Package ‘trajectories’

October 14, 2022

Version 0.2-4
Title Classes and Methods for Trajectory Data
Depends R (>= 3.0.0)
Imports stats, utils, graphics, methods, lattice, sp (>= 1.1-0),
spacetime (>= 1.0-0), zoo
Suggests rgdal, rgeos, OpenStreetMap, RCurl, rjson, adehabitatLT, xts,
knitr, rgl, forecast, MASS, spatstat (>= 2.0-1), spatstat.core,
spatstat.geom, taxidata
Description Classes and methods for trajectory data, with support for nesting individual Track ob-
jects in track sets (Tracks) and track sets for different entities in collections of Tracks. Meth-
ods include selection, generalization, aggregation, intersection, simulation, and plotting.
License GPL (>= 2)
URL https://github.com/edzer/trajectories
Additional_repositories http://gis-bigdata.uni-muenster.de/pebesma/
BugReports https://github.com/edzer/trajectories/issues
VignetteBuilder knitr
RoxygenNote 6.0.1
NeedsCompilation no
Author Edzer Pebesma [aut, cre] (https://orcid.org/0000-0001-8049-7069),
Benedikt Klus [aut],
Benedikt Graeler [ctb],
Nikolai Gorte [ctb],
Mehdi Moradi [aut]
Maintainer Edzer Pebesma <edzer.pebesma@uni-muenster.de>
Repository CRAN
Date/Publication 2022-09-29 11:00:08 UTC
R topics documented:

A3 ... 3
as.list.Tracks ... 3
as.list.TracksCollection ... 4
as.Track ... 4
as.Track.arrow ... 5
as.Track.ppp ... 6
auto.arima.Track ... 7
avedistTrack ... 8
avemove ... 9
chimaps ... 10
cut ... 12
density.list .. 13
diffs(track-class) ... 14
dists .. 15
downsample .. 16
frechetDist .. 16
generalize ... 17
Kinhom.Track .. 18
pcfinhom.Track ... 19
plot.arwlen ... 20
plot.distrack ... 21
plot.gTrack .. 21
plot.KTrack .. 22
print.ArimaTrack ... 23
print.arwlen .. 23
print.distrack ... 24
print.gTrack ... 25
print.KTrack ... 25
print.ppplist ... 26
print.Track .. 26
print.Tracks ... 27
print.TracksCollection ... 27
print.Trow .. 28
range.Track ... 28
reTrack ... 29
rTrack .. 30
stbox ... 31
stcub ... 32
storms ... 33
Track-class .. 34
Track.idw .. 38
tsqTracks .. 40
unique.Track ... 41

Index .. 42
A3

Trajectory

Description

Trajectory, locally stored, from envirocar.org, see example below how it was imported

Usage

data(A3)

Examples

library(spacetime)
data(A3)
dim(A3)
see demo(A3) to see how A3 was fetched, and created from the web service

as.list.Tracks

Description

Convert a "Tracks" object to a list of tracks

Usage

S3 method for class 'Tracks'
as.list(x, ...)

Arguments

x an object of class "Tracks"

... passed to arguments of as.list

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack, rTracks, rTracksCollection, as.list

Examples

x <- rTracks()
as.list(x)
as.list.TracksCollection

Convert a "TracksCollection" object to a list of tracks

Usage

```r
## S3 method for class 'TracksCollection'
as.list(x,...)
```

Arguments

- `x`: an object of class "TracksCollection"
- `...`: passed to arguments of as.list

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

`rTrack, rTracks, rTracksCollection, as.list`

Examples

```r
x <- rTracksCollection()
as.list(x)
```

as.Track

Converts data to an object of class "Track"

Description

Function as.Track accepts converts x,y coordinates and thier corresponding time/date to an object of class Track. It can also accepts covariates for the corresponding locations, covariates must be a dataframe with some columns and length of each column is equal to length of x,y,t.

Usage

```r
as.Track(x,y,t,covariate)
```
as.Track.arrow

Arguments

- **x**: x coordinate.
- **y**: y coordinate.
- **t**: corresponding time and date of x,y.
- **covariate**: additional information.

Details

An object of class "Track" can be created by some geographical locations and corresponding time/dates. Function as.Track converts locations and dates/times to an object of class "Track". time/date should be from class "POSIXct" "POSIXt". See example below.

Value

An object of class "Track".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

Track, as.POSIXct

Examples

```r
x <- runif(10,0,1)
y <- runif(10,0,1)
date <- seq(as.POSIXct("2015-1-1 0:00"), as.POSIXct("2015-1-1 9:00"), by = "hour")
Z <- as.Track(x,y,date)
plot(Z)
```

as.Track.arrow

Convert trajectory pattern to a list of marked point patterns

Description

Converting a list of Track objects to a list of marked point patterns. Each mark shows the length of movement.

Usage

```r
as.Track.arrow(X,timestamp,epsilon=epsilon)
```
Arguments

- **X**
 A list of Track objects

- **timestamp**
 based on secs, mins,...

- **epsilon**
 (optional) movements with length less than epsilon are not considered in the calculation

Details

Converting a list of Track objects to a list of marked point patterns. Marks show the length of movement with respect to the previous location.

Value

a list of marked point patterns.

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

- `rTrack`, `as.Track.ppp`

Examples

```r
X <- list()
for(i in 1:10){
  m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
  X[[i]] <- rTrack(bbox = m,transform = TRUE)
}
Y <- as.Track.arrow(X,timestamp="120 secs")
```

Description

This function converts a list of Tracks to a list of point patterns (class "ppp")

Usage

```r
as.Track.ppp(X,timestamp)
```

Arguments

- **X**
 a list of Track objects

- **timestamp**
 based on secs, mins,...
auto.arima.Track

Details

as.Track.ppp converts a list of Track objects to a list of ppp objects.

