Package ‘trtf’

February 10, 2023

Title Transformation Trees and Forests
Version 0.4-2
Date 2023-02-10
Description Recursive partytioning of transformation models with
 corresponding random forest for conditional transformation models
 as described in 'Transformation Forests' (Hothorn and Zeileis, 2021, <doi:10.1080/10618600.2021.1872581>)

Depends mlt (>= 1.4-1), partykit (>= 1.2-1), tram
Imports Formula, sandwich, grid, stats, variables, libcoin, utils,
grDevices
Suggests survival, TH.data, coin
URL http://ctm.R-forge.R-project.org
License GPL-2

R topics documented:

 trtf-package ... 2
traforest ... 2
trafotree ... 5

Index 8
Description

The **trtf** package implements transformation trees and transformation forests as described in Hothorn and Zeileis (2017).

Example applications of transformation trees and forests can be replicated using demo("applications") and demo("BMI"). Figure 1 in Hothorn and Zeileis (2017) can be reproduced by demo("QRF"). Source code of simulation experiments is available in directory `trtf/inst/sim`.

Author(s)

This package is authored by Torsten Hothorn <Torsten.Hothorn@R-project.org>.

References

traforest

Transformation Forests

Description

Partitioned and aggregated transformation models

Usage

```r
traforest(object, parm = 1:length(coef(object)), reparm = NULL, 
          intercept = c("none", "shift", "scale", "shift-scale"), 
          update = TRUE, min_update = length(coef(object)) * 2, 
          mltargs = list(), ...)
```

```r
predict(object, newdata = data.frame(1), mnewdata = data.frame(1), K = 20, q = NULL, 
         type = c("weights", "node", "coef", "trafo", "distribution", "survivor", "density", 
                  "logdensity", "hazard", "loghazard", "cumhazard", "quantile"), 
         OOB = FALSE, simplify = FALSE, trace = FALSE, updatestart = FALSE, 
         applyfun = NULL, cores = NULL, ...)
```

```r
logLik(object, newdata, weights = NULL, OOB = FALSE, coef = NULL, ...)
```
Arguments

object
parm
reparm
intercept
mltargs
update
min_update
newdata
mnewdata
K
q
type
simplify
trace
updatestart
applyfun
cores
weights
coef
... an object of class \texttt{ctm} or \texttt{mlt} specifying the abstract model to be partitioned.

parameters of object those corresponding score is used for finding partitions.

optional matrix of contrasts for reparameterisation of the scores. \texttt{teststat = "quadratic"} is invariant to this operation but \texttt{teststat = "max"} might be more powerful for example when formulating an implicit into an explicit intercept term.

add optional intercept parameters (constraint to zero) to the model.

arguments to \texttt{mlt} for fitting the transformation models.

logical, if \texttt{TRUE}, models and thus scores are updated in every node. If \texttt{FALSE}, the model and scores are computed once in the root node. The latter option is faster but less accurate.

number of observations necessary to refit the model in a node. If less observations are available, the parameters from the parent node will be reused.

an optional data frame of observations for the forest.

an optional data frame of observations for the model.

number of grid points to generate (in the absence of \texttt{q}).

quantiles at which to evaluate the model.

type of prediction or plot to generate.

simplify predictions (if possible).

a logical indicating if a progress bar shall be printed while the predictions are computed.

try to be smart about starting values for computing predictions (experimental).

an optional \texttt{lapply}-style function with arguments \texttt{function(X, FUN, \ldots)} for looping over \texttt{newdata}. The default is to use the basic \texttt{lapply} function unless the \texttt{cores} argument is specified (see below).

numeric. If set to an integer the \texttt{applyfun} is set to \texttt{mclapply} with the desired number of cores.

an optional vector of weights.

an optional matrix of precomputed coefficients for \texttt{newdata} (using \texttt{predict}). Helps to compute the coefficients once for later reuse (different weights, for example).

arguments to \texttt{cforest}, at least \texttt{formula} and \texttt{data}.

Details

Conditional inference trees are used for partitioning likelihood-based transformation models as described in Hothorn and Zeileis (2017). The method can be seen in action in Hothorn (2018) and the corresponding code is available as \texttt{demo("BMI")}.
Value

An object of class `traforest` with corresponding `logLik` and `predict` methods.

