Package ‘tscount’

September 8, 2020

Type Package
Title Analysis of Count Time Series
Version 1.4.3
Date 2020-09-07
Description Likelihood-based methods for model fitting and assessment, prediction and intervention analysis of count time series following generalized linear models are provided. Models with the identity and with the logarithmic link function are allowed. The conditional distribution can be Poisson or Negative Binomial.

Imports parallel, ltsa
Suggests Matrix, xtable, gamlss.data, surveillance
License GPL-2 | GPL-3
URL http://tscount.r-forge.r-project.org
ByteCompile true
NeedsCompilation no
LazyData true
Encoding UTF-8

Author Tobias Liboschik [aut, cre],
 Roland Fried [aut],
 Konstantinos Fokianos [aut],
 Philipp Probst [aut],
 Jonathan Rathjens [ctb]
Maintainer Tobias Liboschik <liboschik@statistik.tu-dortmund.de>
Repository CRAN
Date/Publication 2020-09-08 07:00:03 UTC

R topics documented:

 tscount-package .. 2
 campy ... 3
 countdistr .. 4
tscount-package

Analysis of Count Time Series

Description

Collection of R functions for analysis of count time series. Currently the focus is on count time series following generalised linear models.

Details

See the main function tsglm for more details on the usage of the package. There is a vignette available which introduces the functionality of the package and its underlying statistical methods (vignette("tsglm",package="tscout").

Author(s)

Tobias Liboschik <liboschik@statistik.tu-dortmund.de>
References

campy

Campylobacter Infections Time Series

Description

Time series with the number of cases of campylobacter infections in the north of the province Quebec (Canada) in four week intervals from January 1990 to the end of October 2000. It has 13 observations per year and 140 observations in total. Campylobacterosis is an acute bacterial infectious disease attacking the digestive system.

Usage

campy

Format

A time series of class "ts".
Source

See Also
ecoli, ehec, influenza, measles in this package, polio in package gamlss.data

Examples

plot(campy)

#Fit the INGARCH model used in Ferland et al. (2006):
campyfit <- tsglm(ts=campy, model=list(past_obs=1, past_mean=c(7,13)))
summary(campyfit)
plot(campyfit)

#Note that these parameter estimations differ from those obtained by
#Ferland et al. (2006). This might be due to a different initialisation
#of pre-sample values and different optimisation algorithms (they use
#Microsoft Excel Solver Macro).

countdistr

Count Data Distributions

Description
Density, distribution function, quantile function, random generation, standard deviation and Anscombe residuals for some count data distributions. These auxiliary functions are used by several functions of the tscount package.

Usage

ddistri(x, meanvalue, distr=c("poisson", "nbinom"), distrcoefs, ...)
pdistri(q, meanvalue, distr=c("poisson", "nbinom"), distrcoefs, ...)
qdistri(p, meanvalue, distr=c("poisson", "nbinom"), distrcoefs, ...)
rdistri(n, meanvalue, distr=c("poisson", "nbinom"), distrcoefs)
sdistri(meanvalue, distr=c("poisson", "nbinom"), distrcoefs)
ardistri(response, meanvalue, distr=c("poisson", "nbinom"), distrcoefs)
checkdistr(distr=c("poisson", "nbinom"), distrcoefs)

Arguments

x vector of (non-negative integer) quantiles.
q vector of quantiles.
p vector of probabilities.
n positive integer value giving the number of random values to return.
response vector of true observations for calculation of residuals.
meanvalue non-negative numeric vector of means.
distr character value giving the distribution. Possible values are currently "poisson" (the default) for the Poisson distribution and "nbinom" for the NegBinomial distribution.
distrcoefs vector of additional distribution coefficients. For the Poisson distribution this argument can be omitted. For the negative binomial distribution it needs to be a vector of length one giving the value for the parameter size as specified in NegBinomial.

... additional arguments logt, lower.tail or log.p to be passed to other functions (see Poisson or NegBinomial).

Details

Basically, these function are wrappers for specific functions for the respective distribution. The function ddistr gives the density of the specified distribution, pdistr the distribution function, qdistr the quantile function and rdistr generates random deviates from this distribution. These functions are a generalisation of the respective functions where distr is replaced by either pois or nbinom. The function sddistr returns the standard deviation of the specified distribution. The function ardistr calculates Anscombe residuals for given values of the response. The function checkdistr is for verification of the arguments distr and distrcoefs.

Author(s)

Tobias Liboschik

See Also

Poisson for the Poisson distribution and NegBinomial for the negative binomial distribution.
tsglm for fitting a more general GLM for time series of counts.

description

E. coli Infections Time Series

Description

Weekly number of reported disease cases caused by Escherichia coli in the state of North Rhine-Westphalia (Germany) from January 2001 to May 2013, excluding cases of EHEC and HUS.

Usage

ecoli

Format

A data frame with variables year and week giving the year and calendar week of observation, and with a variable cases giving the number of reported cases in the respective week.
Source

The data are provided with kind permission of the Robert Koch Institute. Further details and terms of usage are given at https://survstat.rki.de. More data reported under the German Infectious Diseases Protection Act is available via the SurvStat@RKI web application linked above.

See Also

campy, ehec, influenza, measles in this package, polio in package gamlss.data

ehec

EHEC Infections Time Series

Description

Weekly number of reported EHEC/HUS infections in the state of North Rhine-Westphalia (Germany) from January 2001 to May 2013.

Usage

ehec

Format

A data frame with variables year and week giving the year and calendar week of observation, and with a variable cases giving the number of reported cases in the respective week.

Source

The data are provided with kind permission of the Robert Koch Institute. Further details and terms of usage are given at https://survstat.rki.de. More data reported under the German Infectious Diseases Protection Act is available via the SurvStat@RKI web application linked above.

See Also

campy, ecoli, influenza, measles in this package, polio in package gamlss.data
influenza

Description
Weekly number of reported influenza cases in the state of North Rhine-Westphalia (Germany) from January 2001 to May 2013.

Usage
influenza

Format
A data frame with variables year and week giving the year and calendar week of observation, and with a variable cases giving the number of reported cases in the respective week.

Source
The data are provided with kind permission of the Robert Koch Institute. Further details and terms of usage are given at https://survstat.rki.de. More data reported under the German Infectious Diseases Protection Act is available via the SurvStat@RKI web application linked above.

See Also
campy, ecoli, ehec, measles in this package, polio in package gamlss.data

ingarch.analytical

Description
Functions to calculate the analytical mean, variance and autocorrelation / partial autocorrelation / autocovariance function of an integer-valued generalised autoregressive conditional heteroscedasticity (INGARCH) process.

Usage
ingarch.mean(intercept, past_obs=NULL, past_mean=NULL)
ingarch.var(intercept, past_obs=NULL, past_mean=NULL)
ingarch.acf(intercept, past_obs=NULL, past_mean=NULL, lag.max=10, type=c("acf", "pacf", "acvf"), plot=TRUE, ...)

Analytical Mean, Variance and Autocorrelation of an INGARCH Process
Arguments

- **intercept**: numeric positive value for the intercept β_0.
- **past_obs**: numeric non-negative vector containing the coefficients β_1, \ldots, β_p for regression on previous observations (see Details).
- **past_mean**: numeric non-negative vector containing the coefficients $\alpha_1, \ldots, \alpha_q$ for regression on previous conditional means (see Details).
- **lag.max**: integer value indicating how many lags of the (partial) autocorrelation / autocovariance function should be calculated.
- **type**: character. If type="acf" (the default) the autocorrelation function is calculated, "pacf" gives the partial autocorrelation function and "acvf" the autocovariance function.
- **plot**: logical. If plot=TRUE (the default) the values are plotted and returned invisible.
- **...**: additional arguments to be passed to function `plot`.

Details

The INGARCH model of order p and q used here follows the definition

$$ Z_t | F_{t-1} \sim \text{Poi}(\kappa_t), $$

where F_{t-1} is the history of the process up to time $t - 1$ and Pois is the Poisson distribution parametrised by its mean (cf. Ferland et al., 2006). The conditional mean κ_t is given by

$$ \kappa_t = \beta_0 + \beta_1 Z_{t-1} + \ldots + \beta_p Z_{t-p} + \alpha_1 \kappa_{t-1} + \ldots + \alpha_q \kappa_{t-q}. $$

The function `ingarch.acf` depends on the function `tacvfARMA` from package `ltsa`, which needs to be installed.

Author(s)

Tobias Liboschik

References

See Also

- `tsglm` for fitting a more general GLM for time series of counts of which this INGARCH model is a special case. `tsglm.sim` for simulation from such a model.

Examples

```r
ingarch.mean(0.3, c(0.1,0.1), 0.1)
# Not run:
ingarch.var(0.3, c(0.1,0.1), 0.1)
ingarch.acf(0.3, c(0.1,0.1,0.1), 0.1, type="acf", lag.max=15)
# End(Not run)
```
interv_covariate

Describing Intervention Effects for Time Series with Deterministic Covariates

Description

Generates covariates describing certain types of intervention effects according to the definition by Fokianos and Fried (2010).

Usage

```
interv_covariate(n, tau, delta)
```

Arguments

- `n` integer value giving the number of observations the covariates should have.
- `tau` integer vector giving the times where intervention effects occur.
- `delta` numeric vector with constants specifying the type of intervention (see Details). Must be of the same length as `tau`.