Value

A list of point patterns, objects of class "ppp".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

avedistTrack, as.ppp

Examples

```r
X <- list()
for (i in 1:10){
  m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
  X[[i]] <- rTrack(bbox = m,transform = TRUE)
}
Y <- as.Track.ppp(X,timestamp="120 secs")
```

auto.arima.Track

Fitting arima model to a track

Description

Fit arima models to objects of class "Track".

Usage

```
auto.arima.Track(X, ...)
```

Arguments

```
X an object of class "Track"
...
```

passed to arguments of `auto.arima`

Details

This fits arima models to the x,y locations of objects of class "Track".

Value

an object of class "ArimaTrack"
Author(s)
Mohammad Mehdi Moradi <moradi@uji.es>

See Also
rTrack, auto.arima

Examples
X <- rTrack()
auto.arima.Track(X)

AVEDISTRACK
Average pairwise distance of trajectory pattern over time

Description
This measures the average of pairwise distances between tracks over time.

Usage
avedistTrack(X,timestamp)

Arguments
X
a list of some objects of class "Track"
timestamp
timestamp to calculate the pairwise distances between tracks

Details
This function calculates the average pairwise distance between a list of tracks according to a given timestamp.

Value
An object of class "distrack". It can be plotted over time.

Author(s)
Mohammad Mehdi Moradi <moradi@uji.es>

See Also
as.Track.ppp
Examples

```r
X <- list()
for(i in 1:10)
{
  m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
  X[[i]] <- rTrack(bbox = m,transform = TRUE)
}

ave <- avedistTrack(X,timestamp = "120 secs")
plot(ave,type="l")
```

Description

This returns the average movements of a list of objects of class "Track" over time.

Usage

```r
avemove(X,timestamp,epsilon=epsilon)
```

Arguments

- **X**: a list of some objects of class Track
- **timestamp**: timestamp to calculate the pairwise distances between tracks
- **epsilon**: (optional) movements with length less than epsilon are not considered in the calculation

Details

when analysing a list of tracks, avemove calculate the average of movements based on given timestamp.

Value

an object of class "numeric" or "arwlen".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

- `as.Track.arrow`
Examples

```r
X <- list()
for(i in 1:10){
  m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
  X[[i]] <- rTrack(bbox = m,transform = TRUE)
}
avemove(X,timestamp = "30 secs")
```

chimaps

Chimaps of trajectory pattern.

Description

Computes the chimaps, corresponding to a list of objects of class "Track". chimaps are based on the discrepancy between computed and expected intensity in a given location.

Usage

`chimaps(X,timestamp,rank,...)`

Arguments

- `X`: A list of Track objects
- `timestamp`: based on secs,mins,....
- `rank`: a number between one and the length of corresponding time sequence which is created based on given timestamp.
- `...`: passed to arguments of density.Track

Details

\[
\frac{\text{estimated intensity} - \text{expected intensity}}{\sqrt{\text{expected intensity}}}
\]

Value

an image of class "im".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

density.list, density.ppp
Examples

X <- list()
for(i in 1:10){
 m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
 X[[i]] <- rTrack(bbox = m,transform = TRUE)
}
chimaps(X, timestamp = "180 secs", rank = 2)

compare

Description

Calculates distances between two tracks for the overlapping time interval.

Usage

```r
## S4 method for signature 'Track'
compare(tr1, tr2)
```

Arguments

- `tr1`: An object of class `Track`.
- `tr2`: An object of class `Track`.

Value

A difftrack object. Includes both tracks extended with additional points for the timestamps of the other track. Also includes SpatialLines representing the distances between the tracks.

Author(s)

Nikolai Gorte <n.gorte@gmail.com>

Examples

```r
## example tracks
library(sp)
library(xts)
data(A3)
track2 <- A3
index(track2@time) <- index(track2@time) + 32
track2@sp@coords <- track2@sp@coords + 0.003

## compare and plot
difftrack <- compare(A3, track2)
plot(difftrack)
```
Description
obtain ranges of space and time coordinates

Usage

```r
## S3 method for class 'Track'
cut(x, breaks, ..., include.lowest = TRUE, touch = TRUE)
## S3 method for class 'Tracks'
cut(x, breaks, ...)
## S3 method for class 'TracksCollection'
cut(x, breaks, ...)
```

Arguments

- `x`: object of class Track, Tracks or TracksCollection
- `breaks`: define the breaks; see `cut`
- `...`: passed down to Tracks and Track methods, then to `cut`
- `include.lowest`: see `cut`
- `touch`: logical; if FALSE, Track objects will be formed from unique sets of points, meaning that gaps between two consecutive Track objects will arise; if FALSE, the first point from each next track is copied, meaning that sets of Track are seamless.

Details

Sub-trajectories can be invalid, if they have only one point, and are ignored. This can happen at the start only if `touch=FALSE`, and at the end in any case.

Value

The `cut` method applied to a Track object cuts the track in pieces, and hence returns a Tracks object. `cut.Tracks` returns a Tracks object, `cut.TracksCollection` returns a TracksCollection.

Examples

```r
# example might take too long for CRAN checks
data(storms)
dim(storms)
dim(cut(storms, "week", touches = FALSE)) # same number of geometries
dim(cut(storms, "week")) # increase of geometries = increase of tracks
```
density.list

Kernel estimate of intensity of trajectory pattern

Description

Estimating the intensity of a list of tracks.

Usage

S3 method for class 'list'
density(x, timestamp,...)

Arguments

x

a list of "Track" objects, an object of class "Tracks" or "TracksCollection"

timestamp

based on secs, mins, ...

...

passed to arguments of density.ppp

Details

This estimate the average intensity function of moving objects over time. Bandwidth selection methods such as bw.diggle, bw.scott and bw.ppl can be passed to this density.list.

Value

an image of class "im".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack, density.ppp

Examples

X <- list()
for(i in 1:10){
 m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
 X[[i]] <- rTrack(bbox = m,transform = TRUE)
}
density(X, timestamp = "180 secs")
Class "difftrack"

Description

Class that represents differences between two Track objects.

