Package ‘tracerer’

October 14, 2022

Type Package
Title Tracer from R
Version 2.2.2
Maintainer Richèl J.C. Bilderbeek <richel@richelbilderbeek.nl>
Description ‘BEAST2’ (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. ‘Tracer’ (<https://github.com/beast-dev/tracer/>) is a GUI tool to parse and analyze the files generated by ‘BEAST2’. This package provides a way to parse and analyze ‘BEAST2’ input files without active user input, but using R function calls instead.
License GPL-3
Imports jsonlite, Rcpp, testit
Suggests ape, ggplot2, hunspell, knitr, markdown, phangorn, rappdirs, rbenchmark, reshape2, rmarkdown, spelling, stringr, testthat (>= 2.1.0)
VignetteBuilder knitr
RoxygenNote 7.1.1
URL https://docs.ropensci.org/tracerer/ (website)
 https://github.com/ropensci/tracerer/
BugReports https://github.com/ropensci/tracerer/issues
LinkingTo Rcpp
Language en-US
Encoding UTF-8
NeedsCompilation yes
Author Richèl J.C. Bilderbeek [aut, cre]
 (<https://orcid.org/0000-0003-1107-7049>),
 Joëlle Barido-Sottani [rev] (Joëlle reviewed the package for rOpenSci,
see https://github.com/ropensci/onboarding/issues/209),
David Winter [rev] (David reviewed the package for rOpenSci, see
https://github.com/ropensci/onboarding/issues/209)

Repository CRAN
Date/Publication 2021-05-30 09:40:03 UTC

R topics documented:

calc_act .. 3
calc_act_cpp ... 4
calc_act_r ... 4
calc_ess .. 5
calc_esses .. 6
calc_geom_mean ... 7
calc_hpd_interval .. 7
calc_mode ... 8
calc_stderr_mean .. 9
calc_std_error_of_mean_cpp 10
calc_summary_stats 10
calc_summary_stats_trace 12
calc_summary_stats_traces 13
check_trace ... 14
count_trees_in_file 14
css_std_dev ... 15
default_params_doc 15
extract_operators_lines 16
get_tracerer_path 17
get_tracerer_paths 18
get_tracerer_tempfilename 19
is_posterior .. 19
is_trees_file .. 20
is_trees_posterior 21
parse_beast_log .. 21
parse_beast_output_files 22
parse_beast_posterior 23
parse_beast_state_operators 24
parse_beast_tracelog_file 25
parse_beast_trees 26
remove_burn_in 26
remove_burn_ins 27
save_beast_estimates 28
save_beast_trees 28
tracerer .. 29

Index 30

calc_act

<table>
<thead>
<tr>
<th></th>
<th>Calculate the auto-correlation time, alternative implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Calculate the auto-correlation time, alternative implementation

Usage

calc_act(trace, sample_interval)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>trace</td>
<td>the values</td>
</tr>
<tr>
<td>sample_interval</td>
<td>the interval in timesteps between samples</td>
</tr>
</tbody>
</table>

Value

the auto_correlation time

Author(s)

The original Java version of the algorithm was from Remco Bouckaert, ported to R and adapted by Richèl J.C. Bilderbeek

See Also

Java code can be found here: https://github.com/CompEvol/beast2/blob/9f040ed0357c4b946ea276a481a4c654ad4f27/c/src/beast/core/util/ESS.java#L161

Examples

trace <- sin(seq(from = 0.0, to = 2.0 * pi, length.out = 100))
38.18202
calc_act(trace = trace, sample_interval = 1)
calc_act_cpp Calculate the auto correlation time from https://github.com/beast-dev/beast-mcmc/blob/800817772033c13061f026226e41128d21fd14f3/src/dr/inference/trace/TraceCorrelation.java#L159 # nolint

Description

Calculate the auto correlation time from https://github.com/beast-dev/beast-mcmc/blob/800817772033c13061f026226e41128d21fd14f3/src/dr/inference/trace/TraceCorrelation.java#L159 # nolint

Usage

calc_act_cpp(sample, sample_interval)

Arguments

sample sample
sample_interval sample interval

Value

the auto correlation time

Author(s)

Richèl J.C. Bilderbeek

calc_act_r Calculate the auto-correlation time using only R. Consider using calc_act instead, as it is orders of magnitude faster