Details

The intervention effect occurring at time τ is described by the covariate

$$X_t = \delta^{t-\tau} I_{[\tau,\infty)}(t),$$

where $I_{[\tau,\infty)}(t)$ is the indicator function which is 0 for $t < \tau$ and 1 for $t \geq \tau$. The constant δ with $0 \leq \delta \leq 1$ specifies the type of intervention. For $\delta = 0$ the intervention has an effect only at the time of its occurrence, for $0 < \delta < 1$ the effect decays exponentially and for $\delta = 1$ there is a persistent effect of the intervention after its occurrence.

If `tau` and `delta` are vectors, one covariate is generated with `tau[1]` as τ and `delta[1]` as δ, another covariate for the second elements and so on.

Value

A matrix with `n` rows and `length(tau)` columns. The generated covariates describing the interventions are the columns of the matrix.

Author(s)

Tobias Liboschik
References

See Also
tsglm for fitting a GLM for time series of counts. interv_test, interv_detect and interv_multiple for tests and detection procedures for intervention effects.

Examples

```r
interv_c covariate(n=140, tau=c(84,100), delta=c(1,0))
```

interv_detect.tsglm *Detecting an Intervention in Count Time Series Following Generalised Linear Models*

Description

Detection procedure for an intervention of given type occurring at unknown time as proposed by Fokianos and Fried (2010, 2012).

Usage

```r
## S3 method for class 'tsglm'
interv_detect(fit, taus=2:length(fit$ts), delta, external=FALSE, B=NULL, info=c("score"), start.control_bootstrap, final.control_bootstrap, inter.control_bootstrap, parallel=FALSE, est_interv=TRUE, ...)
```

Arguments

- **fit**: an object of class "tsglm". Usually the result of a call to tsglm.
- **taus**: integer vector of time points which are considered for the possible intervention to occur. Default is to consider all possible time points.
- **delta**: numeric value that determines the type of intervention (see Details).
- **external**: logical value specifying whether the intervention’s effect is external or not (see Details).
positive integer value giving the number of bootstrap samples for estimation of
the p-value. For B=NULL (the default) no p-value is returned.

info

character value that determines how to calculate the information matrix, see
tsglm. Currently "score" is the only possible choice.

start.control_bootstrap

named list that determines how to make initial estimation in the bootstrap, see
argument start.control in tsglm. If missing, the same settings as for the
regular estimation are used.

final.control_bootstrap

named list that determines how to make final maximum likelihood estimation in
the bootstrap, see argument final.control in tsglm. If missing, the same set-
tings as for the regular estimation are used. If final.control_bootstrap=NULL,
then the model is not re-fitted for each bootstrap sample. Instead the parameters
of the original fit which have been used for simulating the bootstrap samples are
used. This approach saves computation time at the cost of a more conservative
procedure, see Fokianos and Fried (2012).

inter.control_bootstrap
	named list determining how to maximise the log-likelihood function in an in-
termediate step, see argument inter.control in tsglm. If missing, the same
settings as for the regular estimation are used.

parallel

logical value. If parallel=TRUE, the bootstrap is distributed to multiple cores
parallely. Requires a computing cluster to be initialised and registered as the de-
fault cluster by makeCluster and setDefaultCluster from package parallel.

est_interv

logical value. If est_interv=TRUE a fit for the model with the intervention
effect with the largest test statistic is computed and additionally returned.

... additional arguments passed to the fitting function tsglm.

Details

For each time in taus the score test statistic for an intervention effect occurring at
that time is computed, see interv_test. The time with the maximum test statistic is
considered as a candidate for a possible intervention effect at that time. The type of
the intervention effect is specified by delta as described in interv_covariate. The
intervention is included as an additional covariate according to the definition in
tsglm. It can have an internal (the default) or external (external=TRUE) effect
(see Liboschik et al., 2014).

If argument B is not NULL, the null hypothesis that there is no intervention effect at any time is tested.
Test statistic for this test is the maximum test statistic of the score test (see above). The p-value is
computed by a parametric bootstrap with B bootstrap samples. It is recommended to use at least
several hundred bootstrap samples. Note that this bootstrap procedure is very time-consuming.

Value

An object of class "interv_detect", which is a list with at least the following components:

test_statistic maximum value of the score test statistics for all considered times in taus.
test_statistic_tau numeric vector of all score test statistics at the considered times in taus.
tau_max time at which the score test statistic has its maximum.
fit_H0 object of class "tsglm" with the fitted model under the null hypothesis of no intervention, see tsglm.
model_interv model specification of the model with the specified intervention at time tau_max.

If argument est_interv=TRUE (the default), the following component is additionally returned:

fit_interv object of class "tsglm" with the fitted model with the specified intervention at time tau_max, see tsglm.

Author(s)

Tobias Liboschik, Philipp Probst, Konstantinos Fokianos and Roland Fried

References

See Also

S3 methods print and plot.
tsglm for fitting a GLM for time series of counts. interv_test for testing on intervention effects and interv_multiple for iterative detection of multiple interventions of unknown types.

Examples

```r
###Campylobacter infections in Canada (see help("campy"))
#Searching for a potential intervention effect:
campyfit <- tsglm(ts=campy, model=list(past_obs=1, past_mean=c(7,13)))
campyfit_intervdetect <- interv_detect(fit=campyfit, taus=80:120, delta=1)
campyfit_intervdetect
plot(campyfit_intervdetect)
#Additionally computing a p-value with the bootstrap procedure based on 500
#replications would take about 20 minutes in this example on a single
#processing unit, of course depending on its speed.

## Not run:
#Parallel computation for shorter run time on a cluster:
library(parallel)
ntasks <- 3
```
clust <- makeCluster(ntasks)
setDefaultCluster(cl=clust)
interv_detect(fit=campyfit, taus=80:120, delta=1, B=500, parallel=TRUE)
End(Not run)

interv_multiple.tsglm Detecting Multiple Interventions in Count Time Series Following Generalised Linear Models

Description
Iterative detection procedure for multiple interventions of unknown types occurring at unknown times as proposed by Fokianos and Fried (2010, 2012).

Usage
```r
## S3 method for class 'tsglm'
interv_multiple(fit, taus=2:length(fit$ts), deltas=c(0,0.8,1),
                external=FALSE, B=10, signif_level=0.05,
                start.control_bootstrap, final.control_bootstrap,
                inter.control_bootstrap, parallel=FALSE, ...)
```

Arguments
- `fit` an object of class "tsglm". Usually the result of a call to `tsglm`.
- `taus` integer vector of times which are considered for the possible intervention to occur. Default is to consider all times.
- `deltas` numeric vector that determines the types of intervention to be considered (see Details).
- `external` logical value specifying whether the interventions effect is external or not (see Details).
- `B` positive integer value giving the number of bootstrap samples for estimation of the p-value.
- `signif_level` numeric value with \(0 \leq \text{signif_level} \leq 1\) giving a significance level for the procedure.
- `start.control_bootstrap` named list that determines how to make initial estimation in the bootstrap, see argument `start.control` in `tsglm`. If missing, the same settings as for the regular estimation are used.
- `final.control_bootstrap` named list that determines how to make final maximum likelihood estimation in the bootstrap, see argument `final.control` in `tsglm`. If missing, the same settings as for the regular estimation are used. If `final.control_bootstrap=NULL`, then the model is not re-fitted for each bootstrap sample. Instead the parameters of the original fit which have been used for simulating the bootstrap samples are used. This approach saves computation time at the cost of a more conservative procedure, see Fokianos and Fried (2012).
inter.control_bootstrap

named list determining how to maximise the log-likelihood function in an intermediate step, see argument inter.control in tsglm. If missing, the same settings as for the regular estimation are used.

parallel

logical value. If parallel=TRUE, the bootstrap is distributed to multiple cores parallely. Requires a computing cluster to be initialised and registered as the default cluster by makeCluster and setDefaultCluster from package parallel.

... additional arguments passed to the function for detection of single intervention effects interv.detect and via this function some of the arguments are passed to the fitting function tsglm.

Details

This function performs an iterative procedure for detection of multiple intervention effects. In each step the function interv.detect is applied for each of the possible intervention types provided in the argument deltas. If there is (after a Bonferroni correction) no significant intervention effect the procedure stops. Otherwise the type of intervention with the minimum p-value is chosen. In case of equal p-values preference is given to a level shift (i.e. $\delta = 1$) and then to the type of intervention with the largest test statistic. The effect of the chosen intervention is removed from the time series. The time series cleaned from the intervention effect is tested for further interventions in a next step.

For each time in taus the test statistic of a score test on an intervention effect occurring at that time is computed, see interv.test. The time with the maximum test statistic is considered as a candidate for a possible intervention effect at that time. The type of the intervention effect is specified by delta as described in interv_covariate. The intervention is included as an additional covariate according to the definition in tsglm. It can have an internal (the default) or external (external=TRUE) effect (see Liboschik et al., 2014).

All p-values given in the output are multiplied by the number of intervention types considered to account for the multiple testing in each step by a Bonferroni correction. Note that this correction can lead to p-values greater than one.

Note that this bootstrap procedure is very time-consuming.