Objects from the Class

Objects can be created by calls of the form new("difftrack", ...). Objects of class difftrack contain 2 objects of class Track extended with points for timestamps of the other track and 2 SpatialLinesDataFrame containing the the lines and distances between tracks.

Slots

- track1: Extended track1
- track2: Extended track2
- conns1: Lines between the original track1 and the new points on track2
- conns2: Lines between the original track2 and the new points on track1

Methods

- plot signature(x = "difftrack", y = "missing"): plot a difftrack

Author(s)

Nikolai Gorte <n.gorte@gmail.com>

Examples

```
showClass("difftrack")
## example tracks
library(sp)
library(xts)
data(A3)
track2 <- A3
index(track2@time) <- index(track2@time) + 32
track2@sp@coords <- track2@sp@coords + 0.003

## compare and plot
difftrack <- compare(A3, track2)
plot(difftrack)

## space-time cube of the difftrack
## Not run:
stcube(difftrack)
## End(Not run)
```
dists

Calculate distances between two Tracks objects

Description

Calculates a distance matrix with distances for each pair of tracks.

Usage

```
## S4 method for signature 'Tracks,Tracks'
dists(tr1, tr2, f, ...)
```

Arguments

- `tr1`: An object of class `Tracks`.
- `tr2`: An object of class `Tracks`.
- `f`: A function to calculate distances. Default is `mean`.
- `...`: Additional parameters passed to `f`.

Details

`f` can be any function applicable to a numerical vector or `frechetDist`.

Value

A matrix with distances between each pair of tracks or `NA` if they don’t overlap in time.

Examples

```
## example tracks
library(sp)
library(xts)
data(A3)
track2 <- A3
index(track2@time) <- index(track2@time) + 32
track2@sp@coords <- track2@sp@coords + 0.003

## create Tracks objects
tracks1 <- Tracks(list(A3, track2))
tracks2 <- Tracks(list(track2, A3))

## calculate distances
## Not run:
dists(tracks1, tracks2)
dists(tracks1, tracks2, sum)
dists(tracks1, tracks2, frechetDist)

## End(Not run)
```
downsample

Downsample a Track

Description

Downsamples a Track to the size (amount of points) of another Track.

Usage

```r
## S4 method for signature 'Track'
downsample(track1, track2)
```

Arguments

- `track1` Track that will be downsampled.
- `track2` Reference Track.

Value

A Track object. The downsampled `track1`.

Author(s)

Nikolai Gorte <n.gorte@gmail.com>

`frechetDist`

Frechet distance

Description

Compute the discrete Frechet distance between two Track objects.

Usage

```r
## S4 method for signature 'Track'
frechetDist(track1, track2)
```

Arguments

- `track1` An object of class `Track`.
- `track2` An object of class `Track`.
generalize

Value

Discrete Frechet distance.

Author(s)

Nikolai Gorte <n.gorte@gmail.com>

References

http://en.wikipedia.org/wiki/Fr\'echet_distance

generalize | Generalize objects of class Track, Tracks and TracksCollection

Description

Generalize objects of class Track, Tracks and TracksCollection.

Usage

```r
## S4 method for signature 'Track'
generalize(t, FUN = mean, ..., timeInterval, distance, n, tol, toPoints)
## S4 method for signature 'Tracks'
generalize(t, FUN = mean, ...)
## S4 method for signature 'TracksCollection'
generalize(t, FUN = mean, ...)
```

Arguments

<table>
<thead>
<tr>
<th>t</th>
<th>An object of class Track, Tracks or TracksCollection.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUN</td>
<td>The generalization method to be applied. Defaults to mean if none is passed.</td>
</tr>
<tr>
<td>timeInterval</td>
<td>(lower limit) time interval to split Track into segments</td>
</tr>
<tr>
<td>distance</td>
<td>(lower limit) distance to split Track into segments</td>
</tr>
<tr>
<td>n</td>
<td>number of points to form segments</td>
</tr>
<tr>
<td>tol</td>
<td>tolerance passed on to <code>gSimplify</code>, to generalize segments using the Douglas-Peucker algorithm.</td>
</tr>
<tr>
<td>toPoints</td>
<td>keep mid point rather than forming <code>SpatialLines</code> segments</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments passed to FUN</td>
</tr>
</tbody>
</table>

Value

An object of class Track, Tracks or TracksCollection.
Description

Estimate the variability area of K-function of a list of tracks.

Usage

Kinhom.Track(X, timestamp,
correction=c("border", "bord.modif", "isotropic", "translate"), q,
sigma=c("default","bw.diggle","bw.ppl","bw.scott"), ...)

Arguments

X: A list of Track objects
timestamp: based on secs, mins, ...
correction: the type of correction to be used in computing K-function
q: (optional) a numeric value between 0 and 1 quantile to be applied to calculate the variability area
sigma: method to be used in computing intensity function
...
... passed to the arguments of Kinhom

Details

This calculates the variability area of K-function over time. If sigma=default, it calculates the variability area using the defaults of Kinhom, otherwise it first estimate the intensity function using the given sigma as bandwidth selection method and then using the estimated intensity function, it estimates the variability area.

Value

an object of class "KTrack".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack, as.Track.ppp, Kinhom
Examples

```r
library(spatstat)
X <- list()
for(i in 1:100){
  m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
  X[[i]] <- rTrack(bbox = m,transform = TRUE)
}
Kinhom.Track(X,timestamp = "180 secs")
```

Description

Pair correlation function of trajectory pattern

Usage

```r
pcfinhom.Track(X,timestamp,correction = c("translate", "Ripley"),q,
  sigma=c("default","bw.diggle","bw.ppl","bw.scott"),...)
```

Arguments

- `X`: A list of Track objects
- `timestamp`: based on secs,mins,...
- `correction`: the type of correction to be used in computing pair correlation function
- `q`: (optional) a numeric value between 0 and 1. quantile to be applied to calculate the variability area
- `sigma`: method to be used in computing intensity function
- `...`: passed to the arguments of pcfinhom

Details

This calculates the variability area of pair correlation function over time. If `sigma=default`, it calculates the variability area using the defaults of pcfinhom, otherwise it first estimate the intensity function using the given sigma as bandwidth selection method and then using the estimated intensity function, it estimates the variability area.