Description

Calculate the auto-correlation time using only R. Consider using calc_act instead, as it is orders of magnitude faster

Usage

calc_act_r(trace, sample_interval)
calc_ess

Arguments

- **trace**: the values
- **sample_interval**: the interval in timesteps between samples

Value

the auto correlation time

Author(s)

The original Java version of the algorithm was from Remco Bouckaert, ported to R and adapted by Richèl J.C. Bilderbeek

See Also

Java code can be found here: https://github.com/CompEvol/beast2/blob/9f040ed0357c4b946ea276a481a4c654ad4f/src/beast/core/util/ESS.java#L161 #nolint URLs can be long

Examples

```r
trace <- sin(seq(from = 0.0, to = 2.0 * pi, length.out = 100))
calc_act_r(trace = trace, sample_interval = 1) # 38.18202
```

calc_ess

Calculates the Effective Sample Size

Description

Calculates the Effective Sample Size

Usage

```r
calc_ess(trace, sample_interval)
```

Arguments

- **trace**: the values without burn-in
- **sample_interval**: the interval in timesteps between samples

Value

the effective sample size

Author(s)

The original Java version of the algorithm was from Remco Bouckaert, ported to R and adapted by Richèl J.C. Bilderbeek
calc_esses

See Also
Java code can be found here: https://github.com/CompEvol/beast2/blob/9f040ed0357c4b946ea276a481a4c654ad4f/src/beast/core/util/ESS.java#L161 # nolint URLs can be long

Examples
filename <- get_tracerer_path("beast2_example_output.log")
estimates <- parse_beast_tracelog_file(filename)
calc_ess(estimates$posterior, sample_interval = 1000)

calc_esses
Calculates the Effective Sample Sizes from a parsed BEAST2 log file

Description
Calculates the Effective Sample Sizes from a parsed BEAST2 log file

Usage
calc_esses(traces, sample_interval)

Arguments
traces a dataframe with traces with removed burn-in
sample_interval the interval in timesteps between samples

Value
the effective sample sizes

Author(s)
Richèl J.C. Bilderbeek

Examples
Parse an example log file
estimates <- parse_beast_tracelog_file(
 get_tracerer_path("beast2_example_output.log")
)

Calculate the effective sample sizes of all parameter estimates
calc_esses(estimates, sample_interval = 1000)
calc_geom_mean

Calculate the geometric mean

Description

Calculate the geometric mean

Usage

```r
calc_geom_mean(values)
```

Arguments

- `values` a numeric vector of values

Value

returns the geometric mean if all values are at least zero, else returns NA

Author(s)

Richèl J.C. Bilderbeek

calc_hpd_interval

Calculate the Highest Probability Density of an MCMC trace that has its burn-in removed

Description

Calculate the Highest Probability Density of an MCMC trace that has its burn-in removed

Usage

```r
calc_hpd_interval(trace, proportion = 0.95)
```

Arguments

- `trace` a numeric vector of parameter estimates obtained from an MCMC run. Must have its burn-in removed
- `proportion` the proportion of numbers within the interval. For example, use 0.95 for a 95 percentage interval

Value

a numeric vector, with at index 1 the lower boundary of the interval, and at index 2 the upper boundary of the interval
Author(s)

The original Java version of the algorithm was from J. Heled, ported to R and adapted by Richèl J.C. Bilderbeek

See Also

The function `remove_burn_in` removes a burn-in. The Java code that inspired this function can be found here: https://github.com/beast-dev/beast-mcmc/blob/98705c59db65e4f406a420bbade949aeecfe05d0/src/dr/stats/DiscreteStatistics.java#L317 # nolint URLs can be long

Examples

```r
estimates <- parse_beast_tracelog_file(
  get_tracerer_path("beast2_example_output.log")
)
tree_height_trace <- remove_burn_in(
  estimates$TreeHeight,
  burn_in_fraction = 0.1
)

# Values will be 0.453 and 1.816
calc_hpd_interval(tree_height_trace, proportion = 0.95)
```

Description

Calculate the mode of values If the distribution is bi or multimodal or uniform, NA is returned