Value

An object of class "interv_multiple", which is a list with the following components:

- interventions data frame giving the detected interventions, which has the variables tau, delta, size, test_statistic and p-value.
- fit_H0 object of class "tsglm" with the fitted model under the null hypothesis of no intervention, see tsglm.
- fit_cleaned object of class "tsglm" with the fitted model for the cleaned time series after the last step of the iterative procedure, see tsglm.
- model_interv model specification of the model with all detected interventions at their respective times.
- fit_interv object of class "tsglm" with the fitted model with all detected interventions at their respective times, see tsglm.
track named list of matrices with the detailed results of the iterative detection procedure. Element \(\tau_{\text{max}} \) gives the times where the test statistic has its maximum for each type of intervention and in each iteration step and element \(\text{size} \) gives the estimated sizes of the respective intervention effects. Elements \(\text{test_statistic} \) and \(\text{p_value} \) require no further explanation.

Author(s)

Tobias Liboschik, Philipp Probst, Konstantinos Fokianos and Roland Fried

References

See Also

S3 methods `print` and `plot`.

`tsglm` for fitting a GLM for time series of counts. `interv_test` for testing for intervention effects and `interv_detect` for detection of single interventions of given type. `interv_covariate` for generation of deterministic covariates describing intervention effects.

Examples

```r
## Not run:
###Campylobacter infections in Canada (see help("campy"))
#Searching for potential intervention effects (runs several hours!):
campyfit <- tsglm(ts=campy, model=list(past_obs=1, past_mean=c(7,13)))
campyfit_intervmultiple <- interv_multiple(fit=campyfit, taus=80:120,
                                           deltas=c(0,0.8,1), B=500, signif_level=0.05)
campyfit_intervmultiple
plot(campyfit_intervmultiple)
#Parallel computation for shorter run time on a cluster:
library(parallel)
ntasks <- 3
clust <- makeCluster(ntasks)
setDefaultCluster(cl=clust)
interv_multiple(fit=campyfit, taus=80:120, deltas=c(0,0.8,1), B=500,
               signif_level=0.05, parallel=TRUE)
## End(Not run)
```

Testing for Interventions in Count Time Series Following Generalised Linear Models

Description

Test for one or more interventions of given type at given time as proposed by Fokianos and Fried (2010, 2012).

Usage

```r
## S3 method for class 'tsglm'
interv_test(fit, tau, delta, external, info=c("score"), est_interv=FALSE, ...)
```

Arguments

- `fit`: an object of class "tsglm". Usually the result of a call to `tsglm`
- `tau`: integer vector of times at which the interventions occur which are tested for.
- `delta`: numeric vector that determines the types of the interventions (see Details). Must be of the same length as `tau`.
- `external`: logical vector of length `length(tau)` specifying for each intervention whether its effect is external or not (see Details). If this is only a scalar this choice will be used for all interventions. If this is only a scalar this choice will be used for all interventions. If omitted all interventions will have an internal effect (i.e. `external=FALSE`).
- `info`: character value that determines how to calculate the information matrix, see `tsglm`. Currently "score" is the only possible choice.
- `est_interv`: logical value. If `est_interv=TRUE` a fit for the model with all specified interventions is computed and additionally returned.
- `...`: additional arguments passed to the fitting function `tsglm`.

Details

A score test on the null hypothesis of no interventions is done. The null hypothesis is that the data are generated from the model specified in the argument `model`, see definition in `tsglm`. Under the alternative there are one or more intervention effects occurring at times `tau`. The types of the intervention effects are specified by `delta` as defined in `interv_covariate`. The interventions are included as additional covariates according to the definition in `tsglm`. It can have an internal (the default) or external (external=TRUE) effect (see Liboschik et al., 2014).

Under the null hypothesis the test statistic has asymptotically a chi-square distribution with `length(tau)` (i.e. the number of breaks) degrees of freedom. The returned p-value is based on this and approximately valid for long time series, i.e. when `length(ts)` large.
Value

An object of class "interv_test", which is a list with at least the following components:

- `test_statistic` value of the test statistic.
- `df` degrees of freedom of the chi-squared distribution the test statistic is compared with.
- `p_value` p-value of the test.
- `fit_H0` object of class "tsglm" with the fitted model under the null hypothesis of no intervention, see `tsglm`.
- `model_interv` model specification of the model with the specified interventions.

If argument `est_interv=TRUE`, the following component is additionally returned:

- `fit_interv` object of class "tsglm" with the fitted model with the specified interventions, see `tsglm`.

Author(s)

Tobias Liboschik, Philipp Probst, Konstantinos Fokianos and Roland Fried

References

See Also

S3 method `print`. `tsglm` for fitting a GLM for time series of counts. `interv_detect` for detection of single interventions of given type and `interv_multiple` for iterative detection of multiple interventions of unknown types. `interv_covariate` for generation of deterministic covariates describing intervention effects.

Examples

```r
### Campylobacter infections in Canada (see help("campy"))
# Test for the intervention effects which were found in Fokianos und Fried (2010):
campyfit <- tsglm(ts=campy, model=list(past_obs=1, past_mean=c(7,13)))
campyfit_intervtest <- interv_test(fit=campyfit, tau=c(84,100), delta=c(1,0))
campyfit_intervtest
```
invertinfo
Compute a Covariance Matrix from a Fisher Information Matrix

Description

Stable function for computing a covariance matrix from a given Fisher information matrix by inversion.

Usage

invertinfo(mat, silent=TRUE, stopOnError=FALSE)

Arguments

mat
a Fisher Information Matrix.

silent
logical value. If FALSE, errors in the computation of the inverse while using the Cholesky decomposition algorithm are printed. If TRUE, errors can be seen only in the value error_message.

stopOnError
logical value. If TRUE only an error message is printed in case of error.

Details

A Cholesky decomposition is used to obtain the covariance matrix. This can be done because the Fisher information matrix is symmetric and positive definite.

This function is meant to be a more stable alternative to the function solve, which does not take into account, that the matrix is symmetric and positive definite.

Value

A list containing the following components:

vcov
the covariance matrix.

error_message
possible error messages that occured when inverting the Fisher information matrix.

Author(s)

Tobias Liboschik and Philipp Probst

See Also

chol and chol2inv.
Examples

library(Matrix)
invertinfo(Hilbert(5), stopOnError=TRUE)
invertinfo(Hilbert(100))
invertinfo(Hilbert(100), silent=FALSE)
Not run: invertinfo(Hilbert(100), stopOnError=TRUE)

Description

The function produces a marginal calibration plot.

Usage

S3 method for class 'tsglm'
marcal(object, plot=TRUE, ...)
Default S3 method:
marcal(response, pred, distr=c("poisson", "nbinom"), distrcoefs, plot=TRUE, ...)

Arguments

object
plot
response
pred
distr
distrcoefs
... an object of class "tsglm".
logical. If plot=TRUE (the default), the marginal calibration is plotted and the underlying data are returned invisibly only.
integer vector. Vector of observed values.
numeric vector. Vector of predicted values.
character giving the conditional distribution. Currently implemented are the Poisson ("poisson") and the Negative Binomial ("nbinom") distribution.
numeric vector of additional coefficients specifying the conditional distribution. For distr="poisson" no additional parameters need to be provided. For distr="nbinom" the additional parameter size needs to be specified (e.g. by distrcoefs=2), see tsglm for details.
additional arguments to be passed to plot.

Details

Marginal Calibration can be assessed by taking the difference between the average predictive cumulative distribution function (c.d.f.) and the empirical c.d.f. of the observations. Minor fluctuations about zero are expected if the marginal calibration hypothesis is true. For more information about marginal calibration see the references listed below.
Value

Produces a plot of the difference between the average predictive cumulative distribution function (c.d.f.) and the empirical c.d.f. of the observations at each value between the highest and lowest observation of the time series (only for plot=TRUE).

Returns a list with elements x and y, where x are the threshold values and y the respective differences of predictive and empirical cumulative distribution function (invisibly for plot=TRUE).

Author(s)

Philipp Probst and Tobias Liboschik

References

See Also

tsglm for fitting a GLM for time series of counts.
pit and scoring for other predictive model assessment tools.

Examples

```r
campyfit <- tsglm(ts=campy, model=list(past_obs=1, past_mean=c(7,13)))
marcal(campyfit)
```

measles

Measles Infections Time Series

Description

Weekly number of reported measles infections in the state of North Rhine-Westphalia (Germany) from January 2001 to May 2013.

Usage

measles
Format

A data frame with variables year and week giving the year and calendar week of observation, and with a variable cases giving the number of reported cases in the respective week.

Source

Robert Koch Institute: SurvStat@RKI, https://survstat.rki.de, accessed on 10th June 2013. The data are provided with kind permission of the Robert Koch Institute. Further details and terms of usage are given at https://survstat.rki.de. More data reported under the German Infectious Diseases Protection Act is available via the SurvStat@RKI web application linked above.

See Also

campy, ecoli, ehec, influenza in this package, polio in package gamlss.data

pit

Predictive Model Assessment with a Probability Integral Transform Histogram

Description

The function allows a probabilistic calibration check with a Probability Integral Transform (PIT) histogram.