Value

- an object of class "gTrack"

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>
See Also

rTrack, as.Track.ppp, pcfinhom

Examples

```r
X <- list()
for(i in 1:100){
  m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
  X[[i]] <- rTrack(bbox = m,transform = TRUE)
}
g <- pcfinhom.Track(X,timestamp = "180 sec")
plot(g)
```

Description

Methods for class "arwlen"

Usage

```r
## S3 method for class 'arwlen'
plot(x, ...)  
```

Arguments

- `x`: an object of class "arwlen"
- `...`: passed on to plot

Value

a plot.

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

avemove
Methods for class "distrack"

Description

The plot method for "distrack" objects.

Usage

```r
## S3 method for class 'distrack'
plot(x, ...)""
```n

Arguments

- **x**: an object of class "distrack"
- **...**: ignored

Details

This plots an object of class "distrack".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

Methods for class "gTrack"

Description

plot method

Usage

```r
## S3 method for class 'gTrack'
plot(x, type = "l", col = "grey70", cex=1, line=2.2, ...)""
```n

Arguments

- **x**: an object of class "gTrack"
- **type**: line type
- **col**: line color
- **cex**: used for size of legend
- **line**: specifying a value for line overrides the default placement of labels, and places them this many lines outwards from the plot edge
- **...**: passed on to plot
Author(s)
Mohammad Mehdi Moradi <moradi@uji.es>

Methods for class "KTrack"

Description
Methods for class "KTrack"

Usage

S3 method for class 'KTrack'
plot(x, type = "l", col = "grey70", cex=1, line=2.2, ...)

Arguments

x an object of class KTrack
type line type
col color
cex used for size of legend
line specifying a value for line overrides the default placement of labels, and places them this many lines outwards from the plot edge
...
... passed on to plot

Details
plotting the variability area of K-function of a list of tracks.

Value

a plot.

Author(s)
Mohammad Mehdi Moradi <moradi@uji.es>
Methods for class "ArimaTrack"

Description

print method.

Usage

```r
## S3 method for class 'ArimaTrack'
print(x, ...)
```

Arguments

- `x` an object of class "ArimaTrack"
- `...` ignored

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

Methods for class "arwlen"

Description

...to print an object of class "arwlen".

Usage

```r
## S3 method for class 'arwlen'
print(x,...)
```

Arguments

- `x` an object of class "arwlen"
- `...` ignored

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>
print.distrack

Methods for class "distrack"

Description
This is a method for class "distrack".

Usage

S3 method for class 'distrack'
print(x,...)

Arguments

x an object of class "distrack"
...

Details
This is a method for class "distrack".

Value
See the documentation on the corresponding generic function.

Author(s)
Mohammad Mehdi Moradi <moradi@uji.es>

Examples

X <- list()
for(i in 1:10){
 m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
 X[[i]] <- rTrack(bbox = m,transform = TRUE)
}
ave <- avedistTrack(X,timestamp = "30 secs")
plot(ave,type="l")
Methods for class "gTrack"

Description
print method.

Usage
S3 method for class 'gTrack'
print(x,...)

Arguments
x an object of class "gTrack"
... ignored

Author(s)
Mohammad Mehdi Moradi <moradi@uji.es>

Methods for class "KTrack"

Description
Methods for class "KTrack"

Usage
S3 method for class 'KTrack'
print(x,...)

Arguments
x an object of class "KTrack"
... ignored

Details
to print an object of class "KTrack".

Author(s)
Mohammad Mehdi Moradi <moradi@uji.es>
Methods for class "Track"

print.pplist

Description
method to print an object of class "pplist"

Usage
S3 method for class 'pplist'
print(x,...)

Arguments
x an object of class "pplist"
... ignored

Author(s)
Mohammad Mehdi Moradi <moradi@uji.es>

print.Track

Description
method to print an object of class "Track"

Usage
S3 method for class 'Track'
print(x,...)

Arguments
x an object of class "Track"
... ignored

Author(s)
Mohammad Mehdi Moradi <moradi@uji.es>
print.Tracks

Methods for class "Tracks"

Description
method to print an object of class "Tracks"

Usage
print.Tracks(X)

Arguments
X an object of class "Tracks"

Author(s)
Mohammad Mehdi Moradi <moradi@uji.es>

print.TracksCollection

Methods for class "TracksCollection"

Description
method to print an object of class "TracksCollection"

Usage
print.TracksCollection(X)

Arguments
X an object of class "TracksCollection"

Author(s)
Mohammad Mehdi Moradi <moradi@uji.es>
Methods for class "Trrow"

Description

- Print objects of class "Trrow"

Usage

```r
## S3 method for class 'Trrow'
print(x, ...)
```

Arguments

- `x`: an object of class "Trrow"
- `...`: ignored

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

- as.Track.arrow

range.Track

Description

- Retrieves the range of a "Track" object

Usage

```r
## S3 method for class 'Track'
range(X, ...)
```

Arguments

- `X`: an object of class "Track"
- `...`: passed to arguments of range

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>
See Also

rTrack, rTracks, rTracksCollection, range

Examples

```r
x <- rTrack()
range(x)
```

reTrack
Reconstruct objects of class "Track"

Description

Function reTrack accepts X as an object of class "Track". Output is a reconstructed Track (again an object of class Track), based on a regular "timestamp". It only returns the interpolated points.

