Package ‘trouBBlme4SolveR’

October 14, 2022

Version 0.1.1
Date 2022-08-08
Title Troubles Solver for 'lme4'
Description The main function of the package aims to update \texttt{lmer()}/'glmer()' models depending on their warnings, so trying to avoid convergence and singularity problems.
Depends R (>= 4.0)
Imports \texttt{lme4} (>= 1.1-28)
Suggests \texttt{nlme} (>= 3.1-123), \texttt{ggplot2} (>= 2.0.0), \texttt{minqa}
License GPL-3
URL https://gitlab.com/iagogv/trouBBlme4SolveR
BugReports https://gitlab.com/iagogv/trouBBlme4SolveR/-/issues
Encoding UTF-8
NeedsCompilation no
Author Iago Giné-Vázquez [aut, cre] (<https://orcid.org/0000-0002-6725-2638>)
Maintainer Iago Giné-Vázquez <iago.gin-vaz@protonmail.com>
Repository CRAN
Date/Publication 2022-08-08 16:30:02 UTC

\textbf{R topics documented:}

\begin{itemize}
 \item dwmw ... 2
 \item fly_parameters .. 4
 \item fstruction .. 5
 \item issue618 ... 6
 \item issue618large .. 7
 \item plants ... 8
 \item treatments ... 9
\end{itemize}

Index 11
dwmw

Solver for (generalized) linear MM warnings

Description

Updates a (possibly generalized) linear mixed model computed with the library `lme4` functions `lmer` or `glmer`, in order to elude some singularity or convergence problems informed by distinct warnings or messages.

Usage

```r
dwmw(lmmodel, boundary_check = TRUE, scale = FALSE, scale_info = TRUE, 
tol = 1e-4, max_message_iter = 7, max_nAGQ = 6, 
next_optimizer = "bobyqa", next_optCtrl = list(maxfun = 2e5), 
when_next = max_message_iter - 1, verbose = FALSE)
```

Arguments

- **lmmodel**
 - The model of interest, output of either `lmer` or `glmer`, that is, an object of class `merMod` and subclass either `lmerMod` or `glmerMod`.

- **boundary_check**
 - A length 1 boolean object (TRUE [default] or FALSE), determining if the function removes those random effects which make the model singular (in the simplest situation, those with standard deviation almost 0).

- **scale**
 - A length 1 boolean object (TRUE or FALSE [default]), determining if the function must rescale the numeric predictors when this action is asked in a warning or message.

- **scale_info**
 - A length 1 boolean object (TRUE [default] or FALSE), determining if the function should cat a message when some predictor variables are on very different scales, but are not rescaled.

- **tol**
 - A numeric value (default is `1e-4`), tolerance under which to consider if a model is singular (see boundary_check argument).

- **max_message_iter**
 - A numeric value (default is 7), generally the maximum number of iterations allowed to update the model. For the exception, see the Details section.

- **max_nAGQ**
 - A numeric value (default is 6), maximum to which increase the `nAGQ` argument fitting `glmer` models.

- **next_optimizer**
 - An optimizer (default is "bobyqa"), next to be used when model convergence is failing.

- **next_optCtrl**
 - A `list` (default is `list(maxfun=2e5)`) of additional arguments to be passed to the nonlinear optimizer (see `Nelder_Mead`, `bobyqa`). In particular, both `Nelder_Mead` and `bobyqa` use `maxfun` to specify the maximum number of function evaluations they will try before giving up - in contrast to `optim` and `optimx`-wrapped optimizers, which use `maxit`. (Also see convergence for details of stopping tolerances for different optimizers.)
when_next A numeric value not greater than `max_message_iter - 1` (which is the default), specifying from which iteration a model convergence failing is approached with a new optimizer (`next_optimizer`) and with a new set of arguments to it (`next_optCtrl`).

verbose A length 1 boolean object (TRUE or FALSE [default]) specifying if function iterations and model updating should be verbose.

Details

If the model does not generate any warning or message, `dwmw` returns itself. The function rescales numeric predictors if some warning or message suggests it and the `scale` argument is TRUE. If the model fails to converge, it only updates the starting values for the parameters in the model through the first `when_next - 1` iterations, while it also updates the optimizer and their arguments through the next iterations.

If the model is singular (there is a "boundary (singular)"-alike message) and `boundary_check` is TRUE, the formula is updated removing the random effects which cause the model to be singular. If all the random effects are removed, a linear or generalized linear model is computed according to the `lmmodel` object.

If the model has subclass `glmerMod`, a single scalar random effect and converges but it is nearly unidentifiable with a very large eigenvalue, then `nAGQ` is increased one unity while `nAGQ <= max_nAGQ` (and only in this case, allowing the iterations to exceed `max_message_iter` until `nAGQ == max_nAGQ`).