Usage

```r
## S3 method for class 'tsglm'
pit(object, bins=10, ...)
## Default S3 method:
pit(response, pred, distr=c("poisson", "nbinom"), distrcoefs, bins=10, ...)
```

Arguments

- **object** an object of class "tsglm".
- **bins** number of bins in the histogram. Default value is 10.
- **response** integer vector. Vector of observed values.
- **pred** numeric vector. Vector of predicted values.
- **distr** character giving the conditional distribution. Currently implemented are the Poisson ("poisson") and the Negative Binomial ("nbinom") distribution.
- **distrcoefs** numeric vector of additional coefficients specifying the conditional distribution. For distr="poisson" no additional parameters need to be provided. For distr="nbinom" the additional parameter size needs to be specified (e.g. by distrcoefs=2), see `tsglm` for details.
- **...** additional arguments passed to `plot`.
Details

A PIT histogram is a tool for evaluating the statistical consistency between the probabilistic forecast and the observation. The predictive distributions of the observations are compared with the actual observations. If the predictive distribution is ideal the result should be a flat PIT histogram with no bin having an extraordinary high or low level. For more information about PIT histograms see the references listed below.

Author(s)

Philipp Probst and Tobias Liboschik

References

See Also

tsglm for fitting a GLM for time series of counts.
marcal and scoring for other predictive model assessment tools.

Examples

```r
### Campylobacter infections in Canada (see help("campy"))
campyfit <- tsglm(ts=campy, model=list(past_obs=1, past_mean=c(7,13)))
pit(campyfit)
```

plot.interv_detect
Plot Test Statistic of Intervention Detection Procedure for Count Time Series Following Generalised Linear Models

Description

Provides a plot of the test statistics of a test on an intervention in GLM-type count time series (as returned by `interv_detect.tsglm`) against time.

Usage

```r
## S3 method for class 'interv_detect'
plot(x, ...)
```
Arguments

\texttt{x} \hspace{1cm} \text{an object of class "interv_detect", usually a result of a call to \texttt{interv_detect.tsglm}.}
\texttt{...} \hspace{1cm} \text{additional arguments to be passed to function \texttt{plot}.}

Author(s)

Tobias Liboschik and Philipp Probst

See Also

\texttt{interv_detect} for detecting an intervention effect in GLM-type count time series and \texttt{tsglm} for fitting such a model.

Examples

```r
## Not run:
###Campylobacter infections in Canada (see help("campy"))
campyfit <- tsglm(ts=campy, model=list(past_obs=1, past_mean=c(7,13)))
campyfit_intervdetect <- interv_detect(fit=campyfit, taus=80:120, delta=1, external=FALSE)
#This example runs about 20 minutes on a single processing unit,
#if course depending on its speed.
plot(campyfit_intervdetect)
## End(Not run)
```

Description

Provides a plot with the intervention effects detected by an iterative procedure (as returned by \texttt{interv_multiple.tsglm}) and the time series cleaned from these intervention effects.

Usage

```r
## S3 method for class 'interv\_multiple'
plot(x, ...)
```

Arguments

\texttt{x} \hspace{1cm} \text{an object of class "interv_multiple", usually a result of a call to \texttt{interv_detect}.}
\texttt{...} \hspace{1cm} \text{additional arguments to be passed to function \texttt{plot}.}

Details

The vertical red lines indicate where possible interventions were found and the dashed blue line is the time series cleaned from all detected intervention effects.
Author(s)

Tobias Liboschik and Philipp Probst

See Also

`interv_multiple` for detecting multiple intervention effects in GLM-type count time series and `tsglm` for fitting such a model.

Examples

```r
## Not run:
### Campylobacter infections in Canada (see help("campy"))
campyfit <- tsglm(ts=campy, model=list(past_obs=1, past_mean=c(7,13)))
campyfit_intervmultiple <- interv_multiple(fit=campyfit, taus=80:120,
                                           deltas=c(0,0.8,1), external=FALSE, B=2,
                                           signif_level=0.05) # runs several hours!
plot(campyfit_intervmultiple)
## End(Not run)
```

plot.tsglm

Diagnostic Plots for a Fitted GLM-type Model for Time Series of Counts

Description

Produces several diagnostic plots to assess the fit of a GLM-type model for time series of counts.

Usage

```r
## S3 method for class 'tsglm'
plot(x, ask = TRUE, ...)
```

Arguments

- **x**: an object of class "tsglm". Usually the result of a call to `tsglm`.
- **ask**: logical value. If TRUE (and the R session is interactive) the user is asked for input, before a new figure is drawn (see `devAskNewPage`).
- **...**: further arguments are currently ignored. Only for compatibility with generic function.

Details

Produces plots of the acf of the Pearson residuals, the Pearson residuals plotted against time, a cumulative periodogramm of the Pearson residuals, a probability integral transform (PIT) histogram (see function `pit`) and a marginal calibration plot (see function `marcal`). The cumulative periodogramm is plotted with the function `cpgram` from package MASS and is omitted with a warning if this package is not available.
Author(s)

Tobias Liboschik and Philipp Probst

See Also

tsglm for fitting a GLM for time series of counts.

Examples

```r
### Campylobacter infections in Canada (see help("campy"))
interventions <- interv_covariate(n=length(campy), tau=c(84, 100),
delta=c(1, 0)) # detected by Fokianos and Fried (2010, 2012)
# Linear link function with Negative Binomial distribution:
campyfit <- tsglm(campy, model=list(past_obs=1, past_mean=13),
xreg=interventions, dist="nbinom")
plot(campyfit)
```

Description

Predict future observations based on a fitted GLM-type model for time series of counts.

Usage

```r
## S3 method for class 'tsglm'
predict(object, n.ahead=1, newobs=NULL, newxreg=NULL, level=0.95,
global=FALSE, type=c("quantiles", "shortest", "onesided"),
method=c("conddistr", "bootstrap"), B=1000,
estim=c("ignore", "bootstrap", "normapprox", "given"), B_estim=B,
coefs_given, ...)
```

Arguments

- `object`: an object of class "tsglm". Usually the result of a call to `tsglm`.
- `n.ahead`: positive integer value giving the number of steps ahead for which predictions should be made.
- `newobs`: integer vector of known future observations of the time series. This argument is only relevant if more than one observation ahead is to be predicted (`n.ahead` greater than 1). The h-step-ahead prediction for $h > 1$ is computed as a 1-step-ahead prediction given all previous values, which can be observations of the original time series or new observations provided in this argument. Previous observations which are not available are replaced by their respective 1-step-ahead prediction.
newxreg: matrix or vector containing new values for the covariates to be used for prediction. If newxreg is omitted or contains less rows than the value of n.ahead, the last known values of the covariates are used for prediction. This is usually not reasonable and it is strongly advised to explicitly make assumptions on future covariates and to specify the argument xreg accordingly.

level: numeric value determining the desired coverage rate of prediction intervals. If level=0 no prediction intervals are computed.

global: logical value saying whether the coverage rate for Y_{n+1}, ..., Y_{n+h} specified by argument level holds globally (global=TRUE) or for each of the n.ahead prediction intervals individually (global=FALSE, the default). In the former case the individual coverage rate for a single prediction interval is Bonferroni adjusted to a level of 1-(1-level)/n.ahead.

type: character value saying how the prediction interval shall be constructed. If type="quantiles" (the default), its limits are chosen to be the a- and (1-a)-quantiles of the respective (approximated) distribution, with a=(1-level)/2. If type="shortest" it is chosen such that it has minimal length. Note that these two types of construction principles frequently lead to the same result. If type="onesided" a one-sided prediction interval is constructed where the lower boundary is always zero.

method: character value saying which method to be used for computing the prediction intervals. If method="conddistr" the prediction intervals are based on the conditional distribution given by the model with the unknown parameters being replaced by their respective estimations. This is only possible if only 1-step-ahead predictions are to be computed (possibly recursively using the new observations given in argument newobs). If method="bootstrap" the predictive distribution is approximated by a parametric bootstrap where B trajectories of the process are simulated from the fitted model. This is currently only possible if no new observations are given in argument newobs. By default the method "conddistr" is preferred whenever it is applicable.

B: positive integer value giving the number of samples of a parametric bootstrap to use for numerical determination of prediction intervals (only necessary if argument method="bootstrap").

estim: character value saying how the prediction intervals shall account for the additional uncertainty induced by the parameter estimation. This is particularly important if the model was fitted on a short time series. If estim="ignore" (the default), this additional uncertainty is ignored. The other two options (estim="bootstrap" and estim="normapprox") are only possible if method="bootstrap". If these are selected the bootstrap samples are not generated from a model with the parameters of the original fit. Instead, each of the B bootstrap samples is generated from a model with parameters which are itself randomly generated. This two-stage approach should take into account the additional estimation uncertainty. If estim="bootstrap", the parameters are obtained from a fit to a parametric bootstrap replication of the original time series. If estim="normapprox", the regression parameters are generated from a multivariate normal distribution which is based on the normal approximation of the original quasi maximum likelihood estimator and reflects the estimation uncertainty. In that case the additional distribution coefficients are not randomly generated such that their estimation un-
certainty is ignored. If estim="given", the parameters are resampled from a
table of possible parameters which need to be given in argument coefs_given.

- **B_estim**
 - positive integer value giving the number of parameters used for resampling to
 account for estimation uncertainty. Only necessary for estim="bootstrap" and
 estim="normapprox". If B_estim is smaller than B, the parameters are
 resampled with replacement.

- **coefs_given**
 - table with parameters in the rows. Only necessary for estim="given"). If
 nrow(coefs_given) is smaller than B, the parameters are resampled with re-
 placement.

... further arguments are currently ignored. Only for compatibility with generic
function.