Usage

```r
reTrack(X, at=c("track","dfrm"), timestamp=timestamp, tsq=NULL)
```

Arguments

- **X**: an object of class Track
- **at**: to set the type of output as either an object of class "Track" or data.frame
- **timestamp**: timestamp which Track be reconstructed based on
- **tsq**: a time sequence to reconstruct Track X based on it. This is optional. If this is not given, the function creates the time sequence based on timestamp.

Details

Sometimes tracks data are not collected according to a regular timestamp. In order to compare different tracks which share some time intervals, we might need to be aware of the locations in a regular timestamp. Function reTrack enables us to reconstruct an object of class "Track" based on a regular timestamp. Time sequence can be given by user, if not reTrack creates a regular time sequence based on the given timestamp.

Value

Either an object of class "Track" or a data.frame

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack, as.Track, as.POSIXct, compare
Examples

```r
library(sp)
library(spacetime)
t0 = as.POSIXct(as.Date("2013-09-30", tz="CET"))
# person A, track 1:
x = c(7,6,5,5,4,3,3)
y = c(7,7,6,5,5,6,7)
n = length(x)
set.seed(131)
t = t0 + cumsum(runif(n) * 60)
require(rgdal)
crs = CRS("+proj=longlat +datum=WGS84") # longlat
stidf = STIDF(SpatialPoints(cbind(x,y), crs), t, data.frame(co2 = rnorm(n)))
A1 = Track(stidf)
reTrack(A1, timestamp = "1 sec")
```

rTrack

Generate random Track, Tracks or TracksCollection objects

Description

Generate random Track, Tracks or TracksCollection objects

Usage

```r
rTrack(n = 100, origin = c(0,0), start = as.POSIXct("1970-01-01"), ar = .8, step = 60, sd0 = 1, bbox = bbox, transform = FALSE, nrandom = FALSE, ...)
rTracks(m = 20, start = as.POSIXct("1970-01-01"), delta = 7200, sd1 = 0, origin = c(0,0), ...)
rTracksCollection(p = 10, sd2 = 0, ...)
```

Arguments

- `n` number of points per Track
- `origin` numeric, length two, indicating the origin of the Track
- `start` POSIXct, indicating the start time of the Track
- `ar` numeric vector, indicating the amount of correlation in the Track
- `step` numeric; time step(s) in seconds between Track fixes
- `sd0` standard deviation of the random steps in a Track
- `sd1` standard deviation of the consecutive Track origin values (using rnorm)
- `sd2` standard deviation of the consecutive Tracks origin values (using rnorm)
- `bbox` bbox object
- `transform` logical; FIXME:fill in
- `nrandom` logical; if TRUE, draw n from rpois(n)
... rTrack: arguments passed on to \texttt{arima.sim}, rTracks: arguments passed on to rTrack; rTracksCollection: arguments passed on to rTracks

\textbf{m} number of Track objects to simulate

\textbf{delta} time difference between consecutive Track start times

\textbf{p} number of IDs with Tracks to generate

\section*{Details}

\texttt{ar} is passed on to \texttt{arima.sim} as \texttt{ar} element, and may contain multiple AR coefficients. The generated track is a \texttt{cumsum} over the simulated AR values, for each dimension. In case it has length 1 and value 0, random walk is created using \texttt{rnorm}. If bbox is given, the generated track will be transformed to bbox. If transform is TRUE and no bbox is given, it transforms the track to a unit box. If \texttt{nrandom} is TRUE, it generates a random number using \texttt{rpois} with parameter \texttt{n} as the number of locations per track.

\section*{Value}

An object of class \texttt{Track}, \texttt{Tracks} or \texttt{TracksCollection}.

\section*{Author(s)}

Edzer Pebesma <edzer.pebesma@uni-muenster.de>, Mohammad Mehdi Moradi <moradi@uji.es>

\section*{Examples}

\begin{verbatim}
x = rTrack()
dim(x)
plot(x)
x = rTracks(sd1 = 120)
dim(x)
plot(as(x, "SpatialLines"), col = 1:dim(x)[1], axes=TRUE)
x = rTracksCollection() # star
dim(x)
plot(x)
x = rTracksCollection(sd2 = 200,p=4,m=10)
plot(x, col=1:dim(x)[1])
\end{verbatim}

\section*{Description}

obtain ranges of space and time coordinates

\section*{Usage}

\begin{verbatim}
stbox(obj)
\end{verbatim}
Arguments

obj object of a class deriving from Tracks or TracksCollection.

Value

stbox returns a data.frame, with three columns representing x-, y- and time-coordinates, and two rows containing min and max values. bbox gives a matrix with coordinate min/max values, compatible to bbox.

Methods

stbox signature(x = "Tracks"): obtain st range from object

stbox signature(x = "TracksCollection"): obtain st range from object

stcube

Draw a space-time cube.

Description

Draw a space-time cube for a Track, TRacks, TracksCollection, difftrack or STI(DF) class.