Usage

`calc_mode(values)`

Arguments

- `values` numeric vector to calculate the mode of

Value

the mode of the trace

Author(s)

Richèl J.C. Bilderbeek
Examples

In a unimodal distribution, find the value that occurs most
```
calc_mode(c(1, 2, 2))
calc_mode(c(1, 1, 2))
```

For a uniform distribution, NA is returned
```
tracerer::calc_mode(c(1, 2))
```

calc_stderr_mean

Calculate the standard error of the mean

Description

Calculate the standard error of the mean

Usage

```
calc_stderr_mean(trace)
```

Arguments

- **trace**
 - the values

Value

the standard error of the mean

Author(s)

The original Java version of the algorithm was from Remco Bouckaert, ported to R and adapted by Richèl J.C. Bilderbeek

See Also

Java code can be found here: https://github.com/beast-dev/beast-mcmc/blob/800817772033c13061f026226e41128d21fd14f3/src/dr/inference/trace/TraceCorrelation.java#L159 # nolint

Examples

```
trace <- sin(seq(from = 0.0, to = 2.0 * pi, length.out = 100))
calc_stderr_mean(trace) # 0.4347425
```
calc_std_error_of_mean_cpp

Calculates the standard error of the mean

Description
Calculates the standard error of the mean

Usage
calc_std_error_of_mean_cpp(sample)

Arguments
sample numeric vector of values

Value
the standard error of the mean

Author(s)
Richèl J.C. Bilderbeek

calc_summary_stats

Calculates the Effective Sample Sizes of one estimated variable’s trace.

Description
Calculates the Effective Sample Sizes of one estimated variable’s trace.

Usage
calc_summary_stats(traces, sample_interval)

Arguments
traces one or more traces, supplies as either, (1) a numeric vector or, (2) a data frame of numeric values.
sample_interval the interval (the number of state transitions between samples) of the MCMC run that produced the trace. Using a different sample_interval than the actually used sampling interval will result in bogus return values.
Value

the summary statistics of the traces. If one numeric vector is supplied, a list is returned with the
elements listed below. If the traces are supplied as a data frame, a data frame is returned with the
elements listed below as column names.
The elements are:

• mean: mean
• stderr_mean: standard error of the mean
• stdev: standard deviation
• variance: variance
• mode: mode
• geom_mean: geometric mean
• hpd_interval_low: lower bound of 95% highest posterior density
• hpd_interval_high: upper bound of 95% highest posterior density
• act: auto correlation time
• ess: effective sample size

Note

This function assumes the burn-in is removed. Use remove_burn_in (on a vector) or remove_burn_ins
(on a data frame) to remove the burn-in.

Author(s)

Richèl J.C. Bilderbeek

See Also

Use calc_summary_stats_trace to calculate the summary statistics of one trace (stored as a
numeric vector). Use calc_summary_stats_traces to calculate the summary statistics of more
traces (stored as a data frame).

Examples

estimates_all <- parse_beast_tracelog_file(
 get_tracerer_path("beast2_example_output.log")
)
estimates <- remove_burn_ins(estimates_all, burn_in_fraction = 0.1)

From a single variable's trace
calc_summary_stats(
 estimates$posterior,
 sample_interval = 1000
)

From all variables' traces
calc_summary_stats_trace

Calculates the Effective Sample Sizes of one estimated variable’s trace.

description

Calculates the Effective Sample Sizes of one estimated variable’s trace.

Usage

calc_summary_stats_trace(trace, sample_interval)

Arguments

trace a numeric vector of values. Assumes the burn-in is removed.

sample_interval the interval in timesteps between samples

Value

the effective sample sizes

Author(s)

Richèl J.C. Bilderbeek

See Also

Use remove_burn_in to remove the burn-in of a trace

Examples

estimates_all <- parse_beast_tracelog_file(
 get_tracerer_path("beast2_example_output.log")
)
estimates <- remove_burn_ins(estimates_all, burn_in_fraction = 0.1)

calc_summary_stats_trace(
 estimates$posterior,
 sample_interval = 1000
)
calc_summary_stats_traces

Calculates the Effective Sample Sizes of the traces of multiple estimated variables.

Description

Calculates the Effective Sample Sizes of the traces of multiple estimated variables.