Details

Returns predictions for the n.ahead observations following the fitted time series contained in argument object. The 1-step-ahead prediction is the conditional expectation of the observation to be predicted given the past. The true parameters are replaced by their estimations given in argument object. For a 2-step-ahead-prediction the true previous observation is used when given in argument newobs, otherwise it is replaced by the 1-step-ahead prediction computed before. For a 3-step-prediction this holds for the previous two observations, which are replaced by their respective predictions if not available, and so on.

Unless level=0, the function also returns prediction intervals. Read the description of the arguments type and method for further details on the computation. Note that the prediction intervals do not reflect the additional uncertainty induced by the parameter estimation. However, for sufficiently long time series used for model fitting, it is expected that this uncertainty is negligible compared to the uncertainty of the predictive distribution. The argument estim allows to account for this additional estimation uncertainty if method="bootstrap", see the description of this argument.

If prediction intervals are computed the function additionally returns the median of the predictive distribution. If method="conddistr" this is the analytical median of the conditional distribution, otherwise the empirical median of the simulated distribution.

Value

A list with at least the following element:

- **pred**
 - a numeric vector of the predictions. Has class "ts" if the response used for
 fitting has this class.

If prediction intervals are calculated, the list has the additional element:

- **interval**
 - a matrix with the columns "lower" and "upper" giving the lower and upper
 boundaries of prediction intervals for the future time points, each with an in-
 tended coverage rate as given in argument level. Has class "ts" if the response
 used for fitting has this class.

- **level**
 - a numeric value determining the desired coverage rate of prediction intervals.

- **global**
 - a logical value saying whether the coverage rate level holds globally or for
 each of the prediction intervals individually.
type a character value saying how the prediction intervals were computed. Possible values are "quantiles" and "shortest".

method a character value saying which method were used for computation of prediction intervals. Possible values are "conddistr" and "bootstrap".

B an integer value giving the number of bootstrap samples which were used for computing prediction intervals. Is NULL if computation was done by method="conddistr".

estim a character value saying how the prediction intervals account for estimation uncertainty of the model parameters. Possible values are "ignore", "bootstrap", "normapprox" and "given".

B_estim an integer value giving the number of parameter values used for resampling to account for estimation uncertainty. This value is zero if the estimation uncertainty is ignored.

warning_messages a character vector containing warning messages. This should be NULL if no warning messages occurred.

median a vector giving the median of the predictive distribution for each of the future time points. Has class "ts" if the response used for fitting has this class.

Author(s)
Tobias Liboschik and Philipp Probst

References

See Also
tsglm for fitting a GLM for time series of counts.

Examples

```r
### Campylobacter infections in Canada (see help("campy"))
campyfit <- tsglm(ts=campy, model=list(past_obs=1, past_mean=c(7,13)))
predict(campyfit, n.ahead=1) # prediction interval using conditional distribution
predict(campyfit, n.ahead=5, global=TRUE) # prediction intervals using parametric bootstrap
```

QIC

Quasi Information Criterion of a Generalised Linear Model for Time Series of Counts

Description

The function computes the Quasi Information Criterion (QIC) of a generalised linear model for time series of counts.
Usage

S3 method for class 'tsglm'
QIC(object, ...)

Arguments

object
an object of class "tsglm".

...
additional arguments passed to tscount::tsglm.loglik. These can be the arguments init.method and init.drop which are explained on the help page of the function tsglm.

Details

The quasi information criterion (QIC) has been proposed by Pan (2001) as alternative to Akaike's information criterion (AIC) which is properly adjusted for regression analysis based on the generalized estimating equations (GEE).

This function computes the QIC of a generalised linear model for time series of counts. In case of models with the Poisson distribution the QIC has approximately the same value as the AIC. However, in case of models with another distribution it can be a more adequate alternative to the AIC.

Author(s)

Tobias Liboschik

References

See Also

tsglm for fitting a GLM for time series of counts.

AIC and BIC for other information criteria.

Examples

Campylobacter infections in Canada (see help("campy"))
campyfit <- tsglm(ts=campy, model=list(past_obs=1, past_mean=c(7,13)), distr="nbinom")
QIC(campyfit)
AIC(campyfit)
Description

Returns the residuals of a fitted GLM-type model for time series of counts.

Usage

```r
## S3 method for class 'tsglm'
residuals(object, type = c("response", "pearson", "anscombe"), ...)
```

Arguments

- `object` an object of class "tsglm". Usually the result of a call to `tsglm`.
- `type` character value giving the type of residuals which should be returned. Choose `type="response"` for raw residuals, `type="pearson"` for Pearson residuals and `type="anscombe"` for Anscombe residuals.
- `...` further arguments are currently ignored. Only for compatibility with generic function.

Details

Computes a vector with the respective residuals of the fit given in argument `object`.

Value

Numerical vector of the residuals.

Author(s)

Tobias Liboschik and Philipp Probst

See Also

tsglm for fitting a GLM for time series of counts.

Examples

```r
### Campylobacter infections in Canada (see help("campy"))
campyfit <- tsglm(ts=campy, model=list(past.obs=1, past.mean=c(7,13)))
campyfit_resid <- residuals(campyfit, type="pearson")
plot(campyfit_resid)
acf(campyfit_resid)
```
scoring

Predictive Model Assessment with Proper Scoring Rules

Description
Computes scores for the assessment of sharpness of a fitted model for time series of counts.

Usage

S3 method for class 'tsglm'
scoreing(object, individual=FALSE, cutoff=1000, ...)

Default S3 method:
scoreing(response, pred, distr=c("poisson", "nbinom"), distrcoefs, individual=FALSE, cutoff=1000, ...)

Arguments

object an object of class "tsglm".
individual logical. If FALSE (the default) the average scores are returned. Otherwise a matrix with the individual scores for each observation is returned.
cutoff positive integer. Summation over the infinite sample space \{0,1,2,...\} of a distribution is cut off at this value. This affects the quadratic, spherical and ranked probability score.
response integer vector. Vector of observed values \(Y_1, \ldots, Y_n\).
pred numeric vector. Vector of predicted values \(\mu_{P_1}, \ldots, \mu_{P_n}\).
distr character giving the conditional distribution. Currently implemented are the Poisson ("poisson") and the Negative Binomial ("nbinom") distribution.
distrcoefs numeric vector of additional coefficients specifying the conditional distribution. For distr="poisson" no additional parameters need to be provided. For distr="nbinom" the additional parameter size needs to be specified (e.g. by distrcoefs=2), see tsglm for details.
...

Details
The scoring rules are penalties that should be minimised for a better forecast, so a smaller scoring value means better sharpness. Different competing forecast models can be ranked via these scoring rules. They are computed as follows: For each score \(s\) and time \(t\) the value \(s(P_t, Y_t)\) is computed, where \(P_t\) is the predictive c.d.f. and \(Y_t\) is the observation at time \(t\). To obtain the overall score for one model the average of the score of all observations \((1/n) \sum_{t=1}^n s(P_t, Y_t)\) is calculated.

For all \(t \geq 1\), let \(p_y = P(Y_t = y|F_{t-1})\) be the density function of the predictive distribution at \(y\) and \(||p||^2 = \sum_{y=0}^{\infty} p_y^2\) be a quadratic sum over the whole sample space \(y = 0, 1, 2, \ldots\) of the predictive distribution. \(\mu_{P_t}\) and \(\sigma_{P_t}\) are the mean and the standard deviation of the predictive distribution, respectively.
Then the scores are defined as follows:

Logarithmic score: $\text{logs}(P_t, Y_t) = -\log p_y$

Quadratic or Brier score: $\text{qs}(P_t, Y_t) = -2p_y + ||p||^2$

Spherical score: $\text{sphs}(P_t, Y_t) = -\frac{p_y}{||p||}$

Ranked probability score: $\text{rps}(P_t, Y_t) = \sum_{x=0}^{\infty} (P_t(x) - 1(Y_t \leq x))^2$ (sum over the whole sample space $x = 0, 1, 2, ...$

Dawid-Sebastiani score: $\text{dss}(P_t, Y_t) = \left(\frac{Y_t - \mu_{P_t}}{\sigma_{P_t}} \right)^2 + 2\log \sigma_{P_t}$

Normalized squared error score: $\text{nSES}(P_t, Y_t) = \left(\frac{Y_t - \mu_{P_t}}{\sigma_{P_t}} \right)^2$

Squared error score: $\text{ses}(P_t, Y_t) = (Y_t - \mu_{P_t})^2$

For more information on scoring rules see the references listed below.

Value

Returns a named vector of the mean scores (if argument `individual=FALSE`, the default) or a data frame of the individual scores for each observation (if argument `individual=TRUE`). The scoring rules are named as follows:

- **logarithmic**: Logarithmic score
- **quadratic**: Quadratic or Brier score
- **spherical**: Spherical score
- **rankprob**: Ranked probability score
- **dawseb**: Dawid-Sebastiani score
- **normsq**: Normalized squared error score
- **sqerror**: Squared error score

Author(s)

Philipp Probst and Tobias Liboschik

References

See Also

tsglm for fitting a GLM for time series of counts.
pit and marcal for other predictive model assessment tools.

Examples

###Campylobacter infections in Canada (see help("campy"))
campyfit <- tsglm(ts=campy, model=list(past_obs=1, past_mean=c(7,13)))
scoring(campyfit)

se.tsglm

Standard Errors of a Fitted Generalised Linear Model for Time Series of Counts

Description

Computes the standard errors for the parameters of a fitted GLM-type model for time series of counts.