Usage

```
## S4 method for signature 'Track'
stcube(x, xlab = "x", ylab = "y", zlab = "t", type = "l", aspect, xlim = stbox(x)[[1]] + c(-0.1, 0.1) * diff(stbox(x)[[1]]),
ylim = stbox(x)[[2]] + c(-0.1, 0.1) * diff(stbox(x)[[2]]),
zlim = stbox(x)$time, showMap = FALSE, mapType = "osm",
mapZoom = NULL, ..., y, z)
## S4 method for signature 'Tracks'
stcube(x, xlab = "x", ylab = "y", zlab = "t", type = "l", aspect, xlim, ylim, zlim, showMap = FALSE, mapType = "osm",
normalizeBy = "week", mapZoom = NULL, ..., y, z, col)
## S4 method for signature 'TracksCollection'
stcube(x, xlab = "x", ylab = "y", zlab = "t", type = "l", aspect, xlim, ylim, zlim, showMap = FALSE, mapType = "osm",
normalizeBy = "week", mapZoom = NULL, ..., y, z, col)
## S4 method for signature 'difftrack'
stcube(x, showMap = FALSE, mapType = "osm", normalizeBy = "week", ..., y, z)
## S4 method for signature 'STI'
stcube(x, xlab = "x", ylab = "y", zlab = "t", type = "p", aspect,
xlim = stbox(x)[[1]] + c(-0.1, 0.1) * diff(stbox(x)[[1]]),
ylim = stbox(x)[[2]] + c(-0.1, 0.1) * diff(stbox(x)[[2]]),
zlim = stbox(x)$time,
showMap = FALSE, mapType = "osm", mapZoom = NULL, ..., y, z)
```
S4 method for signature 'STIDF'

```r
stcube(x, xlab = "x", ylab = "y", zlab = "t", type = "p", aspect,  
xlim = stbox(x)[[1]] + c(-0.1, 0.1) * diff(stbox(x)[[1]]),  
ylim = stbox(x)[[2]] + c(-0.1, 0.1) * diff(stbox(x)[[2]]),  
zlim = stbox(x)$time,  
showMap = FALSE, mapType = "osm", mapZoom = NULL, col, ..., y, z)
```

Arguments

- `x`: An object of class `Track`, `Tracks`, or `TracksCollection` or `difftrack`.
- `xlab, ylab, zlab, type, aspect, xlim, ylim, zlim`: Arguments passed to `plot3d()` of package `rgl`.
- `showMap`: Flag if a basemap is to be shown on the xy plane; for this to function, you may need to load library `raster` first, see also the `stcube` demo script.
- `mapType`: The tile server from which to get the map. Passed as `type` to `openmap()` of package `OpenStreetMap`.
- `normalizeBy`: An abstract time period (either week or day) to be normalized by.
- `mapZoom`: Set a zoom level for the map used as background. Null will use the `osm` package default strategie.
- `y, z, col`: Ignored, but included in the method signature for implementation reasons.
- `...`: Additional arguments passed to `plot3d()` of package `rgl`.

Value

A space-time cube.

Examples

```r
## Not run: demo(stcube)
```

storms

Storm trajectories

Description

Usage

data(storms)
Examples

```r
data(storms)
dim(storms)
plot(storms)
x = approxTracksCollection(storms, by = "30 min", FUN = spline)
plot(x, col = 'red', add = TRUE)
## Not run:
demo(storms) # regenerates these data from their source
## End(Not run)
```

Track-class

Classes "Track", "Tracks", and "TracksCollection"

Description

Classes for representing sets of trajectory data, with attributes, for different IDs (persons, objects, etc)

Usage

```r
Track(track, df = fn(track), fn = TrackStats)
Tracks(tracks, tracksData = data.frame(row.names=names(tracks)),
       fn = TrackSummary)
TracksCollection(tracksCollection, tracksCollectionData,
                 fn = TracksSummary)
TrackStats(track)
TrackSummary(track)
```

Arguments

- `track`: object of class **STIDF-class**, representing a single trip
- `df`: optional data.frame with information between track points
- `tracks`: named list with Track objects
Track-class

tracksData data.frame with summary data for each Track
tracksCollection list, with Tracks objects
tracksCollectionData data.frame, with summary data on tracksCollection
fn function;
x object of class Track etc
i selection of spatial entities
j selection of temporal entities (see syntax in package xts)
... selection of attribute(s)
drop logical
from from
to target class

Value

Functions Track, Tracks and TracksCollection are constructor functions that take the slots as arguments, check object validity, and compute summary statistics on the track and tracks sets.

TrackStats returns a data.frame with for each track segment the distance, duration, speed, and direction. In case data are geographical coordinates (long/lat), distance is in m, and direction is initial bearing.

TrackSummary reports for each track xmin, xmax, ymin, ymax, tmin, tmax, (number of points) n, (total) distance, and medspeed (median speed).

TracksSummary reports for each Tracks of a TracksCollection (number of tracks) n, xmin, xmax, ymin, ymax, tmin, tmin, tmax.

Objects from the Class

Objects of class Track extend STIDF-class and contain single trips or tracks, objects of class Tracks contain multiple Track objects for a single ID (person, object or tracking device), objects of class TracksCollection contain multiple Tracks objects for different IDs.

Slots of class "Track"

sp: spatial locations of the track points, with length n
time: time stamps of the track points
data: data.frame with n rows, containing attributes of the track points
connections: data.frame, with n-1 rows, containing attributes between the track points such as distance and speed

Slots of class "Tracks"

tracks: list with Track objects, of length m
tracksData: data.frame with m rows, containing summary data for each Track object
Slots of class "TracksCollection"

tracksCollection: list Tracks objects, of length p
tracksCollectionData: data.frame with p rows, containing summary data for each Tracks object

Methods

[[signature(obj = "Track")]: retrieves the attribute element
[[signature(obj = "Tracks")]: retrieves the attribute element
[[signature(obj = "TracksCollection")]: retrieves the attribute element
[[<- signature(obj = "Track")]: sets or replaces the attribute element
[[<- signature(obj = "Tracks")]: sets or replaces the attribute element
[[<- signature(obj = "TracksCollection")]: sets or replaces the attribute element
$ signature(obj = "Track")]: retrieves the attribute element
$ signature(obj = "Tracks")]: retrieves the attribute element
$ signature(obj = "TracksCollection")]: retrieves the attribute element
$<- signature(obj = "Track")]: sets or replaces the attribute element
$<- signature(obj = "Tracks")]: sets or replaces the attribute element
$<- signature(obj = "TracksCollection")]: sets or replaces the attribute element
coerce Track, data.frame coerce to data.frame
coerce Tracks, data.frame coerce to data.frame
coerce TracksCollection, data.frame coerce to data.frame
plot signature(x = "TracksCollection", y = "missing")]: plots sets of sets of tracks
stplot signature(obj = "TracksCollection")]: plots sets of sets of tracks