Usage

calc_summary_stats_traces(traces, sample_interval)

Arguments

traces a data frame with traces of estimated parameters. Assumes the burn-ins are removed.
sample_interval the interval in timesteps between samples

Value

the effective sample sizes

Author(s)

Richèl J.C. Bilderbeek

See Also

Use `remove_burn_ins` to remove the burn-ins of all traces

Examples

estimates_all <- parse_beast_tracelog_file(
 get_tracerer_path("beast2_example_output.log")
)
estimates <- remove_burn_ins(estimates_all, burn_in_fraction = 0.1)

calc_summary_stats_traces(
 estimates,
 sample_interval = 1000
)
check_trace

Description

Check if the trace is a valid. Will stop if not

Usage

check_trace(trace)

Arguments

trace the values

Author(s)

Richèl J.C. Bilderbeek

Examples

check_trace(seq(1, 2))

count_trees_in_file

Description

Count the number of trees in a .trees file

Usage

count_trees_in_file(trees_filename)

Arguments

trees_filename name of a BEAST2 posterior .trees file, as can be read using parse_beast_trees

Value

the number of trees

Author(s)

Richèl J.C. Bilderbeek

See Also

if the .trees file is invalid, use is_trees_file with verbose = TRUE for the reason
Calculate the corrected sample standard deviation.

Usage

cs_std_dev(values)

Arguments

values numeric values

Value

the corrected sample standard deviation

Author(s)

Richèl J.C. Bilderbeek

default_params_doc Documentation of general function arguments. This function does nothing. It is intended to inherit function argument documentation.

Description

Documentation of general function arguments. This function does nothing. It is intended to inherit function argument documentation.

Usage

default_params_doc(
 log_filename,
 sample_interval,
 state_filename,
 trace,
 tracelog_filename,
 trees_filename,
 trees_filenames,
 verbose
)
extract_operators_lines

Extract the JSON lines out of a .xml.state with the unparsed BEAST2 MCMC operator acceptances file with the operators

Description

Extract the JSON lines out of a .xml.state with the unparsed BEAST2 MCMC operator acceptances file with the operators

Usage

```r
extract_operators_lines(filename)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filename</code></td>
<td>name of the BEAST2 .xml.state output file</td>
</tr>
</tbody>
</table>

Value

the JSON lines of a .xml.state file with the unparsed BEAST2 MCMC operator acceptances

Notes

This is an internal function, so it should be marked with `@noRd`. This is not done, as this will disallow all functions to find the documentation parameters.

Author(s)

Richèl J.C. Bilderbeek

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>log_filename</code></td>
<td>deprecated name of the BEAST2 tracelog .log output file. Use <code>tracelog_filename</code> instead</td>
</tr>
<tr>
<td><code>sample_interval</code></td>
<td>the interval in timesteps between samples</td>
</tr>
<tr>
<td><code>state_filename</code></td>
<td>name of the BEAST2 state .xml.state output file</td>
</tr>
<tr>
<td><code>trace</code></td>
<td>the values</td>
</tr>
<tr>
<td><code>tracelog_filename</code></td>
<td>name of the BEAST2 tracelog .log output file, as can be read using <code>parse_beast_tracelog_file</code></td>
</tr>
<tr>
<td><code>trees_filename</code></td>
<td>name of a BEAST2 posterior .trees file, as can be read using <code>parse_beast_trees</code></td>
</tr>
<tr>
<td><code>trees_filenames</code></td>
<td>the names of one or more a BEAST2 posterior .trees file. Each .trees file can be read using <code>parse_beast_trees</code></td>
</tr>
<tr>
<td><code>verbose</code></td>
<td>set to TRUE for more output</td>
</tr>
</tbody>
</table>
get_tracerer_path

Author(s)
Richèl J.C. Bilderbeek

get_tracerer_path *Get the full path of a file in the inst/extdata folder*

Description
Get the full path of a file in the inst/extdata folder

Usage
get_tracerer_path(filename)

Arguments
- **filename** the file’s name, without the path

Value
the full path to the filename

Author(s)
Richèl J.C. Bilderbeek

See Also
for more files, use `get_tracerer_paths`

Examples
get_tracerer_path("beast2_example_output.log")
get_tracerer_path("beast2_example_output.trees")
get_tracerer_path("beast2_example_output.xml")
get_tracerer_path("beast2_example_output.xml.state")
get_tracerer_paths

Get the full paths of files in the inst/extdata folder

Description

Get the full paths of files in the inst/extdata folder

Usage