Value

Generally, an object of class `merMod`, being either an object of subclass `glmerMod` or an object of subclass `lmerMod`, corresponding to the input `lmmodel` argument. When all random effects are removed, an object of class `glm` or `lm` depending also on the input `lmmodel`.

Author(s)

Iago Giné-Vázquez, <iago.gin-vaz@protonmail.com>

See Also

`lmer`, `glmer`, `merMod` `lmerControl`, `convergence`, `troubleshooting`, `isSingular`, `lm` and `glm`.

Examples

```r
if(requireNamespace("nlme")){
library(lme4)
data(Orthodont, package = "nlme")
Orthodont$nsex <- as.numeric(Orthodont$Sex == "Male")
Orthodont$nsexage <- with(Orthodont, nsex*age)
## Without using `dwmw`, the next model is singular
fmo <- lmer(distance ~ age + (age|Subject) + (0+nsex|Subject) +
            (0 + nsexage|Subject), data = Orthodont)
summary(fmo)

## Using `dwmw`, we remove the singularity of the model
fmo1 <- dwmw(lmer(distance ~ age + (age|Subject) + (0+nsex|Subject) +
```
(0 + nsexage|Subject), data = Orthodont))
summary(fmo1)

It also can be used on the output object

fmo2 <- dwmw(fmo)
summary(fmo2)

fly_parameters

Description

Two integer variables (ValidDetections and FalseDetections) to build an outcome, two factor variables to be used as clusters for the random effects (SUR.ID and Day), three factor variables to be used as fixed effects (tm, Area and replicate), five numeric variables to be used as fixed effects (c.distance, c.tm.depth, c.receiver.depth, c.temp and c.wind) and a pair of variables extra, allowing to build a model which fails to converge.

Usage

data("fly_parameters")

Format

A data frame with 220 observations on the following 14 variables.

- **SUR.ID** a factor with levels 10185 10186 10250
- **tm** a factor with levels CT PT-04
- **ValidDetections** a numeric vector
- **CountDetections** a numeric vector
- **FalseDetections** a numeric vector
- **replicate** a factor with levels 1 2
- **Area** a factor with levels Drug Channel Finger
- **Day** a factor with levels 03/06/13 2/22/13 2/26/13 2/27/13 3/14/13
- **R.det** a numeric vector
- **c.receiver.depth** a numeric vector
- **c.tm.depth** a numeric vector
- **c.temp** a numeric vector
- **c.wind** a numeric vector
- **c.distance** a numeric vector
Source

warning messages when trying to run glmer in R

Examples

data(fly_parameters)
str(fly_parameters)
df <- fly_parameters
df$SUR.ID <- factor(df$SUR.ID)
df$replicate <- factor(df$replicate)
Rdet <- cbind(df$ValidDetections, df$FalseDetections)
Unit <- factor(1:length(df$ValidDetections))

library(lme4)
m1 <- glmer(Rdet ~ tm:Area + tm:c.distance +
c.distance:Area + c.tm.depth:Area +
c.receiver.depth:Area + c.temp:Area +
c.wind:Area +
c.tm.depth + c.receiver.depth +
c.temp + c.wind + tm + c.distance + Area +
replicate +
(1|SUR.ID) + (1|Day) + (1|Unit),
data = df, family = binomial(link="logit"))
summary(m1)
m1_new <- dwmw(m1, scale = TRUE, max_message_iter = 3)
summary(m1_new)

fstruction

Formula removal of singular random effects

Description

Removes those random effects from a model formula making the model to be singular.

Usage

fstruction(model, tol = 1e-4)

Arguments

model

The model of interest, output of either lmer or glmer, that is, an object of class
merMod and subclass either lmerMod or glmerMod.

tol

A numeric value (default is 1e-4), tolerance under which to determine if the
random effects make the model to be singular.
Value

A list with a string component `dstring` which is the formula as character updated (to be used by `update`) after removing the singular random effects and, when no all the random effects are removed two other string components:

- `betchar`: a character vector with the random effect terms removed from the formula.
- `inchar`: a character vector having the same length as `betchar` with the corresponding groups (aggregate levels) for which the random effects are removed.

Author(s)

Iago Giné-Vázquez, <iago.gin-vaz@protonmail.com>

See Also

`formula`, `update`

Examples

```r
if(requireNamespace("nlme")){
  library(lme4)
  data(Orthodont, package = "nlme")
  Orthodont$nsex <- as.numeric(Orthodont$Sex == "Male")
  Orthodont$nsexage <- with(Orthodont, nsex*age)
  ## The next model is singular
  fmo <- lmer(distance ~ age + (age|Subject) + (0+nsex|Subject) +
              (0 + nsexage|Subject), data = Orthodont)
  summary(fmo)
  ## Let's see the formula updated (as a string)
  fstruction(fmo)
}
```

Description

Three variables, being one dichotomous, other continuous and the last, categorical. Data for the first reproducible example for issue 618 on the lme4 Github-repository, making `glmer` to produce a model is nearly unidentifiable: very large eigenvalue - Rescale variables?

warning for the model `outcome_dead ~ AGE + (1|ZIP)`.