Note

segments is a data.frame form in which track segments instead of track points form a record, with x0, y0, x1 and y1 the start and end coordinates

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

References

http://www.jstatsoft.org/v51/i07/
Examples

library(sp)
library(spacetime)
t0 = as.POSIXct(as.Date("2013-09-30",tz="CET"))
person A, track 1:
x = c(7,6,5,5,4,3,3)
y = c(7,7,6,5,5,6,7)
n = length(x)
set.seed(131)
t = t0 + cumsum(runif(n) * 60)
require(rgdal)
crs = CRS("+proj=longlat +datum=WGS84") # longlat
stidf = STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n)))
A1 = Track(stidf)
person A, track 2:
x = c(7,6,6,7,7)
y = c(6,5,4,4,3)
n = length(x)
t = max(t) + cumsum(runif(n) * 60)
stidf = STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n)))
A2 = Track(stidf)
Tracks for person A:
A = Tracks(list(A1=A1,A2=A2))
person B, track 1:
x = c(2,2,1,1,2,3)
y = c(5,4,3,2,2,3)
n = length(x)
t = max(t) + cumsum(runif(n) * 60)
stidf = STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n)))
B1 = Track(stidf)
person B, track 2:
x = c(3,3,4,3,3,4)
y = c(5,4,3,2,1,1)
n = length(x)
t = max(t) + cumsum(runif(n) * 60)
stidf = STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n)))
B2 = Track(stidf)
Tracks for person A:
B = Tracks(list(B1=B1,B2=B2))
Tr = TracksCollection(list(A=A,B=B))
stplot(Tr, scales = list(draw=TRUE))
stplot(Tr, attr = "direction", arrows=TRUE, lwd = 3, by = "direction")
stplot(Tr, attr = "direction", arrows=TRUE, lwd = 3, by = "IDs")
plot(Tr, col=2, axes=TRUE)
dim(Tr)
dim(Tr[2])
dim(Tr[2][1])
u = stack(Tr) # four IDs
dim(u)
dim(unstack(u, c(1,1,2,2))) # regroups to original
dim(unstack(u, c(1,1,2,3))) # regroups to three IDs
dim(unstack(u, c(1,2,2,1))) # regroups differently
as(Tr, "data.frame")[1:10,] # tracks separated by NA rows
as(Tr, "segments")[1:10,] # track segments as records
Tr["distance"] = Tr["distance"] * 1000
Tr$distance = Tr$distance / 1000
Tr$distance

work with custom TrackStats function:
MyStats = function(track) {
 df = apply(coordinates(track@sp), 2, diff) # requires sp
 data.frame(distance = apply(df, 1, function(x) sqrt(sum(x^2))))
}
crs = CRS(as.character(NA))
stidf = STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n)))
B2 = Track(stidf) # no longer longlat;
B3 = Track(stidf, fn = MyStats)
all.equal(B3$distance, B2$distance)

approxTrack:
opar = par()
par(mfrow = c(1, 2))
plot(B2, ylim = c(.5, 6))
plot(B2, pch = 16, add = TRUE)
title("irregular time steps")
i = index(B2)
B3 = approxTrack(B2, seq(min(i), max(i), length.out = 50))
plot(B3, col = 'red', type = 'p', add = TRUE)
B4 = approxTrack(B2, seq(min(i), max(i), length.out = 50), FUN = spline)
plot(B4, col = 'blue', type = 'b', add = TRUE)

regular time steps:
t = max(t) + (1:n) * 60 # regular
B2 = Track(STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n))))
plot(B2, ylim = c(.5, 6))
plot(B2, pch = 16, add = TRUE)
title("constant time steps")
i = index(B2)
B3 = approxTrack(B2)
plot(B3, type = 'p', col = 'red', add = TRUE)
B4 = approxTrack(B2, FUN = spline)
plot(B4, type = 'p', col = 'blue', add = TRUE)

par(opar) # good to do, but would generate warnings
smth = function(x,y,xout,...) predict(smooth.spline(as.numeric(x), y), as.numeric(xout))
data(storms)
plot(storms, type = 'p')
storms.smooth = approxTracksCollection(storms, FUN = smth, n = 200)
plot(storms.smooth, add = TRUE, col = 'red')
Track.idw

Description

Movement smoothing of trajectory pattern

Usage

```
Track.idw(X,timestamp,epsilon=epsilon,...)
```

Arguments

- `X` a list of objects of class "Track"
- `timestamp` based on secs, mins, ...
- `epsilon` (optional) movements with length less than epsilon are not considered in the calculation
- `...` passed to arguments of function `idw` in spatstat

Details

Performs spatial smoothing to the movements of a list of tracks.

Value

an image of class "im".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

as.Track.arrow, idw

Examples

```
X <- list()
for(i in 1:10){
  m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
  X[[i]] <- rTrack(bbox = m,transform = TRUE)
}
Track.idw(X,timestamp="180 secs")
```
Description

tsqtracks returns a sequence of time based on a list of tracks (or a single object of class "Track") and an argument timestamp.

Usage

tsqTracks(X, timestamp)

Arguments

X either an object of class "Track" or a list of some objects of class "Track"
timestamp a timestamp to create the time sequence based on it

Details

This creates a sequence of time based on a track or a list of tracks.

Value

An object of class "POSIXct" or "POSIXt".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack

Examples

library(sp)
library(spacetime)
t0 = as.POSIXct(as.Date("2013-09-30", tz="CET"))
person A, track 1:
x = c(7, 6, 5, 4, 3, 3)
y = c(7, 6, 5, 5, 6, 7)
n = length(x)
set.seed(131)
t = t0 + cumsum(runif(n) * 60)
require(rgdal)
crs = CRS("+proj=longlat +datum=WGS84") # longlat
stidf = STIDF(SpatialPoints(cbind(x,y), crs), t, data.frame(co2 = rnorm(n)))
A1 = Track(stidf)
tsqTracks(A1, timestamp = "1 sec")
Description
Removing duplicated points in a track

Usage
```
## S3 method for class 'Track'
unique(x,...)
```

Arguments
- `x` an object of class "Track"
- `...` passed to arguments of unique

Details
This function removes duplicated points in an object of class "Track".