```r
get_tracerer_paths(filenames)
```

Arguments

- `filenames` the files’ names, without the path

Value

the filenames’ full paths

Author(s)

Richèl J.C. Bilderbeek

See Also

for one file, use `get_tracerer_path`

Examples

```r
get_tracerer_paths(
  c(
    "beast2_example_output.log",
    "beast2_example_output.trees",
    "beast2_example_output.xml",
    "beast2_example_output.xml.state"
  )
}
```
\texttt{get_tracerer_tempfilename}\hfill 19

\begin{center}
\texttt{get_tracerer_tempfilename}
\end{center}

\textit{Get a temporary filename}

\textbf{Description}

Get a temporary filename, similar to \texttt{tempfile}, except that it always writes to a temporary folder named \texttt{tracerer}.

\textbf{Usage}

\begin{verbatim}
get_tracerer_tempfilename(pattern = "file", fileext = ")
\end{verbatim}

\textbf{Arguments}

\begin{verbatim}
 pattern a non-empty character vector giving the initial part of the name.
 fileext a non-empty character vector giving the file extension
\end{verbatim}

\textbf{Value}

name for a temporary file

\textbf{Note}

this function is added to make sure no temporary cache files are left undeleted

\begin{center}
\texttt{is_posterior}\hfill 19
\end{center}

\textit{Determines if the input is a BEAST2 posterior}

\textbf{Description}

Determines if the input is a BEAST2 posterior

\textbf{Usage}

\begin{verbatim}
is_posterior(x)
\end{verbatim}

\textbf{Arguments}

\begin{verbatim}
x the input
\end{verbatim}

\textbf{Value}

\begin{verbatim}
TRUE if the input contains all information of a BEAST2 posterior. Returns FALSE otherwise.
\end{verbatim}
is_trees_file

Measure if a file a valid BEAST2 .trees file

Usage

is_trees_file(trees_filename, verbose = FALSE)

Arguments

trees_filename name of a BEAST2 posterior .trees file, as can be read using parse_beast_trees
verbose set to TRUE for more output

Value

TRUE if trees_filename is a valid .trees file

Author(s)

Richèl J.C. Bilderbeek

See Also

Most of the work is done by read.nexus

Examples

TRUE
is_trees_file(get_tracerer_path("beast2_example_output.trees"))
is_trees_file(get_tracerer_path("unplottable_anthus_aco.trees"))
FALSE
is_trees_file(get_tracerer_path("mcbette_issue_8.trees"))
is_trees_posterior

Determines if the input is a BEAST2 posterior, as parsed by `parse_beast_trees`

Description

Determines if the input is a BEAST2 posterior, as parsed by `parse_beast_trees`

Usage

```r
is_trees_posterior(x)
```

Arguments

- `x` the input

Value

TRUE or FALSE

Author(s)

Richèl J.C. Bilderbeek

parse_beast_log

Deprecated function to parse a BEAST2 .log output file. Use `parse_beast_tracelog_file` instead

Description

Deprecated function to parse a BEAST2 .log output file. Use `parse_beast_tracelog_file` instead

Usage

```r
parse_beast_log(tracelog_filename, filename = "deprecated")
```

Arguments

- `tracelog_filename` name of the BEAST2 tracelog .log output file, as can be read using `parse_beast_tracelog_file`
- `filename` deprecated name of the BEAST2 .log output file

Value

data frame with the parameter estimates
parse_beast_output_files

$\textbf{Author(s)}$

Richèl J.C. Bilderbeek

$\textbf{Examples}$

Deprecated
parse_beast_log(
 tracelog_filename = get_tracerer_path("beast2_example_output.log")
)
Use the function 'parse_beast_tracelog_file' instead
parse_beast_tracelog_file(
 tracelog_filename = get_tracerer_path("beast2_example_output.log")
)

parse_beast_output_files \quad \textit{Parse all BEAST2 output files}\quad

$\textbf{Description}$

Parse all BEAST2 output files

\textbf{Usage}

parse_beast_output_files(log_filename, trees_filenames, state_filename)

$\textbf{Arguments}$

log_filename\quad deprecated name of the BEAST2 tracelog .log output file. Use tracelog_filename instead

trees_filenames\quad the names of one or more a BEAST2 posterior .trees file. Each .trees file can be read using parse_beast_trees

state_filename\quad name of the BEAST2 state .xml.state output file

\textbf{Value}

a list with the following elements:

- estimates: parameter estimates
- [alignment_id]_trees: the phylogenies in the BEAST2 posterior. [alignment_id] is the ID of the alignment.
- operators: the BEAST2 MCMC operator acceptances

$\textbf{Author(s)}$

Richèl J.C. Bilderbeek
See Also

Use `remove_burn_ins` to remove the burn-in from `out$estimates`.

Examples