References

Examples

```r
### Example: Personalised Medicine Using Partitioned and Aggregated Cox-Models
### A combination of <DOI:10.1177/0962280217693034> and <arXiv:1701.02110>
### based on infrastructure in the mlt R add-on package described in
### https://cran.r-project.org/web/packages/mlt/docreg/vignettes/mlt.pdf

library("trtf")
library("survival")

### German Breast Cancer Study Group 2 data set
data("GBSG2", package = "TH.data")
GBSG2$y <- with(GBSG2, Surv(time, cens))

### set-up Cox model with overall treatment effect in hormonal therapy
cmod <- Coxph(y ~ horTh, data = GBSG2, support = c(100, 2000), order = 5)

### overall log-hazard ratio
coef(cmod)

### roughly the same as
cofx <- coef(coxph(y ~ horTh, data = GBSG2))

### Not run:

### estimate age-dependent Cox models (here ignoring all other covariates)
cotr <- ctree_control(minsplit = 50, minbucket = 20, mincriterion = 0)
set.seed(20875)
tf_cmod <- traforest(cmod, formula = y ~ horTh | age, control = ctrl,
                      ntree = 50, mtry = 1, trace = TRUE, data = GBSG2)

### plot age-dependent treatment effects vs. overall treatment effect
nd <- data.frame(age = 30:70)
cf <- predict(tf_cmod, newdata = nd, type = "coef")
nd$logHR <- sapply(cf, function(x) x["horThyes"])
plot(logHR ~ age, data = nd, pch = 19, xlab = "Age", ylab = "log-Hazard Ratio")
abline(h = coef(cmod <- mlt(m, data = GBSG2))[, "horThyes"], col = "red")

### treatment most beneficial in very young patients
### NOTE: scale of log-hazard ratios depends on
```
corresponding baseline hazard function which _differs_ across age; interpretation of positive / negative treatment effect is, however, save.

mclapply doesn’t work in Windows

```r
if (.Platform$OS.type != "windows") {
  
  ### computing predictions: predicted coefficients
cf1 <- predict(tf_cmod, newdata = nd, type = "coef")
  
  ### speedup with plenty of RAM and 4 cores
cf2 <- predict(tf_cmod, newdata = nd, cores = 4, type = "coef")
  
  ### memory-efficient with low RAM and _one_ core
cf3 <- predict(tf_cmod, newdata = nd, cores = 4, applyfun = lapply, type = "coef")
  
  all.equal(cf1, cf2)
  all.equal(cf1, cf3)
}
```

End(Not run)

trafotree

Transformation Trees

Description

Partitioned transformation models

Usage

```r
trafotree(object, parm = 1:length(coef(object)), reparm = NULL, intercept = c("none", "shift", "scale", "shift-scale"), min_update = length(coef(object)) * 2, mltargs = list(), ...)
```

```r
## S3 method for class 'trafotree'
predict(object, newdata, K = 20, q = NULL, type = c("node", "coef", "trafo", "distribution", "survivor", "density", "logdensity", "hazard", "loghazard", "cumhazard", "quantile"), perm = NULL, ...)
```

```r
## S3 method for class 'trafotree'
logLik(object, newdata, weights = NULL, perm = NULL, ...)
```

Arguments

- **object**: an object of class **ctm** or **mlt** specifying the abstract model to be partitioned. For `predict` and `logLik`, `object` is an object of class `trafotree`.
- **parm**: parameters of object those corresponding score is used for finding partitions.
trafotree

reparm
optional matrix of contrasts for reparameterisation of the scores. teststat = "quadratic" is invariant to this operation but teststat = "max" might be more powerful for example when formulating an implicit into an explicit intercept term.

intercept
add optional intercept parameters (constraint to zero) to the model. It may make sense to restrict attention to scores corresponding to those intercept parameters, the additional argument parm = NULL is needed in this case.

min_update
number of observations necessary to refit the model in a node. If less observations are available, the parameters from the parent node will be reused.

mltargs
arguments to mlt for fitting the transformation models.

newdata
an optional data frame of observations.

K
number of grid points to generate (in the absence of q).

q
quantiles at which to evaluate the model.

type
type of prediction or plot to generate.

weights
an optional vector of weights.

perm
a vector of integers specifying the variables to be permuted prior before splitting (i.e., for computing permutation variable importances). The default NULL doesn’t alter the data, see fitted_node.

...
arguments to ctree, at least formula and data.

Details

Conditional inference trees are used for partitioning likelihood-based transformation models as described in Hothorn and Zeileis (2017). The method can be seen in action in Hothorn (2018) and the corresponding code is available as demo("BMI"). demo("applications") performs transformation tree analyses for some standard benchmarking problems.