Value
An object of class Track with no duplicated point.

Author(s)
Mohammad Mehdi Moradi <moradi@uji.es>

See Also
rTrack, rTracks, rTracksCollection, unique

Examples
```
x <- rTrack()
unique(x)
```
Index

* classes
 difftrack-class, 14
 Track-class, 34
* compare
 compare, 11
* datasets
 A3, 3
 storms, 33
* dists
 dists, 15
* downsample
 downsample, 16
* dplot
 cut, 12
 stbox, 31
* generalize
 generalize, 17
* methods
 frechetDist, 16
* random
 rTrack, 30
* space-time cube
 stcube, 32
 [,Track,ANY,ANY,ANY-method
 (Track-class), 34
 [,Track-method (Track-class), 34
 [,Tracks,ANY,ANY,ANY-method
 (Track-class), 34
 [,Tracks-method (Track-class), 34
 [,TracksCollection,ANY,ANY,ANY-method
 (Track-class), 34
 [,TracksCollection-method
 (Track-class), 34
 $<-,Track,ANY,missing-method
 (Track-class), 34
 $<-,Tracks,ANY,missing-method
 (Track-class), 34
 $<-,TracksCollection,ANY,missing-method
 (Track-class), 34
 $,Track-method (Track-class), 34
 $,Tracks-method (Track-class), 34
 $,TracksCollection-method
 (Track-class), 34
 $<-,Track-method (Track-class), 34
 $<-,Tracks-method (Track-class), 34
 $<-,TracksCollection-method
 (Track-class), 34
 A3, 3
 aggregate,Track-method (Track-class), 34
 aggregate,Tracks-method (Track-class), 34
 aggregate,TracksCollection-method
 (Track-class), 34
 approxTrack (Track-class), 34
 approxTracks (Track-class), 34
 approxTracksCollection (Track-class), 34
 arima.sim, 31
 as.list, 3, 4
 as.list.Tracks, 3
 as.list.TracksCollection, 4
 as.POSIXct, 5, 29
 as.ppp, 7
 as.Track, 4, 29
 as.Track.arrow, 5, 9, 39
 as.Track.ppp, 6, 8, 18, 20
 auto.arima, 7, 8
 auto.arima.Track, 7
 avedistTrack, 7, 8
 avemove, 9
 bbox, 32
INDEX

chimaps, 10
coerce,Track,data.frame-method (Track-class), 34
coerce,Tracks,data.frame-method (Track-class), 34
coerce,TracksCollection,data.frame-method (Track-class), 34
compare, 11, 29
compare,Track-method (compare), 11
coordnames,Track-method (Track-class), 34
coordnames,Tracks-method (Track-class), 34
coordnames,TracksCollection-method (Track-class), 34
cumsum, 31
cut, 12, 12
density.list, 10, 13
density.ppp, 10, 13
difftrack,difftrack-class, 14
difftrack-class, 14
dists, 15
dists,Tracks,Tracks-method (dists), 15
downsampling, 16
downsampling,Track-method (downsampling), 16
frechetDist, 15, 16
frechetDist,Track-method (frechetDist), 16
generalize, 17
generalize,Track-method (generalize), 17
generalize,Tracks-method (generalize), 17
generalize,TracksCollection-method (generalize), 17
gSimplify, 17
idw, 39
Kinhom, 18
Kinhom.Track, 18
pcfinhom, 20
pcfinhom.Track, 19
plot,difftrack,ANY-method (difftrack-class), 14
plot,Track,missing-method (Track-class), 34
plot,Tracks,ANY-method (Track-class), 34
plot,TracksCollection,ANY-method (Track-class), 34
plot.distrack, 20
plot.distrack, 20
plot.gTrack21
plot.KTrack, 22
print.ArimaTrack, 23
print.arwlen, 23
print.distrack, 24
print.gTrack, 25
print.KTrack, 25
print.ppp, 26
print.Track, 26
print.Tracks, 27
print.TracksCollection, 27
print.Trrow, 28
range, 29
range.Track, 28
reTrack, 28
rnorm, 29
rpois, 29
rTrack, 3, 4, 6, 8, 13, 18, 20, 29, 30, 41
rTracks, 3, 4, 29, 41
rTracks (rTrack), 30
rTracksCollection, 3, 4, 29, 41
rTracksCollection (rTrack), 30
segments-class (Track-class), 34
segPanel (Track-class), 34
SpatialLines, 17
SpatialLinesDataFrame, 14
spTransform,Track,CRS-method (Track-class), 34
spTransform,Tracks,CRS-method (Track-class), 34
spTransform,TracksCollection,CRS-method (Track-class), 34
stbox, 31
stbox,Tracks-method (stbox), 31
stbox,TracksCollection-method (stbox), 31
stcube, 32
stcube,difftrack-method (stcube), 32
stcube,STI-method (stcube), 32
stcube,STIDF-method (stcube), 32
stcube,Track-method (stcube), 32
stcube,Tracks-method (stcube), 32
stcube,TracksCollection-method
 (stcube), 32
STIDF-class, 34, 35
storms, 33
stplot,TracksCollection-method
 (Track-class), 34
Track, 5, 14
Track (Track-class), 34
Track-class, 34
Track.idw, 38
Tracks (Track-class), 34
Tracks-class (Track-class), 34
TracksCollection (Track-class), 34
TracksCollection-class (Track-class), 34
tracksPanel (Track-class), 34
TracksSummary (Track-class), 34
TrackStats (Track-class), 34
TrackSummary (Track-class), 34
tsqTracks, 40
unique, 41
unique.Track, 41