```r
trees_filenames <- get_tracerer_path("beast2_example_output.trees")
log_filename <- get_tracerer_path("beast2_example_output.log")
state_filename <- get_tracerer_path("beast2_example_output.xml.state")
parse_beast_output_files(
  log_filename = log_filename,
  trees_filenames = trees_filenames,
  state_filename = state_filename
)
```

parse_beast_posterior *Parses BEAST2 output files to a posterior*

Description

Parses BEAST2 output files to a posterior.

Usage

```r
parse_beast_posterior(
  trees_filenames,
  tracelog_filename,
  log_filename = "deprecated"
)
```

Arguments

- `trees_filenames`: the names of one or more a BEAST2 posterior .trees file. Each .trees file can be read using `parse_beast_trees`
- `tracelog_filename`: name of the BEAST2 tracelog .log output file, as can be read using `parse_beast_tracelog_file`
- `log_filename`: deprecated name of the BEAST2 tracelog .log output file. Use `tracelog_filename` instead.

Value

A list with the following elements:

- `estimates`: parameter estimates
- `[alignment_id]_trees`: the phylogenies in the BEAST2 posterior. `[alignment_id]` is the ID of the alignment.
parse_beast_state_operators

Author(s)
Richèl J.C. Bilderbeek

See Also
Use `remove_burn_ins` to remove the burn-ins from the posterior's estimates (`posterior$estimates`)

Examples
```
trees_filenames <- get_tracerer_path("beast2_example_output.trees")
tracelog_filename <- get_tracerer_path("beast2_example_output.log")
posterior <- parse_beast_posterior(
  trees_filenames = trees_filenames,
  tracelog_filename = tracelog_filename
)
```

parse_beast_state_operators

Parses a BEAST2 state .xml.state output file to get only the operators' acceptances

Description

Parses a BEAST2 state .xml.state output file to get only the operators' acceptances

Usage
```
parse_beast_state_operators(
  state_filename = get_tracerer_path("beast2_example_output.xml.state"),
  filename = "deprecated"
)
```

Arguments

- `state_filename` name of the BEAST2 state .xml.state output file
- `filename` deprecated name of the BEAST2 .xml.state output file, use `state_filename` instead

Value

data frame with all the operators' success rates

Author(s)
Richèl J.C. Bilderbeek
parse_beast_tracelog_file

Examples

```r
parse_beast_state_operators(
  state_filename = get_tracerer_path("beast2_example_output.xml.state")
)
```

parse_beast_tracelog_file

Parses a BEAST2 tracelog .log output file

Description

Parses a BEAST2 tracelog .log output file

Usage

```r
parse_beast_tracelog_file(tracelog_filename)
```

Arguments

- `tracelog_filename`

 name of the BEAST2 tracelog .log output file, as can be read using `parse_beast_tracelog_file`

Value

data frame with the parameter estimates

Author(s)

Richêl J.C. Bilderbeek

See Also

Use `remove_burn_ins` to remove the burn-in from the returned parameter estimates. Use `save_beast_estimates` to save the estimates to a .log file.

Examples

```r
parse_beast_tracelog_file(
  tracelog_filename = get_tracerer_path("beast2_example_output.log")
)
```
parse_beast_trees

Parses a BEAST2 .trees output file

Description

Parses a BEAST2 .trees output file

Usage