Value

An object of class trafotree with corresponding plot, logLik and predict methods.

References

Example: Stratified Medicine Using Partitioned Cox-Models


```r
library("trtf")
library("survival")

# German Breast Cancer Study Group 2 data set
data("GBSG2", package = "TH.data")
GBSG2$y <- with(GBSG2, Surv(time, cens))

# set-up Cox model with overall treatment effect in hormonal therapy
library("trtf")
cmod <- Coxph(y ~ horTh, data = GBSG2, support = c(100, 2000), order = 5)

# overall log-hazard ratio
coef(cmod)

# roughly the same as
coef(coxph(y ~ horTh, data = GBSG2))

# partition the model, ie both the baseline hazard function AND the
treatment effect
(part_cmod <- trafotree(cmod, formula = y ~ horTh | age + menostat + tsize +
tgrade + pnodes + progrec + estrec, data = GBSG2))

# compare the log-likelihoods
logLik(cmod)
logLik(part_cmod)

# stronger effects in nodes 2 and 4 and no effect in node 5
coef(part_cmod)[, "horThyes"]

# plot the conditional survivor functions; blue is untreated
# and green is hormonal therapy
nd <- data.frame(horTh = sort(unique(GBSG2$horTh)))
plot(part_cmod, newdata = nd,
     tp_args = list(type = "survivor", col = c("cadetblue3", "chartreuse4")))

# same model, but with explicit intercept term and max-type statistic
# for _variable_ selection
(part_cmod_max <- trafotree(cmod, formula = y ~ horTh | age + menostat + tsize +
tgrade + pnodes + progrec + estrec, data = GBSG2, intercept = "shift",
control = ctree_control(teststat = "max")))

logLik(part_cmod_max)
coef(part_cmod_max)[, "horThyes"]

# the trees (and log-likelihoods are the same) but the
# p-values are sometimes much smaller in the latter tree

# Format p-values
format.pval(info_node(node_party(part_cmod))$criterion["p.value",],
            format.pval(info_node(node_party(part_cmod_max))$criterion["p.value",],)
```

Examples


```r
library("trtf")
library("survival")

# German Breast Cancer Study Group 2 data set
data("GBSG2", package = "TH.data")
GBSG2$y <- with(GBSG2, Surv(time, cens))

# set-up Cox model with overall treatment effect in hormonal therapy
cmod <- Coxph(y ~ horTh, data = GBSG2, support = c(100, 2000), order = 5)

# overall log-hazard ratio
coef(cmod)

# roughly the same as
coef(coxph(y ~ horTh, data = GBSG2))

# partition the model, ie both the baseline hazard function AND the
treatment effect
(part_cmod <- trafotree(cmod, formula = y ~ horTh | age + menostat + tsize +
tgrade + pnodes + progrec + estrec, data = GBSG2))

# compare the log-likelihoods
logLik(cmod)
logLik(part_cmod)

# stronger effects in nodes 2 and 4 and no effect in node 5
coef(part_cmod)[, "horThyes"]

# plot the conditional survivor functions; blue is untreated
# and green is hormonal therapy
nd <- data.frame(horTh = sort(unique(GBSG2$horTh)))
plot(part_cmod, newdata = nd,
     tp_args = list(type = "survivor", col = c("cadetblue3", "chartreuse4")))

# same model, but with explicit intercept term and max-type statistic
# for _variable_ selection
(part_cmod_max <- trafotree(cmod, formula = y ~ horTh | age + menostat + tsize +
tgrade + pnodes + progrec + estrec, data = GBSG2, intercept = "shift",
control = ctree_control(teststat = "max")))

logLik(part_cmod_max)
coef(part_cmod_max)[, "horThyes"]

# the trees (and log-likelihoods are the same) but the
# p-values are sometimes much smaller in the latter tree

# Format p-values
format.pval(info_node(node_party(part_cmod))$criterion["p.value",],
            format.pval(info_node(node_party(part_cmod_max))$criterion["p.value",],)
```
Index

* **package**
 - trtf-package, 2

* **trees**
 - traforest, 2
 - trafotree, 5

ctm, 3, 5
ctree, 6
fitted_node, 6

logLik.traforest (traforest), 2
logLik.trafotree (trafotree), 5

mlt, 3, 5, 6

predict.traforest (traforest), 2
predict.trafotree (trafotree), 5

traforest, 2
trafotree, 5
trtf-package, 2