Usage

S3 method for class 'tsglm'
se(object, B, parallel, level=0.95, ...)

Arguments

object

an object of class "tsglm". Usually the result of a call to tsglm.

B

positive integer value giving the number of bootstrap samples to use for estimation of the standard errors. If missing the standard errors are based on a normal approximation.

parallel

logical value. If parallel=TRUE, the bootstrap is distributed to multiple cores parallely. Requires a computing cluster to be initialised and registered as the default cluster by makeCluster and setDefaultCluster from package parallel.

level

numeric value determining the desired coverage rate of confidence intervals.

... additional arguments to be passed to the fitting function tsglm. Only made use of if the standard errors are computed by a bootstrap procedure.
Details

By default the standard errors and confidence intervals are based on a normal approximation of the (quasi) maximum likelihood estimator. The standard errors are the square roots of the diagonal elements of the inverse of the information matrix. Because there is no analytical approximation of the standard error for the overdispersion coefficient \(\text{sigmasq} \), its standard error and its confidence interval are set to \(NA \).

If the number of bootstrap samples \(B \) is given, the standard errors and confidence intervals are computed by a parametric bootstrap. The standard errors are the empirical standard deviation of the parameter estimations of \(B \) random samples drawn from the fitted model given in argument \(\text{object} \). The confidence intervals are the \(a \)- and \((1-a) \)-quantile of this bootstrap sample with \(a=(1-\text{level})/2 \).

Value

A list with the following components:

- \(\text{est} \) a vector of the maximum likelihood estimated coefficients.
- \(\text{se} \) a vector of the standard errors of each estimated coefficient.
- \(\text{ci} \) a matrix with the columns "lower" and "upper" giving the lower and upper boundaries of confidence intervals for the model parameters.
- \(\text{level} \) numerical value giving the coverage rate of the confidence intervals.
- \(\text{type} \) a character value "normapprox" or "bootstrap" giving how the standard errors are computed.

If the standard errors are computed by a parametric bootstrap procedure, the following component is additionally returned:

- \(\text{B} \) positive integer value giving the number of bootstrap samples used for estimation of the standard errors.

Author(s)

Tobias Liboschik and Philipp Probst

References

See Also

tsglm for fitting a GLM for time series of counts.
Examples

```r
## Road casualties in Great Britain (see help("Seatbelts"))
timeseries <- Seatbelts[, "VanKilled"]
regressors <- cbind(PetrolPrice=Seatbelts[, c("PetrolPrice")],
  linearTrend=seq(along=timeseries)/12)
# Logarithmic link function with Poisson distribution:
seatbeltsfit <- tsglm(ts=timeseries, link="log",
  model=list(past_obs=c(1, 12)), xreg=regressors, distr="poisson")

se(seatbeltsfit) # by normal approximation
```

```r
## Not run:
system.time(stderror <- se(seatbeltsfit, B=100)) # by bootstrap
stderror
# This estimation of bootstrap standard errors takes several minutes on a single
# processing unit, of course depending on its speed.
# Parallel computation for shorter run time on a cluster:
library(parallel)
ntasks <- 3
clust <- makeCluster(ntasks)
setDefaultCluster(cl=clust)
system.time(stderror <- se(seatbeltsfit, B=100, parallel=TRUE))
## End(Not run)
```

summary.tsglm

Summarising Fits of Count Time Series following Generalised Linear Models

Description

summary method for class "tsglm".

Usage

```r
## S3 method for class 'tsglm'
summary(object, B, parallel=FALSE, level=0.95, ...)
```

Arguments

- `object`: an object of class "tsglm". Usually the result of a call to `tsglm`.
- `B`: controls the computation of standard errors. Is passed to `se`.
- `parallel`: controls the computation of standard errors. Is passed to `se`.
- `level`: controls the computation of confidence intervals. Is passed to `se`.
- `...`: further arguments are currently ignored. Only for compatibility with generic function.
Details

Computes and returns a list of summary statistics of the fitted model given in argument object.

Value

A named list with the following elements:

- **call**: see `tsglm`.
- **link**: see `tsglm`.
- **distr**: see `tsglm`.
- **residuals**: see `tsglm`.
- **coefficients**: data frame with estimated parameters, their standard errors and confidence intervals (based on a normal approximation or a parametric bootstrap, see `se.tsglm`).
- **level**: numerical value giving the coverage rate of the confidence intervals.
- **number.coef**: number of coefficients.
- **se.type**: type of standard errors, see `se.tsglm`.
- **se.bootstrap.samples**: number of bootstrap samples used for estimation of the standard errors, see `se.tsglm`. Is omitted if the standard errors are not obtained by a bootstrap procedure.
- **logLik**: value of the log-likelihood function evaluated at the (quasi) maximum likelihood estimate.
- **AIC**: Akaike's information criterion (AIC), see `AIC`.
- **BIC**: Bayesian information criterion (BIC), see `BIC`.
- **QIC**: Quasi information criterion (QIC), see `QIC.tsglm`.
- **pearson.resid**: Pearson residuals, see `residuals.tsglm`.

Author(s)

Tobias Liboschik and Philipp Probst

See Also

S3 method `print`, `tsglm` for fitting a GLM for time series of counts.

Examples

```r
### Road casualties in Great Britain (see help("Seatbelts"))
timeseries <- Seatbelts[, "VanKilled"]
regressors <- cbind(PetrolPrice=Seatbelts[, c("PetrolPrice")],
                     linearTrend=seq(along=timeseries)/12)
# Logarithmic link function with Poisson distribution:
seatbeltsfit <- tsglm(ts=timeseries, link="log",
                      model=list(past_obs=c(1, 12)), xreg=regressors, distr="poisson")
summary(seatbeltsfit)
```
Description

The function tsglm fits a generalised linear model (GLM) for time series of counts. The specification of the linear predictor allows for regressing on past observations, past values of the linear predictor and covariates as defined in the Details section. There is the so-called INGARCH model with the identity link (see for example Ferland et al., 2006, Fokianos et al., 2009) and another model with the logarithmic link (see for example Fokianos and Tjostheim, 2011), which also differ in the specification of the linear predictor. The conditional distribution can be chosen to be either Poisson or negative binomial.

Estimation is done by conditional maximum likelihood for the Poisson distribution or by a conditional quasi-likelihood approach based on the Poisson likelihood function for the negative binomial distribution.

There is a vignette available which introduces the functionality of tsglm and related functions of this package and its underlying statistical methods (vignette("tsglm",package="tscount")).

The function tsglm.meanfit is a lower level function to fit the mean specification of such a model assuming a Poisson distribution. It is called by tsglm. It has additional arguments allowing for a finer control of the fitting procedure, which can be handed over from the function tsglm by its ... argument. Note that it is usually not necessary for a user to call this lower level functions nor to worry about the additional arguments provided by this function. The defaults of these arguments have been chosen wisely by the authors of this package and should perform well in most applications.

Usage

```
tsglm(ts, model = list(past_obs = NULL, past_mean = NULL, external = NULL), xreg = NULL, link = c("identity", "log"), distr = c("poisson", "nbinom"), ...)  
tsglm.meanfit(ts, model, xreg, link, score = TRUE, info = c("score", "none", "hessian", "sandwich"), init.method=c("marginal", "iid", "firstobs", "zero"), init.drop = FALSE, epsilon = 1e-06, slackvar = 1e-06, start.control = list(), final.control = list(), inter.control = NULL)
```

Arguments

- **ts** a univariate time series.
- **model** a named list specifying the model for the linear predictor, which can be of the following elements:
 - **past_obs** integer vector giving the previous observations to be regressed on (autoregression). This is a vector with the elements i_1, \ldots, i_p (see Details).
If omitted, or of length zero, there will be no regression on previous observations.

\texttt{past_mean} integer vector giving the previous conditional means to be regressed on. This is a vector with the elements \(j_1, \ldots, j_p \) (see Details). If omitted, or of length zero, there will be no regression on previous conditional means.

\texttt{external} logical vector of length \(\text{ncol(xreg)} \) specifying for each covariate wether its effect should be external or not (see Details). If this is a scalar this choice will be used for all covariates. If omitted, all covariates will have an internal effect (i.e. \texttt{external=}FALSE).

\texttt{xreg} matrix with covariates in the columns, i.e. its number of rows must be \(\text{length(ts)} \). This is the matrix \(X \) (see Details). If omitted no covariates will be included. For the identity link the covariates have to be non-negative.

\texttt{link} character giving the link function. Default is "identity", fitting an INGARCH model. Another possible choice is "log", fitting a log-linear model.

\texttt{distr} character giving the conditional distribution. Default is "poisson", i.e. a Poisson distribution.

\ldots additional arguments to be passed to the lower level fitting function \texttt{tsglm.meanfit}. See below.

\texttt{score} logical value indicating whether the score vector should be computed.

\texttt{info} character that determines if and how to compute the information matrix. Can be set to "score" (the default) for calculation via the outer product of the score vector, or to "hessian" for calculation via the Hessian matrix of second derivatives. For \texttt{info=}"sandwich" the information matrix is estimated by a sandwich formula using both the outer score product and the Hessian matrix. If set to "none", no information matrix is computed. For \texttt{distr=}"nbinom" one can only use \texttt{info=}"score".