```r
parse_beast_trees(filename)
```

Arguments

- `filename`
 name of the BEAST2 .trees output file

Value

the phylogenies in the posterior

Author(s)

Richèl J.C. Bilderbeek

See Also

Use `save_beast_trees` to save the phylogenies to a .trees file. Use `is_trees_file` with `verbose = TRUE` to find out why a file is invalid

Examples

```r
trees_filename <- get_tracerer_path("beast2_example_output.trees")
parse_beast_trees(trees_filename)
```

remove_burn_in

Removed the burn-in from a trace

Description

Removed the burn-in from a trace

Usage

```r
remove_burn_in(trace, burn_in_fraction)
```
remove_burn_ins

Arguments

- `trace`: the values
- `burn_in_fraction`: the fraction that needs to be removed, must be [0,1>

Value

the values with the burn-in removed

Author(s)

Richèl J.C. Bilderbeek

Examples

```r
# Create a trace from one to and including ten
v <- seq(1, 10)

# Remove the first ten percent of its values,
# in this case removes the first value, which is one
w <- remove_burn_in(trace = v, burn_in_fraction = 0.1)
```

Description

Removed the burn-ins from a data frame

Usage

`remove_burn_ins(traces, burn_in_fraction = 0.1)`

Arguments

- `traces`: a data frame with traces
- `burn_in_fraction`: the fraction that needs to be removed, must be [0,1>. Its default value of 10 as

Value

the data frame with the burn-in removed

Author(s)

Richèl J.C. Bilderbeek
save_beast_estimates

Save the BEAST2 estimates as a BEAST2 .log file. There will be some differences: a BEAST2 .log file also saves the model as comments and formats the numbers in a way non-standard to R

Usage

save_beast_estimates(estimates, filename)

Arguments

estimates
a data frame of BEAST2 parameter estimates
filename
name of the .log file to save to

Value

nothing

Author(s)

Richèl J.C. Bilderbeek

See Also

Use parse_beast_log to read a BEAST2 .log file

save_beast_trees

Save the BEAST2 trees as a BEAST2 .log file. There will be some differences: a BEAST2 .log file also saves the model as comments and formats the numbers in a way non-standard to R

Usage

save_beast_trees(trees, filename)
tracerer

Arguments

trees BEAST2 posterior trees, of type ape::multiPhylo
filename name of the .trees file to save to

Value

nothing

Author(s)

Richèl J.C. Bilderbeek

See Also

Use parse_beast_log to read a BEAST2 .log file

Description

tracerer allows to parse BEAST2 input files, using an R interface. 'tracerer' closely follows the functionality of Tracer, a GUI tool bundled with BEAST and BEAST2, including its default settings.

See Also

These are packages associated with tracerer:

• The package beautier can create BEAST2 input files from R
• The package beastier can run BEAST2 from R
• The package mauricer manages BEAST2 packages from R
• The package babette combines the functionality of beautier, beastier, tracerer and mauricer and into a single workflow

If something is (still) missing from tracerer, the coda package may have the functionality you need.
Index

calc_act, 3, 4
calc_act_cpp, 4
calc_act_r, 4
calc_ess, 5
calc_esses, 6
calc_geom_mean, 7
calc_hpd_interval, 7
calc_mode, 8
calc_std_error_of_mean_cpp, 10
calc_stderr_mean, 9
calc_summary_stats, 10
calc_summary_stats_trace, 11, 12
calc_summary_stats_traces, 11, 13
check_trace, 14
count_trees_in_file, 14
cs_std_dev, 15
default_params_doc, 15
extract_operators_lines, 16
get_tracerer_path, 17, 18
get_tracerer_paths, 17, 18
get_tracerer_tempfilename, 19
is_posterior, 19
is_trees_file, 14, 20, 26
is_trees_posterior, 21
parse_beast_log, 21, 28, 29
parse_beast_output_files, 22
parse_beast_posterior, 23
parse_beast_state_operators, 24
parse_beast_tracelog_file, 16, 21, 23, 25, 25
parse_beast_trees, 14, 16, 20, 22, 23, 26
read.nexus, 20
remove_burn_in, 8, 11, 12, 26
remove_burn_ins, 11, 13, 23–25, 27

save_beast_estimates, 25, 28
save_beast_trees, 26, 28
stop, 14
tempfile, 19
tracerer, 19, 29