.frame(form, data = mtcars)
  ```
tornado.glm

```r
mm <- model.matrix(form, data = mf)
gtest <- glmnet::cv.glmnet(x = mm, y = mtcars$mpg, family = "gaussian")
torn <- tornado(gtest, modeldata = mtcars, form = formula(mpg ~ cyl*wt*hp), s = "lambda.1se", type = "PercentChange", alpha = 0.10)
plot(torn, xlabel = "MPG")
```

tornado.glm

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

```r
## S3 method for class 'glm'
tornado(model, type = "PercentChange", alpha = 0.1, dict = NA, ...)
```

Arguments

- **model**: a model object
- **type**: `PercentChange`, `percentiles`, or `ranges`
- **alpha**: the level of change
- **dict**: a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements `old` and `new`. The `old` element must contain each variable in the model.
- `...`: further arguments, not used

Value

A `tornado_plot` object

- **type**: the type of tornado plot
- **data**: the data required for the plot
- **family**: the model family if available
See Also
tornado

Examples

gtest <- glm(mpg ~ cyl*wt*hp, data = mtcars, family = gaussian)
torn <- tornado(gtest, type = "PercentChange", alpha = 0.10)
plot(torn, xlabel = "MPG")

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

S3 method for class 'lm'
tornado(model, type = "PercentChange", alpha = 0.1, dict = NA, ...)

Arguments

model a model object
type PercentChange, percentiles, or ranges
alpha the level of change
dict a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
... further arguments, not used

Value

a tornado_plot object
type the type of tornado plot
data the data required for the plot
family the model family if available
tornado.survreg

See Also
tornado

Examples

gtest <- lm(mpg ~ cyl*wt*hp, data = mtcars)
torn <- tornado(gtest, type = "PercentChange", alpha = 0.10)
plot(torn, xlabel = "MPG")

tornado.survreg Survreg Tornado Diagram

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

S3 method for class ‘survreg’
tornado(model, type = "PercentChange", alpha = 0.1, dict = NA, modeldata, ...)

Arguments

model a model object
type PercentChange, percentiles, or ranges
alpha the level of change
dict a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
modeldata the data used to fit the model
... further arguments, not used

Value

a tornado_plot object
type the type of tornado plot
data the data required for the plot
family the model family if available
See Also
tornado

Examples

gtest <- survival::survreg(survival::Surv(futime, fustat) ~ ecog.ps + rx, survival::ovarian, dist='weibull', scale=1)
torn <- tornado(gtest, modeldata = survival::ovarian, type = "PercentChange", alpha = 0.10, xlabel = "futime")
plot(torn, xlabel = "Survival Time")

tornado.train

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

S3 method for class 'train'
tornado(
 model,
type = "PercentChange",
alpha = 0.1,
dict = NA,
class_number = NA,
...
)

Arguments

model a model object
type PercentChange, percentiles, or ranges
alpha the level of change
dict a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
class_number for classification models, which number of the class that will be plotted

... further arguments, not used

Value

a tornado_plot object

type the type of tornado plot
data the data required for the plot
family the model family if available

See Also
tornado

Examples

if (requireNamespace("caret", quietly = TRUE) & requireNamespace("randomForest", quietly = TRUE))
{
 gtest <- caret::train(x = subset(mtcars, select = -mpg), y = mtcars$mpg, method = "rf")
 torn <- tornado(gtest, type = "PercentChange", alpha = 0.10)
 plot(torn, xlabel = "MPG")
}
Index

importance, 2, 3–7
importance.cv.glmnet, 2, 3
importance.glm, 2, 4
importance.lm, 2, 5
importance.survreg, 2, 6
importance.train, 7

plot.importance_plot, 8
plot.tornado_plot, 9
print.importance_plot, 10
print.tornado_plot, 10

quantile.ordered, 11

tornado, 11, 14, 16–19
tornado.coxph, 12, 12
tornado.cv.glmnet, 12, 13
tornado.glm, 12, 15
tornado.lm, 12, 16
tornado.survreg, 12, 17
tornado.train, 12, 18