\texttt{init.method} character that determines how the recursion of the conditional mean (and possibly of its derivatives) is initialised. If set to "marginal" (the default), the marginal mean of a model without covariates and its derivatives are used. If set to "iid", all values are initialised by the marginal mean under the assumption of i.i.d. data, which depends on the intercept only. If set to "firstobs" the first observation is used. If set to "zero", the recursions are initialised by the value zero.

\texttt{init.drop} logical value that determines which observations are considered for computation of the log-likelihood, the score vector and, if applicable, the information matrix. If \texttt{TRUE}, the first \texttt{max(model$past_obs)} observations, which are needed for the autoregression, are not considered. If \texttt{FALSE} (the default), all observations are considered and pre-sample values determined by the method specified by the argument \texttt{init.method} are used for the autoregression. Note that in the first case the effective number of observations used for maximum likelihood estimation is lower than the total number of observations of the original time series. Consequently only this lower number of observations is considered in the output. Note that for \texttt{init.drop=}\texttt{TRUE} the log-likelihood function for models of different orders might not be comparable if the effective number of observations is different.
epsilon numeric positive but small value determining how close the parameters may come to the limits of the parameter space.

slackvar numeric positive but small value determining how true inequalities among the parameter restrictions are treated; a true inequality $x < y$ will be transformed to $x + \text{slackvar} \leq y$.

start.control named list with optional elements that determine how to make the start estimation. Possible list elements are:

- use integer vector of length one or two giving the number of observations from the beginning (if of length one) or the range of observations (if of length two) used for start estimation. For use = Inf all observations are used, which is the default.

- method character specifying how start estimators should be estimated. Possible values are "iid", "CSS", "CSS-ML", "ML", "MM", "GLM" and "fixed". If method is "iid" (the default), a moment estimator assuming an iid model without covariates is used. If method="MM", the start estimate is an ARMA(1,1) fit by moment estimators and parameters of higher order than one are set to zero. For this method the starting parameter values for the covariates are zero by default and can be set by the list element xreg. If method is "CSS", "CSS-ML" or "ML", the start estimate is based on an ARMA fit using the function arima, and list element method is passed to its argument of the same name. If method="GLM", the estimated parameters of a generalised linear model with regression on the specified past observations and covariates, but not on past conditional means, are used as start estimates. Initial estimates for the coefficients of past conditional means are set to zero. If method="fixed", parameters given in further named list elements of start.control are used when available, else the predefined values given in the following are used.

- intercept numeric value with the start value for the intercept parameter. Default value is 1.

- past_obs numeric vector with the start values for parameters for regression on previous observations. Default values are zero.

- past_mean numeric vector with the start values for parameters for regression on previous conditional means. Default values are zero.

- xreg numeric vector with the start values for the regression parameters. These values will also be used if method="MM". Default values are zero.

final.control named list with optional elements that determine how to make the final maximum likelihood estimation. If final.control=NULL, only start estimates are computed and a list with fewer elements which has not the class "tsglm" is returned. Possible list elements of this argument are:

- constrained named list whose elements are passed to function constrOptim with possible elements mu, outer.iterations and outer.eps (see constrOptim for details). If constrained=NULL, an unconstrained optimisation is made with function optim. Note that this is likely to result in a fitted model which is non-stationary, which might cause further problems.

- optim.method character which is passed to functions constrOptim or optim as argument method. The default is "BFGS".
optim.control named list which is passed to function constrOptim or optim as the argument control. Must not contain the list element fnscale. The default is list(maxit=20,reltol=1e-8).

inter.control named list determining how to maximise the log-likelihood function in a first step. This intermediate optimisation will start from the start estimation and be followed by the final optimisation, which will in turn start from the intermediate optimisation result. This intermediate optimisation is intended to use a very quick but imprecise optimisation algorithm. Possible elements are the same as for final.control. The default is inter.control=NULL, which skips this intermediate optimisation step.

Details

The INGARCH model (argument link="identity") used here follows the definition

\[Z_t \mid \mathcal{F}_{t-1} \sim \text{Poi}(\nu_t) \quad \text{or} \quad Z_t \mid \mathcal{F}_{t-1} \sim \text{NegBin}(\nu_t, \phi), \]

where \(\mathcal{F}_{t-1} \) denotes the history of the process up to time \(t - 1 \), Poi and NegBin is the Poisson respectively the negative binomial distribution with the parametrisation as specified below. For the model with covariates having an internal effect (the default) the linear predictor of the INGARCH model (which is in that case identical to the conditional mean) is given by

\[\nu_t = \beta_0 + \beta_1 Z_{t-i_1} + \ldots + \beta_p Z_{t-i_p} + \alpha_1 \nu_{t-j_1} + \ldots + \alpha_q \nu_{t-j_q} + \eta_1 X_{t,1} + \ldots + \eta_r X_{t,r}. \]

The log-linear model (argument link="log") used here follows the definition

\[Z_t \mid \mathcal{F}_{t-1} \sim \text{Poi}(\lambda_t) \quad \text{or} \quad Z_t \mid \mathcal{F}_{t-1} \sim \text{NegBin}(\lambda_t, \phi), \]

with \(\lambda_t = \exp(\nu_t) \) and \(\mathcal{F}_{t-1} \) as above. For the model with covariates having an internal effect (the default) the linear predictor \(\nu_t = \log(\lambda_t) \) of the log-linear model is given by

\[\nu_t = \beta_0 + \beta_1 \log(Z_{t-i_1} + 1) + \ldots + \beta_p \log(Z_{t-i_p} + 1) + \alpha_1 \nu_{t-j_1} + \ldots + \alpha_q \nu_{t-j_q} + \eta_1 X_{t,1} + \ldots + \eta_r X_{t,r}. \]

Note that because of the logarithmic link function the effect of single summands in the linear predictor on the conditional mean is multiplicative and hence the parameters play a different role than in the INGARCH model, although they are denoted by the same letters.

The Poisson distribution is parametrised by the mean lambda according to the definition in Poisson. The negative binomial distribution is parametrised by the mean mu with an additional dispersion parameter size according to the definition in NegBinomial. In the notation above its mean parameter mu is \(\nu_t \) and its dispersion parameter size is \(\phi \).

This function allows to include covariates in two different ways. A covariate can have a so-called internal effect as defined above, where its effect propagates via the regression on past values of the linear predictor and on past observations. Alternatively, it can have a so-called external effect, where its effect does not directly propagates via the feedback on past values of the linear predictor, but only via past observations. For external effects of the covariates, the linear predictor for the model with identity link is given by

\[\nu_t = \mu_t + \eta_1 X_{t,1} + \ldots + \eta_r X_{t,r}, \]

\[\mu_t = \beta_0 + \beta_1 Z_{t-i_1} + \ldots + \beta_p Z_{t-i_p} + \alpha_1 \mu_{t-j_1} + \ldots + \alpha_q \mu_{t-j_q}. \]
and analogously for the model with logarithmic link by

\[\nu_t = \mu_t + \eta_1 X_{t,1} + \ldots + \eta_r X_{t,r}, \]

\[\mu_t = \beta_0 + \beta_1 \log(Z_{t-i_1} + 1) + \ldots + \beta_p \log(Z_{t-i_p} + 1) + \alpha_1 \mu t - j_1 + \ldots + \alpha_q \mu t - j_q. \]

This is described in more detail by Liboschik et al. (2014) for the case of deterministic covariates for modelling interventions. It is also possible to model a combination of external and internal covariates, which can be defined straightforwardly by adding each covariate either to the linear predictor \(\nu_t \) itself (for an internal effect) or to \(\mu_t \) defined above (for an external effect).

Value

An object of class "tsglm", which is a list with at least the following elements:

- `coefficients` a named vector of the maximum likelihood estimated coefficients, which can be extracted by the `coef` method.
- `start` a named vector of the start estimation for the coefficients.
- `residuals` a vector of residuals, which can be extracted by the `residuals` method.
- `fitted.values` the fitted values, which can be extracted by the `fitted` method.
- `linear.predictors` the linear fit on link scale.
- `response` a vector of the response values (this is usually the original time series but possibly without the first few observations used for initialization if argument `init.drop=TRUE`).
- `logLik` the log-likelihood of the fitted model, which can be extracted by the `logLik` method. This is the complete log-likelihood including all constant terms. It is based on \(n_{eff} \) observations (see below).
- `score` the score vector at the maximum likelihood estimation.
- `info.matrix` the information matrix at the maximum likelihood estimation assuming a Poisson distribution.
- `info.matrix_corrected` the information matrix at the maximum likelihood estimation assuming the distribution specified in `distr`.
- `call` the matched call.
- `n_obs` the number of observations.
- `n_eff` the effective number of observations used for maximum likelihood estimation (might be lower than \(n_{obs} \) if argument `init.drop=TRUE`).
- `ts` the original time series.
- `model` the model specification.
- `xreg` the given covariates.
- `distr` a character giving the fitted conditional distribution.
- `distrcoefs` a named vector of the estimated additional coefficients specifying the conditional distribution. Is `NULL` in case of a Poisson distribution.
- `sigmasq` the estimated overdispersion coefficient. Is zero in case of a Poisson distribution.
The function `tsglm.meanfit` has the same output except the elements `distr`, `distrcoefs` and `sigmasq`. In addition, they return the following list elements:

- `inter` some details on the intermediate estimation of the coefficients as returned by `constrOptim` or `optim`.
- `final` some details on the final estimation of the coefficients as returned by `constrOptim` or `optim`.
- `durations` named vector of the durations of the model fit (in seconds).
- `outerscoreprod` array of outer products of score vectors at each time point.