Usage

`data("issue618")`
Format

A data frame with 1000 observations on the following 3 variables.

outcome_dead an integer vector
AGE an integer vector
ZIP an integer vector

Source

convergence issues with continuous variables in model

Examples

data(issue618)
str(issue618)

library(lme4)
m1 <- glmer(outcome_dead ~ AGE + (1|ZIP), family = binomial, data = issue618)
summary(m1)
m2 <- dwm(m1, scale = TRUE)
summary(m2)

Description

Three variables, being one dichotomous, other continuous and the last, categorical. Data for the first reproducible example for issue 618 on the lme4 Github-repository, making glmer to produce a

Model is nearly unidentifiable: very large eigenvalue - Rescale variables?

warning for the model outcome_dead ~ AGE + (1|ZIP).

Usage

data("issue618")

Format

A data frame with 1000 observations on the following 3 variables.

outcome_dead an integer vector
AGE an integer vector
ZIP an integer vector
Source

convergence issues with continuous variables in model

Examples

data(issue618large)
str(issue618large)

library(lme4)
m1 <- glmer(outcome_dead ~ AGE + (1|ZIP), family = binomial, data = issue618large)
summary(m1)
m2 <- dwmm(m1, scale = TRUE)
summary(m2)
m3 <- glmer(outcome_dead ~ scale(AGE) + (1|ZIP), family = binomial, data = issue618large, nAGQ=20)
aa <- allFit(m3)
ss <- summary(aa)
ss$stats # all NULL

plants

Data for the SO question R
<https://stackoverflow.com/questions/60028673/lme4-error-boundary-singular-fit-see-isSingular>

Description

Five variables, being one continuous to use as outcome (Weight), and four factors, of which two (Rep and PLANT) are used as clusters for the random effects of a singular linear mixed model (Weight ~ 1 + (1|Rep:PLANT)).

Usage

data("plants")

Format

A data frame with 536 observations on the following 5 variables.

Rep a factor with levels 1 2

Weight a numeric vector

PLANT a factor with levels 1 2 3 4

X a factor with levels 24 12 21 11 13 14 22 23
treatments

Source

lme4 error: boundary (singular) fit: see ?isSingular

Examples

data(plants)
str(plants)

library(lme4)
fit <- lmer(Weight ~ 1 + (1|PLANT:Rep), data = plants)
summary(fit)
fit2 <- dwmw(fit)
summary(fit2)

Data for the Cross Validated question

[Rhrefhttps://stats.stackexchange.com/questions/575666/lme4-glmer-warning-messages-with-count-data-mixed-effects-model-and-how-to-prlme4: glmer() warning messages with count data mixed-effects model and how to proceed with model fit

Description

A continuous variable to be used as outcome (total_no), another to be used as predictor (week), two factor variables to be used as predictors (treatment and fzone) and another factor to be used as cluster for the random effects (plot) of a Poisson model failing to converge, and an extra variable.

Usage

data("treatments")

Format

A data frame with 142 observations on the following 7 variables.

plot a numeric vector
date a character vector
total_no a numeric vector
zone a character vector
treatment a character vector
week a numeric vector
fzone a character vector
Source

lme4: glmer() warning messages with count data mixed-effects model and how to proceed with model fit

Examples

data(treatments)
str(treatments)

library(lme4)
glmm.1 <- glmer(total_no ~ week*treatment*fzone + (1|plot), data = treatments,
family = poisson)
summary(glmm.1)
glmm.11 <- dwmw(glmm.1, verbose = TRUE)
summary(glmm.11)
Index

* datasets
 fly_parameters, 4
 issue618, 6
 issue618large, 7
 plants, 8
 treatments, 9

* models
 dwm, 2
 bobyqa, 2
 convergence, 2, 3
 dwm, 2
 fly_parameters, 4
 formula, 6
 fstruction, 5
 glm, 3
 glmer, 2, 3, 5
 isSingular, 3
 issue618, 6
 issue618large, 7
 list, 2
 lm, 3
 lmer, 2, 3, 5
 lmerControl, 3
 merMod, 2, 3, 5
 Nelder_Mead, 2
 optim, 2
 plants, 8
 treatments, 9
 troubleshoot (dwm), 2
 troubleshooting, 3
 update, 6