Author(s)

Tobias Liboschik, Philipp Probst, Konstantinos Fokianos and Roland Fried

References

See Also

S3 methods `print`, `summary`, `residuals`, `plot`, `fitted`, `coef`, `predict`, `logLik`, `vcov`, `AIC`, `BIC` and `QIC` for the class "tsglm". The S3 method `se` computes the standard errors of the parameter estimates. Additionally, there are the S3 methods `pit`, `marcal` and `scoring` for predictive model assessment.

S3 methods `interv_test`, `interv_detect` and `interv_multiple` for tests and detection procedures for intervention effects. `tsglm.sim` for simulation from GLM-type model for time series of...
counts. `ingarch.mean`, `ingarch.var` and `ingarch.acf` for calculation of analytical mean, variance and autocorrelation function of an INGARCH model (i.e. with identity link) without covariates.

Example time series of counts are `campy`, `ecoli`, `ehec`, `influenza`, `measles` in this package, `polio` in package `gamlss.data`.

Examples

```r
### Campylobacter infections in Canada (see help("campy"))
interventions <- interv_covariate(n=length(campy), tau=c(84, 100),
    delta=c(1, 0)) # detected by Fokianos and Fried (2010, 2012)
# Linear link function with Negative Binomial distribution:
campyfit <- tsglm(campy, model=list(past_obs=1, past_mean=13),
    xreg=interventions, distr="nbinom")
campyfit
plot(campyfit)

### Road casualties in Great Britain (see help("Seatbelts"))
timeseries <- Seatbelts[, "VanKilled"]
regressors <- cbind(PetrolPrice=Seatbelts[, c("PetrolPrice")],
    linearTrend=seq(along=timeseries)/12)
# Logarithmic link function with Poisson distribution:
seatbeltsfit <- tsglm(ts=timeseries, link="log",
    model=list(past_obs=c(1, 12)), xreg=regressors, distr="poisson")
summary(seatbeltsfit)
```

tsglm.sim

Simulate a Time Series Following a Generalised Linear Model

Description

Generates a simulated time series from a GLM-type model for time series of counts (see `tsglm` for details).

Usage

```r
tsglm.sim(n, param = list(intercept = 1, past_obs = NULL, past_mean = NULL,
    xreg = NULL), model = list(past_obs = NULL, past_mean = NULL,
    external = FALSE), xreg = NULL, link = c("identity", "log"),
    distr = c("poisson", "nbinom"), distrcoefs, fit, n_start = 50)
```

Arguments

- `n` integer value giving the number of observations to be simulated.
- `param` a named list giving the parameters for the linear predictor of the model, which has the following elements:
 - `intercept` numeric positive value for the intercept β_0.
past_obs numeric non-negative vector containing the coefficients β_1, \ldots, β_p
for regression on previous observations (see Details).
past_mean numeric non-negative vector containing the coefficients $\alpha_1, \ldots, \alpha_q$
for regression on previous conditional means (see Details).
xreg numeric non-negative vector specifying the size ν_1, \ldots, ν_r of each intervention

model a named list specifying the model for the linear predictor, which has the elements past_obs, past_mean and external (see function tsglm for details). This model specification must be in accordance to the parameters given in argument param.

xreg matrix with covariates in the columns (see tsglm for details). Its number of rows must be equal to the number of observations which should be simulated.

link character giving the link function. Default is "identity", simulating from a so-called INGARCH model. Another possible choice is "log", simulating from a log-linear model.

distr character giving the conditional distribution. Default is "poisson", i.e. a Poisson distribution.
distrcoefs numeric vector of additional coefficients specifying the conditional distribution. For distr="poisson" no additional parameters need to be provided. For distr="nbinom" the additional parameter size needs to be specified (e.g. by distrcoefs=2), see tsglm for details.

fit an object of class "tsglm". Usually the result of a call to tsglm. If argument fit is not missing, the specification of the linear predictor, the link function and the estimated parameters from this argument are used instead of those in arguments model, link and param. The length of the simulated time series is only taken from argument fit, if no argument n is provided. The same holds for arguments xreg, distr and distrcoefs, which are also preferred over the respective information provided in argument fit if both are provided.

n_start number of observations used as a burn-in.

Details

The definition of the model used here is like in function tsglm.

Note that during the burn-in period covariates are set to zero.

If a previous model fit is given in argument fit and the length of the burn-in period n_start is set to zero, then the a continuation of the original time series is simulated.

Value

A list with the following components:

- ts an object of class "ts" with the simulated time series.
- linear.predictors an object of class "ts" with the simulated linear predictors κ_t for all $t = 1, \ldots, n$.
- xreg.effects an object of class "ts" with the cumulated effect of the covariates $\eta_1 X_{t,1} + \ldots + \eta_r X_{t,r}$ for all $t = 1, \ldots, n$.

Author(s)

Tobias Liboschik and Philipp Probst

References

See Also

tsglm for fitting a GLM for time series of counts.

Examples

```r
# Simulate from an INGARCH model with two interventions:
interventions <- interv_covariate(n=200, tau=c(50, 150), delta=c(1, 0.8))
model <- list(past_obs=1, past_mean=c(1, 7), external=FALSE)
param <- list(intercept=2, past_obs=0.3, past_mean=c(0.2, 0.1), xreg=c(3, 10))
tsglm.sim(n=200, param=param, model=model, xreg=interventions, link="identity",

distr="nbinom", distrcoefs=c(size=1))
```
Index

* **Data**
 - campy, 3
 - ecoli, 5
 - ehec, 6
 - influenza, 7
 - measles, 20

* **Inference**
 - se.tsglm, 33
 - summary.tsglm, 35
 - tscount-package, 2

* **Intervention detection**
 - interv_covariate, 9
 - interv_detect.tsglm, 10
 - interv_multiple.tsglm, 13
 - interv_test.tsglm, 16
 - plot.interv_detect, 22
 - plot.interv_multiple, 23
 - tscount-package, 2

* **Model assessment**
 - marcal, 19
 - pit, 21
 - plot.tsglm, 24
 - QIC, 28
 - residuals.tsglm, 30
 - scoring, 31
 - summary.tsglm, 35
 - tscount-package, 2

* **Prediction**
 - predict.tsglm, 25
 - tscount-package, 2

* **Simulation**
 - tscount-package, 2
 - tsglm.sim, 43
 - AIC, 29, 36, 42
 - ardistr (countdistr), 4
 - arima, 39
 - BIC, 29, 36, 42
 - campy, 3, 6, 7, 21, 43
 - checkdistr (countdistr), 4
 - chol, 18
 - chol2inv, 18
 - coef, 41, 42
 - constrOptim, 39, 40, 42
 - countdistr, 4
 - cpgram, 24
 - ddistr (countdistr), 4
 - devAskNewPage, 24
 - ecoli, 4, 5, 6, 7, 21, 43
 - ehec, 4, 6, 7, 21, 43
 - fitted, 41, 42
 - influenza, 4, 6, 7, 21, 43
 - ingarch.acf, 43
 - ingarch.acf (ingarch.analytical), 7
 - ingarch.analytical, 7
 - ingarch.mean, 43
 - ingarch.mean (ingarch.analytical), 7
 - ingarch.var, 43
 - ingarch.var (ingarch.analytical), 7
 - interv_covariate, 9, 11, 12, 14–17
 - interv_detect, 10, 14, 15, 17, 23, 42
 - interv_detect (interv_detect.tsglm), 10
 - interv_detect.tsglm, 10, 23
 - interv_multiple, 10, 12, 17, 24, 42
 - interv_multiple
 - (interv_multiple.tsglm), 13
 - interv_multiple.tsglm, 13, 23
 - interv_test, 10–12, 14, 15, 42
 - interv_test (interv_test.tsglm), 16
 - interv_test.tsglm, 16
 - invertinfo, 18
 - logLik, 41, 42
 - logLik.tsglm (tsglm), 37

46
INDEX

makeCluster, 11, 14, 33
marcal, 19, 22, 24, 33, 42
measles, 4, 6, 7, 20, 43

NegBinomial, 5, 40

optim, 39, 40, 42

pdistr (countdistr), 4
permutationTest, 33
pit, 20, 21, 24, 33, 42
plot, 8, 12, 15, 19, 21, 23, 42
plot.interv_detect, 22
plot.interv_multiple, 23
plot.tsglm, 24
Poisson, 5, 40
polio, 4, 6, 7, 21, 43
predict, 42
predict.tsglm, 25
print, 12, 15, 17, 36, 42
print.summary.tsglm (summary.tsglm), 35
print.tsglm (tsglm), 37

qdistr (countdistr), 4
QIC, 28, 42
QIC.tsglm, 36

rdistr (countdistr), 4
residuals, 41, 42
residuals.tsglm, 30, 36

scoring, 20, 22, 31, 42
sddistr (countdistr), 4
se, 35, 42
se (se.tsglm), 33
se.tsglm, 33, 36
setDefaultCluster, 11, 14, 33
solve, 18
summary, 42
summary.tsglm, 35

tacvfARMA, 8
tscount (tscount-package), 2
tscount-package, 2
tsglm, 2, 5, 8, 10–17, 19–25, 28–31, 33–36,
37, 43–45
tsglm.sim, 8, 42, 43

vcov, 42
vcov.tsglm (tsglm), 37